三角函数对照表

合集下载

完整三角函数公式表

完整三角函数公式表

完整三角函数公式表三角函数公式表是数学中常用的一个工具,用于计算三角函数的数值。

它包含了各种三角函数的定义和性质,能够帮助我们在解决三角函数相关问题时,快速找到所需的公式和计算方法。

以下是一个完整的三角函数公式表,包含了常见的正弦、余弦、正切、余切、正割和余割函数的公式:1. 正弦函数(sin):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的y坐标。

- 基本关系:sin θ = y/r,其中θ是角度,y是对应的y坐标,r是单位圆的半径(常为1)。

- 周期性:sin (θ + 2π) = sin θ。

- 奇偶性:sin (-θ) = -sin θ。

2. 余弦函数(cos):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的x坐标。

- 基本关系:cos θ = x/r,其中θ是角度,x是对应的x坐标,r是单位圆的半径(常为1)。

- 周期性:cos (θ + 2π) = cos θ。

- 奇偶性:cos (-θ) = cos θ。

3. 正切函数(tan):- 定义:tan θ = sin θ / cos θ。

- 周期性:tan (θ + π) = tanθ。

- 奇偶性:tan (-θ) = -tan θ。

4. 余切函数(cot):- 定义:cot θ = 1 / tan θ = cos θ / sin θ。

- 周期性:cot (θ + π) = cot θ。

- 奇偶性:cot (-θ) = -cot θ。

5. 正割函数(sec):- 定义:sec θ = 1 / cos θ。

- 周期性:sec (θ + 2π) = sec θ。

- 奇偶性:sec (-θ) = sec θ。

6. 余割函数(csc):- 定义:csc θ = 1 / sin θ。

- 周期性:csc (θ + 2π) = csc θ。

- 奇偶性:csc (-θ) = -csc θ。

此外,三角函数还有一些重要的性质:1. 三角函数的范围:sin、cos、csc、sec的值在[-1, 1]之间,tan、cot的值在整个实数范围内。

sin tan cos三角函数表高中

sin tan cos三角函数表高中

sin tan cos三角函数表高中
下面列出了高中数学中常用的sin、cos和tan三角函数表格,方便同学们快速查阅。

角度(度)角度(弧
度)
正弦
(sin)
余弦
(cos)
正切
(tan)
00010
30π/61/2√3/2√3/3
45π/4√2/2√2/21
60π/3√3/21/2√3
90π/210无穷大
利用这个三角函数表格,我们可以获得不同角度下的正弦、余弦和正切值,进而解决各种三角函数相关的问题。

在求解三角函数问题时,可以利用这个表格帮助我们快速定位角度与对应函数值,提高解题效率。

除了以上列出的几个常用角度外,我们还可以通过特殊角
的关系,根据基本角(0°、30°、45°、60°、90°)的正弦、余弦和正切值,推导出其他角度的三角函数值。

通过不断练习和熟练掌握三角函数的数值,可以为高中数学学习打下坚实的基础。

希望这份三角函数表格能够帮助同学们更好地理解和运用
三角函数知识,解决数学学习中遇到的问题。

愿大家在数学学习的道路上取得更多的成就!。

三角函数表

三角函数表

三角函数表你没有看错,这是一个关于紧固件的企业网站,却在讲述三角函数这风牛马不相及的故事.因为......三角函数表用于计算角度和边长的关系,在产品零件的绘图和设计中经常用到,所以我们整理了下表。

此表不仅可供我们机械工人参考,也可供其他工人或学生参考。

先来个定义正弦函数 sin(A)=a/h余弦函数 cos(A)=b/h正切函数 tan(A)=a/b余切函数 cot(A)=b/a正割函数 sec (A) =h/b余割函数 csc (A) =h/a注:a—所研究角的对边b—所研究的邻边h—所研究角的斜边以下是具体的对应参数表:1,正弦函数表 sinsin1=0. sin2=0. sin3=0.sin4=0. sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0. sin12=0. sin13=0. sin14=0. sin15=0. sin16=0. sin17=0. sin18=0. sin19=0. sin20=0. sin21=0. sin22=0. sin23=0. sin24=0. sin25=0. sin26=0. sin27=0. sin28=0. sin29=0. sin30=0. sin31=0. sin32=0. sin33=0. sin34=0. sin35=0. sin36=0. sin37=0. sin38=0. sin39=0. sin40=0. sin41=0. sin42=0. sin43=0. sin44=0. sin45=0. sin46=0. sin47=0. sin48=0. sin49=0. sin50=0. sin51=0. sin52=0. sin53=0. sin54=0. sin55=0. sin56=0. sin57=0. sin58=0. sin59=0. sin60=0. sin61=0. sin62=0. sin63=0. sin64=0. sin65=0. sin66=0. sin67=0. sin68=0. sin69=0. sin70=0. sin71=0. sin72=0. sin73=0. sin74=0. sin75=0. sin76=0. sin77=0. sin78=0. sin79=0. sin80=0. sin81=0. sin82=0. sin83=0. sin84=0. sin85=0. sin86=0. sin87=0. sin88=0. sin89=0.sin90=12,余弦函数表 coscos1=0. cos2=0. cos3=0.cos4=0. cos5=0. cos6=0.cos7=0. cos8=0. cos9=0.cos10=0. cos11=0. cos12=0. cos13=0. cos14=0. cos15=0. cos16=0. cos17=0. cos18=0. cos19=0. cos20=0. cos21=0. cos22=0. cos23=0. cos24=0. cos25=0. cos26=0. cos27=0. cos28=0. cos29=0. cos30=0. cos31=0. cos32=0. cos33=0. cos34=0. cos35=0. cos36=0. cos37=0. cos38=0. cos39=0. cos40=0. cos41=0. cos42=0. cos43=0. cos44=0. cos45=0. cos46=0. cos47=0. cos48=0. cos49=0. cos50=0. cos51=0. cos52=0. cos53=0. cos54=0. cos55=0.2 cos56=0. cos57=0.2 cos58=0. cos59=0. cos60=0. cos61=0. cos62=0.6 cos63=0. cos64=0.6 cos65=0. cos66=0. cos67=0. cos68=0.2 cos69=0. cos70=0. cos71=0.5 cos72=0.5cos73=0.7 cos74=0. cos75=0. cos76=0. cos77=0. cos78=0. cos79=0. cos80=0. cos81=0. cos82=0. cos83=0. cos84=0. cos85=0. cos86=0. cos87=0. cos88=0. cos89=0.cos90=03,正切函数表 tantan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0. tan8=0. tan9=0.tan10=0. tan11=0. tan12=0. tan13=0. tan14=0. tan15=0. tan16=0. tan17=0. tan18=0. tan19=0. tan20=0. tan21=0. tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28=0. tan29=0. tan30=0. tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37=0. tan38=0. tan39=0. tan40=0. tan41=0. tan42=0. tan43=0. tan44=0. tan45=0. tan46=1. tan47=1. tan48=1. tan49=1. tan50=1. tan51=1. tan52=1. tan53=1. tan54=1.tan58=1. tan59=1. tan60=1. tan61=1. tan62=1. tan63=1. tan64=2. tan65=2. tan66=2. tan67=2. tan68=2. tan69=2. tan70=2. tan71=2. tan72=3. tan73=3. tan74=3. tan75=3. tan76=4. tan77=4. tan78=4. tan79=5. tan80=5. tan81=6. tan82=7. tan83=8. tan84=9. tan85=11. tan86=14. tan87=19. tan88=28. tan89=57.tan90=(无限)4,余切函数 cotcot89=0. cot88=0. cot87=0. cot86=0. cot85=0. cot84=0. cot83=0. cot83=0. cot81=0. cot80=0. cot79=0. cot78=0. cot77=0. cot76=0. cot75=0. cot74=0. cot73=0. cot72=0. cot71=0. cot70=0. cot69=0. cot68=0. cot67=0. cot66=0. cot65=0. cot64=0. cot63=0. cot62=0. cot61=0. cot60=0. cot59=0. cot58=0. cot57=0. cot56=0. cot55=0. cot54=0.cot50=0. cot49=0. cot48=0. cot47=0. cot46=0. cot45=0. cot44=1. cot43=1. cot42=1. cot41=1. cot40=1. cot39=1. cot38=1. cot37=1. cot36=1. cot35=1. cot34=1. cot33=1. cot32=1. cot31=1. cot30=1. cot29=1. cot28=1. cot27=1. cot26=2. cot25=2. cot24=2. cot23=2. cot22=2. cot21=2. cot20=2. cot19=2. cot18=3. cot17=3. cot16=3. cot15=3. cot14=4. cot13=4. cot12=4. cot11=5. cot10=5. cot9=6. cot8=7. cot7=8. cot6=9. cot5=11. cot4=14. cot3=19. cot228. cot1=57.cot0=(无限)咨询与留言。

