变压器铁芯接地故障诊断与处理
变压器铁芯接地故障的判断与消除
接地技术1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。
同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。
随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。
2:接地的定义Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。
一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。
注意要求是”低阻抗”和“通路”。
3:常见的接地符号Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地4:合适的接地方式Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。
而单点接地又分为串联单点接地和并联单点接地。
一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。
当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。
5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。
第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。
变压器铁芯故障的测试及处理方法
变压器铁芯故障的测试及处理方法1.变压器铁芯故障的测试方法变压器铁芯故障的一般测试方法如下:(1)钳型电流表法(在线测量)。
对铁芯外引的变压器用钳型电流表法,能精确地、不停电测试铁芯多点接地故障。
每年定期测量接地引线电流,般电流应在100毫安以下,若大于此值,应加强监视。
变压器投运后连续测量几次接地线电阻,作为初始值,若初始值本身就大,说明是变压器本身漏磁大所引起,以后所测数值相差不大即可认为无故障接地点。
若接地线电流大于1安,且与初始值相比增加较多,则可能是低阻接地或金属接地故障,这种状况应准时处理。
(2)色谱分析法(带电取油)。
抽样进行色谱分析,若总烃明显增加,且气体中的甲烷、乙烯占主要成分,而一氧化碳和二氧化碳气体与以往相比变化不大或基本不变,可推断为裸金属过热,可能是铁芯多点接地或铁芯硅钢片间维缘损坏需进一步检查。
若上述总烃中消失乙炔,很可能是时隐时现的不稳定型铁芯多点接地。
(3)绝缘电阻法(停电测试)。
用2500伏摇表摇测铁心与外壳之间电阻,绝缘电阻在200兆欧及以上,说明铁芯绝缘良好。
若摇表指示铁芯与外壳相通,可换用欧姆表测量铁芯与外壳之间的电阻,若测量值为200~400欧时,说明铁芯有高阻接地点,需对变压器进行铁芯多点接地故障处理;若测量值为1000欧以上时,流过地线的电流较小,且难以将故障排解,可不处理,连续运行,定期进行在线监测,如钳型电流表法(有铁芯外引线者)、油色谱分析法,发觉特别后再处理;若测量值为1-2欧,则推断铁芯有金属接地点,必需对变压器进行处理。
2.变压器铁芯产生多点接地的处理方法铁芯产生多点接地时的几种常用的处理方法。
(1)对于铁心有外引接地线的,可在铁心接地回路上串接电阻,以限制铁心接地电流,此方法只能作为应急措施采纳。
(2)由于金属异物造成的铁心接地故障,一般状况下进行吊罩检查,都可以发觉问题。
(3)对于由铁心毛刺,金属粉末积累引起的接地故障,用以下方法处理效果较明显。
浅谈变压器铁芯及故障处理
浅谈变压器铁芯及故障处理发布时间:2022-01-21T02:02:47.917Z 来源:《中国科技人才》2021年第29期作者:曾海强[导读] 变压器是根据电磁感应原理,在闭合的铁芯柱上绕上高、低压线圈,而且按照常规里层靠近铁芯柱的是低压绕组,外层远离铁芯柱的是高压绕组,铁芯闭合磁路在绕组原边交变电流的影响下,建立磁势,使二次绕组产生感生电动势。
由此可见铁芯是变压器最基本的组成部分,是变压器导磁的主磁路,另外,它又是器身的机械骨架,是由铁柱、铁轭和夹紧装置组成。
中国能源建设集团西北电力建设甘肃工程有限公司甘肃兰州 730070摘要: 常用的变压器铁芯一般都是用硅钢片制作而成的。
因此,变压器铁芯不接地或多点接地就会对变压器造成危害,要求变压器的铁芯必须接地,而且是一点接地。
有的变压器铁芯的绝缘并不能达到运行要求。
这就要求我们根据环境及经验对变压器铁芯的不安全运行状况进行诊断及排除。
变压器铁芯都有明显接地点,排除后铁芯即恢复正常。
但要是类似于由于变压器受潮,箱底沉积油泥及水分,或潜油泵轴承受磨损,金属粉末进入油箱,堆积底部,在电磁引力作用下形成桥路,使下铁轭与垫脚或箱底接通这些情况,虽然通过色谱分析,绝缘测量以及环流检测可以判断出是铁芯接地,但要排除故障,也不太容易。
我们就要凭借现场经验,采取不同的方法来排除故障。
关键词:铁芯;一点接地;故障处理铁芯的作用及制作工艺变压器是根据电磁感应原理,在闭合的铁芯柱上绕上高、低压线圈,而且按照常规里层靠近铁芯柱的是低压绕组,外层远离铁芯柱的是高压绕组,铁芯闭合磁路在绕组原边交变电流的影响下,建立磁势,使二次绕组产生感生电动势。
由此可见铁芯是变压器最基本的组成部分,是变压器导磁的主磁路,另外,它又是器身的机械骨架,是由铁柱、铁轭和夹紧装置组成。
常用的变压器铁芯一般都是用硅钢片制作而成的。
硅钢片是一种含硅的钢,其含硅量在0.8~4.8%。
由硅钢做变压器的铁芯,是因为硅钢本身是一种导磁能力很强的磁性物质,在通电线圈中它可以产生较大的磁感应强度,相比较其他材料而言,可以使变压器器身体积缩小。
变压器铁芯及夹件多点接地故障分析与处理论文
变压器铁芯及夹件多点接地故障的分析与处理摘要:本文阐述了电力系统中变压器正常工作时铁芯及夹件的接地要求,介绍了变压器铁芯及夹件多点接地故障的类型及成因,提出了变压器铁芯及夹件多点接地故障的检测方法,分析了变压器铁芯及夹件多点接地故障的处理方法。
关键词:变压器;铁芯;夹件;多点接地中图分类号:u472.42 文献标识码:a 文章编号:0 引言变压器是电力系统中的一个重要设备,在电力系统中起到变换电压的作用,从而降低输电损耗提高输电效率。
变压器能将不同电压等级的电力系统连接在一起,是不同电压等级电力系统之间功率传输的通道。
