数理逻辑用语
数理逻辑小结
分类
重言式、矛盾式、可满足式
逻辑有效式、矛盾式、可满足式
等值演算
等值公式
逻辑等值式
基本:双重否定律
命题等值式代换实例
交换律
量词分配律
结合律
量词否定转化等值式
分配律
量词辖域扩张与收缩
德.摩根律
全称与合取、析取、蕴涵
等幂律
存在与合取、析取、蕴涵
同一律
有限个体域量词消去
零律
吸收律
重要:蕴涵等价式
数理逻辑小结
命题逻辑
谓词逻辑
概念
基本概念
命题:
谓词:
联结词:
否定、合取、析取、蕴涵、等价
量词:
全称量词、存在量词
命题常元、命题变元
个体常元(项)、个体变元(项)、
个体(论)域 辖域、指导变元、约束变元、自由变元
分类
原子命题、复合命题
一元谓词、n元谓词
公式
递归定义
命题公式
谓词公式
翻译
真值指派与语句形式化
量词分配推理定律
规则
前提引入
结论引入
置换规则
附加前提规则
反证推理规则
全称量词消去规则UI
全称量词引入规则UG
存在量词消去规则EI
存在量词引入规则EG
其它
最小完备集、对偶定律
闭式
等价等值式
逆反律
输出律
归谬律
规则
代入规则
换名规则
置换规则
代替规则
范式
方法
主析取范式:极小项析取
主合取范式:极大项合取
真值扩张、规则
推理
概念
形式结构、前提、结论、推理正确
数学高中专题 常用逻辑用语
数学高中专题常用逻辑用语1、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or):命题形式p q ∨;⑶非(not):命题形式p ⌝.2、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p:)(,xpMx∈∀;全称命题p的否定⌝p:)(,xpMx⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p:)(,xpMx∈∃;特称命题p的否定⌝p:)(,xpMx⌝∈∀;高考理科数学新课标对常用逻辑用语的要求:3、简单的逻辑连接词了解逻辑连接词或,且,非的含义4、全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确的对含有一个量词的命题进行否定高考对常用逻辑用语主要考查逻辑联结词的应用、特(全)称命题的否定、充要条件的判断等.高考中集合属于基础题,多与不等式相结合考查集合的交、并、补运算及集合间的关系.近五年除了2012年及2016年其余都以小题形式出现,试题难度较小。
题型1: 充分条件、必要条件、充要条件的判断与证明。
此类题目出现的频率较高,多与不等式,三角,立体几何等知识点交汇出现。
1.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5.(2015北京理4)设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( ). A. 充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 变式练习1.(2015天津理4,文4)设x ∈R ,则“21x -< ”是“220x x +->”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件2.(2015安徽理3)设:1<<2p x ,:21xq >,则p 是q 成立的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.(2015陕西理6,文6)“sin cos αα=”是“cos 20α=”的( ). A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要 4.(2015湖北理5)设12,,,n a a a ∈R ,3n …. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( ). A. p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件题型2:判断含逻辑联结词的命题的真假1.(2015浙江理6)设,A B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C +…. 下列判断正确的是( ).A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立题型3: 全(特)称命题的否定1.(2015全国I 理3)设命题:p n ∃∈N ,22n n >,则p ⌝为( ). A .n ∀∈N ,22n n > B .n ∃∈N ,22n n … C .n ∀∈N ,22n n … D .n ∃∈N ,22n n = 变式练习1.(2015浙江理4)命题“**,()f n n ∀∈∈N N 且()f n n …的否定形式是( ). A. **,()f n n ∀∈∈N N 且()f n n > B. **,()f n n ∀∈∈N N 或()f n n > C. **00,()f n n ∃∈∈N N 且00()f n n > D. **00,()f n n ∃∈∈N N 或00()f n n >题型 4 四种命题及关系1(2015山东文5)设m ∈N ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题 是( ).A. 若方程20x x m +-=有实根,则0m > B. 若方程20x x m +-=有实根,则0m … C. 若方程20x x m +-=没有实根,则0m > D. 若方程20x x m +-=没有实根,则0m …题型5:充分条件、必要条件、充要条件的判断与证明1.