模拟信号数字化传输系统的设计与仿真分析
第6章-模拟信号数字化通信系统的建模仿真
第6章模拟信号数字化通信系统的建模仿真一、抽样定理实验用System view 建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理.。
电路构成如图所示:实验结果1.模拟信号2.抽样信号3.低通滤波器输出信号4.模拟信号功率谱5.抽样信号功率谱六.实验结果说明当抽样频率=100HZ(最小抽样速率)时,低通滤波器输出信号如图所示:由图可以看出,输出信号与模拟信号一致,没有发生畸形变.当抽样速率<100HZ时(例如f=80HZ),低通滤波器输出信号如图所示:由图可以看出,输出信号与模拟信号不一致,发生畸变.当抽样速率>100HZ时(例如F=200HZ),低通滤波器输出信号波形如图所示:由图可以看出,输出信号与模拟信号不一致,发生畸变.观察模拟信号与抽样信号的功率谱密度.由图可以看出,模拟信号功率谱密度在F=50HZ 处有一个冲击响应,而抽样信号的功率谱密度是模拟信号的功率谱密度在N倍抽样频率上的频谱搬移(N=0,1,2….),并且包络为sa(x)的函数.二、低通与带通抽样定理仿真与验证用System view 建立一个低通与带通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通与带通抽样定理原理.。
电路构成如图所示:其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样;通过带通滤波产生带通型信号,再进行带通滤波产生带通抽样,最后分别滤波重建原始信号。
仿真分析时,设低通滤波器的上限频率为10Hz,带通滤波器下限频率为100Hz、上限频率为120Hz,低通抽样频率选为30Hz;带通型信号上限频率fH = 6×20=120Hz(B=20Hz,n=6),带通抽样频率至少应取40Hz,现取60 Hz的带通抽样频率。
下图为四个“Real Time”图符块显示框中的波形:由以上个图及理论知识可知,低通信号波形和重建的低通信号波形是一样的,带通信号和重建带通信号的波形也是一样的低通信号抽样前信号的功率谱:低通信号抽样后信号的功率谱:低通信号重建信号的功率谱:由上图可知,低通抽样信号的功率谱包括了低通信号的功率,而且带宽很宽。
浅析模拟信号数字化研究及Simulink仿真技术
3 . 1 构建测试模型及仿真 基 于上面 的原理构建一个DP C M编解码仿真系统。其 中预测器为5 阶 F I R滤波器 ,抽头系数设置为实例1 的计 算结果 ,被编码信 号为语音文件 “ GDGv o i c e 8 0 0 0 . ww” , 量化器采用均匀量化方式 , 将 卜1 , 1 ] 上的归一化信号
1引言
是: E[
一
】= .
』V I = 1
x , + , = 0… . , P代 入归一化 自相关 函
随着通信技术的发展, 数字通信成为主流技术 。 那模拟信源提供 的模拟 信号如何在数字通信系统中传输呢?模拟信号要想在数字通信系统进行传
模拟信号数字化传输系统的设计与仿真分析
唐山学院通信原理课程设计题目模拟信号数字化传输系统的设计与仿真分析系 (部) 班级姓名学号指导教师2017 年 6 月 26 日至2017 年7月 8 日共 2 周通信原理课程设计任务书课程设计成绩评定表目录前言 01模拟信号抽样过程原理 (1)1.1抽样原理 (1)1.1.1低通型连续信号的抽样 (1)1.1.2带通信号的抽样定理 (2)1.2量化原理 (3)1.2.1均匀量化 (3)1.2.2非均匀量化 (4)1.2.3 A律压缩律 (4)1.2.4 13折线 (4)1.3脉冲编码调制(PCM) (5)1.4差分脉冲编码调制(DPCM) (6)2Matlab/Simulink的简介 (8)3基于Simulink的模拟信号数字化传输的设计与仿真分析 (10)3.1抽样过程的设计与仿真分析 (10)3.2量化过程的设计与仿真分析 (11)3.3 PCM编译码系统设计与仿真分析 (13)3.3.1 PCM编码器设计 (13)3.3.2 PCM解码器设计 (16)3.3.3有干扰信号的PCM编码与解码 (16)3.4 DPCM编译码系统的设计与仿真分析 (20)4总结 (23)5参考文献 (24)前言通信系统中的信息传输已经基本数字化。
在广播系统中,当前还是以模拟方式为主,但数字化的趋向也已经明显,为了改进质量,数字声频广播和数字电视广播已经提到日程上来,21世纪数字系统已经逐步取代模拟系统。
尤为甚者,设备的数字化,更是日新月异。
近年来提出的软件无线电技术,试图在射频进行模数转换,把调制解调和锁相等模拟运算全部数字化,这使设备超小型化并具有多种功能,所以数字化进程还在发展。
Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。
Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。
模拟信号的数字化传输系统设计(共16页)
模拟信号的数字化传输系统(xìtǒng)设计摘要(zhāiyào)本设计(shèjì)结合PCM的抽样、量化、编码原理(yuánlǐ),利用MATLAB 软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。
