《传感器技术》习题答案第10章

合集下载

传感器原理及其应用(第二版)部分习题答案

传感器原理及其应用(第二版)部分习题答案

24.875
精品
第1章 传感器的一般特性
4、何为传感器的静态特性?静态特性的主要技术指标有 哪些? 答:传感器的静态特性是在稳态信号作用下的输入输出 特性。 衡量静态特性的重要指标有灵敏度、线性度、迟滞、重 复性、稳定性等。
精品
第1章 传感器的一般特性
5、何为传感器的动态特性?动态特性的主要技术指标有 哪些? 答:传感器的动态特性是传感器在被测量随时间变化的 条件下输入输出关系。动态特性有分为瞬态响应和频率 响应。
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: U 0 U 2 Z Z 1 2 Z Z 2 1 U 2 Z Z 0 0 Z Z 0 Z Z 0 U 2 2 Z Z 0 2 4 2 1 8 0 5 . 3 5 - 0 . 1 1 7 V
精品
第1章 传感器的一般特性
3、对某传感器进行特性测定所得到的一组输入—输出数 据如下:
输入x:0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 输出y;2.2 4.8 7.6 9.9 12.6 15.2 17.8 20.1 22.1 试计算该传感器的非线性度和灵敏度。
精品
第1章 传感器的一般特性
当衔铁移动Δδ时,单端式传感器的灵敏度△L/△δ为:
k L L 0 0 5 0 4 .5 1 1 0 0 2 3 m H 1 0 .8H /m 3 3 .9 1 2 H /m
若做成差动结构形式,根据差动的变隙式的灵敏度公式 有:
k 差 动 L 2 L 0 0 2 0 5 .5 4 1 0 1 0 2 m 3 H 2 1 .6H /m 6 7 .8 2 4 H /m
故将其做成差动结构后,灵敏精品度将提高一倍。

CH10辐射与波式传感器含答案传感器与检测技术第2版习题及解答

CH10辐射与波式传感器含答案传感器与检测技术第2版习题及解答

第10章辐射与波式传感器一、单项选择题1、下列对红外传感器的描述错误的是()。

A. 红外辐射是一种人眼不可见的光线B. 红外线的波长范围大致在~1000μm之间C. 红外线是电磁波的一种形式,但不具备反射、折射特性D. 红外传感器是利用红外辐射实现相关物理量测量的一种传感器。

2、对于工业上用的红外线气体分析仪,下面说法中正确的是()A.参比气室内装被分析气体 B.参比气室中的气体不吸收红外线C.测量气室内装N2 D. 红外探测器工作在“大气窗口”之外3、红外辐射的物理本质是()A.核辐射 B.微波辐射 C.热辐射 D.无线电波4、对于工业上用的红外线气体分析仪,下面说法中错误的是()A.参比气室内可装N2 B.红外探测器工作在“大气窗口”之内C.测量气室内装被分析气体 D.参比气室中的气体要吸收红外线5、红外线是位于可见光中红色光以外的光线,故称红外线。

它的波长范围大致在 ( )到1000μm的频谱范围之内。

、在红外技术中,一般将红外辐射分为四个区域,即近红外区、中红外区、远红外区和()。

这里所说的“远近”是相对红外辐射在电磁波谱中与可见光的距离而言。

A.微波区B.微红外区射线区 D.极远红外区7、红外辐射在通过大气层时,有三个波段透过率高,它们是~μm、3~5μm和(),统称它们为“大气窗口”。

~14μm~15μm~18μm~μm8、红外探测器的性能参数是衡量其性能好坏的依据。

其中响应波长范围(或称光谱响应),是表示探测器的()相应率与入射的红外辐射波长之间的关系。

A.电流B.电压C.功率D.电阻9、光子传感器是利用某些半导体材料在入射光的照下,产生()。

使材料的电学性质发生变化。

通过测量电学性质的变化,可以知道红外辐射的强弱。

光子效应所制成的红外探测器。

A.光子效应B.霍尔效应C.热电效应D.压电效应10、当红外辐射照射在某些半导体材料表面上时,半导体材料中有些电子和空穴可以从原来不导电的束缚状态变为能导电的自由状态,使半导体的导电率增加,这种现象叫()。

传感器原理及应用第三版习题答案

传感器原理及应用第三版习题答案

传感器技术习题解答第一章传感器的一般特性1-1:答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。

1-2:答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。

1-3:答:传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/Y FS*100%1-4;答:(1):传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二5乘法。

1-5:答:由一阶传感器频率传递函数w(jw)=K/(1+jωη),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωη)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6:答:若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。

其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。

1-7:解:Y FS=200-0=200由A=ΔA/Y FS*100%有A=4/200*100%=2%。

精度特级为2.5级。

1-8:解:根据精度定义表达式:A=ΔA/Ay FS*100%,由题意可知:A=1.5%,Y FS=100所以ΔA=A Y FS=1.5因为 1.4<1.5所以合格。