三角函数对照表

三角函数对照表

三角函数对照表三角函数SIN COS TAN三角函数SIN COS TAN 0°01090°10无1°89°2°88°3°87°4°86°5°85°6°84°7°83°8°82°9°81°10°80°11°79°12°78°13°77°14°76°15°75°16°74°17°73°18°72°19°71°20°70°21°69°22°68°23°67°24°66°25°65°26°64°27°63°28°62°29°61°30°60°31°59°32°58°33°57°34°56°35°55°36°54°37°53°38°52°39°51°40°50°41°49°42°48°43°47°44°46°45°145°1同角基本关系式倒数关系商的关系平方关系tan cot1 sin csc1 cos sec1sin sectancos csccos csccotsin sec222222sin cos11tan sec1cot csc诱导公式sin()sin cos()cos tan()tan cot()cotsin()cos2cos()sin2tan()cot2cot()tan2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot(其中k∈Z)sin()cos2cos()sin2tan()cot2cot()tan 2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot两角和与差的三角函数公式万能公式sin()sin cos cos sin sin()sin cos cos sin cos()cos cos sin sin cos()cos cos sin sintan tantan()1tan tantan tantan()1tan tan2tan(/2) sin1tan2(/2)1tan2(/2) cos1tan2(/2)2tan(/2) tan1tan2(/2)半角的正弦、余弦和正切公式三角函数的降幂公式1cossin()221coscos()221cos1cos sin tan()21cos sin1cos221cos2 sin21cos2 cos2二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin22sin coscos2cos2sin22cos2112sin2 2tantan21tan2sin33sin4sin3 cos34cos33cos.3tan tan3 tan313tan2三角函数的和差化积公式三角函数的积化和差公式sin sin2sin cos22sin sin2cos sin22cos cos2cos cos22cos cos2sin sin221sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a xb x a b x其中角所在的象限由a、b的符号确定,角的值由tan ba确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

三角函数正弦余弦表

三角函数正弦余弦表

三角函数正弦余弦表
正弦和余弦是三角函数中最基本的两个函数,它们在数学、物理、工程等领域都有广泛的应用。

下面是正弦和余弦表:一、正弦表角度0°30°45°60°90°
sinθ0 1/2 √2/2√3/2 1二、余弦表角度 0° 30°45° 60° 90°
cosθ 1 √3/2 √2/2 1/2 0
从上述表格可以看出,当角度为0时,正弦值为0,余弦值为1;当角度为30时,正弦值为1/2,余弦值为√3/2;当角度为45时,正弦值和余弦值均为√( ) / ( ) ,即根号二分之一;当角度为60时,正弦值和余弧值分别是√( ) / ( ) 和半径的一半;而当角底等于90时,则正弧值等于半径长(即单位圆的直径),而其餘则无定义。

需要注意的是,在三维空间中存在着双曲线函数tanh(x)与双曲线反函数arctanh(x),这些也被称作“超越函数”,但它们并不属于三角函数的范畴。

常见三角函数值对照表

常见三角函数值对照表

常见三角函数值对照表
三角函数的本质是任意角的集合与一组比值的变量之间的映射。

接下来分享常见的三角函数值对照表。

三角函数值对照表
三角函数值口诀
30°,45°,60°这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3.正切的特点是将分子全部都带上根号,令分母值为3,则相应的被开方数就是3,9,27。

记忆口诀一
三十,四五,六十度,三角函数记牢固;
分母弦二切是三,分子要把根号添;
一二三来三二一,切值三九二十七;
递增正切和正弦,余弦函数要递减.
记忆口诀二
一二三三二一,戴上根号对半劈。

两边根号三,中间竖旗杆。

分清是增减,试把分母安。

正首余末三,好记又简单。

零度九十度,斜线z形连。

端点均为零,余下竖横填。

判断三角函数值的符号
记忆公式是:奇变偶变,符号看象限。

对于π/2*k±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即
sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变),然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)
示例:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα。

三角函数对照表(转)

三角函数对照表(转)
sin88=0.9993908270190958 sin89=0.9998476951563913
sin90=1
cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001
cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468
cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017

三角函数对照表

三角函数对照表

三角函数对照表
三角函数的和差化积公式 三角函数的积化和差公式
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ=确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”。

常用正弦余弦正切值表

常用正弦余弦正切值表

常用正弦余弦正切值表常用正弦余弦正切值表在数学学习中,我们经常需要使用三角函数中的正弦、余弦、正切值进行计算。

以下是常用的正弦余弦正切值表,希望对读者有所帮助。

正弦值表:角度正弦值0° 030° 0.545°0.707160° 0.86690° 1120° 0.866135° 0.7071150° 0.5180° 0余弦值表:角度余弦值0° 130° 0.86645°0.707160° 0.590° 0120° -0.5135° -0.7071150° -0.866180° -1正切值表:角度正切值0° 030° 1.73245° 160° 0.577490°无穷大(不存在)120° -0.5774135° -1150° -1.732180° 0上述表格中,为了方便记忆,我们可以把特定角度上的正弦、余弦、正切值(例如0、30、45、60、90)记住,由此可以推知其他角度上的值。