(2015湖南文3) 设x ∈R ,则“1x >”是“21x >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2.(2015四川文4) 设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 变式练习1.(2015浙江文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件2.(2015重庆文2)“1x =”是“2210x x -+=”的( ). A. 充要条件 B.充分不必要条件 C. 必要不充分条件 D.既不充分也不必要条件3.(2015安徽文3)设p :3x <,q :13x -<<,则p 是q 成立的( ). A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.(2015北京文6)设a ,b 是非零向量,“a b =a b ⋅”是“//a b ”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件1.命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3﹣x 2+1≤0B .∃x 0∈R ,x﹣x+1≥0C .∃x 0∈R ,x﹣x+1>0D .∀x ∈R ,x 3﹣x 2+1>02..下列叙述中正确的是( )A .若,,a b c R ∈,则“20ax bx c ++≥”的充分条件是“240b ac -≤” B .若,,a b c R ∈,则“22ab cb >”的充要条件是“a c >”C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” D .l 是一条直线,,αβ是两个平面,若,l l αβ⊥⊥,则//αβ 3.下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∃∈--≥”; ③“5a >且5b >-”是“0a b +>”的充要条件; ④当0a <时,幂函数a y x =在区间()0+∞,上单调递减. 其中正确结论的个数是( )A 、0个B 、 1个C 、2个D 、3个4.已知a ,b 都是实数,那么“>”是“lna >lnb”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 以下说法错误的是( )A .命题“若“x 2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2﹣3x+2≠0”B .“x=2”是“x 2﹣3x+2=0”的充分不必要条件C .若命题p :存在x 0∈R ,使得x 02﹣x 0+1<0,则¬p :对任意x ∈R ,都有x 2﹣x+1≥0D .若p 且q 为假命题,则p ,q 均为假命题 5.设a R ∈,则1a >是11a< 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.若“x ∈[2,5]或x ∈{x|x <1或x >4}”是假命题,则x 的取值范围是 . 7.命题“∀x ∈R ,x 2≥0”的否定是 .8.若命题“∃x ∈R ,使x 2+(a ﹣1)x+1<0”是假命题,则实数a 的取值范围为 . 9.命题“若x 2﹣2x ﹣3>0,则x <﹣1或x >3”的逆否命题是 .10.若“∀x ∈[0,],tanx <m”是假命题,则实数m 的最大值为 .11.若命题“存在x ∈R ,使得2x 2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是 .12.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的 条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要) 13.有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x 2﹣5x ﹣3<0”必要不充分条件;③“若xy=0,则x 、y 中至少有一个为0”的否命题是真命题.;④若p 是q 的充分条件,r 是q 的必要条件,r 是s 的充要条件,则s 是p 的必要条件; 其中是真命题的有: .(把你认为正确命题的序号都填上)14.已知命题p :x≤1,命题q :≥1,则命题p 是命题q 的 条件.15.(2015福建理7)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α”的 ( B ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 16.(2015福建文12)“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件17.(2015湖北文5) 1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线,q :1l ,2l 不相交,则( ).A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件。
新高考数学逻辑用语知乎
新高考数学逻辑用语知乎新高考数学逻辑用语知乎在新高考改革中,数学成为了一门重要的考试科目。
而在数学中,数学逻辑则是一个重点考查内容。
数学逻辑包含了很多口语和写作中常用的逻辑用语,它们的掌握不仅有助于学生在考试中拿高分,也能提高学生的语言表达能力。
在这里,我们将向大家介绍新高考数学逻辑用语。
