双曲线专题复习
高考数学专题复习:双曲线(含解析)
高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
专题50 双曲线-高考数学复习资料(解析版)
的取值范围是( )
33 -, A. 3 3
22 22 -, C. 3 3
33 -, B. 6 6
23 23 -, D. 3 3
【答案】 A
【解析】 因为 F1(- 3,0),F2( 3,0),x20-y20=1,所以M→F1·M→F2=(- 3-x0,-y0)·( 3-x0,-y0) 2
=x20+y20-3<0,即 3y20-1<0,解得-
a2 b2
的垂线,垂足为 A,且交 y 轴于 B,若 A 为 BF 的中点,则双曲线的离心率为( )
A. 2
B. 3
C.2
6 D.
2
【答案】 A
π -1
【解析】
由题易知双曲线
C
的一条渐近线与
x
π 轴的夹角为 ,故双曲线
C
的离心率
e=
cos
4
= 2.
4
x2 y2 3.(2019·宁夏模拟)设 P 是双曲线 - =1 上一点,F1,F2 分别是双曲线的左、右焦点,若|PF1|=9,则
b 2a,即 =
2,所以该双曲线
a
a
b 的渐近线方程为 y=± x=± 2x.
a
c 法二 由 e= =
a
b2
b
b
1+ a = 3,得 = 2,所以该双曲线的渐近线方程为 y=± x=± 2x.
a
a
(2)(2017
山东)在平面直角坐标系
xOy
中,双曲线
x2 a2
y2 b2
1(a
0,b
0)
的右支与焦点为 F
F1
的直线与双曲
线的上下两支分别交于点 B,A,若△ABF2 为等边三角形,则双曲线的渐近线方程为( )
双曲线及其性质-2023年高考数学一轮复习(全国通用)
整理可得 4c2
7a2 ,所以 e2
c2 a2
7 ,即e 4
7 .故选:A 2
2 . (2019 年 高 考 数 学 课 标 全 国 Ⅱ 卷 理 科 ) 设 F 为 双 曲 线
C:
x2 a2
y2 b2
1 a 0,b 0 的右焦点,O 为坐标原点,以OF
为直径的圆与
圆 x2 y2 a2 交于 P ,Q 两点,若 PQ OF ,则C 的离心率为
2
b2 4c2
所以
6a
b ,整理可得b2 4c2 6a2 4b2 ,
2b 2c
c
即 4c2 6a2 3b2 3 c2 a2 所以c2 3a2 ,所以e 3 ,故选 C.
,其中θ为∠F1PF2.
6.巧设双曲线方程 (1)与双曲线x2-y2=1(a>0,b>0)有共同渐近线的方程可表示为
a2 b2 (t≠0).
(2)过已知两个点的双曲线方程可设为 mx2+ny2=1(mn<0).
一、易错易误辨析(正确的打“√”,错误的打“×”) (1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲 线.( ) (2)方程x2-y2=1(mn>0)表示焦点在 x 轴上的双曲线.( )
mn (3)双曲线mx22-ny22=λ(m>0,n>0,λ≠0)的渐近线方程是mx22-yn22=0,即mx ±ny=0.( ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )
考向1:双曲线的定义及其应用
1.已知双曲线 C:ax22-y92=1(a>0)的左、右焦点分别为 F1,F2,一条渐近线 与直线 4x+3y=0 垂直,点 M 在 C 上,且|MF2|=6,则|MF1|=( ) A.2 或 14 B.2 C.14 D.2 或 10
专题复习:双曲线
第七讲 双曲线一、学习目标1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. 2.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. 3.了解圆锥曲线的简单应用. 4.理解数形结合的思想. 二、疑 难 辨 析1.关于双曲线的定义(1)集合P ={M |||MF 1|-|MF 2||=2a },其中|F 1F 2|=2c ,a >0,c >0,a ,c 为常数,则集合P 表示以F 1,F 2为焦点的双曲线.( )(2)集合P ={M ||MF 1|-|MF 2|=2a,0<2a <|F 1F 2|},其中|F 1F 2|=2c ,a >0,c >0,a ,c 为常数,则集合P 表示以F 1,F 2为焦点的双曲线.( )2.关于双曲线的方程(1)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(2)方程mx 2+ny 2=1(mn <0)表示的曲线是双曲线.( ) 3.关于双曲线的几何性质(1)双曲线方程为x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(2)双曲线的离心率越小,双曲线的开口越宽阔.( ) 4.关于特殊双曲线(1)等轴双曲线的渐近线互相垂直、离心率等于 2.( )(2)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与y 2a 2-x 2b 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1.(本题中的两条双曲线称为共轭双曲线)( )三、典例分析例1、(1)[2012·三明联考] 若双曲线x 24-y 212=1上的一点P 到它的右焦点的距离为8,则点P 到它的左焦点的距离是( )A .4B .12C .4或12D .6(2)[2012·湖南卷] 已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 例2、 (1)[2012·浙江卷] 如图8-50-1所示,F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左,右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )图8-50-1A.233 B.62C. 2D. 3 例3、已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程为y =43x ,右焦点F (5,0),双曲线的实轴为A 1A 2,P 为双曲线上一点(不同于A 1,A 2),直线A 1P ,A 2P 分别与直线l :x =95交于M ,N 两点.(1)求双曲线的方程; (2)求证:FM →·FN →为定值. 四、追踪1.(2012·大纲全国)已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45 解析:依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m . 又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.故选C. 答案:C2.(2012·湖南)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1解析:设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±b ax 上,得a =2b .结合c =5,得4b 2+b 2=25,解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1.答案:A3.(2012·课标全国)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8解析:设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C.答案:C4.(2012·福建)已知双曲线x 24-y 2b2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .5解析:y 2=12x 的焦点为(3,0),由题意得,4+b 2=9,b 2=5,双曲线的右焦点(3,0)到其渐近线y =52x 的距离d =|5×3-0|5+4= 5. 答案:A5.(2012·浙江)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a ,b >0)的左、右焦点,B是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A.233 B.62C. 2D. 3 解析:依题意得直线F 1B 的方程为y =bcx +b ,M 点坐标为(3c,0),那么可知线段PQ 的垂直平分线的方程为y =-c b(x -3c ),由⎩⎪⎨⎪⎧ y =bc x +b ,y =-ba x ,解得点P 的坐标为⎝ ⎛⎭⎪⎫-ac a +c ,bc a +c ,由⎩⎪⎨⎪⎧y =bc x +b ,y =ba x ,解得点Q 的坐标为⎝⎛⎭⎪⎫ac c -a ,bc c -a ,那么可得线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫a 2c b 2,c 2b ,代入y =-c b (x -3c )并整理,可得2c 2=3a 2,可得e =ca =32=62,故应选B. 答案:B6.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:依题意a 2-b 2=5,根据对称性,不妨取一条渐近线y =2x ,由⎩⎪⎨⎪⎧y =2x ,x 2a 2+y 2b2=1,解得x =±ab 4a 2+b 2,故被椭圆截得的弦长为25ab 4a 2+b 2,又C 1把AB 三等分,所以25ab4a 2+b2=2a 3,两边平方并整理得a 2=11b 2,代入a 2-b 2=5得b 2=12,故选C. 答案:C 二、填空题7.(2012·江苏)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为______.解析:由题意,双曲线的焦点在x 轴上且m >0,所以e =m 2+m +4m=5,所以m =2.答案:28.(2013·山东泰安调研)P 为双曲线x 2-y 215=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值为__________.解析:已知两圆圆心(-4,0)和(4,0)(记为F 1和F 2)恰为双曲线x 2-y 215=1的两焦点.当|PM |最大,|PN |最小时,|PM |-|PN |最大,|PM |最大值为P 到圆心F 1的距离|PF 1|与圆F 1半径之和,同样|PN |最小=|PF 2|-1,从而|PM |-|PN |的最大值为|PF 1|+2-(|PF 2|-1)=|PF 1|-|PF 2|+3=2a +3=5.答案:59.(2012·湖北)如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =__________.(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=__________. 