同时,需要注意的是,在计算过程中,若是角度不属于含有特殊值的角度,则需要借助计算器使用三角函数求出在计算的角度上的三角函数值。

除了正弦、余弦、正切函数之外,还有它们的倒数函数、余割函数和正割函数等,它们在数学的应用领域中有着广泛的应用。

对于初学者来说,要把握好三角函数的基础知识,理解其定义和性质,才能更好地应用到实际计算中去。

总之,掌握常用三角函数的正弦、余弦、正切值表对于数学学习和实际应用都非常重要。

我们要不断地巩固和深入理解,以提高自己的数学素养。

sin tan cos三角函数表

sin tan cos三角函数表

sin tan cos三角函数表三角函数是数学中的重要概念,它们在几何学、物理学、工程学等学科中发挥着重要的作用。

其中,sin、tan和cos是最常用的三角函数之一。

本文将给出它们的数值表格,方便读者查找和使用。

1. sin函数表角度(度)弧度值sin值00030π/60.545π/40.70760π/30.86690π/21180π0 2703π/2-1 3602π02. tan函数表角度(度)弧度值tan值00030π/60.577 45π/4160π/3 1.732 90π/2无穷大180π0 2703π/2无穷大3602π03. cos函数表角度(度)弧度值cos值00130π/60.866 45π/40.707 60π/30.590π/20180π-12703π/203602π1以上表格列出了常见角度下sin、tan和cos的值。

其中,“度”表示角度,可以理解为我们通常所用的角度单位;“弧度值”则是以弧度为单位表示的角度值;“sin值”、“tan值”和“cos 值”分别表示对应角度下的sin、tan和cos函数值。