如果变压器因故障从电力系统中退出运行,将会使不同电压等级的电力系统解列运行,同时也会使低电压等级的电力系统失去重要的电源通道,从而影响电力系统的安全稳定运行。
而变压器铁芯及夹件多点接地故障又是比较常见的变压器故障,因此,及时发现并处理变压器铁芯及夹件多点接地故障对电力系统的可靠运行有着极其重要的作用。
1 变压器铁芯及夹件的接地要求变压器(自耦变压器除外)内的不同电压等级绕组之间以及电路部分(即绕组及其引出线)与非电路部分(即铁芯、外壳以及其他附件)之间是绝缘的,这相当于是一个电容。
而变电站内变压器的非电路部分为了避免产生感应电必须接地。
另外,变压器正常工作时,其绕组及其引出线带电后与油箱壳之间会形成不均匀电场。
变压器铁芯及夹件处于这个不均匀电场中由于电容效应会产生悬浮电位,并且处于该电场不同位置会产生不同的电位,因而产生电位差,当电位差达到一定值时会产生放电现象。
放电火花会令变压器油分解使其性能变差,放电火花还会破坏变压器内部的绝缘,严重时将导致发生变压器事故。
基于上述原因,变压器铁芯及夹件必须可靠接地。
再者,变压器正常运行时其绕组通过的正弦交流电流将在其周围产生交变磁场。
处于这个交变磁场中的变压器铁芯及夹件如果有两点以上接地或者在油箱内部铁芯与夹件间发生短接都将会通过接地点形成闭合回路,闭合回路在交变磁场由于电磁感应效应将会产生环流,电流的热效应将使铁芯或夹件发生局部过热现象,从而使变压器铁芯及夹件绝缘老化速度加快,影响变压器的长期安全稳定运行。
变压器铁芯接地故障的诊断与处理_孙松
(3)利用红外热成像仪进 行测温 , 对 其热图 谱进行分析 。 对于那些较接 近外壳或传热 途径简 单 、 直接的部位发生过热故障时 , 可用热像诊断 , 如涡流过热 、 变压器套管内部故障等的诊断 〔4〕 。 2.2.2 离线检测
对于故障性质的判断和热点温度估算 , 采用日 本月岗淑郎推导的经验公式 〔5〕 , 即 :
t=322 log(C2 H4 /C2 H6 )+525 = 322 log(303/57)+525 =758℃ 综上所述 , 对该变压器铁芯诊断为多点接地所 引起的过热性故障 。 针对上述情况采取了应急处理措施 , 在铁芯接 地回路中串接电阻 。串接电阻前 , 用钳形电流表测 得铁芯接地回路的环流为 29.5A, 为使环流限制在 300 mA以下 , 串接了 110 Ψ的电阻 , 串接电阻后 , 又进行了变压器油跟踪试验 。 从表 2中可以看出 , 串接电阻不久 , 总烃含量 有所上升 , 这是由于故障气体还未完全散开所致 , 随着时间的推移 , 总烃数据开始下降 。 对 6月 25 日的一组数据进行的温度估算 :t=322 log(C2H4 / C2 H6 )+525 =711℃
(2)对铁芯接地 引下的变压器 , 利用钳型电 流表监测铁芯接地电流 。若铁芯接地电流较大时 , 可临时打开工作接地线运行 , 但必须加强监视 , 以 防止故障点消失后铁芯出现悬浮电位 , 产生放电 。 3.2 退出运行处理
(1)电容器放电法 。 可选用 0.3 ~ 50 μF的电 容器 , 用 2 500 V绝缘摇表对其充电 , 然后对铁芯 放电 , 反复多次直到听不到放电声为止 。 电容器放 电法对于处理铁芯毛刺 、 金属悬浮物等引起的故障 比较有效 。
干式变压器铁芯接地故障分析
干式变压器铁芯接地故障分析摘要:干式变压器铁芯接地故障较为多发,在日常维护和检修过程中需引起高度重视,同时将变压器铁芯绝缘电阻实验列入停机检修计划当中,及时发现铁芯接地故障并采取相应的处理措施,这样才能有效的避免设备故障,提高检修效率。
关键词:干式变压器;铁芯;接地;故障分析引言干式变压器在运行过程中若出现铁芯接地故障,对变压器的危害比较大,应采取有效的措施避免故障的发生。
在对干式变压器进行制造的过程中,需要将内部杂质进行有效的清理,并且在对新变压器进行安装的过程中,首先需要对铁芯夹片进行详细检查。
此外,由于变压器绝缘缺陷的发展是一个动态过程,这就需要相关技术人员应对设备结构与运行状况进行全面的了解,通过对故障问题实施有效的分析,采取有效的措施确保变压器的正常运行。
1干式变压器设备概况干式变压器因其结构特点,在实际使用过程中,变压器铁芯多点接地故障占有一定比例。
但是由于干式变压器容量较小,现场对变压器铁芯多点接地危害的重视程度不足,变压器铁芯多点接地极可能引发低压绕组绝缘性能破坏、铁芯绝缘破坏甚者烧损铁芯绝缘或将变压器烧毁。
内蒙古京泰发电有限责任公司煤泥低压配电系统所使用的两台干式变压器的型号为SCB10-2500/6.3,由中电电气(江苏)股份公司制造。
机组正常运行过程中,点检员在巡检过程中发现1号煤泥变压器声音异常,疑似放电,由于在运行过程中变压器外壳振动和电磁声较大,通过人类听觉无法进行直观判断。
2干式变压器铁芯接地可能引发的危害分析铁芯出现两点或多点接地时,两个或多个接地点就会形成闭合回路产生环流,如果变压器长时间的多点接地不但会增加变压器损耗,而且会引起变压器局部过热,严重时铁芯片、铁芯与夹件之间绝缘老化导致绝缘破坏,最终造成铁芯局部过热而烧毁。
变压器铁芯温度变高时,变压器整体温度将上升,变压器温控器系统长时间投入运行,增加了变压器横流冷却风机的的运行时间,造成风机故障率增加,增加设备维护成本,而且变压器铁芯温度异常升高极可能导致变压器绕组绝缘损坏,进而导致变压器整体烧毁。
变压器铁芯常见故障分析判断与处理
变压器铁芯常见故障分析判断与处理摘要:电力变压器相当大一部分的故障都是因铁芯问题造成的故障,基本上占电力变压器总事故中的前三位。
因此准确、及时地诊断与处理变压器铁芯多点接地故障,对保证变压器的安全运行具有重要意义。
基于此,文章就变压器铁芯常见故障分析判断与处理进行简要的分析。
关键词:变压器铁芯;故障分析判断;处理措施1.大型变压器铁芯结构特点在我国大型变压器铁芯大都采用的是心式结构,铁芯材质广泛采用导磁性能比较好的冷轧硅钢片。
由于采用冷轧硅钢片所制造的铁芯能够使得铁损降低,减少噪音和改善激磁伏安特性。
为了均匀分配磁通量,大型变压器铁芯的铁轭具有与铁芯柱相同的多级梯形截面。
为了提高铁芯的冷却效果,在铁芯硅钢片的台阶之间设置冷却油通道。
变压器铁芯柱采用玻璃纤维胶带和铁芯螺钉紧固,因为铁芯螺钉紧固需要在硅钢片上穿孔,不仅需要大量的加工时间,而且毛刺口的毛刺影响了层压的形成,增加涡流损耗,所以大多采用绷带结扎法。