解析:(1)由图可知,点O 到直线F 1B 2的距离d 与圆O 的半径OA 1相等, 又直线F 1B 2的方程为x -c +yb=1,即bx -cy +bc =0.所以d =bc b 2+c2=a ,整理得b 2(c 2-a 2)=a 2c 2,即(c 2-a 2)2=a 2c 2,得c 2-a 2=ac . 所以e 2-e -1=0,解得e =5+12(负值舍去). (2)连接OB (图略),设BC 与x 轴的交点为E ,由勾股定理得|BF 1|=c 2-a 2=b . 由等面积法得|BE |=|F 1B ||OB ||F 1O |=abc,则|OE |=|OB |2-|BE |2=a 2c.进一步得到S 2=2|OE |·2|EB |=4a 3bc2.又因为S 1=12|F 1F 2||B 1B 2|=2bc ,所以S 1S 2=c 32a 3=12e 3=5+22.答案:(1)5+12;(2)5+22三、解答题10.(2013·安徽质检)已知点M 是圆B :(x +2)2+y 2=12上的动点,点A (2,0),线段AM 的中垂线交直线MB 于点P .(1)求点P 的轨迹C 的方程;(2)若直线l :y =kx +m (k ≠0)与曲线C 交于R ,S 两点, D (0,-1),且有|RD |=|SD |,求m 的取值范围.解析:(1)由题意得|PM |=|PA |,结合图形得||PA |-|PB ||=|BM |=23,∴点P 的轨迹是以A ,B 为焦点的双曲线,且2a =23,a =3,c =2,于是b =1,故P 点的轨迹C 的方程为x 23-y 2=1.(2)当k ≠0时,由⎩⎪⎨⎪⎧x 23-y 2=1,y =kx +m ,得(1-3k 2)x 2-6kmx -3m 2-3=0,(*)由直线与双曲线交于R ,S 两点,显然1-3k 2≠0,Δ=(6km )2-4(1-3k 2)(-3m 2-3)=12(m 2+1-3k 2)>0,设x 1,x 2为方程(*)的两根,则x 1+x 2=6km1-3k 2,设RS 的中点为M (x 0,y 0),则x 0=3km 1-3k 2,y 0=kx 0+m =m1-3k2,故线段RS 的中垂线方程为y -m1-3k 2=⎝ ⎛⎭⎪⎫-1k ⎝ ⎛⎭⎪⎫x -3km 1-3k .将D (0,-1)代入化简得4m =3k 2-1,故m ,k 满足⎩⎪⎨⎪⎧m 2+1-3k 2>0,4m =3k 2-1.消去k 2即得m 2-4m >0,即得m <0或m >4, 又4m =3k 2-1≥-1,且3k 2-1≠0, ∴m ≥-14,且m ≠0,∴m ∈⎣⎢⎡⎭⎪⎫-14,0∪(4,+∞). 11.(2013·云南检测)双曲线S 的中心在原点,焦点在x 轴上,离心率e =62,直线3x -3y +5=0上的点与双曲线S 的右焦点的距离的最小值等于433. (1)求双曲线S 的方程;(2)设经过点(-2,0),斜率等于k 的直线与双曲线S 交于A ,B 两点,且以A ,B ,P (0,1)为顶点的△ABP 是以AB 为底的等腰三角形,求k 的值.解析:(1)根据已知设双曲线S 的方程为x 2a 2-y 2b 2=1(a >0,b >0).∵e =c a =62,∴c =62a ,b 2=c 2-a 2=a 22.∴双曲线S 的方程可化为x 2-2y 2=a 2,∵直线3x -3y +5=0上的点与双曲线S 的右焦点的距离的最小值等于433,右焦点为⎝ ⎛⎭⎪⎫62a ,0, ∴⎪⎪⎪⎪⎪⎪3×6a 2+523=433,解方程得a = 2.∴双曲线S 的方程为x 2-2y 2=2.(2)经过点(-2,0),斜率等于k 的直线的方程为y =k (x +2). 根据已知设A (x 1,kx 1+2k ),B (x 2,kx 2+2k ),则AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,k (x 1+x 2)+4k 2,△ABP 是以AB 为底的等腰三角形⇔PM ⊥AB .①如果k =0,直线y =k (x +2)与双曲线S 交于(-2,0),(2,0)两点,显然满足题目要求.②如果k ≠0,由PM ⊥AB 得k ×k PM =-1. ∵k PM =k (x 1+x 2)+4k -2x 1+x 2,∴k ×k (x 1+x 2)+4k -2x 1+x 2=-1.由⎩⎪⎨⎪⎧x 2-2y 2=2,y =k (x +2)得(1-2k 2)x 2-8k 2x -8k 2-2=0.根据已知得⎩⎪⎨⎪⎧1-2k 2≠0,Δ=64k 4+4(1-2k 2)(8k 2+2)=16k 2+8>0,∴k ≠±22. ∵x 1+x 2=8k21-2k2,∴k PM =k (x 1+x 2)+4k -2x 1+x 2=2k 2+2k -14k. ∴k ×k PM =k ×2k 2+2k -14k 2=2k 2+2k -14k =-1,即2k 2+6k -1=0, 解方程得k 1=-3-112,k 2=-3+112.综上,k =-3-112,或k =0,或k =-3+112.12.(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ; (3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解析:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程为:y =±2x .过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎨⎧y =-2x ,y =2x +1,得⎩⎪⎨⎪⎧x =-24,y =12.∴所求三角形的面积为S =12|OA ||y |=28.(2)证明:设直线PQ 的方程是y =x +b , ∵直线PQ 与已知圆相切,∴|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0.设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ), ∴OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明:当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时, 设直线ON 的方程为y =kx ⎝ ⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎪⎨⎪⎧x 2=14+k 2,y 2=k24+k 2,∴|ON |2=1+k 24+k 2.同理|OM |2=1+k 22k 2-1. 设O 到直线MN 的距离为d . ∵(|OM |2+|ON |2)d 2=|OM |2|ON |2,∴1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值.。
高三双曲线专题复习(理)
双曲线专题复习1. 双曲线的定义当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在;当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 2. 双曲线的标准方程与几何性质标准方程)0,(12222>=-b a by a x )0,(12222>=-b a bx a y性 质焦点 )0,(),0,(c c -,),0(),,0(c c -焦距 c 2范围 R y a x ∈≥,||R x a y ∈≥,||顶点 )0,(),0,(a a -),0(),,0(a a -对称性 关于x 轴、y 轴和原点对称离心率 (1,)ce a=∈+∞ 准线c a x 2±=c a y 2±=渐近线x a b y ±=x ba y ±=与双曲线12222=-b y a x 共渐近线的双曲线系方程为:)0(2222≠=-λλb y a x ;与双曲线12222=-b y a x 共轭的双曲线为22221y x b a -= ;等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; ★重难点突破★1.注意定义中“陷阱”问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 2.注意焦点的位置问题2:双曲线的渐近线为x y 23±=,则离心率为 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义[例1 ] 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【变式训练】1.设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为A .36B .12C .312D .24 ( )2. 如图2所示,F 为双曲线1169:22=-y x C 的左焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是( )A .9B .16C .18D .273. P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为 ( ) A a - B b - C c - D c b a -+题型2 求双曲线的标准方程[例2 ] 已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.【变式训练】4.已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 . 5..以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为 .6.已知点(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为 ( )A .221(1)8y x x -=<- B .221(1)8y x x -=>C .1822=+y x (x > 0)D .221(1)10y x x -=> 考点2 双曲线的几何性质 题型1 求离心率或离心率的范围[例3] 已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .【变式训练】7.已知双曲线221x y m n -=的一条渐近线方程为43y x =,则该双曲线的离心率e 为 .8. 已知双曲线)0,0(12222>>=-b a by a x 的右顶点为E ,双曲线的左准线与该双曲线的两渐近线的交点分别为A 、B 两点,若∠AEB=60°,则该双曲线的离心率e 是 ( )A .215+B .2C .215+或2 D .不存在题型2 与渐近线有关的问题[例4]若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.2 【变式训练】9. 双曲线22149x y -=的渐近线方程是 ( )A. 23y x =±B. 49y x =±C. 32y x =±D. 94y x =±10.