一、充分必要条件在数学中,我们经常会遇到充分必要条件的概念。
一般地,称条件A 是条件B的充分条件,就是说如果满足条件B,则条件A一定满足。
而条件A是条件B的必要条件,就是说如果条件A不满足,则条件B 也一定不满足。
在考试中,学生要掌握这些逻辑用语,以便正确理解题目,做出正确的答案。
二、充分条件充分条件是指只需满足该条件,就能得出结论的条件。
在考试中,有些问题需要学生使用充分条件,以便得出正确的结论。
三、必要条件必要条件是指一个条件必须得到满足,才能推出结论。
在考试中,有些问题需要学生使用必要条件,以便得出正确的结论。
四、假言命题假言命题是指由前提和结论组成的命题。
在量化命题中,有很多是假言命题。
掌握假言命题的概念有助于学生正确理解和解题。
五、量词在数学中,量词是一个非常重要的概念。
它用来指示范围、数量和数量的变化。
掌握量词的含义和用法有助于学生理解和解决数学问题。
六、命题的逆否和对偶在数学中,命题的逆否和对偶是重要的概念。
命题的逆否是指将命题的前提和结论都取反,对偶是指将命题的前提和结论交换位置并取反。
七、演绎法和归纳法演绎法和归纳法是重要的推理方法。
演绎法是指从一般原理推导出特殊结论的方法,归纳法是指从特殊事实推论出一般结论的方法。
在数学中,学生需要掌握这两种推理方法,以便解决不同类型的问题。
以上是针对新高考数学逻辑用语的一些简单介绍。
学生们要在复习阶段认真学习这些逻辑用语,以便在考试中做出正确的答案。
同时,掌握这些逻辑用语也会提高学生的语言表达能力,为将来的发展奠定更加坚实的基础。
数理逻辑经验例子
数理逻辑经验例子数理逻辑是一门研究符号语言和推理的学科,它在许多领域中都有广泛应用。
以下是数理逻辑的一些经验例子:1. 命题逻辑:命题逻辑是数理逻辑中的一种基本形式,它用来研究命题之间的逻辑关系。
例如,命题“今天下雨了”可以表示为P,命题“明天会晴天”可以表示为Q。
我们可以使用逻辑联结词(如“与”、“或”、“非”)来描述这些命题之间的关系,例如“今天下雨了并且明天会晴天”可以表示为P∧Q。
2. 谓词逻辑:谓词逻辑是一种扩展的命题逻辑,它允许我们使用变量和谓词来描述命题。
例如,我们可以定义一个谓词“是素数”,然后使用变量x表示一个整数,这样我们就可以描述一个命题“x是素数”。
我们还可以使用量词(如“存在”、“任意”)来描述这些命题的数量和特征,例如“存在一个素数x,使得x大于10”可以表示为x(P(x) ∧ x>10)。
3. 命题演算:命题演算是一种用于计算逻辑表达式的数学方法。
例如,我们可以使用真值表来计算一个命题逻辑表达式的真值,或者使用命题演算的规则来简化一个逻辑表达式。
例如,我们可以使用命题演算的规则来将一个复杂的逻辑表达式简化为等价的形式,或者使用它来证明一个定理的正确性。
4. 证明论:证明论是数理逻辑中研究证明方法和证明结构的学科。
例如,我们可以使用数学归纳法来证明一个命题的正确性,或者使用逆证法来证明一个逆命题的正确性。
证明论还研究证明的可靠性和有效性,以及如何避免常见的证明错误。
5. 模型论:模型论是一种用于研究逻辑语言和它们的语义结构的方法。
例如,我们可以使用模型来解释一个逻辑理论的含义,或者使用模型来验证一个逻辑理论的正确性。
模型论还研究逻辑语言和自然语言之间的关系,以及如何将自然语言翻译成逻辑语言。
这些经验例子说明了数理逻辑的广泛应用,它可以帮助我们理解和分析许多不同领域的问题,包括数学、计算机科学、哲学、语言学等。
高中数学常用逻辑用语的解题方法归纳
§.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一. 关键词 是 都是(全是) >(<) 至少有一个 至多有一个 任意 存在否定 不是 不都是(全是) ≤(≥) 一个也没有 至少有两个 存在 任意2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-h b h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件.由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A 解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解.∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<mq :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题导练1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。
高中数学常用逻辑用语知识点
高中数学常用逻辑用语目标认知考试大纲要求:1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2. 了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理。
知识要点梳理知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。
③“非p”与p的真假相反.注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。
可以类比于集合中“或”. (2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
数学常用逻辑用语
数学常用逻辑用语
1. 嘿,数学常用逻辑用语就像一把神奇的钥匙,能打开好多知识大门呢!比如“如果今天下雨,我就带伞”,这不就是典型的条件语句嘛!