大型变压器铁心堆叠为45℃斜缝,其目的是避免当磁通转向垂直于轧制方向时增加铁心的损耗。
2.铁心故障分析电力变压器在正常运行的过程中,铁芯应当要有一点可靠接地。
如果没有接地,铁芯对地的悬空电压,会造成铁芯间歇击穿放电,铁芯点消除后形成铁芯悬浮电位,但铁芯出现两个以上的接地,铁心的不平衡电位会在循环的形成之间形成连接,并造成铁芯多点接地发热故障。
变压器铁芯接地故障会造成铁芯局部过热,严重,铁芯局部温升,轻气作用,甚至会造成重气作用和跳闸事故。
部分熔芯片之间的短路故障导致铁损变大,严重影响变压器的性能和正常工作,致使核心硅钢片不能修复。
统计显示,核心问题造成的故障比例是各类变压器故障的三分之一。
故障原因:(1)安装过程重的疏忽。
在安装完工之后没有将变压器油箱顶盖上运输用的定位钉进行翻转或者是卸除。
(2)对制造或者大修过程中的疏忽。
铁芯夹件的支板距离心柱太近的话,硅钢片翘凸而触及夹件支板或铁轭螺杆。
(3)铁心下夹件垫脚与铁轭间的纸板脱落,造成垫脚与硅钢片相碰或变压器进水纸板受潮形成短路接地。
变压器铁芯接地故障的分析及处理
变压器铁芯接地故障的分析及处理铁芯多位置接地是变压器常见的故障之一,文章对故障特征、原因及分析检查方法进行了详细的阐述,并使用常见的几种故障问题分析法对数据进行了比较。
然后对一个在变压器运行过程中发生的铁芯接地故障进行了分析,根据其气相和对故障点的检查和处理,指出了故障产生原因及应作的预防措施。
标签:变压器;铁芯;接地故障;气相分析法前言铁芯在变压器运行阶段是电场能转化为磁场能的核心部件。
铁芯处于不均匀电场的工作环境中,从而造成一种感应电容效应。
当铁芯的对地电位达到绝缘击穿值时就会产生对地放电,而放电过后又重新处于感应电容状态。
这种反复的充放电循环会使变压器固体绝缘损坏,并进一步导致绝缘油分解。
严重时直接导致接地片熔断或铁芯烧坏,从而损坏变压器。
故而及时发现和排除变压器铁芯多点接地故障,对保证变压器的安全稳定运行具有重要意义[1]。
1 故障分析1.1 问题的出现某变电站主变的SFPSZ7-150000/220在安装投运10年后,2010年的12月1日对该变压器进行油色谱分析时,发现油中含有故障特征气体,总烃含量159μL/L,已超过GB/T 7252-2001《变压器油中溶解气体分析和判断导则》中规定的标准值,于是对该台变压器进行追踪检测。
12月4日在对该主变进行有色谱分析时,发现CH4、C2H6、C2H4、C2H2、CO和CO2含量均有明显上升趋势,尤其是CH4、C2H4含量上升幅度较大,C2H2含量达到2.1μL/L。
1.2 分析与论证三比值法来源于检测充油电气设备,内油、绝缘在故障下,裂解产生气体组分含量。
根据浓度与温度,对比其相对关系,筛选出五种特征气体,选取两种溶解度和扩散系数相近的气体,然后形成三个比值,编以不同的代码,这被称为三比值法。
来判断变压器故障性质的方法[2]。
根据12月1日、3日与5日,总共3次变压器油气相色谱分析,气相色谱检测值及三比值如表1所示。
在GB/T 7252-2001《变压器油中溶解气体分析和判断导则》中第十条第2点中,对故障主要方法为三比值法。
变压器铁芯多点接地故障检测及处理
浅谈变压器铁芯多点接地故障检测及处理摘要:变压器是电力系统的主要设备,具有变换电压、分配和传输电能等作用。
变压器是电力系统稳定运行的保障,变压器铁芯多点接地故障是变压器最为常见的故障,占变压器总事故中的第三位,而大型变压器出现铁芯多点接地故障的台数占总运行台数的3%左右。
变压器铁芯多点接地故障轻者会造成铁芯局部过热,严重者会造成铁芯局部烧损。
及时发现变压器铁芯多点接地故障,可以准确的检测出变压器铁芯多点接地的故障点并尽快排除变压器铁芯多点接地故障。
关键词:浅谈变压器铁芯多点接地故障检测处理中图分类号:tm407 文献标识码:a 文章编号:1674-098x (2013)04(b)-0068-01变压器是利用电磁感应的原理来改变交流电压的装置,主要是由初级线圈、次级线圈和铁芯组成。
铁芯是由软磁材料制成的,一般由0.35 mm的冷轧硅钢片制成的,具有高起始导磁率、低损耗和磁性能稳定等特点[1]。
当变压器运行正常时,铁芯只能有一个接地点。
若出现两个或者多个接地点,悬浮电压就会产生间歇性击穿放电从而导致铁芯损坏,但是若铁芯有一点接地后就可能消除悬浮的电位[2]。
若变压器铁芯由于某种原因出现2个或者2个以上接地点时,不均匀电位就会与接地点之间形成环流,有时甚至可高达数十安。
变压器铁芯多点接地故障所产生的电流会造成变压器铁芯局部过热,导致油分解,从而产生可燃性气体,还有可能使接地片熔断,或者是烧坏铁芯,导致铁芯点位悬浮,产生放电,使变压器不能继续正常运行,这就是所谓的变压器铁芯多点接地故障。
1 变压器铁芯多点接地故障的检测1.1 进行气相色谱分析进行气相色谱分析时就是对油中所含的气量进行分析,是发现变压器铁芯多点接地故障最有效的办法,是截止到现在色谱分析中发展的最为成熟的分析方法[3]。
气相色谱分析法是以气体为流动相的柱色谱分离技术,具有分离效能高、选择性好、灵敏度高、分析速度快和应用范围广泛等优点。
气相色谱分析法的原理就是比较所需要分析的物质在色谱柱中的气相(载气)和固定(液)相之间分配系数的差异,进行反复多次的分配,使得原来的微小差别逐渐变大,从而达到分离的目的。
变压器铁芯多点接地故障诊断分析及处理
变压器铁芯多点接地故障诊断分析及处理发表时间:2020-10-22T16:16:34.167Z 来源:《中国电业》2020年17期作者:何辉铭[导读] 在变压器中铁芯的作用:一是对绕组起到支撑作用,是整个变压器的机械骨架,另一方面就是提何辉铭中国南方电网广东电网广州供电局变电管理三所广东广州 510000【摘要】:在变压器中铁芯的作用:一是对绕组起到支撑作用,是整个变压器的机械骨架,另一方面就是提供磁回路,一次绕阻通交流电后,在铁芯中感应出不断变化的磁场,此时在二次绕组中感应出电动势,由于硅钢片是良好的导磁材料,因此铁芯可以减少漏磁现象出现,增加变压器的效率,但变压器在运行过程中,铁芯会出现一些问题,因此文章简单的阐述了变压器铁芯出现的常见问题,并主要根据铁芯多点接地这一问题进行研究,并分析如何解决这一问题,以及提出对其防范的措施,并结合一例由于铁芯多点接地从而产生的故障问题进行分析。
【关键词】:变压器;铁芯;接地前言:变压器正常的运行条件就是它要使其铁芯必须一点可靠接地,防止铁芯接地不良即悬空产生悬浮电位进行放电,在电力变压器正常的运行过程中其铁芯的接地电流大概是几毫安到几十毫安不等。