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x基础巩固训练1. 以椭圆221169144x y +=的右焦点为圆心,且与双曲线221916x y -=的渐近线相切的圆的方程是 ( ) A 221090x y x +-+= B 221090x y x +--= C 221090x y x +++= D 221090x y x ++-=2.已知双曲线的两个焦点为1(10,0)F -、2(10,0)F ,M 是此双曲线上的一点,且满足120MF MF ⋅=,12||||2MF MF ⋅=,则该双曲线的方程是 ( )A 2219x y -=B 2219y x -= C 22137x y -= D 22173x y -=3.两个正数a 、b 的等差中项是92,一个等比中项是25,且,b a >则双曲线12222=-b y a x 的离心率为( )A .53B .414C .54D .4154.设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 A 21B 1C 2D 不确定 ( )5.已知F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是 ( ) A ),21(+∞+B )21,1(+C )3,1(D )22,3(6.曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-n ny n x 的( )A 焦距相等B 焦点相同C 离心率相等D 以上都不对7. 已知椭圆1532222=+ny m x 和双曲线1322222=-n y m x 有公共的焦点,(1)求双曲线的渐近线方程(2)直线l 过焦点且垂直于x 轴,若直线l 与双曲线的渐近线围成的三角形的面积为43,求双曲线的方程.8.已知21,F F 是双曲线12222=-by a x 的左,右焦点,点()y x P ,是双曲线右支上的一个动点,且1PF 的最小值为8,双曲线的一条渐近线方程为x y 34=. 求双曲线的方程.9.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为()3,0. (Ⅰ)求双曲线C 的方程; (Ⅱ)若直线:2=+l y kx 与双曲线恒有两个不同的交点A 和B 且2∙>OA OB (其中O 为原点),求k 的取值范围.10.已知双曲线C :)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,点P 是双曲线C 上的一点,021=⋅PF PF ,且212PF PF =. (1)求双曲线的离心率e ; (2)过点P 作直线分别与双曲线的两渐近线相交于21,P P 两点,若12274OP OP ⋅=-,1220PP PP += ,求双曲线C 的方程.双曲线专题复习1. 双曲线的定义当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在;当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 2. 双曲线的标准方程与几何性质标准方程)0,(12222>=-b a by a x )0,(12222>=-b a bx a y性 质焦点 )0,(),0,(c c -,),0(),,0(c c -焦距 c 2范围 R y a x ∈≥,||R x a y ∈≥,||顶点 )0,(),0,(a a -),0(),,0(a a -对称性 关于x 轴、y 轴和原点对称离心率 (1,)ce a=∈+∞ 准线c a x 2±=c a y 2±=渐近线x a b y ±=x ba y ±=与双曲线12222=-b y a x 共渐近线的双曲线系方程为:)0(2222≠=-λλb y a x ;与双曲线12222=-b y a x 共轭的双曲线为22221y x b a -= ;等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; ★重难点突破★1.注意定义中“陷阱”问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x 2.注意焦点的位置问题2:双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y 轴上时,23=b a ,313=eABCPOxy 考点1 双曲线的定义及标准方程题型1:运用双曲线的定义[例1 ] 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的.[解析]如图,以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020)设P (x,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PC|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线12222=-by ax 上,依题意得a=680, c=1020,13405680340568010202222222222=⨯-⨯=-=-=∴y x a c b 故双曲线方程为用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|, 10680),5680,5680(,5680,5680=-=-=∴PO P y x 故即答:巨响发生在接报中心的西偏北450距中心m 10680处. 【变式训练】2.设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 A 36 B 12 C 312 D 24 ( )解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ②由①、②解得.4||,6||21==PF PF ,52||,52||||2212221==+F F PF PF 为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
第18讲 双曲线的简单几何性质 2024年新高二暑假数学专题化复习与重点化预习(解析版)
知识点详释
双曲线的简单几何性质
典题精讲
双曲线的简单几何性质 利用双曲线的几何性质求双曲线方程 求双曲线的离心率
双曲线的几何性质综合问题
考点巩固练习 课后分层练习
zhg 学习目标
1.掌握双曲线的简单几何性质; 2.会利用双曲线的几何性质求解相关的问题
了解要点,作到心中有数
y=±x, 对于B:a=1,b=√3,c=2,e=2,渐近线
故B错误;
对于C:a=3,b=√3.c=2√3,e=2 渐近线y=±5x. 故C正确;
对于D: a=3,b=√3,c=2√3,e=235 渐近线y=±√3x,故D错误.
故选:C.
-24=1 3.下列选项中的曲线与
共焦点的双曲线是( )
A.4-Y=2
离心率为5,
6-=1, 对于双曲线
顶点坐标为(0,±4),渐近线方程为y=±gx,焦点坐标为(0,±5),
离心率为
因此,这两个双曲线有相同的渐近线, 故选:B.
4.如图,F?F?是双曲线C:x2-弩=1与椭圆C?的公共焦点,点A是C?,C?在第一象限的公共点,若IF?F?I=
IF?A|,则C?的短轴长为( ) yA
l:√3x-y+1=0平行,则双曲线C的标准方程为( )
A. x2-等=1 B.琴-y2=1 c.-路=1
D.-2=1
【答案】A
【分析】利用已知条件求出a、b、c的值代入方程即可
【详解】由题意知
=解得 ,故双曲线C的标准方程为x2-=1.
故选:A.
2.与双曲线-y2=1有相同离心率和相同渐近线的双曲线方程是( )
A
F? O F? x
A. 1
B. 2
文数双曲线复习专题
文数专题汇编之双曲线一、选择题1.若双曲线C:-y2=1的左、右焦点分别为F1,F2,P为双曲线C上一点,满足=0的点P依次记为P1、P2、P3、P4,则四边形P1P2P3P4的面积为()A. B.2 C. D.22.已知以O为中心的双曲线C的一个焦点为F,P为C上一点,M为PF的中点,若△OMF为等腰直角三角形,则C的离心率等于()A. B. C. D.3.已知双曲线过点(2,3),其中一条渐近线方程为,则双曲线的标准方程是()A. B. C. D.4.在双曲线的两条渐近线上各取一点P,Q,若以PQ为直径的圆总过原点,则C的离心率为()A.3B.C.D.5.已知双曲线上有不共线三点A,B,C,且AB,BC,AC的中点分别为D,E,F,若满足OD,OE,OF的斜率之和为-1,则=()A.2B.C.-2D.36.设A1,A2分别为双曲线C:-=1(a>0,b>0)的上下顶点,若双曲线上存在点M使得两直线斜率k•k,则双曲线C的离心率的取值范围为()A.(0,)B.(1,)C.(,+∞)D.(1,)7.已知直线l:4x+3y-20=0经过双曲线的一个焦点,且与其一条渐近线平行,则双曲线C的实轴长为()A.3B.4C.6D.88.已知双曲线的左、右焦点分别为F1,F2,O为坐标原点,A为右顶点,P为双曲线左支上一点,若存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是()A. B. C. D.9.已知双曲线Γ:-=1(a>0,b>0)的焦距为2c,直线l:y=kx-kc.若k=,则l与Γ的左、右两支各有一个交点;若k=,则l与Γ的右支有两个不同的交点,则Γ的离心率的取值范围为()A.(1,2)B.(1,4)C.(2,4)D.(4,16)10.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±3xB.C.y=±2xD.11.设双曲线右焦点为F,过F作与x轴垂直的直线l与两条渐近线相交于A、B两点,P是直线l与双曲线的一个交点.设O为坐标原点.若有实数m、n,使得,且,则该双曲线的离心率为()A. B. C. D.12.在平面直角坐标系x O y中,已知双曲线C1:2x2-y2=1,过C1的左顶点引C1的一条渐进线的平行线,则该直线与另一条渐进线及x轴围成的三角形的面积()A. B. C. D.13.已知F是双曲线-=1(a>0,b>0)的右焦点,A,B分别为其左、右顶点.O为坐标原点,D为其上一点,DF⊥x轴.过点A的直线l与线段DF交于点E,与y轴交于点M,直线BE与y轴交于点N,若3|OM|=2|ON|,则双曲线的离心率为()A.3B.4C.5D.614.已知双曲线,过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为()A.2B.C.D.15.已知双曲线E:-=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=,则E的离心率是()A.2B.C.D.16.已知双曲线C:-=1(a>0,b>0)的离心率为2,且右焦点到一条渐近线的距离为,双曲线的方程为()A. B. C. D.17.