需要注意的是,由于sin和cos函数的值在一个周期内是周期性的,所以在表格中我们仅列出了一个周期内的部分角度值。

读者可以根据需要进行推算,得到其他角度下的函数值。

另外,要特别注意角度为90度和270度时,tan函数的值为无穷大。

这是因为在这两个角度时,cos函数的值为0,而根据tan函数的定义,tan值等于sin值除以cos值,此时导致分母为0,从而导致tan值无穷大。

以上就是sin、tan和cos三角函数的数值表格,希望这个表格能够帮助到读者在数学计算和应用中使用三角函数。

在实际应用中,需要根据具体问题的需求使用适当的函数值,以达到相应的计算和分析效果。

高中三角函数tan对照表

高中三角函数tan对照表

高中三角函数tan对照表sin(0°)=0.000000,cos(0°)=1.000000,tan(0°)=0.000000 sin(1°)=0.017452,cos(1°)=0.999848,tan(1°)=0.017455 sin(2°)=0.034899,cos(2°)=0.999391,tan(2°)=0.034921 sin(3°)=0.052336,cos(3°)=0.998630,tan(3°)=0.052408 sin(4°)=0.069756,cos(4°)=0.997564,tan(4°)=0.069927 sin(5°)=0.087156,cos(5°)=0.996195,tan(5°)=0.087489 sin(6°)=0.104528,cos(6°)=0.994522,tan(6°)=0.105104 sin(7°)=0.121869,cos(7°)=0.992546,tan(7°)=0.122785 sin(8°)=0.139173,cos(8°)=0.990268,tan(8°)=0.140541 sin(9°)=0.156434,cos(9°)=0.987688,tan(9°)=0.158384 sin(10°)=0.173648,cos(10°)=0.984808,tan(10°)=0.176327 sin(11°)=0.190809,cos(11°)=0.981627,tan(11°)=0.194380 sin(12°)=0.207912,cos(12°)=0.978148,tan(12°)=0.212557 sin(13°)=0.224951,cos(13°)=0.974370,tan(13°)=0.230868 sin(14°)=0.241922,cos(14°)=0.970296,tan(14°)=0.249328 sin(15°)=0.258819,cos(15°)=0.965926,tan(15°)=0.267949 sin(16°)=0.275637,cos(16°)=0.961262,tan(16°)=0.286745 sin(17°)=0.292372,cos(17°)=0.956305,tan(17°)=0.305731 sin(18°)=0.309017,cos(18°)=0.951057,tan(18°)=0.324920 sin(19°)=0.325568,cos(19°)=0.945519,tan(19°)=0.344328 sin(20°)=0.342020,cos(20°)=0.939693,tan(20°)=0.363970sin(21°)=0.358368,cos(21°)=0.933580,tan(21°)=0.383864 sin(22°)=0.374607,cos(22°)=0.927184,tan(22°)=0.404026 sin(23°)=0.390731,cos(23°)=0.920505,tan(23°)=0.424475 sin(24°)=0.406737,cos(24°)=0.913545,tan(24°)=0.445229 sin(25°)=0.422618,cos(25°)=0.906308,tan(25°)=0.466308 sin(26°)=0.438371,cos(26°)=0.898794,tan(26°)=0.487733 sin(27°)=0.453990,cos(27°)=0.891007,tan(27°)=0.509525 sin(28°)=0.469472,cos(28°)=0.882948,tan(28°)=0.531709 sin(29°)=0.484810,cos(29°)=0.874620,tan(29°)=0.554309 sin(30°)=0.500000,cos(30°)=0.866025,tan(30°)=0.577350 sin(31°)=0.515038,cos(31°)=0.857167,tan(31°)=0.600861 sin(32°)=0.529919,cos(32°)=0.848048,tan(32°)=0.624869 sin(33°)=0.544639,cos(33°)=0.838671,tan(33°)=0.649408 sin(34°)=0.559193,cos(34°)=0.829038,tan(34°)=0.674509 sin(35°)=0.573576,cos(35°)=0.819152,tan(35°)=0.700208 sin(36°)=0.587785,cos(36°)=0.809017,tan(36°)=0.726543 sin(37°)=0.601815,cos(37°)=0.798636,tan(37°)=0.753554 sin(38°)=0.615661,cos(38°)=0.788011,tan(38°)=0.781286 sin(39°)=0.629320,cos(39°)=0.777146,tan(39°)=0.809784 sin(40°)=0.642788,cos(40°)=0.766044,tan(40°)=0.839100 sin(41°)=0.656059,cos(41°)=0.754710,tan(41°)=0.869287 sin(42°)=0.669131,cos(42°)=0.743145,tan(42°)=0.900404sin(43°)=0.681998,cos(43°)=0.731354,tan(43°)=0.932515 sin(44°)=0.694658,cos(44°)=0.719340,tan(44°)=0.965689 sin(45°)=0.707107,cos(45°)=0.707107,tan(45°)=1.000000 sin(46°)=0.719340,cos(46°)=0.694658,tan(46°)=1.035530 sin(47°)=0.731354,cos(47°)=0.681998,tan(47°)=1.072369 sin(48°)=0.743145,cos(48°)=0.669131,tan(48°)=1.110613 sin(49°)=0.754710,cos(49°)=0.656059,tan(49°)=1.150368 sin(50°)=0.766044,cos(50°)=0.642788,tan(50°)=1.191754 sin(51°)=0.777146,cos(51°)=0.629320,tan(51°)=1.234897 sin(52°)=0.788011,cos(52°)=0.615661,tan(52°)=1.279942 sin(53°)=0.798636,cos(53°)=0.601815,tan(53°)=1.327045 sin(54°)=0.809017,cos(54°)=0.587785,tan(54°)=1.376382 sin(55°)=0.819152,cos(55°)=0.573576,tan(55°)=1.428148 sin(56°)=0.829038,cos(56°)=0.559193,tan(56°)=1.482561 sin(57°)=0.838671,cos(57°)=0.544639,tan(57°)=1.539865 sin(58°)=0.848048,cos(58°)=0.529919,tan(58°)=1.600335 sin(59°)=0.857167,cos(59°)=0.515038,tan(59°)=1.664279 sin(60°)=0.866025,cos(60°)=0.500000,tan(60°)=1.732051 sin(61°)=0.874620,cos(61°)=0.484810,tan(61°)=1.804048 sin(62°)=0.882948,cos(62°)=0.469472,tan(62°)=1.880726 sin(63°)=0.891007,cos(63°)=0.453990,tan(63°)=1.962611 sin(64°)=0.898794,cos(64°)=0.438371,tan(64°)=2.050304sin(66°)=0.913545,cos(66°)=0.406737,tan(66°)=2.246037 sin(67°)=0.920505,cos(67°)=0.390731,tan(67°)=2.355852 sin(68°)=0.927184,cos(68°)=0.374607,tan(68°)=2.475087 sin(69°)=0.933580,cos(69°)=0.358368,tan(69°)=2.605089 sin(70°)=0.939693,cos(70°)=0.342020,tan(70°)=2.747477 sin(71°)=0.945519,cos(71°)=0.325568,tan(71°)=2.904211 sin(72°)=0.951057,cos(72°)=0.309017,tan(72°)=3.077684 sin(73°)=0.956305,cos(73°)=0.292372,tan(73°)=3.270853 sin(74°)=0.961262,cos(74°)=0.275637,tan(74°)=3.487414 sin(75°)=0.965926,cos(75°)=0.258819,tan(75°)=3.732051 sin(76°)=0.970296,cos(76°)=0.241922,tan(76°)=4.010781 sin(77°)=0.974370,cos(77°)=0.224951,tan(77°)=4.331476 sin(78°)=0.978148,cos(78°)=0.207912,tan(78°)=4.704630 sin(79°)=0.981627,cos(79°)=0.190809,tan(79°)=5.144554 sin(80°)=0.984808,cos(80°)=0.173648,tan(80°)=5.671282 sin(81°)=0.987688,cos(81°)=0.156434,tan(81°)=6.313752 sin(82°)=0.990268,cos(82°)=0.139173,tan(82°)=7.115370 sin(83°)=0.992546,cos(83°)=0.121869,tan(83°)=8.144346 sin(84°)=0.994522,cos(84°)=0.104528,tan(84°)=9.514364 sin(85°)=0.996195,cos(85°)=0.087156,tan(85°)=11.430052 sin(86°)=0.997564,cos(86°)=0.069756,tan(86°)=14.300666sin(88°)=0.999391,cos(88°)=0.034899,tan(88°)=28.636253 sin(89°)=0.999848,cos(89°)=0.017452,tan(89°)=57.289962 sin(90°)=1.000000,cos(90°)=0.000000,tan(90°)=无意义sin(91°)=0.999848,cos(91°)=-0.017452,tan(91°)=-57.289962 sin(92°)=0.999391,cos(92°)=-0.034899,tan(92°)=-28.636253 sin(93°)=0.998630,cos(93°)=-0.052336,tan(93°)=-19.081137 