1-9:解:Δhmax=103-98=5Y FS=250-0=250故δH=Δhmax/Y FS*100%=2%故此在该点的迟滞是2%。

1-10:解:因为传感器响应幅值差值在10%以内,且Wη≤0.5,W≤0.5/η,而w=2πf,所以 f=0.5/2πη≈8Hz即传感器输入信号的工作频率范围为0∽8Hz1-11解:(1)切线法如图所示,在x=0处所做的切线为拟合直线,其方程为:Y =a0+KX,当x=0时,Y=1,故a0=1,又因为dY/dx=1/(2(1+x)1/2)|x=0=1/2=K故拟合直线为:Y=1+x/2最大偏差ΔYmax在x=0.5处,故ΔYmax=1+0.5/2-(1+0.5)1/2=5/4-(3/2)1/2=0.025Y FS=(1+0.5/2)-1=0.25故线性度δL=ΔYmax/ Y FS*100%=0.025/0.25*100%=0.10*100%=10%(2)端基法:设Y的始点与终点的连线方程为Y=a0+KX因为x=0时,Y=1,x=0.5时,Y=1.225,所以a0=1,k=0.225/0.5=0.45而由 d(y-Y)/dx=d((1+x)1/2-(1+0.45x))/dx=-0.45+1/(2(1+x)1/2)=0有-0.9(1+x)1/2+1=0(1/0.9)2=1+xx=0.234ΔYmax=[(1+x)1/2-(1+0.45x)]|x=0.234=1.11-1.1053=0.0047Y FS=1+0.45*0.5-1=0.225δL端基=ΔYmax/ Y FS*100%=0.0047/0.225*100%=2.09%(3)最小二*法由公式()()xykninkniaxxyxxyxxxyxyxaiiiiiiiiiii*4695.00034.14695.005.1506.100365.1055.0*625.2751.1*65.1*691.60034.105.168.36265.255.0*625.255.0*691.65.1*751.1)**)22222((+==--=--==--=--=-∑∑-∑=-∑-∑=∑∑∑∑∑∑由d(y-Y)/dx=d((1+x)1/2-(1.0034+0.4695*x))/dx=-0.4695+1/(2(1+x)1/2)=0有x=1/(0.939)2-1=0.134ΔYmax=[(1+x)1/2-(1.0034+0.4695x)]|x=0.234=1.065-1.066=-0.001Y FS =1.0034+0.4695x-1.0034=0.235 δL 二*法=ΔYmax/ Y FS *100%=0.001/0.235*100%=0.0042*100%=0.42%1-12:解:此为一阶传感器,其微分方程为a 1dy/dx+a 0y=b 0x 所以 时间常数η=a 1/a 0=10sK=b 0/a 0=5*10-6V/Pa1- 13:解:由幅频特性有:()=+=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ωωξωωω04021/2221K A ()()3125.1arctan 36.016.0*7.0*2arctan 012arctan 947.07056.01*42120222264.010006007.010006001-=--=-⎪⎪⎭⎫⎝⎛-==+=+⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-ωωωωξωϕ1- 14:解:由题意知:()()()max minmax3%H j H j H j ωωω-<因为最小频率为W=0,由图1-14知,此时输出的幅频值为│H (jw )│/K=1,即│H (jw )│=K()maxmax 013%0.9719.3620.97KK kHz H j ωωω∴-<<<⎛<= ⎝1- 15解:由传感器灵敏度的定义有: K =m mv mmv x y μμ/51050==∆∆ 若采用两个相同的传感器组成差动测量系统时,输出仅含奇次项,且灵敏度提高了2倍,为20mv/μm.第二章 应变式传感器2-1:答:(1)金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。

传感器与检测技术课后答案

传感器与检测技术课后答案

第一章习题答案1.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。

敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。

2.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。

(2)开发研制新型传感器及组成新型测试系统①MEMS技术要求研制微型传感器。

如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。

②研制仿生传感器③研制海洋探测用传感器④研制成分分析用传感器⑤研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。

它们的特点是传感器与微型计算机有机结合,构成智能传感器。

系统功能最大程度地用软件实现。

(4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。

(5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。

3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。

衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。

1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度;2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx的比值;3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;4)传感器的重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