如若铁芯出现多点接地的情况,铁芯两端片间存在电位差就会形成闭合的回路,致使涡流的产生。
铁芯接地电流可达到数10A的电流,会使得变压器内部铁芯发生局部过热,内部局部发热使得绝缘油分解产生一些气体,严重时致使接地片熔断或者铁芯烧损,从而毁坏变压器。
1引起铁芯接地故障的因素及分析检查方法1.1故障异常现象(1)铁芯接地电流数值异常,远远超过《电力设备检修试验规程》(Q/CSG1206007-2017)规定的0.1A。
(2)多点接地会造成铁芯局部发热,促使局部温度高于安全值。
(3)变压器绝缘油的油位异常升高,本体油位表指示油位超出油位曲线图,内部局部发热使得绝缘油分解产生一些气体,严重时致使接地片熔断或者铁芯烧损,从而毁坏变压器。
变压器铁芯多点接地故障的检查处理
变压器铁芯多点接地故障的检查处理【摘要】文章结合实例阐述了变压器铁芯多点接地故障的检查、分析、处理过程、方法,提出了防范措施。
【关键词】变压器铁芯多点接地原因分析处理方法姚桥矿主井35kv变电站1#主变型号为sz7—20000/35,1989年12月投运,日常检查严格按照《电力设备预防性试验规程》进行预防性试验,执行油简化标准及检修维护规程,变压器一直运行正常。
可是在2005年10月18日对该1#主变的预防性试验中,用2500v 摇表摇测该变压器铁芯绝缘电阻时,发现铁芯存在多点接地现象,为了对变压器作进一步判断,对变压器做了如下试验,数据见表一。
1 试验数据分析(1)变压器各档位的电压比满足额定分接电压比允许偏差为±0.5%的标准要求值,试验合格。
(2)直流电阻测量满足各相绕组相间差别不大于三相平均值的2%,无中性点引出的绕组线间差别不大于三相平均值的1%的标准要求值,试验合格,说明铁芯接地没有引起线圈间的匝间短路。
(3)绝缘油击穿强度电压很高,试验合格,说明绝缘油的绝缘性能还没有受到铁芯接地的影响。
(4)介质损耗小于1.5%标准要求值、绝缘电阻很高、泄漏点流小,试验合格,说明变压器线圈等的绝缘性能还没有受到铁芯接地的影响。
(5)取变压器箱体油样做简化和色谱分析,试验结果见表二、表三。
2 变压器铁芯接地性质检查为了判断铁芯接地故障是由于金属铁屑小桥引起的短时接地故障还是永久接地故障,我们用电容放电冲击法对变压器铁芯进行放电试验,多次反复冲击,摇测铁芯绝缘电阻仍为零,确定变压器铁芯不是由金属铁屑引起的短时接地故障点,而是永久接地故障点,具体故障原因需要吊罩检查。
从以上证明性试验数据看,变压器性能还没有受到铁芯接地很大的影响,认为变压器还可以送电,在运行中对变压器进行监测,由于铁芯多点接地,需缩短变压器箱体油样取样周期,通过油简化和色谱分析试验跟踪监测,分析接地故障点在运行中不同时间产气情况,确定故障程度。
变压器铁芯多点接地故障分析及处理方法
文章编号:100926825(2007)0820187202变压器铁芯多点接地故障分析及处理方法王小军摘 要:详细介绍了变压器常发性故障———铁芯多点接地的几种类型及其成因,提出了变压器铁芯多点接地故障的处理方法及处理步骤,指出准确及时地诊断与处理变压器铁芯多点接地故障,对保证变压器的安全运行具有重要意义。
关键词:变压器,铁芯,故障,处理方法中图分类号:TU856文献标识码:A 变压器的绕组和铁芯是传递、变换电磁能量的主要部件,保证它们的安全是变压器可靠运行的关键。
铁芯多点接地会在接地点形成闭合回路,造成环流,引起变压器铁芯局部过热导致绝缘油分解和绝缘老化,还可能使接地片熔断或烧坏铁芯,导致铁芯电位悬浮,产生放电,甚至损坏变压器。
因此准确、及时地诊断与处理变压器铁芯多点接地故障,对保证变压器的安全运行具有重要意义。
1 变压器铁芯多点接地故障的类型和成因变压器铁芯多点接地故障按接地性质可分为两大类:不稳定接地和稳定接地。
1)不稳定接地是指接地点接地不牢靠,接地电阻变化较大,多是由于异物在电磁场作用下形成导电小桥造成的接地故障,如变压器油泥、金属粉末等。
2)稳定接地(也称死接地现象)是指接地点接地牢靠,接地电阻稳定无变化,多是由于变压器内部绝缘缺陷或厂家设计安装不当造成的接地故障,如铁芯穿芯螺栓、压环压钉的绝缘破坏等。
2 变压器铁芯多点接地故障的分析和处理1)试验数据分析,判断是否存在铁芯多点接地故障。
试验数据分析包括变压器油色谱数据分析和电气测量数据分析。
a.色谱数据分析:目前,用油中溶解气体色谱分析方法是监测变压器铁芯多点接地故障最简便、最有效的方法。
常用的是“三比值法”和德国“四比值法”。
由于三比值法只能在变压器油中溶解气体各组分含量超过注意值或产气速率超过限值方可进行判断,不便于在故障初期进行判别,因此建议使用“四比值法”进行判断。
利用五种特征气体的四对比值来判断故障,在四比值法中,以“铁件或油箱中出现不平衡电流”一项来判断变压器铁芯多点接地故障,其准确度是相当高。
变压器铁芯接地故障分析处理及应用实例
・
声 沉 闷 的 响声 ,停 止 充 放 电 ,用 兆 欧 表
231对 于变压 器铁 芯 的不稳 定接 .. 地故 障 ,在变压器停运情 况下 ,可采用 电容放 电冲击 法排 除故 障 ,方法如下 :
表1 变压器绕组直 流电阻试 验数据如下 :
2 对 变 压 器 运 行 状 况 进行 统计 分 . 2
( 总烃的产气速率大于0 m/; 2) .l 5 h ( 3)特征气 体三 比值 编码一般 为
0 22。
析 ,判断铁芯 多点接地故障类型
2 . 查 询 变 压 器 运 行 年 限 ,统 计 .1 2
5 4 电 试 21 第 期 气 验 02. 2
器是 否存在铁芯多点接地故障
211 变压器油 中溶解气体 的气相 ..
色谱分 析法
(1)总 烃 含 量 高 ,超 过 注 意值
1 p 50 pm ;
阻 ,若测 量 的绕 组直 流 电阻 数值 无 异 常 ,则可排除故 障部位不在 电回路 内 ,
从而确认 变压 器铁 芯多点接地故 障。
目 I
刁
'■ ,'_一r
压器铁芯按地故障
分 析 处 理及 应 用 实例
摘要 :文 中介绍 了变压 器铁芯 多点 接地 故障 的类型及成 因,提 出用 电容 冲击法消 除变压 器铁芯 不稳定 接地故 障方法及应用实例。
关键词 :变压器 、铁芯、故障、处理
口 文/ 韩雅萍
1 不 稳 定接 地 是 指接 地 点 接地 不 牢 . 1
2 变压器铁芯多点接地故障的分析处
理程序
21 通过试验数据分析 ,判断变压 .