2. 哇塞,数学常用逻辑用语可是很重要的呀!就像我们说话做事要有条理一样,比如“要么吃苹果,要么吃香蕉”,多明确呀!
3. 哎呀,数学常用逻辑用语真的超有意思!就像走迷宫有了指引,比如“所有的三角形内角和都是 180 度”,这就是普遍真理呀!
4. 嘿呀,数学常用逻辑用语可不是吃素的!就好像给你指明方向的灯塔,比如“若一个数是偶数,那它一定能被 2 整除”。
5. 哇哦,数学常用逻辑用语那可太关键啦!就如同游戏规则一样,比如“存在一个数使得等式成立”,这多神奇!
6. 哟呵,数学常用逻辑用语简直妙不可言!好比是搭建房子的基石,比如“只要努力学习,就会取得好成绩”。
7. 哈哈,数学常用逻辑用语太好玩啦!就像一个神秘的密码锁,比如“当且仅当条件满足时才成立”,是不是很特别!
8. 哎呀呀,数学常用逻辑用语真的很神奇呢!就像我们走路要有路线一样,比如“非此即彼”的判断。
9. 嘿哟,数学常用逻辑用语真的超厉害!就如同给你力量的魔法,比如“若 A 则B”这样的逻辑关系。
10. 哇啦,数学常用逻辑用语那可是相当重要啊!就好像是航行中的指南针,比如“不是正数就是负数或0”。
我觉得数学常用逻辑用语是数学中非常基础且关键的部分,掌握了它,能让我们更好地理解和运用数学知识呀!。
数学逻辑连接词
数学逻辑连接词数学逻辑连接词: 因果关系、充分条件、必要条件、等价、充分充要、充分非必要、必要非充分、充分非必要非、充分充要非、等价非、充分非必要非充分、必要非充分、充分充要非必要、等价非充分、充分非必要非充分非、必要非充分非、充分充要非必要非、等价非充分非、充分非必要非充分非必要非、必要非充分非必要非、等价非充分非必要非充分非必要非因果关系是数学逻辑中常见的一种连接词。
它表示两个事件或者两个命题之间的因果关系。
例如,如果A发生,那么B也会发生。
在数学推理中,我们经常使用因果关系来推导结论。
充分条件是另一种常见的逻辑连接词。
它表示如果A成立,那么B 也一定成立。
充分条件是一个充分推理的条件,它能够帮助我们得出结论。
必要条件是与充分条件相对应的逻辑连接词。
它表示如果B成立,那么A一定成立。
必要条件是一个必要推理的条件,它能够帮助我们确定前提。
等价是逻辑中常见的一种关系。
它表示两个命题具有相同的真值。
如果两个命题互为真或者互为假,那么它们是等价的。
等价关系可以帮助我们简化复杂的逻辑推理。
充分充要是充分条件与必要条件的合并。
它表示如果A成立,那么B一定成立,并且如果B成立,那么A也一定成立。
充分充要是一个同时包含充分条件和必要条件的逻辑连接词。
充分非必要是充分条件的否定。
它表示如果A成立,那么B不一定成立。
充分非必要是一个只包含充分条件的逻辑连接词。
必要非充分是必要条件的否定。
它表示如果B成立,那么A不一定成立。
必要非充分是一个只包含必要条件的逻辑连接词。
充分非必要非是充分条件和必要条件的否定。
它表示如果A成立,那么B不一定成立,并且如果B成立,那么A也不一定成立。
充分非必要非是一个同时包含充分条件和必要条件的逻辑连接词。
充分充要非是充分条件、必要条件和否定的合并。
它表示如果A成立,那么B一定成立,并且如果B成立,那么A也一定成立。
充分充要非是一个同时包含充分条件、必要条件和否定的逻辑连接词。
等价非是等价关系的否定。
(完整版)常用逻辑用语知识点总结
常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。
高中数学:常用逻辑用语
常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
专题二、数理逻辑用语
专题二、数理逻辑用语专题二数理逻辑用语一、考纲要求:了解命题的概念常用的逻辑联结词(且、或、非、如果…那么…)。
理解充要条件的含义。
二、复习指导:数理逻辑用语的知识可以培养学生具有逻辑思维推理、判断能力。
涉及这个知识的试题,范围很广,可以是方程、函数、不等式、数列、向量、解析几何等各种数学知识。
数理逻辑用语与集合的知识一样,以容易题为主,题型是选择题和填空题,每年一至二题;在复习过程中要注意三类题型:一是命题的判断;二是判断充分(必要、充要)条件;二是求命题的充分(必要、充要)条件;注意归纳求充分(必要)条件的方法。