课题中主要分为三部分对脉冲编码调制(PCM)系统原理进行建模与仿真分析,分别为采样、量化和编码原理的建模仿真。
通过对脉冲编码调制(PCM)系统原理的仿真分析,设计者对PCM原理及性能有了更深刻的认识,并进一步掌握MATLAB软件的使用。
第一章绪论数字通信系统由于具有许多优点而成为当今通信的发展方向。
然而日常生活中大部分信号都是模拟信号。
相对于模拟通信来说,数字通信有抗干扰能力强、保密性好、可以再生、没有噪声积累等优势。
但是,现实生活中有很多模拟新源,模拟信源输出的信号是模拟信号,要将其在数字通信系统中进行传输,则必须经过相应的处理。
研究模拟信号的数字化传输有着极其重要的意义。
在1937年,英国人里费(A.H.Reeves)提出(tí chū)了脉冲编码调制(PCM)方式(fāngshì)。
从此揭开了近代数字传输的序幕。
PCM系统的优点是:抗干扰性强;失真小;传输特性稳定,远距离再生中继时噪声不累积,而且可以采用有效编码、纠错(jiū cuò)编码和保密编码来提高通信系统的有效性、可靠性和保密性。
另外,由于PCM可以把各种消息(声音、图像、数据等等)都变换成数字信号进行传输,因此可以实现传输和交换(jiāohuàn)一体化的综合通信方式,而且还可以实现数据传输与数据处理一体化的综合信息处理。
故它能较好地适应信息化社会对通信的要求。
PCM的缺点是传输带宽宽、系统较复杂。
但是,随着数字技术的飞跃发展这些缺点也不重要。
因此,PCM是一种极有发展前途的通信方式。
第二章 MATLAB简介2.1 MATLAB软件简介MATLAB和Mathematica、Maple并称为三大数学软件。
基于MATLAB的模拟信号数字化系统的研究与仿真
基于MATLAB的模拟信号数字化系统的研究与仿真摘要本文研究的主要内容是《通信原理》仿真实验平台的设计与实现---模拟信号数字化Matlab软件仿真。
若信源输出的是模拟信号,如电话传送的话音信号,模拟摄像机输出的图像信号等,若使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号,即进行A/D变换,在接收端则要进行D/A变换。
模拟信号数字化由抽样、量化、编码三部分组成。
由于数字信号的传送具有稳定性好,可靠性高,方便传送和传送等诸多优点,使得被广泛应用到各种技术中。
不仅如此,Matlab仿真软件是常用的工具之一,可用于通信系统的设计和仿真。
在科研教学方面发挥着重要的作用。
Matlab有诸多优点,编程简单、操作容易、处理数据迅速等。
本文主要阐述的是模拟信号数字化的理论基础和实现方法。
利用Matlab提供的可视化工具建立了数字化系统的仿真模型,详细讲述了抽样、量化、编码的设计,并指出了在仿真建模中要注意的问题。
在给定的仿真条件下,运行了仿真程序,得到了预期的仿真结果。
关键词:Matlab、模拟信号数字化、仿真绪论1837年,莫尔斯完成了电报系统,此系统于1844年在华盛顿和巴尔迪摩尔之间试运营,这可认为是电信或者远程通信,也就是数字通信的开始。
数字化可从脉冲编码调制开始说起。
1937年里夫提出用脉冲编码调制对语声信号编码,这种方法优点很多。
例如易于加密,不像模拟传输那样有噪声积累等。
但在当代代价太大,无法实用化;在第二次世界大战期间,美军曾开发并使用24路PCM系统,取得优良的保密效果。
但在商业上应用还要等到20世纪70年代。
才能取代当时普遍采用的载波系统。
我国70代初期决定采用30路的一次群标准,80年代初步引入商用,并开始了通信数字化的方向。
数字化的另一个动向是计算机通信的发展。
随着计算机能力的强大,并日益被利用,计算机之间的信息共享成为进一步扩大其效能的必需。
60年代对此进行了很多研究,其结果表现在1972年投入使用的阿巴网。
基于MATLAB的模拟信号数字化系统的研究与仿真
脉冲编码调制(PCM)原理:
图 1-9 脉冲编码调制示意图
PCM 系统的原理方框图如下图所示,同种,输入的模拟信号 m(t)经抽样、量化、
编码后变换成数字信号,经心道传送到接收端的译码器,由译码器还原出抽样值,再经过
定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,fH)Hz 内的时间 连续信号 f(t),如果以 Ts≤1/(2fH)秒间隔对其进行等间隔抽样,则 f(t)将被所得到的 抽样值完全确定。模拟信号的抽样过程如下图。
图 1-2 模拟信号抽样的过程示意图
下图分析可知模拟信号抽样过程中各个信号的波形与频谱。
模拟信号数字化系统的研究与仿真
5
通信原理课程设计
图 1-4 两种情况下的抽样信号频谱分析
应该注意的一点是:抽样频率并不是越高越好。只要能满足抽样频率大于奈奎斯特频 率,并留有一定的防卫带即可。
1.1.2 带通信号的抽样定理
实际中遇到的许多信号时带通型信号,模拟信号的频道限制在 fL~fH 之间,fL 为信号 最低频率,fH 为最高频率。而且当 fH>B,其中 B=fH-fL 时,该信号通常被成为带通型信号, 其中 B 为带通信号的频带。