《传感器与检测技术》课件——第10章 流量传感器及其应用

《传感器与检测技术》课件——第10章  流量传感器及其应用
(4)温度体积膨胀系数:当流体的温度升高时,流体所占有的体积将会增加。温度体积膨胀系数是指流体温度每变化1℃时其体积的相对变化率。 (5)压缩系数:当作用在流体上的压力增加时,流体所占有的体积将会缩小。压缩系数是指当流体温度不变,所受压力变化时其体积的变化率。 10.1.2 流量测量方法 1.容积法 2.节流差压法 3.速度法 4.流体阻力法 5.流体振动法 6.质量流量测量法
2.流量检测中常用的物理量 (1)密度 :表示单位体积中物质的量,其数学表达式为 对于液体,在常温常压下,压力变化对其容积影响甚微,所以工程上通常将液体视为不可压缩流体,即可不考虑压力变化对液体密度的影响,而只考虑温度对其密度的影响。对于气体,温度、压力对单位质量气体的体积影响很大,因此在表示气体密度时,必须指明气体的工作状态(温度和压力)。 (2)黏度:是表征流体流动时内摩擦黏滞力大小的物理量,有动力黏度和运动黏度。 二者之间的关系为:v =h/r。 (3)雷诺数Re:是表征流体情况的特征数。其计算公式为 式中, 为管径; 为流速;r为流体密度;h为动力黏度; 为运动黏度。
(2)管道条件。 ① 安装节流装置的管道应该是直的圆形管道,管道直度用目测法测量。上下游直管段的圆度按流量测量节流装置的国家标准规定进行检验,管道的圆度要求是在节流件上游至少2D(实际测量)长度范围内,管道应是圆的。在离节流件上游端面至少2D 范围内的下游直管段上,管道内径与节流件上游的管道平均直径D 相比,其偏差应在±3%之内。 ② 管道内表面上不能有凸出物和明显的粗糙不平现象,至少在节流件上游10D 和下游4D 的范围内应清洁、无积垢和其他杂质,并满足有关粗糙度的规定。 ③ 节流件前后应有足够长的直管段,在不同局部阻力情况下所需要的最小直管段长度。
10.2 容积式流量传感器

传感器技术与应用第3版第10章智能传感器

传感器技术与应用第3版第10章智能传感器
探讨了智能传感器的发展趋势,如微型化、集成化、智能化等,并分析了当前面临的挑战,如传感器性能提升、成本降低、安全性保障等。
智能传感器的关键技术
智能传感器的应用领域
智能传感器的发展趋势与挑战
未来发展趋势预测及挑战分析
微型化与集成化
随着微电子技术和纳米技术的不断发展,智能传感器将朝着微型化和集成化的方向发展,实现更高的性能和更小的体积。
Part 03.
温度智能传感器
采用先进的温度测量技术,实现高精度的温度测量。
高精度测量
具有自校准功能,能够消除传感器自身的漂移和误差。
自校准功能
适应不同温度环境,实现宽温度范围内的测量。
宽测量范围
压力智能传感器
高灵敏度
对压力变化具有高灵敏度,能够快速响应压力变化。
多功能集成
可集成温度、湿度等多种测量功能于一体。
通过内置算法或外部编程,智能传感器可实现多种复杂测量和控制功能,如温度补偿、非线性校正、数字滤波等。
结构组成与功能划分
接口电路
提供与外部设备或系统的通信接口,如I2C、SPI、UA号采集、数据处理、控制输出等功能,实现智能传感器的智能化。
信号处理电路
对转换后的信号进行放大、滤波、整形等处理,以提高信噪比和抗干扰能力。
传感器技术与应用第3版第10章智能传感器
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
演讲人姓名
CATALOGUE
目录
01.
智能传感器概述
总结与展望
03.
智能传感器类型及其特点
单击此处添加正文
05.
智能传感器接口电路设计与应用

《检测与传感技术》思考题答案

《检测与传感技术》思考题答案
2-3什么是直流电桥?若按不同的桥臂工作方式分类,可分为哪几种?各自的输出电压如何计算?
答:直流电桥是测量小电阻的一种电路,分为单臂电桥、半桥和全桥。半桥输出电压为单臂电桥的2倍,全桥输出电压为半桥的2倍。
2-4拟在等截面的悬臂梁上粘贴4个完全相同的电阻应变片,并组成差动全桥电路,试问:
①4个应变片应怎样粘贴在悬臂梁上?
4.4根据螺管型差动变压器的基本特性,说明其灵敏度和线性度的主要特点。
答:差动变压器的结构如图所示,主要由一个初级线圈、两个次级线圈和插入线圈中央的圆柱形铁芯等组成。
差动变压器传感器中的两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,当衔铁位于中心位置时,两个次级线圈感应电压大小相等、方向相反,差动输出电压为零,但实际情况是差动变压器输出电压往往并不等于零。差动变压器在零位移时的输出电压称为零点残余电压,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致,使传感器的灵敏度降低,分辨率变差和测量误差增大。
解:
3-7简述差动式电容测厚传感器系统的工作原理。
答:电容测厚传感器是用来对金属带材在轧制过程中厚度的检测,其工作原理是在被测带材的上下两侧各置放一块面积相等,与带材距离相等的极板,这样极板与带材就构成了两个电容器C1、C2。把两块极板用导线连接起来成为一个极,而带材就是电容的另一个极,其总电容为C1+C2,如果带材的厚度发生变化,将引起电容量的变化,用交流电桥将电容的变化测出来,经过放大即可由电表指示测量结果。
4.5概述差动变压器的应用范围,并说明用差动变压器式传感器检测振动的基本原理。
答:差动变压器式传感器可以直接用于位移测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等。

传感器原理及应用第二版课后习题答案(吴建平机械工业出版)

传感器原理及应用第二版课后习题答案(吴建平机械工业出版)

G j
2 n 2 s 2 2n s n
s j

1 1 2 j n n
1 400 2 2 400 [1 ( ) ] [2 0.4 ] 2200 2200
2
| G ( jw) |
1
[1 ( ) 2 ] 2 [2 ] n n