sin(94°)=0.997564,cos(94°)=-0.069756,tan(94°)=-14.300666 sin(95°)=0.996195,cos(95°)=-0.087156,tan(95°)=-11.430052 sin(96°)=0.994522,cos(96°)=-0.104528,tan(96°)=-9.514364 sin(97°)=0.992546,cos(97°)=-0.121869,tan(97°)=-8.144346 sin(98°)=0.990268,cos(98°)=-0.139173,tan(98°)=-7.115370 sin(99°)=0.987688,cos(99°)=-0.156434,tan(99°)=-6.313752 sin(100°)=0.984808,cos(100°)=-0.173648,tan(100°)=-5.671282 sin(101°)=0.981627,cos(101°)=-0.190809,tan(101°)=-5.144554 sin(102°)=0.978148,cos(102°)=-0.207912,tan(102°)=-4.704630 sin(103°)=0.974370,cos(103°)=-0.224951,tan(103°)=-4.331476 sin(104°)=0.970296,cos(104°)=-0.241922,tan(104°)=-4.010781 sin(105°)=0.965926,cos(105°)=-0.258819,tan(105°)=-3.732051 sin(106°)=0.961262,cos(106°)=-0.275637,tan(106°)=-3.487414 sin(107°)=0.956305,cos(107°)=-0.292372,tan(107°)=-3.270853 sin(108°)=0.951057,cos(108°)=-0.309017,tan(108°)=-3.077684sin(109°)=0.945519,cos(109°)=-0.325568,tan(109°)=-2.904211 sin(110°)=0.939693,cos(110°)=-0.342020,tan(110°)=-2.747477 sin(111°)=0.933580,cos(111°)=-0.358368,tan(111°)=-2.605089 sin(112°)=0.927184,cos(112°)=-0.374607,tan(112°)=-2.475087 sin(113°)=0.920505,cos(113°)=-0.390731,tan(113°)=-2.355852 sin(114°)=0.913545,cos(114°)=-0.406737,tan(114°)=-2.246037 sin(115°)=0.906308,cos(115°)=-0.422618,tan(115°)=-2.144507 sin(116°)=0.898794,cos(116°)=-0.438371,tan(116°)=-2.050304 sin(117°)=0.891007,cos(117°)=-0.453990,tan(117°)=-1.962611 sin(118°)=0.882948,cos(118°)=-0.469472,tan(118°)=-1.880726 sin(119°)=0.874620,cos(119°)=-0.484810,tan(119°)=-1.804048 sin(120°)=0.866025,cos(120°)=-0.500000,tan(120°)=-1.732051 sin(121°)=0.857167,cos(121°)=-0.515038,tan(121°)=-1.664279 sin(122°)=0.848048,cos(122°)=-0.529919,tan(122°)=-1.600335 sin(123°)=0.838671,cos(123°)=-0.544639,tan(123°)=-1.539865 sin(124°)=0.829038,cos(124°)=-0.559193,tan(124°)=-1.482561 sin(125°)=0.819152,cos(125°)=-0.573576,tan(125°)=-1.428148 sin(126°)=0.809017,cos(126°)=-0.587785,tan(126°)=-1.376382 sin(127°)=0.798636,cos(127°)=-0.601815,tan(127°)=-1.327045 sin(128°)=0.788011,cos(128°)=-0.615661,tan(128°)=-1.279942 sin(129°)=0.777146,cos(129°)=-0.629320,tan(129°)=-1.234897 sin(130°)=0.766044,cos(130°)=-0.642788,tan(130°)=-1.191754sin(131°)=0.754710,cos(131°)=-0.656059,tan(131°)=-1.150368 sin(132°)=0.743145,cos(132°)=-0.669131,tan(132°)=-1.110613 sin(133°)=0.731354,cos(133°)=-0.681998,tan(133°)=-1.072369 sin(134°)=0.719340,cos(134°)=-0.694658,tan(134°)=-1.035530 sin(135°)=0.707107,cos(135°)=-0.707107,tan(135°)=-1.000000 sin(136°)=0.694658,cos(136°)=-0.719340,tan(136°)=-0.965689 sin(137°)=0.681998,cos(137°)=-0.731354,tan(137°)=-0.932515 sin(138°)=0.669131,cos(138°)=-0.743145,tan(138°)=-0.900404 sin(139°)=0.656059,cos(139°)=-0.754710,tan(139°)=-0.869287 sin(140°)=0.642788,cos(140°)=-0.766044,tan(140°)=-0.839100 sin(141°)=0.629320,cos(141°)=-0.777146,tan(141°)=-0.809784 sin(142°)=0.615661,cos(142°)=-0.788011,tan(142°)=-0.781286 sin(143°)=0.601815,cos(143°)=-0.798636,tan(143°)=-0.753554 sin(144°)=0.587785,cos(144°)=-0.809017,tan(144°)=-0.726543 sin(145°)=0.573576,cos(145°)=-0.819152,tan(145°)=-0.700208 sin(146°)=0.559193,cos(146°)=-0.829038,tan(146°)=-0.674509 sin(147°)=0.544639,cos(147°)=-0.838671,tan(147°)=-0.649408 sin(148°)=0.529919,cos(148°)=-0.848048,tan(148°)=-0.624869 sin(149°)=0.515038,cos(149°)=-0.857167,tan(149°)=-0.600861 sin(150°)=0.500000,cos(150°)=-0.866025,tan(150°)=-0.577350 sin(151°)=0.484810,cos(151°)=-0.874620,tan(151°)=-0.554309 sin(152°)=0.469472,cos(152°)=-0.882948,tan(152°)=-0.531709sin(153°)=0.453990,cos(153°)=-0.891007,tan(153°)=-0.509525 sin(154°)=0.438371,cos(154°)=-0.898794,tan(154°)=-0.487733 sin(155°)=0.422618,cos(155°)=-0.906308,tan(155°)=-0.466308 sin(156°)=0.406737,cos(156°)=-0.913545,tan(156°)=-0.445229 sin(157°)=0.390731,cos(157°)=-0.920505,tan(157°)=-0.424475 sin(158°)=0.374607,cos(158°)=-0.927184,tan(158°)=-0.404026 sin(159°)=0.358368,cos(159°)=-0.933580,tan(159°)=-0.383864 sin(160°)=0.342020,cos(160°)=-0.939693,tan(160°)=-0.363970 sin(161°)=0.325568,cos(161°)=-0.945519,tan(161°)=-0.344328 sin(162°)=0.309017,cos(162°)=-0.951057,tan(162°)=-0.324920 sin(163°)=0.292372,cos(163°)=-0.956305,tan(163°)=-0.305731 sin(164°)=0.275637,cos(164°)=-0.961262,tan(164°)=-0.286745 sin(165°)=0.258819,cos(165°)=-0.965926,tan(165°)=-0.267949 sin(166°)=0.241922,cos(166°)=-0.970296,tan(166°)=-0.249328 sin(167°)=0.224951,cos(167°)=-0.974370,tan(167°)=-0.230868 sin(168°)=0.207912,cos(168°)=-0.978148,tan(168°)=-0.212557 sin(169°)=0.190809,cos(169°)=-0.981627,tan(169°)=-0.194380 sin(170°)=0.173648,cos(170°)=-0.984808,tan(170°)=-0.176327 sin(171°)=0.156434,cos(171°)=-0.987688,tan(171°)=-0.158384 sin(172°)=0.139173,cos(172°)=-0.990268,tan(172°)=-0.140541 sin(173°)=0.121869,cos(173°)=-0.992546,tan(173°)=-0.122785 sin(174°)=0.104528,cos(174°)=-0.994522,tan(174°)=-0.105104sin(175°)=0.087156,cos(175°)=-0.996195,tan(175°)=-0.087489 sin(176°)=0.069756,cos(176°)=-0.997564,tan(176°)=-0.069927 sin(177°)=0.052336,cos(177°)=-0.998630,tan(177°)=-0.052408 sin(178°)=0.034899,cos(178°)=-0.999391,tan(178°)=-0.034921 sin(179°)=0.017452,cos(179°)=-0.999848,tan(179°)=-0.017455 sin(180°)=0.000000,cos(180°)=-1.000000,tan(180°)=-0.000000 sin(181°)=-0.017452,cos(181°)=-0.999848,tan(181°)=0.017455 sin(182°)=-0.034899,cos(182°)=-0.999391,tan(182°)=0.034921 