对于带通信号,如果采用低通抽样定理的抽样速率 fs≥2fh,对频率限制在 fL 与 fH 之间 的带通型信号抽样,肯定能满足频谱不混叠的要求,如图所示。
模拟信号数字化系统的研究与仿真
6
通信原理课程设计
图 1-5 带通信号的抽样频谱
定理内容:一个带通信号 f(t),其频率限制在 fL 与 fH 之间,带宽为 B=fh-fl,如果 最小抽样速率 fs=2fh/n,n 是一个不超过 fh/B 的最大整数,那么 f(t)就可以完全由抽 样值确定。 下面两种情况说明:
(完整word版)数字通信系统的设计与仿真
数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。
模拟信号的数字传输设计及仿真
第四章 模拟信号的数字传输设计及仿真4.1 模拟信号的数字传输模型及抽样定理4.1.1 模拟信号的数字传输模型通信系统分为模拟通信系统和数字通信系统,如果我们在发送端的信息源中包括一个模/数转换装置,在接收端包含一个数/模转换装置,则可以在数字系统中传输模拟信号。
采用最早的和目前使用比较广泛的模/数转换方法是脉冲编码调制,即PCM (简称脉码调制)。
采用脉码调制的模拟信号数字传输系统如图4-1。
m(t) {k s } {k s } )(t m k图4.1 模拟信号数字传输系统4.1.2 抽样定理抽样定理是指一个频带限制在(0, H f ) 赫兹内的时间连续信号m(t),如果在H f u 12/1 秒的间隔对它进行等间隔抽样,则m(t)可以所得到的抽样值完全确定。
抽样定理告诉我们,如果对某一个带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能够准确地确定原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输抽样定理得到的抽样值。
因此该定理就为模拟信号的数字传输提供了理论基础。
模拟信号进行抽样以后,其抽样值是随信号幅度连续变化的,即抽样值m(kT)可以取无穷多个可能值,如果用N 个二进制数字信号来代表该样值的大小,以便利用数字传输系统来传输该样值信息,那么N 个二进制数字信号只能同n M 2=个电平样值相对应,而不能同无穷多个电平样值相对应。
这样一来,抽样值必须被划分成M 个离散电平,此电平被称为量化电平。
利用预先给定的有限个电平来表示模拟抽样值的过程被称为抽样。
抽样是把一个时间连续的信号变换成时间离散的信号,而量化则是将取值连续的抽样变成取值离散的抽样。
4.2 模拟信号的量化4.2.1 均匀量化把输入信号的取值区域按等距离分割的量化称为均匀量化。
均匀量化的每个量化区间的量化电平均取在个区间的中点。
量化间隔v ∆取决于输入信号的变化范围和量化电平数。
模拟信号数字化传输系统的建模与分析
模拟信号数字化传输系统的建模与分析现代通信技术的核心在现代通信领域,模拟信号数字化传输技术是至关重要的。
它涉及到将模拟信号通过采样、量化和编码等过程转化为数字信号,以便在数字传输系统中进行高效、可靠的传输。
本文将以“模拟信号数字化传输系统的建模与分析”为主题,深入探讨这一技术的核心原理和应用。
一、模拟信号数字化传输的基本原理1. 试题:什么是模拟信号数字化传输?答案:模拟信号数字化传输是将模拟信号通过采样、量化和编码等过程转化为数字信号,以便在数字传输系统中进行传输的过程。
2. 试题:模拟信号数字化传输的主要步骤有哪些?答案:模拟信号数字化传输的主要步骤包括采样、量化和编码。
采样是将模拟信号在时间上离散化,量化是将连续的模拟信号值映射到有限的数字级别,编码是将量化后的数字信号转换为二进制代码。
二、模拟信号数字化传输系统的建模1. 试题:如何建立模拟信号数字化传输系统的模型?答案:建立模拟信号数字化传输系统的模型需要考虑信号特性、传输通道特性、噪声特性等因素。
通常,可以采用数学模型和仿真软件来建立模型,通过模型可以分析和预测系统的性能。
2. 试题:模拟信号数字化传输系统模型中需要考虑哪些关键参数?答案:模拟信号数字化传输系统模型中需要考虑的关键参数包括采样频率、量化位数、编码方式、传输通道的特性、噪声水平等。
这些参数将直接影响传输系统的性能和信号质量。
三、模拟信号数字化传输系统的分析1. 试题:如何分析模拟信号数字化传输系统的性能?答案:分析模拟信号数字化传输系统的性能可以通过以下方法:-信号失真分析:评估信号在传输过程中的失真程度,包括量化噪声、传输通道引起的失真等。
-信号信噪比分析:计算信号的信噪比,评估信号的质量和可靠性。
-传输效率分析:评估系统的传输效率,包括数据传输速率和带宽利用率等。
2. 试题:模拟信号数字化传输系统分析中可能遇到哪些挑战?答案:模拟信号数字化传输系统分析中可能遇到的挑战包括:-信号复杂性的处理:模拟信号可能具有复杂的波形和频率成分,需要有效的建模和分析方法来处理。
模拟信号数字化传输系统的建模与分析
模拟信号数字化传输系统的建模和分析涉及到将连续的模拟信号转换为离散的数字信号,并进行传输和恢复的过程。
以下是一个常见的模拟信号数字化传输系统的建模和分析步骤:
1. 采样:使用采样器以一定的时间间隔对模拟信号进行采样,将连续的模拟信号转换为离散的样本值。