变压器接地故障分析及解决措施
变压器接地故障分析及解决措施摘要:随着我国电力事业的进一步发展,变压器接地系统故障能够被有效解决,一方面有效确保了当前地区电力运行环境的稳定性,从而降低了经济财产损耗的风险;另一方面更能够根据故障维修的措施,巩固当前电力运行平台的可靠性,以便后续电气设备更替具备参数保障,并能够有效降低安全事故发生的概率。
变压器是电力系统必不可少的重要设备,其实际应用效果直接关系着电力系统运行的稳定性和可靠性。
受到外界环境复杂因素的影响,变压器极易出现接地故障问题,对电力系统的运行效果产生了严重的影响,在此种情况下,加大力度对变压器接地故障进行分析,并提出有效的解决措施是非常必要的。
本文就此进行简要分析,仅供相关人员参考。
关键词:变压器;接地故障;原因;解决措施前言:变压器作为电力系统中不可或缺的设备,对整个电力系统的运行稳定性、安全性和经济性有着至关重要的意义。
但是变压器本身是一个长期处于负荷运行的设备,在长时间运行中必然会受到外界因素的影响,出现各种故障问题,特别是在雷雨天气,如果接地系统出现故障,其安全事故的发生率变得更高。
因此,这里我们有必要对变压器常见接地故障的产生原因和解决方法进行分析,以期能更好的为变压器故障的预防提供参考,延长变压器的使用寿命,使电力系统运行变得更加稳定安全与可靠经济。
一、变压器接地系统概述变压器是基于当前电力运行环境稳定运行需求提供的复合型电气管控设备。
在该设备应用过程中,既能够凭借自身电流系统的管控,有效增强地区电力运行环境的稳定性,同时更能够根据自身电力调控状态,确保电力企业供电系统操作具备保障,以便整体系统运行具备经济性和稳定性的优势。
由此可见,变电器在当前电力系统运行环境中具备非常重要的设备地位,只有确保对应维修人员做好定期检查工作,并针对地方电力运行状况进行细致分析,这样才能够有效避免变电器故障问题的出现。
其中,接地系统在变电器功能运行环境中的有效利用,使得其为设备运行环境提供保障措施,同时更能够降低变压器故障出现的频率,从而真正能够将故障问题排除在运行环境之外。
2024年浅谈变压器铁芯多点接地故障检测及处理
2024年浅谈变压器铁芯多点接地故障检测及处理一、铁芯多点接地定义变压器铁芯多点接地,指的是在变压器正常运行过程中,铁芯出现两个或两个以上的接地点,使得铁芯的接地回路不再是单一的闭合路径。
这种情况下,接地电流可能增大,导致铁芯局部过热,严重时甚至可能烧毁铁芯,对变压器的正常运行造成严重影响。
二、故障检测的重要性铁芯多点接地故障是变压器运行过程中的常见故障之一,其危害不容忽视。
因此,及时、准确地检测并处理这类故障,对于保证变压器的安全运行具有重要意义。
故障检测能够帮助运行人员了解变压器的实际运行状态,及时发现潜在的安全隐患。
通过对故障原因的分析和处理,可以避免类似故障的再次发生,延长变压器的使用寿命,减少因故障导致的停电损失,保障电力系统的稳定供电。
三、故障检测常用方法目前,常用的变压器铁芯多点接地故障检测方法主要有以下几种:1. 直流电流法通过向变压器铁芯施加直流电压,测量接地电流的大小和方向,从而判断是否存在多点接地故障。
这种方法操作简便,但受到接地电阻、绝缘电阻等因素的影响,结果可能存在一定的误差。
2. 交流电压法通过在变压器铁芯上施加交流电压,测量接地电流的大小和相位,进而判断铁芯的接地状态。
这种方法能够更准确地反映铁芯的接地情况,但操作相对复杂。
3. 气体色谱分析法通过分析变压器油中溶解气体的成分和含量,可以间接判断铁芯是否存在多点接地故障。
这种方法对于发现早期故障尤为有效,但需要专业的分析设备和人员。
4. 超声波检测法利用超声波在变压器内部传播的特性,检测铁芯接地部位可能产生的异常声波信号,从而判断是否存在多点接地故障。
这种方法具有较高的灵敏度和准确性,但成本相对较高。
四、故障原因分析变压器铁芯多点接地故障的原因多种多样,主要包括以下几个方面:1. 制造工艺不良变压器在制造过程中,如果铁芯的绝缘处理不当,或者存在毛刺、尖角等缺陷,都可能导致铁芯在运行过程中发生多点接地。
2. 运行环境恶劣变压器长期运行在潮湿、高温、多尘等恶劣环境下,可能导致铁芯绝缘性能下降,进而引发多点接地故障。
2号主变压器铁芯夹件接地故障处理技术方案(050617)
2号主变压器铁芯夹件接地故障处理技术方案6月16日在用兆欧表对2号主变进行铁芯绝缘测量时发现,2号主变铁芯夹件对地绝缘电阻为零,后用万用表测量铁芯夹件对地电阻为2.4欧姆,由此判断铁芯夹件存在明显接地点。
为了消除铁芯夹件的接地点,我们对主变铁芯夹件通以直流大电流,拟将接地点熔断,未能奏效。
为了彻底消除铁芯夹件的接地故障,我们准备对2号主变进行吊钟罩大修检查,特编制此方案。
一.准备工作1.技术准备1.1查阅台帐及上次的大修记录,了解变压器的运行状况。
1.2检修前应检查变压器的漏泄部位并作好记录。
1.3检修前应统计变压器修前缺陷。
1.4对变压器油进行色谱及全分析,并把结果记录好。
1.5编制大修技术方案,并绘制施工网络图及定置图。
1.6所有参与检修人员进行修前技术培训,达到每个检修人员都熟悉大修的程序步骤和检修工艺标准。
1.7所有参与检修人员进行滤油机使用方法及注意事项培训,达到每个检修人员熟练操作滤油机和能处理滤油机突发异常故障。
1.8所有参与检修人员进行修前安全培训,达到每个检修人员都知道大修过程中的危险点及预防措施。
1.9编制好检修记录表,以备监视时间、温度、湿度、真空度等。
1.10编制好器身检查人员及携带工器具记录表。
2.物资准备2.1备品备件准备:所有拆卸部位密封垫特殊漏泄部位密封垫针对检修前设备缺陷需要更换的蝶门、潜油泵用元器件等其余器身检查发现问题所用材料吊钟罩前与厂家联系好,准备到位.2.2工器具准备:真空滤油机一台及备用滤芯真空泵一台活扳手及梅花扳手足够长度的Ф50滤油管路Ф16滤油管路精密真空表一块流量计一块温度、湿度表红外线点温计一个大容量电源盘和稳定可靠的电源容量足够的电源线变压器放油、补油用管接头油罐放油管接头抽真空接头高低压侧套管、中性点套管堵板 150蝶门、80蝶门、40蝶门堵板自制硅胶罐一个 25吨合格油罐2个废油罐1个 50吨、16吨吊车各一台随用随到供检修和人员值班用检修柜一个高压套管架子一个其余起重用工器具由专用起重工提出并准备2.3消耗性材料准备破布白布白面塑料布白布带尼龙绳 8号线生料带相位彩带防水胶布硅胶变压器常用螺丝低压胶布记号笔锯条连体工作服塑料工作服枕木架杆跳板篷布3.设施准备3.1应在对应主变中心位置予埋地锚,以供向外牵引变压器时使用。