三、知识归纳:1.命题的概念与判断;2.命题的真假判断(或、且、非);3.充分必要条件判断四、历届高考题:(2008 年)14、的是"3||""3",<<∈x x R xA.充分必要条件 B .充分不必要条件 C .既不必要也不充分条件 D .必要不充分条件(2006 年7)设G 和F 是两个集合,则“G 中的元素都在F 中”是“G=F ”的()A 充分条件B 充要条件C 必要条件D 既非充分又非必要条件(2005年 13)“2b -4ac>0”是方程a 2x +bx+c=0(a ≠0)有实数解的() A 充分条件 B 充要条件 C 必要条件 D 既非充分又非必要条件(2004年3) x=6是2 x =36的()A 充分条件B 充要条件C 必要条件D 既非充分又非必要条(2004年16)设命题p:实数a,b,c 中至少有一个正数。
那么命题非p 可陈述为:实数a,b,c 中 A 充分条件 B 充要条件 C 必要条件 D 既非充分又非必要条件(2003年4)给出4个句子:①你好吗?②他走了.③快点来!④鸟会飞.其中是命题的只有()A ①与② B ③ C )③与④ D ②与④ (2003年10)函数f(x)=|x+2|+|x+a|为偶函数的充要条件为a=( )A -2B -1C 0D 2 (2002年4)2x =9是x=3的()A 充分条件B 充要条件C 必要条件D 既非充分又非必要条件(2002年9)已知a>b ,那么a 1>b1的充要条件是() A a >0 B b<0 C a b<0 D 2a +2b ≠0注意:逻辑用语近几年都考查充分必要条件。
数学常用逻辑用语(高中数学课件)
用常 语用
逻 辑
知识网络
命题及其关 系
简单的逻辑联结 词
四种命题
充分条件与必要条件
或
并集
且
交集 运算
非或 补集
全称量词与存在 量词
量词
全称表达的,可以判断真假 的陈述句称为命题. 其中判断为真的语句称为真命题,判断为假 的语句称为假命题.
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
逆否命题:若 q 则 p
结论1:要写出一个命题的另外三个命 题关键是分清命题的题设和结论(即 把原命题写成“若P则Q”的形式)
注意:三种命题中最难写 的是否命题。
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不
都”。
三、四种命题之间的 关系
原命题
若p则q
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
数理逻辑用语
数 理 逻 辑 用 语复习目标:1、掌握命题的概念;2、理解逻辑连词“且”、“或”、“非”的含义,能判定用“且”,“或”连接成的复合命题的真假,能写出命题p 的否定形式,能判定“非p ”的真假;3、理解必要条件、充分条件、充要条件以及等价的意义.知识要点:1、命题:的句子叫做命题。
2、开句:的句子叫做开句或条件命题.eg :.3、两个常用的量词:和。
在开句前面,加上含有量词的语句,往往可使开句变成命题 eg : .4、“且”,“或”,“非”一般地,设p 、q 是两个命题,则(1)“p 且q ”构成一个新命题,记作,(2)“p 或q ”构成一个新命题,记作,(3)” p 的非(或否定)”构成一个新命题,记作 .5、q p ∧、q p ∨、p ⌝的真值表如下:6(1)如果可推出时,称p 是q 的充分条件,或是的必要条件.(2)如果可推出,且可推出时,就称p 是q 的充要条件,或p 与q 等价.例题选讲:例1、 下列语句是否是命题?若是,判断其真假,并说明理由.(1)0652=+-x x (2)1+2=3吗? (4)3<2 (5)请你出去!例2、 用逻辑联结词“且”,“或”分别联贯下面所给的命题p 、q ,构成一个新命题,并判断它们的真假(1) p :27是3的倍数; q :27是9的倍数(2) p :1+2=3 ; q :4>3(3) p :平行四边形的对角线互相平分;q :平行四边形的对角线相等。