采样频率需要满足奈奎斯特采样定理,即采样频率要大于信号最高频率的两倍。
2. 量化:采样后,使用量化器将每个采样值映射为离散的数字数值。
量化器将连续的采样值近似为有限个离散的数值级别,这个过程引入了量化误差,决定了数字信号的精度。
3. 编码:对量化后的数字信号进行编码,将其转换为二进制形式,便于传输和存储。
常见的编码方式有二进制编码、格雷码等。
4. 信道传输:将编码后的数字信号通过信道进行传输。
在传输过程中,信号可能会受到噪声、失真和干扰等影响,导致信号质量下降。
5. 解码:在接收端,对传输过程中的数字信号进行解码,恢复为经过量化和编码前的数字信号。
6. 重构:解码后的数字信号经过一个重构滤波器进行重构,以去除
量化误差,并还原为连续的模拟信号。
7. 分析与评估:对传输系统的性能进行分析和评估,包括信号失真度、信噪比、位错误率等指标的计算和评估。
可以通过信道容量、传输延迟等指标来评估系统的效率和可靠性。
在模拟信号数字化传输系统的建模和分析过程中,需要考虑信号的采样率、量化精度、编码方式、信道特性、解码算法等参数的选择和优化,以及信号处理算法的设计和实现。
这些步骤和参数的选择会影响到数字信号的质量和传输系统的性能。
数字通信系统设计方案与仿真
数字通信系统的设计与仿真摘 要:本次设计的是一种数字通信系统,该通信系统主要采用数字信源为输入、交织编码译码技术、MP 信道、2FSK 的调制和非相干解调技术。
利用system view 对系统进行仿真,并分析眼图和误码率。
关键字:system view,仿真,数字通信1 数字通信系统基本原理1.1 数字通信系统的模型图1 数字通信系统的模型1.2 信息源它的作用是把各种消息转换为原始电信号,信源分为模拟信源和数字信源。
本文的输入信号采用模拟信源,通过A/D 转换把输入的模拟信号转换为数字信号,模拟信号转化为数字信号包括三个步骤:抽样、量化和编码。
模拟信号首先被抽样。
通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。
模拟信号被抽样后,成为抽样信号,它在时间上是离散的,但是其取值仍然是连续的,所以是离散模拟信号。
第二步是量化。
量化的结果使抽样信号变成量化信号,其取值是离散的。
故量化信号已是数字信号了,它可以看成是多进制的数字脉冲信号。
第三步是编码。
第一步抽样的定理:设一个连续模拟信号m(t)中的最高频率<H f 且带宽受到限制时,则以间隔时间为1/2H T f 的周期性冲击脉冲对它抽样时,()m t 将被这些抽样值所安全确定。
由于抽样时间间隔相等。
),低通滤波107中的最低频率是10Hz ,108的增益为300Hz 。
即奈奎斯特的定理。
第二步:量化。
模拟信号的抽样值为m(KT),其中T 是抽样周期,k 是整数。
量化原理公式:,()q i m kT q =≤i-1i 当m m(kT)<m (1.1-2)在非均匀量化时,量化间隔是随信号抽样值的不同而变化的。
信号抽样值小时,量化间隔 v 也小;信号抽样值大时,量化间隔 v 也大。
非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。
其压缩是用一个非线性电路将输入电压x 变换成输出电压y :()x y f= (1.1-3) 第三步:通常把从模拟信号抽样、量化,直到变换成为二进制符号的过程,称为脉冲编码调制。
实验4-----模拟信号数字化传输系统的建模与仿真
实验四:模拟信号数字化传输系统的建模与分析一、实验目的1. 进一步掌握 Simulink 软件使用的基本方法;2. 熟悉信号的压缩扩张;3. 熟悉信号的量化;4. 熟悉PCM 编码与解码。
二、实验内容1. 设计一个13折线近似的PCM 编码器模型,能够对取值在[-1;1] 内的归一化信号样值进行编码;2. 设计一个对应于以上编码器的PCM 解码器;3. 在以上两项实验的基础上,建立PCM 串行传输模型,并在传输信道中加入指定错误概率的随机误码。
三、实验原理1. 信号的压缩和扩张非均匀量化等价为对输入信号进行动态范围压缩后再进行均匀量化。
中国和欧洲的PCM 数字电话系统采用A 律压扩方式,美国和日本则采用μ律方式。
设归一化的话音输入信号为[1,1]x ∈-,则A 律压缩器的输出信号y 是:()11ln sgn 1(1ln )11ln Axx A A y x A x x A A ⎧≤⎪+⎪=⎨⎪+<≤⎪⎩+ 其中,sgn(x) 为符号函数。
A 律PCM 数字电话系统国际标准中,参数A=87.6。
Simulink 通信库中提供了“A-Law Compressor ”、“A-Law Expander ”以及“Mu-Law Compressor ”和“Mu-Law Expander ”来实现A 律和Ö 律压缩扩张计算。
压缩系数为87.6的A 律压缩扩张曲线可以用折线来近似。
16段折线点坐标是111111*********,,,,,,,,0,,,,,,,,1248163264128128643216842765432112345671,,,,,,,,0,,,,,,,,188888888888888x y ⎡⎤=--------⎢⎥⎣⎦⎡⎤=--------⎢⎥⎣⎦其中靠近原点的4段折线的斜率相等,可视为一段,因此总折线数为13段,故称13段折线近似。