变压器铁芯多点接地故障分析及处理对策
20 07 NO ‘ 2 1 橄〕 汇NC胜 & 下 C 日 ) - C E 啼 粉丫 IN卜 的 丁O N 汗扮 A 搜
变压器铁芯多点接地故障分ห้องสมุดไป่ตู้及处理对策
王庆跃
(华阳电业有限公司
福建厦门
361004)
摘 要: 电力变压器在正常运行时, 铁芯有一点可靠接地。如果铁芯由于某种原因出现另 一点接地, 会形成闭合回路, 在正常接地的引线 中出现环流, 造成铁芯多点接地故障。 一旦发生多点接地后, 不但使铁芯局部短路过热, 以致烧损, 酿成重 大故障。本文从铁芯多点接地 故障的形成原因进行分析, 并提出预防性措施和故障发生后的处理对策。 关键词: 变压器 多点接地 故障处理 中图分类号:TM7 文献 标识码: A 文章编号: 1672一 3791(2007)04(c卜0037一 02 芯多点接地。 ( 3) 上、下夹件与铁芯之间, 铁芯柱与拉 板之间有无异物。 (4 夹件与油箱壁是否相碰。夹件与油箱 ) 壁相碰是由于夹件本身太长或铁芯定位装置 松动后, 当器身受冲击力或发生位移时形成 的。 (5 下铁辆与箱底是否桥接短路。由于变 ) 压器铁芯底部垫脚绝缘薄弱受损, 或因油泥等 (5 )潜油泵轴承磨损, 金属粉末进入油箱 造成铁芯下铁辆与油箱 中, 堆积在底部, 磁力作用下形成桥路, 在电 使 金属杂质沉淀于箱底, 底部相接, 形成多点接地。 下铁轨与垫脚或箱底接通, 造成多点接地。 6 ( )在变压器油箱和散热器等制造过程中, 3 . 2 试验法 ( 1) 直流法。将铁芯与夹件的连接片打 由于焊渣清理不彻底。 当变压器运行时, 在油 开, 在铁辘两侧的硅钢片上通人6 的直流, V 然 流的作用下, 杂质往往被准积在一起, 使铁芯 与油箱壁短接。这种情况在强油循环冷却变 后用直流电压表依次测量各级硅钢片间的电 压器中尤其容易发生。 压, 当电压等于零或者表针指示反向时, 则可 认为该处是故障接地点。 2 故障判断 (2 交流法。将变压器低压绕组接人220 ) 变压器铁芯是否发生了多点接地故障, 可 至3 0 交流电 高压侧与中压侧短路接地, 8V 压, 从如下几方面加以判断: 用 1 故障形成原因 ( 1潮叮 量铁芯绝缘电阻。如铁芯绝缘电阻 此时铁芯中有磁通存在。如果有故障时, 在变压器正常运行中, 铁芯和央件等金属 为零或很低, 则表明可能存在铁芯接地故障。 毫安表测量会出现电流(铁芯和夹件的连接片 当 构件处干电场中, 如铁芯不可靠接地, 将产生 (2 监视接地线中的环流。铁艺或夹件通 应打开) 。用毫安表沿铁辘各级逐点测量, ) 则该处为故障点。 悬浮电位, 引起绝缘放电, 因此铁芯需要一点 过小套管引出 接地的变压器, 应监视接地线中 毫安表中电流为零时, (3 铁芯加压法。将铁芯的正常接地点断 ) 接地, 从而使铁芯与大地之间的寄生电容被短 是否有环流, 如有环流, 则使变压器停运, 测量 开, 用交流试验装置给铁芯加电压, 若故障点 接, 使铁芯处于零电 位。但变压器铁芯不能有 铁芯的绝缘 电阻。 在升压过程中会听到放电声, 根 两点或多点 接地, 否则接地点间就会形成闭合 (3 利用气相色 ) 谱分析法, 对油中 含气量进 接触不牢固, 回 造成环流, 路, 有时可高达数十安, 该电流会 行分析, 是发现变压器铁芯接地故障最有效的 据放电火花可观察到故障点。当试验装置电 电压升不上去, 没有放电现象, 说明 引起局部过热, 导致油分解, 产生可燃性气体, 方法。发生铁芯接地故障的变压器, 其油色 流增大时, 此时可采用下述的铁芯加 还可能使接地片熔断或烧坏铁芯。 导致铁芯电 谱分析数据通常有以下特征:总烃含量超过规 接地故障点很稳固, 位悬浮产生放电, 使变压器不能继续运行. 定 注 值 的 意 (150 林 L), 乙 (c Z )、 大电流法 。 L/ 其中 烯 H4 (4 铁芯加大电流法。将铁芯的正常接地 ) 经现场调查, 造成铁芯多点接地故障的原 甲 (c H4)占 烷 较大比 乙 重。 炔(cZ )含量 HZ 低 用电焊机装置给铁芯加电流。当电 因如下 : 或不出 即未达到规定注意值(s p L/ L 。 现, ) 若 点断开, 且铁芯故障接地点电阻大时, 故 (1 变压器制造过程中, ) 其内部残留有一些 出现乙炔也超过注意值。 则可能是动态接地故 流逐渐增大, 障点温度升高很快, 变压器油将分解而冒烟, 具有导电性质的悬浮物。当变压器运行时, 障。气相色谱分析法可与前两种方法综合起 从而可以观察到故障点部位。故障点是否消 这些粉末状悬浮物附着在铁芯底部绝缘垫块 来, 共同判定铁芯是否多点接地。 除可用铁芯加压法验证 。 表面上, 在电磁场的作用下形成导电小桥, 使 铁芯与油箱壁短接。这种情况常发生在油箱 3 故障 检测 点 底部 。 吊芯检查前应采用铁芯加大电流法冲 4 故障的处理及预防措施 (2 铁芯上落有金属杂物, ) 使铁芯内的绝缘 击。即将外引 接地片打开, 用电焊机装置给铁 4 . 1 故障的处理 对于多点接地故障通常可采用以下方法 油道之间或者油道与夹件之间短接。 芯加电流, 如果多点接地为杂质桥搭接而成, 即可消除该故障。若故障性质不属于以上情 排除: (1 冲击电流放电法:采用这种方法的充放 ) 几 1 2 凡 况, 则需对变压器进行吊芯检查, 故障点的具 电过程如图1所示, 首先将开关K 放到1位置, 体位置查找可通过以下方法: 开动电动兆欧表 M , 观察静电电压表 G , 指示 3 .1 直观检查法 值从零缓缓上升, 给电容器 C 充电, 当电压值 ( 1 铁芯与夹件支板是否相碰。下夹件支 ) 达到具体要求数值时立即用绝缘杆把K搬到2 被试 板因距铁芯柱或铁扼的机械距离不够, 变压器 变压 器 位置, 将电容器积累的大量电荷通过被试变压 在运行过程中受到冲击, 使铁芯或夹件产生位 器铁芯的外引接地套管向故障点冲击, 再观察 移后, 两者相碰, 造成铁芯多点接地。 