sin(183°)=-0.052336,cos(183°)=-0.998630,tan(183°)=0.052408 sin(184°)=-0.069756,cos(184°)=-0.997564,tan(184°)=0.069927 sin(185°)=-0.087156,cos(185°)=-0.996195,tan(185°)=0.087489 sin(186°)=-0.104528,cos(186°)=-0.994522,tan(186°)=0.105104 sin(187°)=-0.121869,cos(187°)=-0.992546,tan(187°)=0.122785 sin(188°)=-0.139173,cos(188°)=-0.990268,tan(188°)=0.140541 sin(189°)=-0.156434,cos(189°)=-0.987688,tan(189°)=0.158384 sin(190°)=-0.173648,cos(190°)=-0.984808,tan(190°)=0.176327 sin(191°)=-0.190809,cos(191°)=-0.981627,tan(191°)=0.194380 sin(192°)=-0.207912,cos(192°)=-0.978148,tan(192°)=0.212557 sin(193°)=-0.224951,cos(193°)=-0.974370,tan(193°)=0.230868 sin(194°)=-0.241922,cos(194°)=-0.970296,tan(194°)=0.249328 sin(195°)=-0.258819,cos(195°)=-0.965926,tan(195°)=0.267949 sin(196°)=-0.275637,cos(196°)=-0.961262,tan(196°)=0.286745sin(197°)=-0.292372,cos(197°)=-0.956305,tan(197°)=0.305731 sin(198°)=-0.309017,cos(198°)=-0.951057,tan(198°)=0.324920 sin(199°)=-0.325568,cos(199°)=-0.945519,tan(199°)=0.344328 sin(200°)=-0.342020,cos(200°)=-0.939693,tan(200°)=0.363970 sin(201°)=-0.358368,cos(201°)=-0.933580,tan(201°)=0.383864 sin(202°)=-0.374607,cos(202°)=-0.927184,tan(202°)=0.404026 sin(203°)=-0.390731,cos(203°)=-0.920505,tan(203°)=0.424475 sin(204°)=-0.406737,cos(204°)=-0.913545,tan(204°)=0.445229 sin(205°)=-0.422618,cos(205°)=-0.906308,tan(205°)=0.466308 sin(206°)=-0.438371,cos(206°)=-0.898794,tan(206°)=0.487733 sin(207°)=-0.453990,cos(207°)=-0.891007,tan(207°)=0.509525 sin(208°)=-0.469472,cos(208°)=-0.882948,tan(208°)=0.531709 sin(209°)=-0.484810,cos(209°)=-0.874620,tan(209°)=0.554309 sin(210°)=-0.500000,cos(210°)=-0.866025,tan(210°)=0.577350 sin(211°)=-0.515038,cos(211°)=-0.857167,tan(211°)=0.600861 sin(212°)=-0.529919,cos(212°)=-0.848048,tan(212°)=0.624869 sin(213°)=-0.544639,cos(213°)=-0.838671,tan(213°)=0.649408 sin(214°)=-0.559193,cos(214°)=-0.829038,tan(214°)=0.674509 sin(215°)=-0.573576,cos(215°)=-0.819152,tan(215°)=0.700208 sin(216°)=-0.587785,cos(216°)=-0.809017,tan(216°)=0.726543 sin(217°)=-0.601815,cos(217°)=-0.798636,tan(217°)=0.753554 sin(218°)=-0.615661,cos(218°)=-0.788011,tan(218°)=0.781286sin(219°)=-0.629320,cos(219°)=-0.777146,tan(219°)=0.809784 sin(220°)=-0.642788,cos(220°)=-0.766044,tan(220°)=0.839100 sin(221°)=-0.656059,cos(221°)=-0.754710,tan(221°)=0.869287 sin(222°)=-0.669131,cos(222°)=-0.743145,tan(222°)=0.900404 sin(223°)=-0.681998,cos(223°)=-0.731354,tan(223°)=0.932515 sin(224°)=-0.694658,cos(224°)=-0.719340,tan(224°)=0.965689 sin(225°)=-0.707107,cos(225°)=-0.707107,tan(225°)=1.000000 sin(226°)=-0.719340,cos(226°)=-0.694658,tan(226°)=1.035530 sin(227°)=-0.731354,cos(227°)=-0.681998,tan(227°)=1.072369 sin(228°)=-0.743145,cos(228°)=-0.669131,tan(228°)=1.110613 sin(229°)=-0.754710,cos(229°)=-0.656059,tan(229°)=1.150368 sin(230°)=-0.766044,cos(230°)=-0.642788,tan(230°)=1.191754 sin(231°)=-0.777146,cos(231°)=-0.629320,tan(231°)=1.234897 sin(232°)=-0.788011,cos(232°)=-0.615661,tan(232°)=1.279942 sin(233°)=-0.798636,cos(233°)=-0.601815,tan(233°)=1.327045 sin(234°)=-0.809017,cos(234°)=-0.587785,tan(234°)=1.376382 sin(235°)=-0.819152,cos(235°)=-0.573576,tan(235°)=1.428148 sin(236°)=-0.829038,cos(236°)=-0.559193,tan(236°)=1.482561 sin(237°)=-0.838671,cos(237°)=-0.544639,tan(237°)=1.539865 sin(238°)=-0.848048,cos(238°)=-0.529919,tan(238°)=1.600335 sin(239°)=-0.857167,cos(239°)=-0.515038,tan(239°)=1.664279 sin(240°)=-0.866025,cos(240°)=-0.500000,tan(240°)=1.732051sin(241°)=-0.874620,cos(241°)=-0.484810,tan(241°)=1.804048 sin(242°)=-0.882948,cos(242°)=-0.469472,tan(242°)=1.880726 sin(243°)=-0.891007,cos(243°)=-0.453990,tan(243°)=1.962611 sin(244°)=-0.898794,cos(244°)=-0.438371,tan(244°)=2.050304 sin(245°)=-0.906308,cos(245°)=-0.422618,tan(245°)=2.144507 sin(246°)=-0.913545,cos(246°)=-0.406737,tan(246°)=2.246037 sin(247°)=-0.920505,cos(247°)=-0.390731,tan(247°)=2.355852 sin(248°)=-0.927184,cos(248°)=-0.374607,tan(248°)=2.475087 sin(249°)=-0.933580,cos(249°)=-0.358368,tan(249°)=2.605089 sin(250°)=-0.939693,cos(250°)=-0.342020,tan(250°)=2.747477 sin(251°)=-0.945519,cos(251°)=-0.325568,tan(251°)=2.904211 sin(252°)=-0.951057,cos(252°)=-0.309017,tan(252°)=3.077684 sin(253°)=-0.956305,cos(253°)=-0.292372,tan(253°)=3.270853 sin(254°)=-0.961262,cos(254°)=-0.275637,tan(254°)=3.487414 sin(255°)=-0.965926,cos(255°)=-0.258819,tan(255°)=3.732051 sin(256°)=-0.970296,cos(256°)=-0.241922,tan(256°)=4.010781 sin(257°)=-0.974370,cos(257°)=-0.224951,tan(257°)=4.331476 sin(258°)=-0.978148,cos(258°)=-0.207912,tan(258°)=4.704630 sin(259°)=-0.981627,cos(259°)=-0.190809,tan(259°)=5.144554 sin(260°)=-0.984808,cos(260°)=-0.173648,tan(260°)=5.671282 sin(261°)=-0.987688,cos(261°)=-0.156434,tan(261°)=6.313752 sin(262°)=-0.990268,cos(262°)=-0.139173,tan(262°)=7.115370sin(263°)=-0.992546,cos(263°)=-0.121869,tan(263°)=8.144346 sin(264°)=-0.994522,cos(264°)=-0.104528,tan(264°)=9.514364 sin(265°)=-0.996195,cos(265°)=-0.087156,tan(265°)=11.430052 sin(266°)=-0.997564,cos(266°)=-0.069756,tan(266°)=14.300666 sin(267°)=-0.998630,cos(267°)=-0.052336,tan(267°)=19.081137 sin(268°)=-0.999391,cos(268°)=-0.034899,tan(268°)=28.636253 sin(269°)=-0.999848,cos(269°)=-0.017452,tan(269°)=57.289962 sin(270°)=-1.000000,cos(270°)=-0.000000,tan(270°)=无意义sin(271°)=-0.999848,cos(271°)=0.017452,tan(271°)=-57.289962 