已知双曲线C:=1的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C 的某一条渐近线交于两点P,Q,若∠PAQ=且,则双曲线C的离心率为()A.2 B. C. D.318.设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:-=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为()A. B. C. D.219.已知双曲线-=1(a>0,b>0)的右顶点为A,若双曲线右支上存在两点B,C使得△ABC为等腰直角三角形,则该双曲线的离心率e的取值范围是()A.(1,2)B.(2,+∞)C.(1,)D.(,+∞)20.设F1,F2分别为-=1(a>0,b>0)双曲线a≥1的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为()A. B. C.4 D.二、填空题21.过双曲线-=1(a>b>0)的左焦点F1作斜率为1的直线,分别与渐近线相交于A,B两点,若=,则双曲线的离心率为 ______ .22.过双曲线-=1(a>0,b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为 ______ .23.双曲线C:与抛物线y2=2px(p>0)相交于A,B两点,直线AB 恰好经过它们的公共焦点F,则双曲线的离心率为 ______ .24.设P是双曲线-=1上一动点,过点P向圆x2+y2=2作两条切线(P在圆外),这两条切线的斜率分别为k1、k2,则k1k2= ______ .25.已知抛物线y2=4x的准线与双曲线=1(a>0,b>0)交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线离心率的取值范围是 ______ .26.双曲线M:-=1(a>0,b>0)的左、右焦点分别为F1,F2,直线x=a与双曲线M 渐近线交于点P,若sin∠PF1F2=,则该双曲线的离心率为 ______ .27.已知双曲线与点M(5,3),F为右焦点,若双曲线上有一点P,则的最小值为 ______ .29.已知双曲线C:-=1(a>0,b>0)的左顶点为A,点B(0,b),若线段AB 的垂直平分线过右焦点F,则双曲线C的离心率为 ______ .30.已知双曲线=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为 ______ .31.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是 ______ .33.在平面直角坐标系xoy中,双曲线的焦距为6,则所有满足条件的实数m构成的集合是 ______ .34.若双曲线x2+ky2=1的离心率是2,则实数k的值是 ______ .36.方程表示双曲线,则m的取值范围是 ______ .37.若双曲线+=1的离心率为2,则m的值是 ______ .38.设m是常数,若点F(5,0)是双曲线+=1的一个焦点,则m= ______ .39.双曲线的顶点到其渐近线的距离等于 ______ .三、解答题41.已知双曲线,过P(2,0)且倾斜角为30°的直线l与双曲线相交于A,B两点(1)写出直线l的参数方程.(2)求|PA|+|PB|的值.42.已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,抛物线与双曲线交点为,求抛物线方程和双曲线方程.43.(1)若抛物线的焦点是椭圆左顶点,求此抛物线的标准方程;(2)若某双曲线与椭圆共焦点,且以为渐近线,求此双曲线的标准方程.。
高中数学双曲线精品教学复习资料
高中数学双曲线精品教学复习资料1.双曲线的定义平面内与定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和几何性质[小题能否全取]1.(教材习题改编)若双曲线方程为x2-2y2=1,则它的左焦点的坐标为( )A.⎝ ⎛⎭⎪⎫-22,0B.⎝ ⎛⎭⎪⎫-52,0C.⎝⎛⎭⎪⎫-62,0D.()-3,02.(教材习题改编)若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为( )A.255B.32C.233D .23.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .484.双曲线x 2a2-y 2=1(a >0)的离心率为2,则该双曲线的渐近线方程为________________.5.已知F 1(0,-5),F 2(0,5),一曲线上任意一点M 满足|MF 1|-|MF 2|=8,若该曲线的一条渐近线的斜率为k ,该曲线的离心率为e ,则|k |·e =________.1.区分双曲线与椭圆中a 、b 、c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e >1;椭圆的离心率e ∈(0,1).2.渐近线与离心率:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为b a = b 2a 2= c 2-a 2a2=e 2-1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.[注意] 当a >b >0时,双曲线的离心率满足1<e <2; 当a =b >0时,e =2(亦称为等轴双曲线); 当b >a >0时,e > 2.3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.典题导入[例1] (1)(2012·湖南高考)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1 (2)(2012·辽宁高考)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.由题悟法1.应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.2.双曲线方程的求法(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx 2+ny 2=1(mn <0).(2)与双曲线x 2a 2-y 2b 2=1有共同渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).(3)若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).以题试法1.(2012·大连模拟)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|=( )A .1B .17C .1或17D .以上答案均不对典题导入[例2] (2012·浙江高考)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A.233 B.62C. 2D. 3若本例条件变为“此双曲线的一条渐近线与x 轴的夹角为α,且π4<α<π3”,求双曲线的离心率的取值范围.由题悟法1.已知渐近线方程y =mx ,求离心率时,若焦点位置不确定时,m =b a (m >0)或m =a b,故离心率有两种可能.2.解决与双曲线几何性质相关的问题时,要注意数形结合思想的应用.以题试法2.(1)(2012·福建高考)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414B.324C.32D.43(2)(2012·大同模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF |=5,则双曲线的渐近线方程为( )A .y =±33xB .y =±3xC .y =±2xD .y =±22x典题导入[例3] (2012·南昌模拟)已知双曲线x 2a 2-y 2b2=1(b >a >0),O 为坐标原点,离心率e =2,点M (5,3)在双曲线上.(1)求双曲线的方程;(2)若直线l 与双曲线交于P ,Q 两点,且OP u u u r ·OQ u u u r =0.求1|OP |2+1|OQ |2的值.由题悟法1.解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程.利用根与系数的关系,整体代入.2.与中点有关的问题常用点差法.[注意] 根据直线的斜率k 与渐近线的斜率的关系来判断直线与双曲线的位置关系.以题试法3.(2012·长春模拟)F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,过点F 2作此双曲线一条渐近线的垂线,垂足为M ,满足|1MF u u u u r ,|=3|2MF u u u u r,|,则此双曲线的渐近线方程为________________.1.(2013·唐山模拟)已知双曲线的渐近线为y =±3x ,焦点坐标为(-4,0),(4,0),则双曲线方程为( )A.x 24-y 212=1 B.x 22-y 24=1 C.x 224-y 28=1D.x 28-y 224=1 2.若双曲线过点(m ,n )(m >n >0),且渐近线方程为y =±x ,则双曲线的焦点( ) A .在x 轴上B .在y 轴上C .在x 轴或y 轴上D .无法判断是否在坐标轴上3.(2012·华南师大附中模拟)已知m 是两个正数2,8的等比中项,则圆锥曲线x 2+y 2m=1的离心率为( )A.32或 52B.32C. 5D.32或 5 4.(2012·浙江高考)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C. 3D. 25.(2013·哈尔滨模拟)已知P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且1PF u u u r ,·2PF u u u r ,=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .86.(2012·浙江模拟)平面内有一固定线段AB ,|AB |=4,动点P 满足|PA |-|PB |=3,O 为AB 中点,则|OP |的最小值为( )A .3B .2 C.32D .17.(2012·西城模拟)若双曲线x 2-ky 2=1的一个焦点是(3,0),则实数k =________.8.(2012·天津高考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________.9.(2012·济南模拟)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.10.(2012·宿州模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上.(1)求双曲线方程;(2)求证:1MF u u u u r ·2MF u u u u r=0.11.