例3、 写出下列命题的非,并判断它的真假.(1) 对任意实数x ,都有0122≥+-x x ;(2) 明天刮风或下雨(3) 明天刮风且下雨例4、 用充分条件、必要条件、充要条件填空:1.“x 是实数”是“x 是有理数的”.2、x>3是x>5的.3、“x 是正方形”是“x 是矩形的”.4、B A ⊆是A B A = 的.例5、已知p 是q 充分条件,s 是r 的必要条件,p 是s 的充要条件,求q 与r的关系.。
高中数学逻辑用语
高中数学逻辑用语1、命题:真命题、假命题2、四种命题:逆命题与否命题、互为逆否命题、互为逆否命题的两个命题、同真同假。
3、充要条件:,则称是的充分条件,是的必要条件。
4、逻辑联结词:或、且、非、中至少一个为真为真、中至少一个为假为假真(或假)为假(或真)5、全称量词:“任意”、“全部”、“所有”6、存在量词:“存在一个”、“至少一个”例1、下列语句中是命题的有,其中真命题的有。
①等边三角形是等腰三角形”;②;③;④一个数不是正数就是负数;⑤“大角所对的边大于小角所对的边”;⑥“为有理数,则xy也都是有理数”。
解析:命题①③④⑤⑥;真命题①例2、命题“若,则x与y成反比例关系”的否命题是()A. 若,则x与y成正比例关系B. 若,则x与y成反比例关系C. 若x与y不成反比例关系,则D. 若,则x与y不成反比例关系解析:选D。
条件及结论同时否定、位置不变例3、写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假。
(1)两条平行线不相交(2)两条对角线不相等的平行四边形不是矩形(3)若,则解析:(1)逆命题:若两条直线不相交,则它们平行,为真命题。
否命题:若两条直线不平行,则它们相交,为真命题。
逆否命题:若两条直线相交,则它们不平行,为真命题。
(2)逆命题:若平行四边形不是矩形,则它的两条对角线不相等,为真命题。
否命题:若平行四边形两条对角线相等,则它是矩形,为真命题。
逆否命题:若平行四边形为矩形,则它的两条对角线相等,为真命题。
(3)逆命题:若,则,为假命题。
否命题:若,则,为假命题。
逆否命题:若,则,为真命题。
例4、已知下列三个方程:,至少有一个方程有实根,求实数的取值范围。
解析:先求使三个方程都没有实根的实数的取值范围:由得解得:∴所求实数a的取值范围是:或正确使用原命题与逆否命题等价例5、已知是方程的两根,,则是的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件分析:利用韦达定理转换。
高中数学常用逻辑用语(1)
2022年11月20日常用逻辑用语一、命题与量词1、命题:一般地,在数学中,我们把用语言、符号或式子表达的,可以的叫做命题。
2、命题的分类:①真命题②假命题3、全称量词:短语“所有”、“任意”、“每一个”、“一切”等在陈述中表示所述事物的全体,在逻辑中通常叫做全称量词,并用符号表示,读作“对任意”。
含有全称量词的命题称为。
4、存在量词:短语“有一个”、“存在一个”、“至少有一个”、“有的”、“有些”、“某个”等在陈述中表示所述事物的个体或部分,在逻辑中叫做存在量词,并用符号表示,读作“存在”。
存在量词的命题称为。
5、基本逻辑联结词:这些词叫做逻辑联结词。
复合命题的构成形式:①p 或q ;②p 且q ;③非p (即命题p 的否定)。
复合命题的真假判断(利用真值表):pq 非p (p ⌝)p 或q (q p ∨)p 且q (q p ∧)真真真假假真假假二、四种命题的关系1、四种命题的形式:用p 和q 分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示p 和q 的否定,则四种命题的形式为:①原命题:若p 则q ;②逆命题:;③否命题;④逆否命题:。
(1)原命题⇔逆否命题,它们具有相同的真假性。
(2)逆命题⇔否命题,2、否命题与否定命题的区别:“否命题”与“命题的否定”这两个概念,如果原命题是“若p 则q ”,那么这个命题的否命题是“若非p ,则非q ”,而这个命题的否定是“若p 则非q ”。
可见,否命题既否定又否定,而命题的否定只否定。