sin(272°)=-0.999391,cos(272°)=0.034899,tan(272°)=-28.636253 sin(273°)=-0.998630,cos(273°)=0.052336,tan(273°)=-19.081137 sin(274°)=-0.997564,cos(274°)=0.069756,tan(274°)=-14.300666 sin(275°)=-0.996195,cos(275°)=0.087156,tan(275°)=-11.430052 sin(276°)=-0.994522,cos(276°)=0.104528,tan(276°)=-9.514364 sin(277°)=-0.992546,cos(277°)=0.121869,tan(277°)=-8.144346 sin(278°)=-0.990268,cos(278°)=0.139173,tan(278°)=-7.115370 sin(279°)=-0.987688,cos(279°)=0.156434,tan(279°)=-6.313752 sin(280°)=-0.984808,cos(280°)=0.173648,tan(280°)=-5.671282 sin(281°)=-0.981627,cos(281°)=0.190809,tan(281°)=-5.144554 sin(282°)=-0.978148,cos(282°)=0.207912,tan(282°)=-4.704630 sin(283°)=-0.974370,cos(283°)=0.224951,tan(283°)=-4.331476 sin(284°)=-0.970296,cos(284°)=0.241922,tan(284°)=-4.010781sin(285°)=-0.965926,cos(285°)=0.258819,tan(285°)=-3.732051 sin(286°)=-0.961262,cos(286°)=0.275637,tan(286°)=-3.487414 sin(287°)=-0.956305,cos(287°)=0.292372,tan(287°)=-3.270853 sin(288°)=-0.951057,cos(288°)=0.309017,tan(288°)=-3.077684 sin(289°)=-0.945519,cos(289°)=0.325568,tan(289°)=-2.904211 sin(290°)=-0.939693,cos(290°)=0.342020,tan(290°)=-2.747477 sin(291°)=-0.933580,cos(291°)=0.358368,tan(291°)=-2.605089 sin(292°)=-0.927184,cos(292°)=0.374607,tan(292°)=-2.475087 sin(293°)=-0.920505,cos(293°)=0.390731,tan(293°)=-2.355852 sin(294°)=-0.913545,cos(294°)=0.406737,tan(294°)=-2.246037 sin(295°)=-0.906308,cos(295°)=0.422618,tan(295°)=-2.144507 sin(296°)=-0.898794,cos(296°)=0.438371,tan(296°)=-2.050304 sin(297°)=-0.891007,cos(297°)=0.453990,tan(297°)=-1.962611 sin(298°)=-0.882948,cos(298°)=0.469472,tan(298°)=-1.880726 sin(299°)=-0.874620,cos(299°)=0.484810,tan(299°)=-1.804048 sin(300°)=-0.866025,cos(300°)=0.500000,tan(300°)=-1.732051 sin(301°)=-0.857167,cos(301°)=0.515038,tan(301°)=-1.664279 sin(302°)=-0.848048,cos(302°)=0.529919,tan(302°)=-1.600335 sin(303°)=-0.838671,cos(303°)=0.544639,tan(303°)=-1.539865 sin(304°)=-0.829038,cos(304°)=0.559193,tan(304°)=-1.482561 sin(305°)=-0.819152,cos(305°)=0.573576,tan(305°)=-1.428148 sin(306°)=-0.809017,cos(306°)=0.587785,tan(306°)=-1.376382sin(307°)=-0.798636,cos(307°)=0.601815,tan(307°)=-1.327045 sin(308°)=-0.788011,cos(308°)=0.615661,tan(308°)=-1.279942 sin(309°)=-0.777146,cos(309°)=0.629320,tan(309°)=-1.234897 sin(310°)=-0.766044,cos(310°)=0.642788,tan(310°)=-1.191754 sin(311°)=-0.754710,cos(311°)=0.656059,tan(311°)=-1.150368 sin(312°)=-0.743145,cos(312°)=0.669131,tan(312°)=-1.110613 sin(313°)=-0.731354,cos(313°)=0.681998,tan(313°)=-1.072369 sin(314°)=-0.719340,cos(314°)=0.694658,tan(314°)=-1.035530 sin(315°)=-0.707107,cos(315°)=0.707107,tan(315°)=-1.000000 sin(316°)=-0.694658,cos(316°)=0.719340,tan(316°)=-0.965689 sin(317°)=-0.681998,cos(317°)=0.731354,tan(317°)=-0.932515 sin(318°)=-0.669131,cos(318°)=0.743145,tan(318°)=-0.900404 sin(319°)=-0.656059,cos(319°)=0.754710,tan(319°)=-0.869287 sin(320°)=-0.642788,cos(320°)=0.766044,tan(320°)=-0.839100 sin(321°)=-0.629320,cos(321°)=0.777146,tan(321°)=-0.809784 sin(322°)=-0.615661,cos(322°)=0.788011,tan(322°)=-0.781286 sin(323°)=-0.601815,cos(323°)=0.798636,tan(323°)=-0.753554 sin(324°)=-0.587785,cos(324°)=0.809017,tan(324°)=-0.726543 sin(325°)=-0.573576,cos(325°)=0.819152,tan(325°)=-0.700208 sin(326°)=-0.559193,cos(326°)=0.829038,tan(326°)=-0.674509 sin(327°)=-0.544639,cos(327°)=0.838671,tan(327°)=-0.649408 sin(328°)=-0.529919,cos(328°)=0.848048,tan(328°)=-0.624869sin(329°)=-0.515038,cos(329°)=0.857167,tan(329°)=-0.600861 sin(330°)=-0.500000,cos(330°)=0.866025,tan(330°)=-0.577350 sin(331°)=-0.484810,cos(331°)=0.874620,tan(331°)=-0.554309 sin(332°)=-0.469472,cos(332°)=0.882948,tan(332°)=-0.531709 sin(333°)=-0.453990,cos(333°)=0.891007,tan(333°)=-0.509525 sin(334°)=-0.438371,cos(334°)=0.898794,tan(334°)=-0.487733 sin(335°)=-0.422618,cos(335°)=0.906308,tan(335°)=-0.466308 sin(336°)=-0.406737,cos(336°)=0.913545,tan(336°)=-0.445229 sin(337°)=-0.390731,cos(337°)=0.920505,tan(337°)=-0.424475 sin(338°)=-0.374607,cos(338°)=0.927184,tan(338°)=-0.404026 sin(339°)=-0.358368,cos(339°)=0.933580,tan(339°)=-0.383864 sin(340°)=-0.342020,cos(340°)=0.939693,tan(340°)=-0.363970 sin(341°)=-0.325568,cos(341°)=0.945519,tan(341°)=-0.344328 sin(342°)=-0.309017,cos(342°)=0.951057,tan(342°)=-0.324920 sin(343°)=-0.292372,cos(343°)=0.956305,tan(343°)=-0.305731 sin(344°)=-0.275637,cos(344°)=0.961262,tan(344°)=-0.286745 sin(345°)=-0.258819,cos(345°)=0.965926,tan(345°)=-0.267949 sin(346°)=-0.241922,cos(346°)=0.970296,tan(346°)=-0.249328 sin(347°)=-0.224951,cos(347°)=0.974370,tan(347°)=-0.230868 sin(348°)=-0.207912,cos(348°)=0.978148,tan(348°)=-0.212557 sin(349°)=-0.190809,cos(349°)=0.981627,tan(349°)=-0.194380 sin(350°)=-0.173648,cos(350°)=0.984808,tan(350°)=-0.176327sin(351°)=-0.156434,cos(351°)=0.987688,tan(351°)=-0.158384 sin(352°)=-0.139173,cos(352°)=0.990268,tan(352°)=-0.140541 sin(353°)=-0.121869,cos(353°)=0.992546,tan(353°)=-0.122785 sin(354°)=-0.104528,cos(354°)=0.994522,tan(354°)=-0.105104 sin(355°)=-0.087156,cos(355°)=0.996195,tan(355°)=-0.087489 sin(356°)=-0.069756,cos(356°)=0.997564,tan(356°)=-0.069927 sin(357°)=-0.052336,cos(357°)=0.998630,tan(357°)=-0.052408 sin(358°)=-0.034899,cos(358°)=0.999391,tan(358°)=-0.034921 sin(359°)=-0.017452,cos(359°)=0.999848,tan(359°)=-0.017455 sin(360°)=-0.000000,cos(360°)=1.00000,tan(360°)=-0.000000。