用Simulink中的“Look-Up Table”查表模块可以实现对13段折线近似的压缩扩张计算的建模,其中,压缩模块的输入值向量设置为[-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1/4,1/2,1]输出值向量设置为[-1:1/8:1]扩张模块的设置与压缩模块相反。
通原课设-模拟信号数字化系统的仿真
课程设计班 级: 电信09-1姓 名: 马小龙学 号: 1006110213指导教师: 杨会玉成 绩:原理 数字 课程设计报告 电子与信息工程学院 通信工程系模拟信号数字化系统的仿真——PCM编、译码器原理仿真摘要简要介绍模拟信号数字化的处理步骤,即抽样、量化、编码,以及PCM编码的压缩和扩张的基本原理。
用MATLAB工具软件对PCM编码进行进行软件仿真,并对仿真进行分析比较。
关键词:PCM编、译码,MATLAB仿真目录1 PCM介绍及工作原理 (1)1.1 抽样 (1)1.2 量化 (1)1.3 编码 (3)1.4 PCM原理框图 (5)2 用simulink对PCM进行设计仿真 (6)2.1 设计PCM编译码器系统结构由图3-1 (6)2.2 对其部分元件进行参数修改 (7)2.3 输入模拟信号并进行仿真输出波形 (9)2.3.1 原信号波形 (9)2.3.2 编码后输出波形 (10)2.3.3 译码后输出波形 (10)2.3.4 各部分输出波形比较 (11)3 PCM编译码器的应用 (12)4 结束语 (12)1 PCM 介绍及工作原理PCM 即脉冲编码调制(Pulse Code Modulation )。
通信系统的信息源有两大类:模拟信号和数字信号。
若输入的是模拟信号,则在数字通信系统的信源编码部分需对输入模拟信号进行数字化,将模拟输入信号变为数字信号。
PCM 的实现包括三步:抽样,量化,编码。
1.1 抽样抽样是按照等时间等间隔进行的,模拟信号被抽样后成为抽样信号,它在时间上是离散的,但是其取值仍然是连续的,所以是离散模拟信号。
1.2 量化量化的结果使抽样信号变成量化信号,其取值是离散的。
故量化信号已经是数字信号了,他可以看成是多进制数字脉冲信号。
设模拟信号的抽样值为m(kT),其中T 是抽样周期,k 是整数。
此抽样值仍是一个取值连续的变量,即他可以有无数个可能的连续取值。
若我们仅用N 个二进制数字码元来代表此抽样值的大小,则N 个二进制码元只能代表N M 2=个不同的抽样值。
基于MATLAB的模拟信号的数字传输研究与仿真毕业设计_说明
本科毕业设计(论文)题目基于MATLAB的模拟信号的数字传输研究与仿真学院名称理学院专业班级信息11-2学生晓东导师吉红二零一五年六月一日基于MATLAB的模拟信号的数字传输研究与仿真作者姓名晓东专业电子信息科学与技术指导教师吉红专业技术职务副教授齐鲁工业大学本科毕业设计(论文)原创性声明本人重声明:所呈交的毕业设计(论文),是本人在指导教师的指导下独立研究、撰写的成果。
设计(论文)中引用他人的文献、数据、图件、资料,均已在设计(论文)中加以说明,除此之外,本设计(论文)不含任何其他个人或集体已经发表或撰写的成果作品。
对本文研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示了意。
本声明的法律结果由本人承担。
毕业设计(论文)作者签名:年月日齐鲁工业大学关于毕业设计(论文)使用授权的说明本毕业设计(论文)作者完全了解学校有关保留、使用毕业设计(论文)的规定,即:学校有权保留、送交设计(论文)的复印件,允许设计(论文)被查阅和借阅,学校可以公布设计(论文)的全部或部分容,可以采用影印、扫描等复制手段保存本设计(论文)。
指导教师签名:毕业设计(论文)作者签名:年月日年月日目录摘要I第一章绪论 (4)1.1课题研究的意义4第二章通信原理理论基础 (5)2.1通信系统的组成与模型62.2系统开发工具MATLAB简介 (8)第三章模拟信号的数字传输 (11)3.1模拟信号的数字传输模型 (11)3.2抽样定理 (11)3.3模拟信号的量化 (12)3.4编码 (13)3.5基于MATLAB的模拟信号数字化的仿真实现 (14)第四章数字信号的频带传输 (20)4.1数字调制与解调原理 (20)4.2二进制振幅键控(2ASK) (21)4.3二进制移频键控(2FSK) (26)4.4二进制移相键控(2PSK)和二进制差分相位键控(2DPSK)27 4.5二进制数字调制系统的性能比较 (28)第五章数字基带传输中码间串扰的消除 (30)5.1数字基带传输模型 (30)5.2码间串扰的产生 (31)5.3码间串扰的解决方法 (31)5.4无码间串扰系统设计 (32)5.5仿真结果与分析 (33)参考文献36致 37摘要IIABSTRACTII第一章绪论41.1课题研究的意义4第二章通信原理理论基础52.1通信系统的组成与模型62.2系统开发工具MATLAB简介8第三章模拟信号的数字传输113.1模拟信号的数字传输模型113.2抽样定理113.3模拟信号的量化123.4编码133.5基于MATLAB的模拟信号数字化的仿真实现144.1数字调制与解调原理204.2二进制振幅键控(2ASK)214.3二进制移频键控(2FSK)264.4二进制移相键控(2PSK)和二进制差分相位键控(2DPSK)27第五章数字基带传输中码间串扰的消除305.1数字基带传输模型305.2码间串扰的产生315.3码间串扰的解决方法315.4无码间串扰系统设计325.5仿真结果与分析33参考文献36致 37摘要社会的发展越来越快,对通信系统的要求也就相应的越来越高。