(2012·广东名校质检)已知双曲线的方程是16x 2-9y 2=144. (1)求双曲线的焦点坐标、离心率和渐近线方程;(2)设F 1和F 2是双曲线的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小.12.如图,P 是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2b2=1上的一点,已知PF u u u r 1·PF u u u r 2=0,且|PF u u u r 1|=2|PF u u u r 2|.(1)求双曲线的离心率e ;(2)过点P 作直线分别与双曲线的两渐近线相交于P 1,P 2两点,若OP u u u r 1·OP u u u r 2=-274,2PP u u u r 1+PP u u u r 2=0.求双曲线C 的方程.1.(2012·长春模拟)设e 1、e 2分别为具有公共焦点F 1、F 2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|1PF u u u r ,+2PF u u u r ,|=|12F F u u u u r ,|,则e 1e 2e 21+e 22的值为( ) A.22B .2 C. 2D .12.已知双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,则双曲线的离心率e 的取值范围为________.3.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM u u u u r ,+ON u u u r ,=t OD u u u r,,求t 的值及点D 的坐标.1.(2012·岳阳模拟)直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点,记1OE u u u u r,=e 1,2OE u u u u r,=e 2,任取双曲线C 上的点P ,若OP u u u r ,=ae 1+be 2,则实数a 和b 满足的一个等式是________.2.已知双曲线x 2a 2-y 2b2=1的左,右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________________. 3.(2012·大同模拟)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA ―→,·OB ―→,>2(其中O 为原点),求k 的取值范围.。
专题11 双曲线及其性质(知识梳理+专题过关)(解析版)
专题11双曲线及其性质【知识梳理】知识点一:双曲线的定义平面内与两个定点12,F F 的距离的差的绝对值.....等于常数(大于零且小于12F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为{}12122(02)MMF MF a a F F -=<<.注意:(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支.(2)当122a F F =时,点的轨迹是以1F 和2F 为端点的两条射线;当20a =时,点的轨迹是线段12F F 的垂直平分线.(3)122a F F >时,点的轨迹不存在.在应用定义和标准方程解题时注意以下两点:①条件“122F F a >”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222a b c +=的应用.知识点二:双曲线的方程、图形及性质双曲线的方程、图形及性质A 222121sinsin21cos tanFr r bθθθ==⋅=-考点2:双曲线方程的充要条件考点3:双曲线中焦点三角形的周长与面积及其他问题考点4:双曲线上两点距离的最值问题考点5:双曲线上两线段的和差最值问题考点6:离心率的值及取值范围考点7:双曲线的简单几何性质问题考点8:利用第一定义求解轨迹考点9:双曲线的渐近线考点10:共焦点的椭圆与双曲线【典型例题】考点1:双曲线的定义与标准方程1.(2022·江西科技学院附属中学高二期中(理))已知O为坐标原点,设F1,F2分别是双曲线x2-y2=1的左、右焦点,P为双曲线左支上任意一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A.1B.2C .4D .12【答案】A【解析】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2,从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1.故选:A.2.(2022·黑龙江·铁人中学高二期中)双曲线222112x y a -=(0a >)的左、右两个焦点分别是1F 与2F ,焦距为8;M 是双曲线左支上的一点,且15MF =,则2MF 的值为()A .1B .9C .1或9D .9或13【答案】B【解析】依题意4c =,所以21216a +=,即2a =,因为15MF =,且2124MF MF a -==,所以29MF =.故选:B3.(2022·天津·耀华中学高二期中)与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C【解析】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y xa b a b -=>>,由双曲线的定义可得2a ==-=a ∴,2c =,b ∴==,因此,双曲线的方程为22122y x -=.故选:C.4.(2022·河北·高二期中)已知双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,O 为坐标原点,1210F F =,点M 是双曲线左支上的一点,若OM =1243MF MF =,则双曲线的标准方程是()A .224121x y -=B .221214x y -=C .22124y x -=D .22124x y -=【答案】C【解析】由题意知:双曲线22221x y a b -=的焦距为210c =,22225a b c ∴+==,125OM OF OF ===,12MF MF ∴⊥.1243MF MF =,不妨设13MF k =,24MF k =,由双曲线的定义可得:212MF MF k a -==,16MF a ∴=,28MF a =,由勾股定理可得:()()222222121268100100MF MF a a a F F +=+===,解得:21a =,224b ∴=,∴双曲线方程为22124y x -=.故选:C.5.(2022·北京工业大学附属中学高二期中)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为()A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【解析】设双曲线的标准方程为()222210,0y x a b a b-=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .6.(2022·广西·钦州一中高二期中(文))已知平面内两定点()13,0F -,()23,0F ,下列条件中满足动点P 的轨迹为双曲线的是()A .127PF PF -=±B .126PF PF -=±C .124PF PF -=±D .22126PF PF -=±【答案】C【解析】由题意,因为126F F =,所以由双曲线的定义知,当1206PF PF <-<时,动点P 的轨迹为双曲线,故选:C.7.(2022·福建·南靖县第一中学高二期中)(1)求以(-4,0),(4,0)为焦点,且过点的椭圆的标准方程.(2)已知双曲线焦点在y 轴上,焦距为10,双曲线的渐近线方程为20x y ±=,求双曲线的方程.【解析】(1)由题意可设所求椭圆的标准方程为221259x y λλ+=++.又椭圆过点,将x =3,y9151259λλ+=++,解得λ=11或=21λ-(舍去).故所求椭圆的标准方程为2213620x y +=.(2)由题意,设双曲线的标准方程为22221(0,0)y x a b a b -=>>,设焦距为2c ,∴22212210a b c a b c ⎧+=⎪⎪=⎨⎪=⎪⎩,解得5a b c ⎧=⎪⎪=⎨⎪=⎪⎩,∴该双曲线的方程为221520y x -=.8.(2022·黑龙江·大兴安岭实验中学高二期中)求满足下列条件的双曲线的标准方程:(1)焦点分别为(0,6)-,(0,6),且经过点(5,6)A -;(2)经过点,(4,--;【解析】(1)由题易知焦点在y 轴上,设双曲线的方程22221y x a b -=则222223636251c a b a b ⎧=+=⎪⎨-=⎪⎩解得:221620a b ⎧=⎨=⎩所以所求双曲线的标准方程为2211620y x -=(2)设双曲线的方程为:221(0)Ax By AB +=<代入点坐标得到:9+10=11624=1A B A B ⎧⎨+⎩解得:1418A B ⎧=⎪⎪⎨⎪=-⎪⎩故双曲线的标准方程为:22148x y -=考点2:双曲线方程的充要条件9.(多选题)(2022·全国·高二期中)已知曲线22:1C mx ny +=.则()A .若m >n >0,则C 是椭圆B .若m =n >0,则C 是圆C .若mn <0,则C 是双曲线D .若m =0,n >0,则C 是两条直线【答案】ABCD【解析】A 选项,当0m n >>时,22221111x y mx ny m n+=⇒+=,110m n<<,方程表示焦点在y 轴上的椭圆,A 选项正确.B 选项,当0m n =>时,222211mx ny x y n+=⇒+=,表示圆,B 选项正确.C 选项,当0mn <时,22221111x y mx ny m n+=⇒+=,表示双曲线,C 选项正确.D 选项,当0,0m n =>时,22211mx ny y y n +=⇒=⇒=±±D 选项正确.故选:ABCD10.(2022·河南·高二期中(文))已知k ∈R ,则“23k <<”是“方程22162x y k k -=--表示双曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由方程22162x y k k -=--表示双曲线可得()()620k k -->,解得26k <<,显然23k <<能推出26k <<,反之26k <<不能推出23k <<,故“23k <<”是“方程22162x y k k -=--表示双曲线”的充分不必要条件.故选:A.11.(2022·吉林·辽源市田家炳高级中学校高二期中(理))“0mn <”是“方程221x y m n+=表示的曲线为双曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】当0mn <,则0m >且0n <或0m <且0n >,此时方程221x y m n+=表示的曲线一定为双曲线;则充分性成立;若方程221x y m n+=表示的曲线为双曲线,则0mn <,则必要性成立,故选:C .