2
0.940
2
相对误差为(1-0.940)× 100%=6.0%
400 ) 2 0.4 2200 8 33' n tg 1 tg 1 2 400 2 1 ( ) 1 ( ) 2200
2 (
故相位滞后 8°33′。
第 3 章 电阻应变式传感器
2.7 解:所求幅值误差为 0.947,相位滞后 52°70′
2 n G j 2 2 s 2n s n s j

1 1 2 j n n
1 600 2 2 600 2 [1 ( ) ] [2 0.7 ] 1000 1000
当 n 为常数时响应特性取决于阻尼比 , 阻尼系数 越大, 过冲现象减弱, 1 时无过冲, 不存在振荡,阻尼比直接影响过冲量和振荡次数。 2.4 答: (略) 2.5 解: 对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s) 则该传感器系统的传递函数为:
H (s)

①说明是一种什么形式的梁。在梁式测力弹性元件距梁端 l0 处画出四个应变片粘贴位 置,并画出相应的测量桥路原理图;②求出各应变片电阻相对变化量;③当桥路电源 电压为 6V 时,负载电阻为无穷大,求桥路输出电压 U0 是多少?
图 3-30
3.9 图 3-31 为一直流电桥,负载电阻 RL 趋于无穷。 图中 E=4V, R1=R2=R3=R4=120Ω,试求: ① R1 为金属应变片, 其余为外接电阻, 当 R1 的增量为 ΔR1=1.2Ω 时, 电桥输出电压 U0=? ② R 1、 R2 为金属应变片, 感应应变大小变化相同, 其余为外接电阻, 电桥输出电压 U0=? ③ R1、R2 为金属应变片,如果感应应变大小相反,且 ΔR1=ΔR2 =1.2Ω,电桥输出电压 U0=?

传感器技术与应用第2版-部分习题答案

传感器技术与应用第2版-部分习题答案

第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

人们根据传感器的静特性来选择合适的传感器。

9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。

,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。

微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。

17.答:⑴20。

C时,0~100ppm对应得电阻变化为250~350 kΩ。

V0在48.78~67.63mV之间变化。

⑵如果R2=10 MΩ,R3=250 kΩ,20。

C时,V0在0~18.85mV之间变化。

30。

C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。

⑶20。

C时,V0为0~18.85mV,30。

C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。

但相对(2)得情况来说有很大的改善。

18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。

11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。

因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。

传感器技术课后习题答案

传感器技术课后习题答案

传感器技术课后习题答案传感器技术课后习题答案在传感器技术的学习中,习题是帮助我们巩固知识、检验理解程度的重要方式。

然而,有时候我们可能会遇到一些难题,无从下手。

在这篇文章中,我将为大家提供一些传感器技术课后习题的答案,希望能够帮助大家更好地理解和掌握这门课程。

1. 什么是传感器?传感器是一种能够将物理量或化学量转化为可感知的电信号的装置。

它可以通过测量、检测和感知来获取与环境相关的信息,并将其转化为可用于控制、监测和诊断等应用的电信号。

2. 传感器的分类有哪些?传感器可以根据其测量原理、传感器类型和应用领域进行分类。

按照测量原理,传感器可以分为电阻式、电容式、电感式、压力式、温度式等。

按照传感器类型,可以分为光学传感器、声学传感器、生物传感器等。

按照应用领域,可以分为汽车传感器、医疗传感器、环境传感器等。

3. 传感器的工作原理是什么?传感器的工作原理基于不同的物理效应,如电阻、电容、电感、压力、温度等。

当受测量物理量作用于传感器时,传感器内部的物理效应会发生变化,进而导致传感器输出信号的变化。

通过测量输出信号的变化,就可以得到受测量物理量的信息。

4. 传感器的应用领域有哪些?传感器广泛应用于各个领域,如工业自动化、环境监测、医疗诊断、航空航天等。

在工业自动化中,传感器可以用于测量温度、压力、流量等参数,实现对生产过程的监测和控制。

在环境监测中,传感器可以用于测量空气质量、水质、土壤湿度等,帮助我们了解和改善环境状况。

在医疗诊断中,传感器可以用于监测心率、血压、血氧等生理参数,辅助医生进行诊断和治疗。

5. 传感器的性能指标有哪些?传感器的性能指标包括灵敏度、精度、分辨率、响应时间、线性度等。

灵敏度是指传感器输出信号对输入物理量变化的敏感程度;精度是指传感器输出信号与实际值之间的偏差;分辨率是指传感器能够分辨的最小变化量;响应时间是指传感器从受到输入物理量变化到输出信号稳定所需的时间;线性度是指传感器输出信号与输入物理量之间的线性关系程度。