模拟信号数字无线传输系统的设计
目录摘要 (1)关键词 (1)Abstract (1)Key words (2)1 前言 (2)1.1 选题的目的与意义 (2)1.2 简述模拟信号与数字信号 (2)2 设计任务与要求 (2)2.1 设计任务 (2)2.2 基本要求 (3)3 总体方案设计与方案论证 (3)3.1总体方案设计 (3)3.2 方案论证与选择 (4)3.2.1 无线传输方式的选择 (4)3.2.2 模数转换 (4)4 硬件电路与软件设计的实现 (8)4.1 硬件电路的实现 (8)4.1.1 控制处理器外围电路 (10)4.1.2 红外发射电路的实现 (10)4.1.3 模数转换电路的实现 (10)4.2 软件设计 (11)4.2.1 发射机软件设计 (11)5 系统调试与调试中的问题 (12)5.1 模数转换的调试 (12)5.2 红外发射接收的调试 (12)参考文献 (13)附录 (13)附录 1 发射机程序 (13)模拟信号数字无线传输系统的设计摘要通信系统分为模拟通信系统和数字通信系统,如果我们在发送端的信息源中包括一个模/数转换装臵,在接收端包括一个数/模转换装臵,在发送端与接收端之间通过红外作为载波进行通信,则可以实现模拟信号数字无线传输。
本文主要从三个方面进行设计与实现:(1)AT89S51单片机对A/D转换器的控制,从而对模拟信号进行抽样、量化、编码后转换为数字信号;(2)单片机对数字信号进行编码与38Khz 红外载波调制通过红外线发射;(3)接收机接收到的调制信号经红外接收头进行解调还原数字信号,再经单片机的处理,通过D/A,以及信号的放大,最后再经过低通滤波器还原成模拟信号,从而实现模拟信号数字无线传输演示的全过程。
关键词:模拟信号数字传输;无线传输;红外通信;模数转换Analog Digital Wireless Transmission CommunicationSystemAbstractCommunication system is divided into analog communication systems and digital communication systems, if we send the client's information sources include a A / D converter, the receiver includes a D / A converter, in between the transmitter and the receiver as by infrared carrier to communicate, you can transmit analog signal digital infrared communications. This article mainly focuses on three aspects: (1) AT89S51microcontroller on the A / D chip to control the analog signal sampling, quantization, encoded into digital signals; (2) single chip digital signal processing and modulation 38KHZ IR through infrared emission; (3) base station receives the first modulated signal by the infrared receiver to demodulate digital signal reduction by the microcontroller processing, through the D / A, and signal amplification and finally through the reduction of low-pass filter into an analog signal, in order to achieve different place communication.Key words: Analog signal digital transmission ;wireless transmission ;infrared communication ;analog _digital conversion1前言1.1选题的目的与意义移动通信是现代通信技术和计算机技术高度发展和紧密结合的产物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐山学院通信原理课程设计题目模拟信号数字化传输系统的设计与仿真分析系 (部)班级姓名学号指导教师2017 年 6 月 26 日至2017 年7月 8 日共 2 周通信原理课程设计任务书课程设计成绩评定表目录前言................................................................. 