考点3:双曲线中焦点三角形的周长与面积及其他问题12.(2022·安徽·淮北师范大学附属实验中学高二期中)已知1F 、2F 是等轴双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ∠=,则12PF PF ⋅等于___________.【答案】4【解析】∵双曲线C 的方程为:221x y -=,∴221a b ==,得c =由此可得()1F 、)2F ,焦距12=F F ∵1260F PF ∠=,∴2221212122cos 60F F PF PF PF PF =+-,即2212128PF PF PF PF -⋅=+,①又∵点P 在双曲线22:1C x y -=上,∴1222PF PF a -==,平方得22112224PF PF PF PF -⋅+=,②①-②,得124PF PF ⋅=,故答案为:4.13.(2022·上海金山·高二期中)已知1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 到该双曲线的渐近线的距离为2,点P 在双曲线上,且1260F PF ∠=︒,则三角形12F PF 的面积为___________.【答案】【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线的方程为b y x a=±,右焦点2(,0)F c 由点2F 到该双曲线的渐近线的距离为22bca =,则2b =由()12222121222||2cos 60PF PF a c PF PF PF PF ⎧-=⎪⎨=+-⋅⎪⎩,可得212416PF PF b ⋅==则三角形12F PF的面积为1211sin 601622PF PF ⋅⋅=⨯=故答案为:14.(多选题)(2022·湖南省汨罗市第二中学高二期中)已知点P 是双曲线E :221169x y -=的右支上一点,1F ,2F 为双曲线E 的左、右焦点,12PF F △的面积为20,则下列说法正确的是()A .点P 的横坐标为203B .12PF F △的周长为803C .12F PF ∠小于3πD .12PF F △的内切圆半径为34【答案】ABC【解析】因为双曲线22:1169x y E -=,所以5c =,又因为12112102022PF F P P Sc y y =⋅=⋅⋅=,所以4P y =,将其代入22:1169x yE -=得2241169x -=,即203x =,所以选项A 正确;所以P 的坐标为20,43⎛⎫± ⎪⎝⎭,由对称性可知2133PF ==,由双曲线定义可知1213372833PF PF a =+=+=所以12PF F △的周长为:12133780210333PF PF c ++=++=,所以选项B 正确;可得11235PF k =,2125PF k =,则(121212360535tan 12123191535F PF -==∈⨯+⨯,则123F PF π<∠,,所以选项C 正确;因为12PF F △的周长为803,所以121202803PF F S r =⋅⋅=,所以32r =,所以选项D 不正确.故选:ABC.15.(2022·四川·阆中中学高二期中(文))已知12F F ,为双曲线C :221164x y-=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】由题意得,4,2,a b c ===,由双曲线的对称性以及12PQ F F =可知,四边形12PFQF 为矩形,所以122221228480PF PF a PF PF c ⎧-==⎪⎨+==⎪⎩,解得128PF PF =,所以四边形12PFQF 的面积为128PF PF =.故答案为:8.16.(2022·广东·江门市第二中学高二期中)双曲线2216416y x -=上一点P 与它的一个焦点的距离等于1,那么点P 与另一个焦点的距离等于___________.【答案】17【解析】由双曲线的方程可得实半轴长为8a =,虚半轴长为4b =,故8045c =因为点P 与一个焦点的距离等于1,而8451a c +=+>,故点P 与该焦点同在x 轴的上方或下方,故点P 与另一个焦点的距离为1217a +=,故答案为:17.17.(2022·新疆维吾尔自治区喀什第二中学高二期中(理))已知双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 是双曲线左支上一点且128PF PF +=,则1221sin sin PF F PF F ∠=∠______.【答案】3【解析】因为双曲线为22145x y -=,所以2a =、3c =,因为点P 是双曲线左支上一点且128PF PF +=,所以214PF PF -=,所以12=PF ,26PF =,在12PF F △中,由正弦定理可得122112sin sin PF PF PF F PF F =∠∠,所以212211sin 3sin PF PF F PF F PF ∠==∠;故答案为:318.(2022·天津市咸水沽第二中学高二期中)已知1F ,2F 分别是双曲线221916x y -=的左、右焦点,AB 是过点1F 的一条弦(A ,B 均在双曲线的左支上),若2ABF 的周长为30,则||AB =___________.【答案】9【解析】双曲线221916x y -=,得a =3,因为A ,B 均在双曲线的左支上,所以21212,2AF AF a BF BF a -=-=,则△ABF 2的周长为()()22112224AF BF AB AF a BF a AB AB a ++=++++=+,所以2|AB |+4×3=30,所以9AB =.故答案为:9.19.(2022·吉林·白城一中高二期中)双曲线221916x y -=的两个焦点为12,F F ,点P 在双曲线上,若1PF ·2PF =0,则点P 到x 轴的距离为________.【答案】165【解析】设()12,,PF m PF n m n ==>,由题意可知3,4,5a b c ==∴=,=6m n -1PF ·2PF =0,2221212PF PF F F ∴+=2224m n c ∴+=,22100m n ∴+=,22=6100m n m n -⎧⎨+=⎩,32m n ∴=1211=222F PF Smn c y =,=c y mn ∴,=mn y c ∴,16=5y ∴,∴点P 到x 轴的距离为165.故答案为:16520.(2022·上海市崇明中学高二期中)已知双曲线221169x y -=的两个焦点分别为1F 、2F ,P 为双曲线上一点,且122F PF π∠=,则12F PF △的面积为_________.【答案】9【解析】依题意,双曲线221169x y -=的焦点1(5,0)F -、2(5,0)F ,12||||||8PF PF -=,因122F PF π∠=,则有222212121212||||||(||||)2||||F F PF PF PF PF PF PF =+=-+,即有22122||||10836PF PF =-=,解得12||||18PF PF =,所以12F PF △的面积121||||92S PF PF ==.故答案为:921.(2022·江苏·高二专题练习)双曲线()222210,0x y a b a b-=>>过焦点1F 的弦AB ,A 、B 两点在同一支上且长为m ,另一焦点为2F ,则2ABF 的周长为().A .4aB .4a -mC .4a +2mD .4a -2m【答案】C【解析】由双曲线的定义得:212BF BF a -=①,212AF AF a -=②,两式相加得:21214BF BF AF AF a -+-=,即22224BF AF AB BF AF m a +-=+-=,所以224BF AF a m +=+,故2ABF 的周长为2242BF AF AB a m ++=+.故选:C22.(2022·新疆·乌鲁木齐101中学高二期中(文))设1F ,2F 是双曲线22146x y -=的左、右焦点,P 为双曲线上一点,且213PF PF =,则12PF F △的面积等于()A .6B .12C.D.【答案】A【解析】双曲线22146x y -=的实半轴长2a =,半焦距c =12||F F =,因213PF PF =,由双曲线定义得22124PF PF PF -==,解得22PF =,16PF =,显然有22122124||0PF PF F F +==,即12PF F △是直角三角形,所以12PF F △的面积12121||||62PF F S PF PF ==.故选:A23.(2022·辽宁大连·高二期中)已知1F ,2F 分别是双曲线221916x y -=的左、右焦点,若P 是双曲线左支上的点,且1232PF PF ⋅=.则12F PF △的面积为()A .8B.C .16D.【答案】C【解析】因为P 是双曲线左支上的点,所以216PF PF -=,两边平方得221212236PF PF PF PF +-⋅=,所以22121236236232100PF PF PF PF +=+⋅=+⨯=.在12F PF △中,由余弦定理得2221212121212100100cos 022PF PF F F F PF PF PF PF PF +--∠==⋅⋅,所以1290F PF ∠=︒,所以121211321622F PF S PF PF =⋅=⨯=△.故选:C考点4:双曲线上两点距离的最值问题24.(2022·上海中学东校高二期末)过椭圆221(9)9x y m m m +=>-右焦点F 的圆与圆22:4O x y +=外切,该圆直径FQ 的端点Q 的轨迹记为曲线C ,若P 为曲线C 上的一动点,则FP 长度最小值为()A .0B .12C .1D .2【答案】C【解析】椭圆221(9)9x y m m m +=>-,3c ==,所以()3,0F .设以FQ 为直径的圆圆心为C ,如图所示:因为圆O 与圆C 外切,所以2OC CF -=,因为12QF OC =,2QF CF =,所以()1124QF QF OC CF F F -=-=<,所以Q 的轨迹为:以1,F F 为焦点,24a =的双曲线的右支.即2,3,a c b ====:C ()221245x y x -=≥.所以P 为曲线C 上的一动点,则FP 长度最小值为1c a -=.故选:C25.(2022·安徽省宣城市第二中学高二阶段练习(理))已知12,F F 分别是双曲线2214xy -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为()A .2B1C .1D 2【答案】C【解析】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上,12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=,12||||2F M F M a ∴-=①,又12||||2F M F M c +=②,由①+②,解得1||F M a c =+,又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y ,设圆22(1)1y x +-=的圆心为C ,则(0,1)C ,所以||CI =,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选:C .26.