初中三角函数值对照表

初中三角函数值对照表

初中三角函数值对照表
一、正弦函数值对照表
正弦函数是一个周期为360度或2π的周期函数,其在各
个特定角度下的函数值如下表所示:
角度(°)030456090180270360
sin00.5√2/2√3/210-10
二、余弦函数值对照表
余弦函数也是一个周期为360度或2π的周期函数,其在
各个特定角度下的函数值如下表所示:
角度(°)030456090180270360
cos1√3/2√2/20.50-101
三、正切函数值对照表
正切函数在某些角度下会不存在(例如90度),在存在的角度下,其函数值如下表所示:
角度(°)0304560180270360
tan0√3/31√30无0
三角函数值对照表是初中阶段学习三角函数时非常重要的
参考资料,通过对照表的使用,学生可以更清晰地理解各个角度下正弦、余弦、正切函数的数值规律。

希望通过这份对照表,能够帮助初中同学更好地学习和掌握三角函数的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6712
11°
0.1908
0.9816
0.1943
79°
0.9816
0.1908
5.1445
12°
0.2079
0.9781
0.2125
78°
0.9781
0.2079
4.7046
13°
0.2249
0.9743
0.2308
77°
0.9743
0.2249
4.3314
14°
0.2419
0.9702
0.2493
1.2348
40°
0.6427
0.7660
0.8390
50°
0.7660
0.6427
1.1917
41°
0.6560
0.7547
0.8692
49°
0.7547
0.6560
1.1503
42°
0.6691
0.7431
0.9004
48°
0.7431
0.6691
1.1106
43°
0.6819
0.7313
0.9325
0.9925
0.1227
83°
0.9925
0.1218
8.1443

0.1391
0.9902
0.1405
82°
0.9902
0.1391
7.1153

0.1564
0.9876
0.1583
81°
0.9876
0.1564
6.3137
10°
0.1736
0.9848
0.1763
80°
0.9848
0.1736
三角函数对照表
三角函数
SIN
COSTBiblioteka N三角函数SINCOS
TAN

0
1
0
90°
1
0


0.0174
0.9998
0.0174
89°
0.9998
0.0174
57.2899

0.0348
0.9993
0.0349
88°
0.9993
0.0348
28.6362

0.0523
0.9986
0.0524
87°
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
三角函数的和差化积公式
三角函数的积化和差公式
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
其中 角所在的象限由 、 的符号确定, 角的值由 确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”
29°
0.4848
0.8746
0.5543
61°
0.8746
0.4848
1.8040
30°
0.5000
0.8660
0.5773
60°
0.8660
0.5000
1.7320
31°
0.5150
0.8571
0.6008
59°
0.8571
0.5150
1.6642
32°
0.5299
0.8480
0.6248
58°
0.4663
65°
0.9063
0.4226
2.1445
26°
0.4383
0.8987
0.4877
64°
0.8987
0.4383
2.0503
27°
0.4539
0.8910
0.5095
63°
0.8910
0.4539
1.9626
28°
0.4694
0.8829
0.5317
62°
0.8829
0.4694
1.8807
0.3583
2.6050
22°
0.3746
0.9271
0.4040
68°
0.9271
0.3746
2.4750
23°
0.3907
0.9205
0.4244
67°
0.9205
0.3907
2.3558
24°
0.4067
0.9135
0.4452
66°
0.9135
0.4067
2.2460
25°
0.4226
0.9063
76°
0.9702
0.2419
4.0107
15°
0.2588
0.9659
0.2679
75°
0.9659
0.2588
3.7320
16°
0.2756
0.9612
0.2867
74°
0.9612
0.2756
3.4874
17°
0.2923
0.9563
0.3057
73°
0.9563
0.2923
3.2708
18°
0.9986
0.0523
19.0811

0.0697
0.9975
0.0699
86°
0.9975
0.0697
14.3006

0.0871
0.9961
0.0874
85°
0.9961
0.0871
11.4300

0.1045
0.9945
0.1051
84°
0.9945
0.1045
9.5143

0.1218
0.8480
0.5299
1.6003
33°
0.5446
0.8386
0.6494
57°
0.8386
0.5446
1.5398
34°
0.5591
0.8290
0.6745
56°
0.8290
0.5591
1.4825
35°
0.5735
0.8191
0.7002
55°
0.8191
0.5735
1.4281
36°
0.5877
0.3090
0.9510
0.3249
72°
0.9510
0.3090
3.0776
19°
0.3255
0.9455
0.3443
71°
0.9455
0.3255
2.9042
20°
0.3420
0.9396
0.3639
70°
0.9396
0.3420
2.7474
21°
0.3583
0.9335
0.3838
69°
0.9335
47°
0.7313
0.6819
1.0723
44°
0.6946
0.7193
0.9656
46°
0.7193
0.6946
1.0355
45°
0.7071
0.7071
1
45°
0.7071
0.7071
1
同角基本关系式
倒数关系
商的关系
平方关系
诱导公式
(其中k∈Z)
两角和与差的三角函数公式
万能公式
半角的正弦、余弦和正切公式
0.8090
0.7265
54°
0.8090
0.5877
1.3763
37°
0.6018
0.7986
0.7535
53°
0.7986
0.6018
1.3270
38°
0.6156
0.7880
0.7812
52°
0.7880
0.6156
1.2799
39°
0.6293
0.7771
0.8097
51°
0.7771
0.6293
相关文档
最新文档