1模拟信号抽样过程原理...............................................抽样原理.........................................................低通型连续信号的抽样..........................................带通信号的抽样定理...........................................量化原理........................................................均匀量化......................................................非均匀量化...................................................A律压缩律...................................................13折线......................................................脉冲编码调制(PCM)..............................................差分脉冲编码调制(DPCM)........................................2 Matlab/Simulink的简介.............................................3 基于Simulink的模拟信号数字化传输的设计与仿真分析..................抽样过程的设计与仿真分析.........................................量化过程的设计与仿真分析.........................................PCM编译码系统设计与仿真分析.....................................PCM编码器设计...............................................PCM解码器设计...............................................有干扰信号的PCM编码与解码....................................DPCM编译码系统的设计与仿真分析..................................4 总结............................................................... 5参考文献...........................................................前言通信系统中的信息传输已经基本数字化。
在广播系统中,当前还是以模拟方式为主,但数字化的趋向也已经明显,为了改进质量,数字声频广播和数字电视广播已经提到日程上来,21世纪数字系统已经逐步取代模拟系统。
尤为甚者,设备的数字化,更是日新月异。
近年来提出的软件无线电技术,试图在射频进行模数转换,把调制解调和锁相等模拟运算全部数字化,这使设备超小型化并具有多种功能,所以数字化进程还在发展。
Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。
Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。
至于Simulink中的各个模块在运行时是如何执行,时间是如何采样的,事件是如何驱动的等问题,我们可以不去关心。
正是由于Simulink具有这些特点,所以它被广泛应用在通信仿真中。
1模拟信号抽样过程原理抽样原理抽样是按照等时间等间隔进行的,模拟信号被抽样后成为抽样信号,把该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
抽样的抽样速率下限是由抽样定理确定的。
抽样定理告诉我们,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输抽样定理得到的抽样值。
因此该定理就为模拟信号的数字化传输提供了理论基础。
低通型连续信号的抽样定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,f H))秒间隔对其进行等间隔抽样,则Hz内的时间连续信号f(t),如果以Ts≤1/(2fHf(t)将被所得到的抽样值完全确定。
模拟信号抽样过程中各个信号的波形与频谱。
(a)模拟信号的波形及频谱(b)冲激函数的波形及频谱(c)抽样信号的波形及频谱图1-1抽样过程中的信号波形与频谱以下为两种情况下的频谱分析结果。