(2022·101中学高二期末)双曲线22142x y C -=:的右焦点为F ,点P 在椭圆C 的一条渐近线上.O 为坐标原点,则下列说法错误的是()A B .双曲线22142-=y x 与双曲线C 的渐近线相同C .若PO PF ⊥,则PFO △D .PF【答案】B【解析】A.因为双曲线方程为22142x y C -=:,所以2,a b c ===,则c e a ==故正确;B.双曲线22142x y C -=:的渐近线为y =,双曲线22142-=y x 的渐近线方程为y =,故错误;C.设(),P x y ,因为点P在渐近线上,不妨设渐近线方程为y =,即为直线PO 的方程,又因为PO PF ⊥,所以直线PF的方程为y x =,由22y x y x ⎧=⎪⎨⎪=⎩,解得3x y ⎧=⎪⎪⎨⎪=⎪⎩,即P ⎝⎭,所以12S =,故正确;D.)F,其中一条渐近线为y =,则PF 的最小值为点F到渐近线的距离,即d ==.故选:B27.(2022·北京八中高二期中)已知定点A 、B ,且|AB |=4,动点P 满足||PA |﹣|PB ||=3,则|PA |的最小值是()A .12B .32C .72D .5【答案】A【解析】由动点P 满足||PA |﹣|PB ||=3,且3AB <故可得点P 的轨迹为以,A B 为左右焦点的双曲线,故可得23,24a c ==,解得3,22a c ==,由双曲线的几何性质可得PA 的最小值为12c a -=.故选:A.考点5:双曲线上两线段的和差最值问题28.(2022·湖南·长沙市南雅中学高二期中)设双曲线C :22124y x -=的左焦点和右焦点分别是1F ,2F ,点A 是C 右支上的一点,则128AF AF +的最小值为___________.【答案】8【解析】由双曲线C :22124y x -=,可得21a =,224b =,所以22225c a b =+=,所以1a =,5c =,由双曲线的定义可得1222AF AF a -==,所以122AF AF =+,所以1222882AF AF AF AF +=++,由双曲线的性质可知:24AF c a ≥-=,令2AF t =,则4t ≥,所以122288822AF AF t AF AF t +=++=++,记82y t t=++,设124t t ≤<,则121212882(2)y y t t t t -=++-++121212()(8)t t t t t t --=0<,所以12y y <,即82y t t=++在[)4,+∞上单调递增,所以当4t =时,取得最小值84284++=,此时点A 为双曲线的右顶点(1,0).故答案为:8.29.(2022·黑龙江·鸡西市第一中学校高二期中)P 是双曲线22145x y -=的右支上一点,M 、N 分别是圆()2232x y ++=和()2231x y -+=上的点,则|PM |-|PN |的最大值为_________.【答案】5【解析】设双曲线的左右焦点为12,F F ,则1224PF PF a -==,圆()2232x y ++=的圆心为1(3,0)F -,半径为1r =.圆()2231x y -+=的圆心为2(3,0)F ,半径为21r =,由圆的对称性可得1111||PF r PM PF r -+∣ ,2222||PF r PN PF r -≤≤+,所以1122||||5PM PN PF r PF r -≤+-+=|PM |-|PN |的最大值为5故答案为:530.(2022·黑龙江·哈九中高二期中)已知双曲线的方程为2214y x -=,如图所示,点()A ,B是圆(221x y +=上的点,点C 为其圆心,点M 在双曲线的右支上,则MA MB +的最小值为______1.【解析】由双曲线2214y x -=,可得1,2a b ==,则c =如图所示,设点D 的坐标为,则点,A D 是双曲线的焦点,根据双曲线的定义,可得22-==MA MD a ,所以22+=++≥+MA MB MB MD BD ,又由B 是圆(221x y +-=上的点,圆的圆心为C ,半径为1r =,所以11BD CD ≥-=,所以21MA MB BD +≥++,当点,M B 在线段CD 上时,取得等号,即MA MB +1.1.31.(2022·北京·高二期中)已知点()2,0A -,()2,0B ,(C ,动点M 到A 的距离比到B 的距离多2,则动点M 到B ,C 两点的距离之和的最小值为___________.【答案】4【解析】点()2,0A -,()2,0B ,且动点M 到A 的距离比到B 的距离多2,所以24MA MB AB -=<=,故动点M 的轨迹为双曲线右侧一支,则动点M 到B ,C 两点的距离之和2224MB MC MA MC AC +=+-≥-==,当且仅当M ,A ,C 三点共线时取等号,所以动点M 到B ,C 两点的距离之和的最小值为4.故答案为:4.32.(2022·湖南·嘉禾县第一中学高二阶段练习)过双曲线2218y x -=的右支上的一点P 分别向圆221:(3)4C x y ++=和圆222:(3)1C x y -+=作切线,切点分别为M ,N ,则22||||PM PN -的最小值为()A .8B .9C .10D .11【答案】B【解析】设双曲线的左、右焦点分别为12,F F ,()()2222221212||||413PM PN PF PF PF PF -=---=--()()()121212323PF PF PFPF PF PF =+--=+-()222223414219PF PF =+-=+≥⨯+=.故选:B33.(2022·四川省江油市第一中学高二期中(文))已知12F F ,为双曲线222:1(0)16x yC a a -=>的左、右焦点,点A 在双曲线的右支上,点(72)P ,是平面内一定点.若对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行,则2AP AF +的最小值为()A .6B .10-C .8D .2【答案】A【解析】∵双曲线C :()2221016x y a a -=>,∴双曲线的渐近线方程为4y x a =±,∵对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行,∴直线430x y m ++=与双曲线的渐近线方程为4y x a=±平行,∴3a =,∴5c =,∴1F 为()5,0-,∵()7,2P ,∴1PF ==∴211666AP AF AP AF PF +=+-≥-=,∴2AP AF +的最小值为6.故选:A.34.(2022·吉林市田家炳高级中学高二期中)设F 是双曲线221412x y -=的左焦点,()1,4A ,P 是双曲线右支上的动点,则PF PA +的最小值为()A .5B .5+C .7D .9【答案】D【解析】由双曲线221412x y -=,可知24a =,212b =,则22216c a b =+=,所以2a =,4c =,()1,4A 点在双曲线的两支之间,且双曲线右焦点为()4,0F ',由于P 是双曲线右支上的动点,∴由双曲线定义可得,24PF PF a '-==,而5PA PF AF ''+≥==,两式相加得9PF PA +≥,当且仅当A 、P 、F '三点共线时等号成立,则PF PA +的最小值为9.故选:D .35.(2022·江西南昌·高二期中(理))设(),P x y 是双曲线22154x y -=的右支上的点,则代数)AB .CD 3【答案】B设()()0,1,3,0A F ,上式表示PA PF -,由于双曲线22154x y-=的左焦点为()()3,0,3,0F F '-,双曲线的实轴2a =, 2PF PF a PF ''=-=-()2525PA PF PA PF PF PA ''-=-+=--+223110PF PA AF ''-≤=+当P 在F A '的延长线与双曲线右支的交点处时取到等号,所以()25PA PF PF PA '-=--+510故选:B考点6:离心率的值及取值范围36.(2022·广东·汕头市潮南区陈店实验学校高二阶段练习)已知0a b >>,1F ,2F ,是双曲线22122:1x y C a b-=的两个焦点,若点Р为椭圆22222:1x y C a b +=上的动点,当P 为椭圆的短轴端点时,12F PF ∠取最小值,则椭圆2C 离心率的取值范围为()A .22⎛ ⎝⎦B .2⎫⎪⎪⎣⎭C .20,3⎛ ⎝⎦D .23⎫⎪⎢⎪⎣⎭【答案】A【解析】假设点P 在x 轴上方,设()cos ,sin P a b θθ,则()0,πθ∈,由已知得()221F a b +,)222,0F a b +,设直线1PF 的倾斜角为α,直线2PF 的倾斜角为β,∴122sin tan cos PF k a a b αθ==++,222sin tan cos PF k a a b βθ==-+,∴()12tan tan F PF βα∠=-tan tan 1tan tan βααβ-=+()222sin b a b θ+=+-()222222sin sin b a b b a b θθ+=+-()222222sin sin b a b a b θθ=-⎡⎤⎢⎥--+⎢⎥⎢⎥⎢⎥⎣⎦考虑对勾函数()222sin 0sin 1sin b a b y θθθ-=+<≤,由于P 为椭圆的短轴端点时,π2θ=,12F PF ∠取最小值,即12tan F PF ∠取最小值,()222sin 0sin 1sin b a b y θθθ-=+<≤也取最小值,此时sin 1θ=,∵函数在⎛ ⎝上单调递减,∴1≤222a b ≤,解得202e <≤.即椭圆2C离心率的取值范围为2⎛ ⎝⎦.故选:A .37.(2022·四川省仁寿县文宫中学高二阶段练习(文))已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点1F 关于渐近线的对称点恰好落在以2F 为圆心,2OF 为半径的圆上,则该双曲线的离心率为()ABC .2D1【答案】C【解析】由题意,F 1(−c ,0),F 2(c ,0),设一条渐近线方程为y =b a x ,则F 1b =.设F 1关于渐近线的对称点为M ,F 1M 与渐近线交于A ,∴|MF 1|=2b ,A 为F 1M 的中点,又O 是F 1F 2的中点,∴OA ∥F 2M ,∴∠F 1MF 2为直角,∴△MF 1F 2为直角三角形,∴由勾股定理得4c 2=c 2+4b 2∴3c 2=4(c 2−a 2),∴c 2=4a 2,∴c =2a ,∴e =2.故选:C38.