如果指示值接近零说明故障点已 ( 2 ) 硅钢片是否有波浪凸起。上、下铁 G 的指示值, 被排除。若指示值不接近零, 则说明故障点 辆表面硅钢片因波浪凸起, 在夹件油道两垫条 仍然存在, 需重复上述过程。 之间与穿芯螺杆的钢座套或夹件相碰, 引起铁 图1 冲击电流放电法 变压器是电力系统运行中非常重要的电 气设备。因 提高电力变压器运行的可靠性 此, 极为重要。影响变压器安全运行的主要因素 之一是变压器铁芯多点接地故障。电力变压 器在正常运行时, 铁芯必须有一点可靠接地。 目 前我国的大中型变压器, 铁芯多经一只套管 引至油箱体外部接地。如果铁芯由于某种原 因在某位置出现另一点接地时, 形成闭合回 路, 则正常接地的引线上 就会有环流, 这就造 成了铁芯多点接地。变压器的铁芯多点接地 后, 一方面会造成铁芯局部短路过热, 严重时 会使得铁芯局部烧损, 造成重大故障, 需要更 换铁芯硅钢片; 另一方面由于铁芯的正常接地 线产生环流, 引起变压器局部过热, 也可能产 生放电 性故障, 影响正常的社会生产生活。为 此本文从铁芯多点接地故障的形成原因入手 进行分析, 并提出预防性措施和故障发生后的 处理对策, 保证设备的可靠运行。
干式变压器出现铁芯接地故障的缘由及应对策略
干式变压器出现铁芯接地故障的缘由及应对策略干式变压器是一种常见的变压器类型,其由铁芯、绕组和外壳组成。
在运行过程中,干式变压器出现铁芯接地故障是比较常见的故障之一,可能会造成设备损坏、停机甚至火灾等严重后果。
了解铁芯接地故障的缘由及应对策略对于保障变压器设备的正常运行至关重要。
一、干式变压器铁芯接地故障的缘由1. 设备质量问题干式变压器铁芯接地故障可能是由于设备本身存在质量问题所致。
比如铁芯材料质量不过关,存在缺陷或裂纹;绝缘材料老化、破损或存在异物等导致接地故障的发生。
这需要在购买变压器设备时选择正规厂家生产的优质产品,并定期进行设备检测和维护。
2. 设备安装问题不正确的变压器安装也可能导致铁芯接地故障的发生。
比如变压器接地方式不规范,接地电阻过大或不符合要求;设备安装位置选择不当,造成受潮、积尘等环境影响。
因此在安装变压器时需严格按照相关要求进行,确保设备安装质量。
3. 运行维护问题变压器在长期运行过程中,由于受到电气和环境因素的影响,可能会出现绝缘老化、绝缘强度下降等问题,导致铁芯接地故障的发生。
操作维护人员操作不当、日常维护不到位等也可能导致故障发生。
定期进行设备检测、维护及培训操作人员,增强安全意识十分重要。
2. 维护管理定期对变压器设备进行检测和维护,查看铁芯绝缘是否完好,绝缘强度是否合格。
严格执行维护计划,及时处理发现的问题,确保设备运行正常。
3. 操作人员培训对变压器操作维护人员进行专业培训,增强其安全意识和技能水平,确保其能够正确操作设备,及时处理故障。
4. 应急预案针对铁芯接地故障,制定相应的应急预案,包括故障报警处理流程、紧急停机程序等,以便在故障发生时能够迅速、有效地处理。
干式变压器铁芯接地故障的发生原因可能涉及设备质量、安装、运行维护等多个方面,需要相关单位在选型、安装、维护管理、人员培训等方面做好工作,以最大限度地减少故障的发生。
制定应急预案,对铁芯接地故障做好应对准备,确保设备在故障发生时能够迅速、有效地处理,保障其安全运行。
变压器铁芯接地故障诊断与处理措施
了能确切找到接地点 , 现场可采用如下方法。 ( 1 ) 直流法。 将铁芯与夹件的连接
片打开 , 在 轭 两侧的硅 钢片 上通A 6 v 的直 流 , 然后用 直流 电压表 依次 测量各 级 硅钢 片 间的 电压 , 当 电压 等于 零或者 表指 示反 向时 , 则可 认为 该处 是故 障接地 点。 ( 2 ) 交流 法 。 将 变压 器低压 绕 组接 人交 流 电压2 2 0 3 8 0 V, 此 时铁 芯 中有磁 通存在 。 如 果有多 点接地 故障 时 , 用 毫安 表测量 会 出现 电流嘞 和 夹 件的连 接
地故障后, 再加上由于当时系统用电紧张 , 暂不能退出, 进行了吊罩处理 , 效果
很好。 在 应用 此方法 时须注 意两个 问题 : ①电阻要选 择适 当, 既能将 电流 限制在 符 合变压 器运 行规 程要 求 内, 又 能保持 铁芯处 于接地 电位 , ②选 择 电阻时 注意 所 串联 的热容量 , 以防 在投运 后烧毁 电阻 , 造成 铁芯 开路 。 ( 4 ) 电容放 电冲 击法 。 此方 法是 在变压器 退 出运 行后 , 且认 为铁芯 多处接地 故 障是由于悬 浮物及 毛刺 在 电磁 场作用 下形 成导 电小 桥时使 用 , 通 过放 电烧 断小桥 。 再 如前 所述 某变压 器 采用该 方法 后 , 测量 铁芯对 地 绝缘 电阻很 大 , 甚至达 几 千Mf l 。 一j 9 殳 . 隋况下 , 选 电容值 为5 O “F 左右, 直流 输 出约为 1 0 0 0 V。 但 对于 吊罩检 修 的变压 器 , 由于 铁芯 毛 刺或 其他 异物 引 起铁芯 多 处接地 故 障 , 并在 吊罩检 查 处理 无效 的情 况 下, 采用 电容 放 电冲 击法或 大 电流 冲击 法来烧 掉 毛刺 即烧 断 导 电小桥 比较 有 效, 且 在操 作时速 度要 快 , 不宜 多次 连续采 用 , 因为铁 芯对 地 的绝缘垫 片 较薄 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器铁芯接地故障诊断与处理
摘要:分析铁芯多点接地的危害,产生铁芯多点接地的因素,介绍如何判断和处理铁芯故障的方法。
关键词:变压器、铁芯、危害、接地、故障、处理
变压器是电力系统的重要设备,它的正常安全运行,是保证供电可靠性、连续性的重要条件,有关统计资料表明,由铁芯故障引起变压器事故率占第三位,下面从变压器铁芯故障的危害、接地类型和如何分析判断与处理方法作介绍。
一、铁芯多点接地故障的危害、类型和原因
1、铁芯多点接地故障的危害。