《传感器技术》习题答案完整

《传感器技术》习题答案完整

《传感器技术》习题答案目录第一章传感器的基本概念及一般特性 (1)第二章电阻式传感器 (3)第三章电容式传感器 (5)第四章电感式传感器 (6)第五章磁电式传感器 (8)第六章压电式传感器 (9)第七章光电式传感器 (12)第八章热电及红外辐射传感器 (13)第九章数字式传感器 (14)第十章气敏和湿敏传感器 (15)第十三章传感器的标定与校准 (19)第一章 传感器的基本概念及一般特性4.解:对于一阶传感器,其幅频特性为21j )()()(ωτωω+==k H A要求幅值误差不超过5%,即a (j )115%H X k ω=-=≤因为ω=2πf=200π,带入解得0≤τ≤5.23×10-4s = 523 μs5.解:一阶传感器,其微分方程为)()()(t x b t y a dtt dy a 001=+ 对照题目所给微分方程可见:a 1=1,a 0=3,b 0=0.15。

静态灵敏度00a b k =;时间常数01a a =τ。

于是可求得∴ τ=a 1/a 0=1/3=0.33 (s )k=b 0/a 0=0.15/3=0.05 (mV/ oC )6./()/由()k ω=()k k ω=令00f x f ωωτω=== (1) 当()0.97k kω=时 421.960.0630x x --=解得,23 1.99x =(舍去负值),即3 1.41x =(舍去负值) 301.4128.28f f kHz ∴==(2) 当()1.03k kω=时, 421.960.05740x x -+=解得,211.39()0.172x x ==舍去负值, (舍去负值) 110 3.44f x f kHz ∴== 22027.8f x f kHz ==所以,工作频率为0~3.44kHz ,27.8~28.28kHz 。

但由于27.8~28.28kHz 距离0f 太近,易引起共振,工程上一般不予采用,故最终的工作频率范围为0~3.44kHz 。

传感器技术练习题与答案

传感器技术练习题与答案

《传感器技术》习题答案1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差 %==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。

解:序号 测量值20()d mm残余误差2020()()i i v d d mm =-残余误差2020((7))()i i v d d i mm =-≠1 2 3 4 5 6 7 ―――8 9 10 11 12 13 14 1520120.404d mm =14.450.10-2.70-0.122015210.0327151ii d vmm σ===-∑200.0788()d G mm σ=20270.0161141ii d vmm σ≠==-∑14.450.10-2.76-0.0614.39-2.70当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。

则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。

然后重新计算平均值和标准偏差。

当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。

则 20 2.370.01610.0382()d i G mm v σ=⨯=>,所以其他14个测量值中没有坏值。

传感器章节习题答案10

传感器章节习题答案10

C1 传感器基础1 什么是传感器?传感器的基本组成包括哪两个部分?这两个部分各起什么作用?答:传感器是一种能把特定被测量的信息按一定规律转换成某种可用信号并输出的器件或装置。

传感器由敏感元件和转换元件组成。

敏感元件能直接感受或响应被测量;转换元件是将敏感元件感受或响应的被测量转换成适于传输或测量的电信号。

2简述传感器在自动控制系统中的作用。

答:自动控制系统中传感器的主要作用是将被测非电量转换成与其成一定关系的电量,它是自动控制系统的“感官”、“触角”,自动控制系统通过传感器检测到的信息实现对系统的控制。

因此,传感器是自动控制系统中得首要部件,是实现现代化测量和自动控制(包括遥感、遥测、遥控)的主要环节,它对于决定自动控制系统的性能起着重要作用。

3传感器有哪些基本特性?答:传感器的基本特性通常可以分为静态特性和动态特性。

静态特性是指输入的被测量不随时间变化或随时间缓慢变化时表现的特性。

表征传感器静态特性的主要参数有线性度、灵敏度、分辨力和迟滞、重复性;动态特性是指传感器跟踪输入信号变化的特性,表征传感器动态特性的主要参数有响应速度、频率响应。

4简述传感器的发展方向答:1).新材料的开发与应用在原有的半导体、陶瓷材料等基础上,利用新的制造材料来提升传感器性能,提高传感器的产品质量,降低生产成本。

2).新制造技术的应用采用精密细微加工技术、蒸镀技术、扩散技术、光刻技术、静电封接技术、全固态封接技术,应用使传感器集成化、超小型化。

3).新型传感器的开发利用新的物理效应、化学效应、生物效应开发出相应的新型传感器,从而为提高传感器的性能,拓展传感器的应用范围提供了新的动力。

4).传感器的集成化利用集成技术,将敏感元件、测量电路、放大电路、补偿电路、运算电路等制作在同一芯片上,使传感器体积小、质量轻、生产自动化程度高、制造成本低、稳定性和可靠性高、电路设计简单、安装调试时间短。

5).传感器的智能化开发具有自补偿、自诊断、自校正及数据的自存储和分析等功能的智能传感器。

《传感器与检测技术(胡向东,第2版)》习题解答

《传感器与检测技术(胡向东,第2版)》习题解答

《传感器与检测技术(胡向东,第2版)》习题解答传感器与检测技术习题解答王涛第1章概述什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常敏感元件和转换元件组成。

传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量输入转换成电量输出。

传感器一般哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。

另外还需要信号调理与转换电路,辅助电源。

被测量敏感元件传感元件信号调节转换电路辅助电源传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。

①按传感器的输入量进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

②按传感器的工作原理进行分类根据传感器的工作原理,可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。

改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。

利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。

设压力为0MPa时输出为0mV,压力为时输出最大且为。

压力/MPa 输出值/mV 第一循环第二循环第三循环正行程反行程正行程反行程正行程反行程解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段。