但抽样频率小于奈奎斯特频率时,即如果ωs<2ωH,则抽样后信号的频谱在相邻的周期内发生混叠,如图1-2所示,当抽样频率大于或等于奈奎斯特频率时,接收端回复出来的信号才与原信号基本一致。
(a)信号的频谱(b)f s>2f m时抽样信号的频谱(c)f s<2f m时抽样信号的频谱图1-2两种情况下的抽样信号频谱分析应该注意的一点是:抽样频率并不是越高越好。
只要能满足抽样频率大于奈奎斯特频率,并留有一定的防卫带即可。
带通信号的抽样定理实际中遇到的许多信号是带通型信号,模拟信号的频率限制在f L~f H之间,fL为信号最低频率,f H为最高频率。
而且当f H>B,其中B=f H-f L时,该信号通常被成为带通型信号,其中B为带通信号的频带。
对于带通信号,如果采用低通抽样定理的抽样速率f s≥2f h,对频率限制在fL与f H之间的带通型信号抽样,肯定能满足频谱不混叠的要求,如图1-3所示:图1-3带通信号的抽样频谱定理内容:一个带通信号f(t),其频率限制在f L与f H之间,带宽为B=f h-f l,如果最小抽样速率f s=2f h/n,n是一个不超过f h/B的最大整数,那么f(t)就可以完全由抽样值确定。
下面两种情况说明:(1)若最高频率f h为带宽的整数倍,即f h=nB。
此时f h/B=n是整数,m=n,所以臭氧速率f s=2f h/m=2B。
(2)若最高频率f h不为带宽的整数倍,即f h=nB+kB,0<k<1此时,f h/B=n+k,由定理知,m是一个不超过n+k的最大整数,显然,m=n,所以能恢复出原信号f(t)的最小抽样速率为:fs =2(fL+fH)/(2n+1)式中n是一个不超过f H/B的最大整数,0<k<1通常k取1。
量化原理量化就是把经过抽样的得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
量化的结果使抽样信号变成量化信号,其值是离散的。
故量化信号已经是数字信号了,可以看成是多进制脉冲信号。
量化在连续抽样值和量化值之间产生误差,称为量化误差。
均匀量化如果用相等的量化间隔对抽样得到的信号做量化,那么这种量化方法称为均匀量化。
工作原理:在均匀量化中,每个量化区间的量化电平取在各区间的中点。
其量化间隔△i取决于输入信号的变化范围和量化电平数。
若设输入信号的最小值和最大值分别为a和b表示,量化电平数为M,则均匀量化时的量化间隔为△i=(b-a)/M量化器输出为x=x l。
图1-4均匀量化特性与量化误差曲线量化器的输入与输出关系可用量化特性来表示,语言编码常采用上图所示输入-输出特性的均匀量化器,当输入m在量化区间m i-1≤m≤m i变化时,量化电平q是该区间的中点值。
而相应的量化误差e q=m-m q与输入信号幅度m之间的关系i曲线如上图所示。
过载区的误差特性是线性增长的,因而过载误差比量化误差大,对重建信号有很坏的影响。
在设计量化器时,应考虑输入信号的幅度范围,是信号幅度不进入过载区,或者只能以极小的概率进去过载区。
上述的量化误差e q=m-m q通常称为绝对量化误差,它在每一个量化间隔内的最大值均为△/2。
均匀量化广泛应用于现行A/D变换接口,例如在计算机中,M为A/D变化的位数,常用的有8位、12位、16位等不同精度。
非均匀量化非均匀量化的方法通常是将抽样值通过压缩再进行均匀量化。
通常使用的压缩器中,大多数采用对数式压缩。
广泛采用的两种对数式压缩率是u压缩率和A压缩率。
A律压缩律A压缩律的压缩特性为Ax/(1+lnA) 0< x≤1/AY=(1+lnAx)/(1+lnA) 1/A<x≤1其中,A是压缩系数,y是归一化的压缩器输出电压,x为归一化的压缩器输入电压。
图1-5 A律对数压缩特性13折线实际中,A压缩律通常采用13折线来近似,十三折线如图1-6所示,图中先把x轴的[0,1]区间分为8个不均匀段。
图1-6 13折线示意图其具体分法如下:将区间[0,1]一分为二,其中点为1/2,取区间[0,1/2]作为第八段;将剩下的区间[0,1/2]再一分为二,其中点为1/4,取区间[1/4,1/2]作为第七段;将剩下的区间[0,1/4]再一分为二,其中点为1/8,取区间[1/8,1/4]作为第六段;将剩下的区间[0,1/8]再一分为二,其中点为1/16,取区间[1/16,1/8]作为第五段;将剩下的区间[0,1/16]再一分为二,其中点为1/32,取区间[1/32,1/16]作为第四段;将剩下的区间[0,1/32]再一分为二,其中点为1/64,取区间[1/64,1/32]作为第三段;将剩下的区间[0,1/64]再一分为二,其中点为1/128,取区间[1/128,1/64]作为第二段;最后剩下的区间[0,1/128]作为第一段。
然后将y轴的[0,1]区间均匀的分成八段,从第一段到第八段分别为[0,1/8]、[1/8,2/8]、[2/8,3/8]、[3/8,4/8]、[4/8,5/8]、[5/8,6/8]、[6/8,7/8]、[7/8,1]分别与x轴的八段一一对应。
脉冲编码调制(PCM)若信源输出的是模拟信号,如电话机传送的语音信号等,要使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号即进行A/D变换,在接收端要进行D/A变换。