变压器正常运行时,是不允许铁芯多点接地的,因为变压器正常运行中,绕组周围存在着交变的磁场,由于电磁感应的作用,高压绕组与低压绕组之间,低压绕组与铁芯之间,铁芯与外壳之间都存在着寄生电容,带电绕组将通过寄生电容的耦合作用,使铁芯对地产生悬浮电位,由于铁芯及其它金属构件与绕组的距离不相等,使各构件之间存在着电位差,当两点之间的电位差达到能够击穿其间的绝缘时,便产生火花放电,这种放电是断续的,长期下去,对变压器油和固体绝缘都有不良影响,为了消除这种现象,把铁芯与外壳可靠地连接起来,使它与外壳等电位,但当铁芯或其他金属构件有两点或多点接地时,接地点就会形成闭合回路,造成环流,引起局部过热,导致油分解,绝缘性能下降,严重时,会使铁芯硅钢片烧坏,造成主变重大事故,所以主变铁芯只能一点接地。
2、铁芯接地故障类型
(1)安装时疏忽使铁芯碰壳,碰夹件。
(2)穿芯螺栓钢座套过长与硅钢片短接。
(3)铁芯绝缘受潮或损伤,导致铁芯高阻多点接地。
(4)潜油泵轴承磨损,产生金属粉末,•形成桥路。
造成箱底与铁轭多点接地。
3、引起铁芯故障的原因
(1)接地片因加工工艺和设计不良造成短路。
(2)由于附件引起的多点接地。
(3)由遗落在主变内的金属异物和铁芯工艺不良产生毛刺,铁锈与焊渣等因素引起接地。
二、铁芯产生多点接地时的几种处理方法。
1、对于铁心有外引接地线的,可在铁心接地回路上串接电阻,以限制铁心接地电流,此方法只能作为应急措施采用。
2、由于金属异物造成的铁心接地故障,一般情况下进行吊罩检查,都可以发现问题。
3、对于由铁心毛刺,金属粉末堆积引起的接地故障,用以下方法处理效果较明显。
1)电容放电冲击法;
2)交流电弧法;
3)大电流冲击法,即采用电焊机。
三、变压器铁芯多点接地的判断及处理。
我们从事变压器检修试验多年以来,对处理变压器铁芯多点接地故障取得了一些实际经验.现以龙洞堡1#主变为例介绍如何分析、判断和处理铁芯多点接地故障。
1、该变压器为江西变压器厂制造,型号:SFSZT-31500/110,容量31500KVA,额定电压110/38.5/10. 5KV,冷却方式:ONAN/ONAF,空载电流0.48%,空载损耗49.92KW,91年6月出品,95年6月22日投入运行,98年10月27日对该主变进行预防性试验时发现该主变铁芯对地绝缘电阻为0MΩ,判断为主变铁芯多点接地故障,当时系统运行方式不允许对变压器进行停电吊芯检查,同时根据以往油色谱试验数据以及上一年高压试验数据分析. (如表一,表二)。
表一油质气相色谱试验数据库(μl/L)
注:98年7月29日数据是该主变受短路故障冲击时的采样。
表二、绝缘试验数据库
注:预试时间1998年3月4日变温30°C
电气试验数据正常,其中,绝缘电阻试验和介损试验均在合格范围, 从色谱数据看,该主变没有出现过热现象,并可判断接地现象出现的时间不长,决定以油色谱试验对该主变进行跟踪,监视故障点的产气速率,决定该主变暂投入运行。
2、试验后投入运行,并加强油化试验的数据分析,油色谱跟踪的数据如下表所示
表三、烃类气体含量注意值
注:依据规程DL/T 596-1996。
表四、油质气相色谱试验数据库(μl/L)
表五、油质气相色谱分析数据报告
对表三,表四,表五油色谱数据进行如下分析,(1)总烃为224.5μl/L,(标准值不大于1 50μl/L),其中以甲烷,乙烯为主要成份•,特征气体的比值编码为022,是高于700℃高温范围的热故障,根据经验公式,即T=log322[C2H4/C2H6]+525,估算为861.5℃,•并用总烃安伏曲线法判断为磁路故障过热,(2)99年3月11日至99年6月11日总烃相对产气速率为9.38%/ mon,且各种特征气体产气速率都有逐渐上升的趋势,(3)当总烃含量超过注意值时,并且CO 含量大于300μl/L时,可能存在固体绝缘过热故障。
通过以上几点可以判断铁芯接地缺陷有加剧发展的趋势,为避免故障扩大和引起铁芯损坏以致影响主变的正常运行,决定提前对该主变进行大修。
3、在6月17日通过对1#主变吊芯检查
(1)检查各间隙,槽部没有发现异物。
(2)并用铁丝对铁芯底部进行清理,也没有发现情况。
(3)测量压板连片的绝缘均为10000MΩ以上。
(4)测量穿芯螺栓绝缘时,发现右上的穿芯螺栓对铁芯绝缘为0MΩ,对该螺栓进一步检查时发现端部的绝缘套过短,螺栓压破绝缘套与上夹件相碰,当时怀疑穿芯螺栓穿过铁芯时与铁芯相碰而引起接地,问题就比较严重,处理困难,决定先处理螺栓端部,用绝缘纸板把穿芯螺栓垫起,再对穿芯螺栓与铁芯摇绝缘为10000MΩ以上,说明穿芯螺栓内部并没有与铁芯接触,只是由于主变受到冲击和振动时,使穿芯螺栓移位,造成端部与上夹件接触,铁芯与穿芯螺杆相通的假象,再对铁芯接地片仔细检查,没有发现有变色现象,可以判断该处没有很大的环流电流流过,用万用表测得铁芯对地电阻为54Ω,并再次对上、下夹件,铁轭、芯柱等处进行检查,还是没有发现异常情况。
我们通过以上的处理分析,随后决定采用交流法查找接地点,从低压侧加200V,用毫安表沿铁轭各级逐点测量,如图1-1所示。
发现铁芯靠下部左侧的电流0,可以初步判断该处为接地点。
图1-1
通过以上情况综合分析,造成铁芯多点接地,可能还是由于铁芯毛刺或悬浮物引起的接地故障,决定用电容放电法进行处理,如果利用电焊机进行大电流冲击法,现场操作不方便,点焊时间不好掌握,易造成铁心绝缘受损,或采用兆欧表对电容器充电,再由电容器对变压器铁心放电的方法,也存在操作不便,且电容器参数不好选择的缺点,通过比较,决定采用FCE-T型放电校验仪,输出电压:0~750V,输出电流5KA,10~20us,主要是考虑该仪器的输出电流大,而时间极短,不会对铁芯绝缘造成危害,测量接线如图1-2所示。
首先用100V电压对铁芯进行放电,此时听到左下角有放电声,用万用表测得铁芯对地电阻为1.5MΩ,考虑铁芯对地绝缘垫片较薄,只升到600V电压再次冲击,第三次后就听不到放电声。
立即用摇表测得铁芯绝缘为1000MΩ,说明故障点已消除。
结论:
1、发现铁芯多点接地故障时,可采用气相色谱法和监视接地电流,来跟踪监测。
2、可以通过直流法和交流法来判断铁芯故障点。
3、由铁芯毛刺或是浮物引起的接地故障可采用电容放电的方式,但要注意电压的大小,此方法不需要对变压器进行吊罩,可减少停电时间,提高供电可靠性。
4、在主变安装和大修时,要注意对主变内部的清理工作,特别对铁芯槽和各间隙处要用油或氮气来冲吹清理。