三、充分条件与必要条件1、定义:“若p 则q ”是真命题⇔q p ⇒⇔p 是q 的充分条件⇔q 是p 的必要条件2、从集合的观点上,建立与p 、q 相应的集合,即p :})(|{成立x p x A =,q :})(|{成立x q x B =。
(1)若B A ⊆,则p 是q 的充分条件,若A ≠⊂B ,则p 是q 成立的充分不必要条件;(2)若A B ⊆,则p 是q 的必要条件,若B ≠⊂A ,则p 是q 成立的必要不充分条件;(3)若B A =,则p 是q 成立的充要条件;(4)若B A ⊄且A B ⊄,则p 是q 成立的既不充分也不必要条件。
数理逻辑知识梳理
数理逻辑用语一:命题1、定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题的构成――条件和结论从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q 叫做命题结论.3.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
4.怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.二、四种命题及四种命题的相互关系1.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 数理逻辑用语
(一)命题
1、命题:可以判断真假的语句。
(一般为陈述句)
2、命题的四种形式及关系
原命题逆命题否命题逆否命题
3、四种命题的真假性
×××
×
××××
互为逆否互
否
否命题:若¬p 则¬q 互逆逆否命题:
若¬q 则¬ p
互
否
逆命题:
若q 则p
原命题:
若p 则q
互逆
注:(1)互为逆否的两个命题具有相同的真假性;
(2)互逆或互否的两个命题的真假性无关;
(3)一个命题的逆命题与否命题具有相同的真假性;
(4)直接判断命题真假性不易时,可反向判断其逆否命题的真假性。
4、简单的逻辑联接词
(1)或-------∨1°生活中指不可兼有;2°数学中指可兼有,相当于求并
集。
(2)且-------∧1°生活中指和、与;2°数学中相当于求交集。
(3)非-------⌝1°生活中指否定:2°数学中也指否定,相当于求补集。
5、简单命题与复合命题
(1)简单命题:即不含逻辑联接词的命题。
(2)复合命题:由简单命题和逻辑联接词构成的命题。
(3)命题的真值表
p q p且q p或q非p
6、全程命题与特称命题(1)定义:
1°全称量词:包含短语“所有的”、“任意一个”的量词,∀
符号——含有全称量词的命题叫做全称命题,用符号简记为:).
(,x p M x ∈∀2°特称量词:包含短语“存在一个”、“至少一个”的量词,符号——∃
含有特称量词的命题叫做特称命题,用符号简记为:).(,x q M x ∈∃(2)全程命题与特称命题的否定:
).(,)(,:00x p m x p x p M x p ⌝∈∃⌝→∈∀:命题的否定命题1°).(,:)(,:00x p M x p x p M x p ⌝∈∀⌝→∈∃命题的否定特称命题2°注:1)全程命题的否定是特称命题,特称命题的否定是全称命题;2)命题的“否定”与一个命题的否命题是两个完全不同的概念;对命题的否定是否定命题所做的判断,而“否命题”是既要否定条
件
也要否定结论,即q p q p ⌝⇒⌝→⇒(二)充分条件与必要条件
1、定义:
互为充要条件。
、,则若的必要条件;叫做则若的充分条件;叫做则若q p q p q p q p q p q p ⇔⇐⇒,,
2、充分条件、必要条件与集合的关系若命题p ↔集合A,命题q↔集合B ,则:
从逻辑的观点看
q
p p q q p p q q p q
p q p ⇔⇒⇒⇒⇒⇐⇒,,充分条件必要条件充分不必要条件必要不充分条件充要条件
从集合的观点看
B
A B A B A B A B A =⊃⊂⊇⊆3、四种命题与充要条件的关系
(1)证明原命题成立即证明条件的充分性;(2)证明逆命题成立即证明条件的必要性;
(3)证明原命题与逆命题同时成立即证明条件的充要性。