传感器技术课后习题答案贾伯年主编第3版

传感器技术课后习题答案贾伯年主编第3版

衡量传感器静态特性的主要指标。

说明含义。

线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

灵敏度——传感器输出量增量与被测输入量增量之比。

分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

稳定性——即传感器在相当长时间内仍保持其性能的能力。

漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

计算传感器线性度的方法,差别。

理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

Z-1 分析改善传感器性能的技术途径和措施。

(1)结构、材料与参数的合理选择(2)差动技术(3)平均技术(4)稳定性处理(5)屏蔽、隔离与干扰抑制(6)零示法、微差法与闭环技术(7)补偿、校正与“有源化”(8)集成化、智能化与信息融合2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。

传感器与检测技术课后习题答案全文

传感器与检测技术课后习题答案全文

当 yt R 时 t 3ln 2 1.22
3
3
当 yt R 时 t 3ln 1 2.08
2
2
返回
上页
下页
图库
第1章
1.5
解:此题与炉温实验的测飞升曲线类似:
yt1090(1et/T)
由y550T 5 8.51
5
ln
9
1.6
解:
yt2520(1et/T)
T 0.5
y1 7.68 y2 5.36
图库
第3章
3.7
答:应用场合有低频透射涡流测厚仪,探伤,描述转 轴运动轨迹轨迹仪。
R x1100 ,R x2200 ,R x3300 ,R x4400 ,R x5500 , R x6600 ,R x7700 ,R x8800 ,R x9900 ,R x101000
r10.1,r20.2,r30.3,r40.4r50.5
r60.6r70.7r80.8r90.9r101.0
Y111003,Y2
重写表格如下:
x 0.3 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 f 2.523 2.502 2.461 2.432 2.410 2.380 2.362 2.351 2.343 y -1.66 -1.78 -2.06 -2.31 -2.56 -3.06 -3.54 -4.02 -4.61
答:
① mR R m L ax m0.1 RL10Rm ax
② 1 2 11m 1 1100% 0.1
m 0.4 R m ax0 .4R L
返回
上页
下页
图库
第2章
2.5 解:①图 2-32(c)
②圆桶截面积 A R 2 r 2 59.7 106

传感器与检测技术 第十章 智能传感技术(最新)

传感器与检测技术 第十章 智能传感技术(最新)

图10-13 零位温漂特性
13
第10章 智能传感技术
(2)灵敏度温度漂移的补偿
对于压阻式压力传感器,当输入压力保持不变的情况下,
其输出值U(T)将随温度的升高而下降,如图10-14所示。图中 温度T>T1,其输出U(T)<U(T1)。如果T1是传感器校准标定时 的时工的作输温入度(P),—而输实出际(U工)特作性温进度行却刻是度T>转T换1,求若取仍被按测工输作入温量度压T 力的数值是P′,而真正的被测输入量是P,将会产生很大的 测量误差,其原因就是输入量P为常量时,传感器的工作温 度B点T升降高至,A点T>,T1输传出感电器压的减输少出量由ΔUU(T为1)降至U(T),即工作点由
11
第10章 智能传感技术
1.自补偿 温度是传感器系统最主要的干扰量。在典型的传感 器系统中主要采用结构对称来消除其影响;在智能传感 器的初级形式中主要采用以硬件电路实现的“拼凑”补 偿技术,但补偿效果不能满足实际测量的要求。在传感 器与微处理器/微计算机相结合的智能传感器系统中, 可采用监测补偿法,它是通过对干扰量的监测由软件来 实现补偿的。如压阻式传感器的零点及灵敏度温漂的补 偿。
图10-5 传统仪器仪表中的硬件非线性校正原理
5
第10章 智能传感技术
图10-6 智能仪器的非线性校正技术
6
第10章 智能传感技术
(二)自校零与自校准技术
ห้องสมุดไป่ตู้
假设一传感器系统经标定实验得到的静态输出(Y)与 输入(X)特性如下:
式中
Y=a0+a1X
(10-11)
a0—零位值,即当输入X=0时之输出值;
ΔU=U(T1)-U(T)

U(T1)=U(T)+ΔU

《检测与传感技术》思考题答案

《检测与传感技术》思考题答案
答: ,C与h成线性关系,采用调频式、运算放大器式和环形二极管充放电法皆可。
3-4有一个以空气为介质的变面积型平板电容传感器,如图3-5所示,其中a=8mm,b=12mm,两极板间距离为1mm。一块板在原始位置上平移了5mm后,求该传感器的位移灵敏度K(已知空气相对介电常数=1F/m,真空时的介电常数0= 8.854×10-12F/m)。
4.4根据螺管型差动变压器的基本特性,说明其灵敏度和线性度的主要特点。
答:差动变压器的结构如图所示,主要由一个初级线圈、两个次级线圈和插入线圈中央的圆柱形铁芯等组成。
差动变压器传感器中的两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,当衔铁位于中心位置时,两个次级线圈感应电压大小相等、方向相反,差动输出电压为零,但实际情况是差动变压器输出电压往往并不等于零。差动变压器在零位移时的输出电压称为零点残余电压,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致,使传感器的灵敏度降低,分辨率变差和测量误差增大。
第一章思考题和习题参考答案
1—1什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何?
答:传感器是把被测量转换成电化学量的装置,传感器由敏感元件和转换元件组成,其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。
2-7在题2-6条件下,如果试件材质为合金钢,线膨胀系数g= 1110−6/℃,电阻应变片敏感栅材质为康铜,其电阻温度系数= 1510−6/℃,线膨涨系数s= 14.910−6/℃。当传感器的环境温度从10℃变化到50℃时,所引起的附加电阻相对变化量(R/R)t为多少?折合成附加应变t为多少?

传感器与检测技术胡向东第版习题解答

传感器与检测技术胡向东第版习题解答

传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述什么是传感器答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

传感器的共性是什么答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。

传感器一般由哪几部分组成答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。

②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。

改善传感器性能的技术途径有哪些答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性什么是传感器的静态特性描述传感器静态特性的主要指标有哪些答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。

利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。

设压力解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段(多数情况下是用最小二乘法来求出拟合直线)。

(1)端点线性度: 设拟合直线为:y=kx+b, 根据两个端点(0,0)和(,),则拟合直线斜率: ∴*+b= ∴b=0(2)最小二乘线性度: 设拟合直线方程为01y a a x =+, 误差方程01()i i i i i y y y a a x v ∧∧-=-+= 令10x a =,21x a =由已知输入输出数据,根据最小二乘法,有:直接测量值矩阵0.644.047.4710.9314.45L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,系数矩阵10.0210.0410.0610.0810.10A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,被测量估计值矩阵01a X a ∧⎡⎤=⎢⎥⎣⎦由最小二乘法:''A A X A L ∧=,有答:非线性误差公式:max 0.106100%100%0.64%16.50L FS L Y γ∆=±⨯=⨯= ② 迟滞误差公式:max100%H FSH Y γ∆=⨯, 又∵最大行程最大偏差max H ∆=,∴max 0.1100%100%0.6%16.50H FS H Y γ∆=⨯=⨯= ③ 重复性误差公式:max100%L FSR Y γ∆=±⨯, 又∵重复性最大偏差为max R ∆=,∴max 0.08100%100%0.48%16.50L FS R Y γ∆=±⨯=±⨯=± 用一阶传感器测量100Hz 的正弦信号,如果要求幅值误差限制在±5%以内,时间常数应取多少如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少 解:一阶传感器频率响应特性:1()()1H j j ωτω=+幅频特性:()A ω=由题意有()15%A ω-≤15%-≤又22200f Tπωππ=== 所以:0<τ<取τ=,ω=2πf=2π×50=100π幅值误差:()100% 1.32%A ω∆==-所以有%≤△A(ω)<0相位误差:△φ(ω)=-arctan(ωτ)= 所以有≤△φ(ω)<0某温度传感器为时间常数τ=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的三分之一和二分之一所需的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章气敏和湿敏传感器
1.
答:按照半导体变化的物理性质,可分为电阻型和非电阻型两种。

电阻型半导体气敏元件是利用半导体接触气体时,其阻值的改变来检测气体的成分或浓度,是目前广泛应用的气体传感器之一,按结构分:烧结型、薄膜型和厚膜型三种,敏感体一般都需要在一定的温度下才能正常工作,保证测量灵敏度和响应速度,加热器是不可缺少的。

这类气敏器件的优点是:工艺简单,价格便宜,使用方便;对气体浓度变化响应快;即使在低浓度(3000mg/kg)下,灵敏度也很高。

其缺点在于:稳定性差,老化较快,气体识别能力不强;各器件之间的特性差异大等,在使用中受环境温湿度影响较大,需要改进。

非电阻型半导体气敏元件根据其对气体的吸附反应,使其某些有关特性发生变化,对气体进行直接或间接检测。

这类器件的制造工艺成熟,便于器件集成化,因而其性能稳定且价格便宜。

利用特定材料还可以使器件对某些气体特别敏感。

2.
答:导电机理可以用吸附效应来解释。

在半导体表面原子性质特别活跃,很容易吸附气体分子。

当气体分子的亲和能(电势能)大于半导体表面的电子逸出功时,吸附分子将从半导体表面夺取电子而变成负离子吸附,被称为氧化型气体,是电子接收性气体,如氧气、氧化氮等。

当N型半导体表面形成负离子吸附时,表面多数载流子(电子)浓度减少,电阻增加;对于P型半导体,则表面多数载流子(空穴)浓度增大,电阻减小。

若气体分子的电离能小于半导体表面的电子逸出功时,则气体供给半导体表面电子,形成正离子吸附,被称为还原型气体,是电子供给性气体,如H2、CO、C2H5OH(乙醇)及各种碳氢化合物。

当N型半导体表面形成正离子吸附时,多数载流子(电子)浓度增加,电阻减小;对于P型半导体,则多数载流子(空穴)浓度减少,电阻增加。

利用半导体表面电阻变化就可以检测出气体的种类和浓度。

3.
答:传感器均由三部分组成:敏感体及其依附的基底、加热器以及信号引出电级,按其结构不同分为烧结型、薄膜型和厚膜型三种。

烧结型气敏传感器长期稳定性、气体识别能力等不太令人满意,且工作温度较高会使敏感膜层发生化学反应或物理变化。

烧结型又分为内热式和旁热式,旁热式相比内热式稳定性、可靠性好。

薄膜型气敏传感器具有很高的灵敏度和响应速度,敏感体的薄膜化有利于器件的低功耗、小型化,以及与集成电路制造技术兼容,同时具有较高的机械强度,而且具有互换性好、产量高、成本低等优点。

厚膜型气敏传感器一致性较好,机械强度高,适于批量生产。

4.
答:气敏器件的加热器作用是加速气体吸附,提高测量灵敏度和响应速度;同时加热器能烧掉附着在测控部分中的油雾、尘埃等。

6.
答:MOS二级管的结构和等效电路如图所示。

在P型半导体硅片上,利用热氧化工艺生成一层厚度为(50~100)nm左右的二氧化硅(SiO2)层,然后在其上面蒸发一层钯(Pd)的金属薄膜,作为栅电极。

由于SiO2层电容C a固定不变,而Si和SiO2界面电容C s是外加电压的函数,因此由等效电路可知,总电容C也是栅偏压的函数。

其函数关系称为该类MOS二极管的C-V特性,如图曲线a所示。

由于钯对氢气(H2)特别敏感,当钯吸附了H2以后,会使钯的功函数降低,导致MOS管的C-V特性向负偏压方向平移,如曲线b所示。

根据这一特性就可用于测定H2的浓度。

7.
答:气敏半导体器件易受环境条件变化的影响。

为了使器件处于最佳工作状态,使用时需注意控制以下因素:
1)气敏半导体器件使用之前,必须经过一定的电老化时间。

器件从开始通电到达稳态所需时间与器件存放的条件和时间有关。

经过长时间存放的元件在标定使用之前,一般需要
1~2周的老化时间。

连续测试时要注意保持前后测试条件一致。

老化一般可以采用加热及两端加一定电压的方式实现。

2)在精度要求较高的检测中要注意保持环境的温湿度的一致性,因为器件表面吸附羟基(-OH )的量与环境湿度关系极为密切,需要较长时间才能达到平衡状态。

3)一般烧结型气敏元件对某种气体的检测并不具有绝对的选择性,不同种类、不同浓度的气体传感器有不同的电阻值,因此在使用时,一般可通过标准被测气体对传感器灵敏度进行调整和校正。

同时在应用中要注意环境气氛的清洁。

8.
答:湿度是大气中含水的量,表明了大气的干湿程度。

绝对湿度是指一定大小空间中水蒸气的绝对含量,可用“kg/m 3”表示,其定义式为:V
m V =ρ。

相对湿度是待测空气的水汽分压与相同温度下水的饱和水汽压的比值的百分数。

这是一个无量纲的量,常表示为%RH 。

相对湿度RH %100)(
⨯=T W V P P 。

9.
答:对于负特性湿敏半导瓷,如果该半导瓷是P型半导体(多数载流子是空穴),则由于水分子吸附使表面电势下降,将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。

若该半导瓷为N型(多数载流子是电子),则由于水分子的附着使表面电势下降,如果表面电势下降较多,不仅使表面层的电子耗尽,同时吸引更多的空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度,出现所谓表面反型层,这些空穴称为反型载流子。

它们同样可以在表面迁移而表现出电导特性。

因此,由于水分子的吸附,使N 型半导瓷材料的表面电阻下降。

不论是N型还是P型半导瓷,其电阻率都随湿度的增加而下降。

正特性湿敏半导瓷的导电机理的解释可以认为这类材料的结构、电子能量状态与负特性材料有所不同。

当水分子附着半导瓷的表面使电势变负时,导致其表面层电子浓度下降,但这还不足以使表面层的空穴浓度增加到出现反型程度,此时仍以电子导电为主。

于是,表面电阻将由于电子浓度下降而加大,这类半导瓷材料的表面电阻将随湿度的增加而加大。

10.
答:电解质溶液的导电能力,既与电解质本身的性质有关,又与电解质溶液的浓度有关,其溶液中的离子导电能力与浓度成正比。

当溶液置于一定温度场中,若环境相对湿度高,溶液将吸收水分,使浓度降低,因此,其溶液电阻率增高。

反之,环境相对湿度变低时,则溶液浓度升高,其电阻率下降,从而实现对湿度的测量,即电解质溶液的电导率是环境湿度的函数。

利用这一特性,在绝缘基板上制作一对金属电极,其上再覆一层电解质溶液,即可形成一层感湿膜,感湿膜可随空气中湿度的变化吸湿或脱湿,同时引起感湿膜电导的变化,通过测量电路就可测得环境的湿度。

相关文档
最新文档