(2022·福建·泉州市城东中学高二期中)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,若以点A 为圆心,以b 为半径的圆与C 的一条渐近线交于M ,N 两点,且2OM ON =,则C 的离心率为()A .43BC.3D.2【答案】C【解析】过点A 作AP MN ⊥于点P ,则点P 为线段MN的中点,因为点A 为(,0)a ,渐近线方程为by a=±,所以点A 到渐近线b y x a =的距离为||=ab AP c ,在Rt OAP △中,2||==a OP c ,在Rt NPA中,2||===b NP c ,因为2OM ON =,所以||||||2||||3||=+=+=OP ON NP NP NP NP ,所以223=⨯a b c c,即223a b =,所以离心率e 3==c a .故A ,B ,D 错误.故选:C .39.(2022·江西省万载中学高二阶段练习(理))已知双曲线两条渐近线的夹角为60°,则该双曲线的离心率为()A .2BC .2D .12【答案】C【解析】由题设,渐近线与x 轴夹角θ可能为30°或60°,当30θ=︒,则tan 303b a =︒=,故e =;当60θ=︒,则tan 60ba=︒=2e =;所以双曲线的离心率为2故选:C40.(2022·福建·厦门外国语学校高二期末)如图所示,1F ,2F 是双曲线C :22221()00a x y a b b >-=>,的左、右焦点,过1F 的直线与C 的左、右两支分别交于A ,B 两点.若22345AB BF AF =∶∶∶∶,则双曲线的离心率为()A .2BCD【答案】C 【解析】22345AB BF AF =::::,不妨令3AB =,24BF =,25AF =,22222||||AB BF AF +=,290ABF ∠∴=,又由双曲线的定义得:122BF BF a -=,212AF AF a -=,11345AF AF ∴+-=-,13AF ∴=.123342BF BF a ∴-=+-=,1a \=.在12Rt BF F 中,222221212||||6452F F BF BF =+=+=,又2212||4F F c =,2452c ∴=,c ∴∴双曲线的离心率c e a=.故选;C41.(2022·广东汕头·高二期末)已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-)ABC .D .2【答案】D【解析】双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2bAB a=,所以12AOBA S AB x =⋅=AB ∴=,即2ba =b a=所以2c e a ==;故选:D42.(2022·湖北·鄂州市教学研究室高二期末)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为()A .2B .2C D .【答案】C【解析】依题意,12PF PF ⊥,令1(,0)F c -,2(,0)F c ,则有22221212||||||4PF PF FF c +==,由212||(12||)PF PF S +=得:21211222||2||||6||||||PF PF PF PF PF PF =++,即有212||||PF PF c =,而222221221214(||)||2||2||||||a PF PF PF PF PF c PF =-=+-=,所以ce a==故选:C43.(2022·安徽省临泉第一中学高二期末)已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1,0F c -,()2,0F c ,M 是双曲线C 上一点,若120MF MF ⋅=,2212OM OF c ⋅=,则双曲线C 的离心率为()A .3B .31+C .2D .21+【答案】B【解析】()()22121221111242OM OF MO F F MF MF MF MF c⎛⎫⋅=-⋅=-+⋅-= ⎪⎝⎭,则222122MF MF c -=,又因为120MF MF ⋅=,12MF MF ⊥,即222124MF MF c +=,所以13MF c =,2MF c =,所以1223a MF MF c c =-=-,则31e =+,故选:B.44.(2022·江西上饶·高二期末(文))已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为122,,c F F 为其左右两个焦点,直线l 经过点(0,)b 且与渐近线平行,若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线C 离心率的取值范围为()A .(1,2)B .(2,3)C .(1,3)D .(2,)+∞【答案】A【解析】因为满足122PF PF b -=的所有点在以12,F F 为焦点,长轴长为2b ,短轴长为2222c b a -=的双曲线,即22221x y b a-=上.故若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线22221x y b a -=与直线l 有交点即可.又直线:b l y x b a =±+,数形结合可得,当b a <或22221x y b a-=的经过一象限的渐近线的斜率a b b a >即可,两种情况均有2222a b c a >=-,故222c a <,故离心率(1,2)e ∈故选:A考点7:双曲线的简单几何性质问题45.(多选题)(2022·河北·衡水市第二中学高二期中)已知曲线C :221mx ny +=,则()A .若0m n =>,则曲线CB .若0m n >>,则曲线C 是椭圆,其焦点在y 轴上C .若曲线C过点(,⎛⎫⎪ ⎪⎝⎭,则C 是双曲线D .若0mn =,则曲线C 不表示任何图形【答案】BC【解析】对于A ,0m n =>时,曲线C 可化为221x y n+=A 错误;对于B ,0m n >>时,曲线C 可化为22111x y m n+=表示的是椭圆,而11 0m n<<,所以其焦点在y 轴上,故B 正确;对于C,将点(,3⎛⎫- ⎪ ⎪⎝⎭,代入曲线C :221mx ny +=,有2311512133m n m m n n ⎧+==⎧⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩,0mn <,所以曲线C 是双曲线,故C 正确;对于D ,若1m =,0n =,满足条件,此时曲线C :21x =,表示两条直线,故D 错误,故选:BC.46.(多选题)(2022·江苏连云港·高二期中)关于,x y 的方程2222126x y m m+=+-(其中26m ≠)表示的曲线可能是()A .焦点在y 轴上的双曲线B .圆心为坐标原点的圆C .焦点在x 轴上的双曲线D.长轴长为【答案】BC【解析】()()2222622m m m +--=-,当m =22264m m +=-=,此时2222126x y m m +=+-表示圆,故B 正确.当m <<22620m m ->+>,故2222126x y m m+=+-表示焦点在y 轴上的椭圆,若此时长轴长为268m -=即22m =-,矛盾,故D 错误.若m <m >260m -<,故2222126x y m m +=+-表示焦点在x 轴上的双曲线,故A 错误,C 正确.若m <<m <<22260m m +>->,故方程2222126x y m m+=+-表示焦点在x 轴上的椭圆,若长轴长为228m +=即m =,矛盾,故D 错误.故选:BC.47.(多选题)(2022·河北省曲阳县第一高级中学高二期中)若方程22131x y t t +=--所表示的曲线为C ,则下面四个选项中正确的是()A .若13t <<,则曲线C 为椭圆B .若曲线C 为椭圆,且长轴在y 轴上,则23t <<C .若曲线C 为双曲线,则3t >或1t <D .曲线C 可能是圆.【答案】BCD【解析】A.若方程22131x y t t +=--表示椭圆,则301031t t t t ->⎧⎪->⎨⎪-≠-⎩,解得13t <<且2t ≠,故错误;B.若曲线C 为椭圆,且长轴在y 轴上,则301031t t t t ->⎧⎪->⎨⎪-<-⎩,解得23t <<,故正确;C.若曲线C 为双曲线,则()()310t t --<,解得3t >或1t <,故正确;D.曲线C 是圆,则301031t t t t ->⎧⎪->⎨⎪-=-⎩,解得2t =,故正确;故选:BCD48.(多选题)(2022·云南·罗平县第一中学高二开学考试)已知曲线22:124x y C m m+=+-,则()A .当2m =时,则C的焦点是)1F,()2F B .当6m =时,则C 的渐近线方程为12y x =±C .当C 表示双曲线时,则m 的取值范围为2m <-D .存在m ,使C 表示圆【答案】ABD【解析】对于A ,当2m =时,曲线22:142x y C +=,则C 的焦点是)1F ,()2F ,所以A 正确;对于B ,当6m =时,曲线22:182x y C -=,则C 的渐近线方程为12y x =±,所以B 正确;对于C ,当C 表示双曲线时,()()240m m +-<,解得:4m >或2m <-,所以C 不正确;对于D ,当24m m +=-,即1m =时,曲线C 表示圆,所以D 正确.故选:ABD.49.(多选题)(2022·江苏江苏·高二期中)已知双曲线C :2213x y -=,则()A .双曲线C 的焦距为4B .双曲线C 的两条渐近线方程为:y =C .双曲线C 的离心率为3D .双曲线C 有且仅有两条过点()1,0Q 的切线【答案】ABD【解析】由双曲线标准方程得a =1b =,所以2c ==,焦距为4,A 正确;b a ==y =,B 正确;离心率为3c e a ===,C 错误;设过(1,0)Q 的直线的方程为(1)y k x =-,代入双曲线方程得:2222(13)6(33)0k x k x k -+-+=(*),2130k -=,即3k =±时,方程(*)只有一解,此时直线与渐近线平行,与双曲线相交,又由422364(13)(33)0k k k ∆=+-+=得2k =±,此时方程(*)有两个相等的实数解,此时直线与双曲线相切,即相切的直线有两条,D 正确.故选:ABD .50.(多选题)(2022·黑龙江·哈师大附中高二开学考试)双曲线的标准方程为2213y x -=,则下列说法正确的是()A .该曲线两顶点的距离为B .该曲线与双曲线2213x y -=有相同的渐近线C .该曲线上的点到右焦点的距离的最小值为1D .该曲线与直线l :)2y x =-,有且仅有一个公共点【答案】CD【解析】由已知双曲线中1,a b =2c =,顶点为(1,0)和(1,0)-,距离为2,A 错;该双曲线的渐近线方程是y =,而双曲线2213x y -=的渐近线方程是y =,不相同,B 错;该双曲线上的点到焦点的距离的最小值为1c a -=,C 正确;直线l 与该双曲线的一条渐近线平行,与双曲线有且只有一个公共点,D 正确,故选:CD .51.(2022·上海市新场中学高二期中)当0ab <时,方程22ax ay b -=所表示的曲线是()A .焦点在x 轴的椭圆B .焦点在x 轴的双曲线C .焦点在y 轴的椭圆D .焦点在y 轴的双曲线【答案】D【解析】当ab <0时,方程22ax ay b -=化简得221y x b ba a-=--,∴方程表示双曲线.焦点坐标在y 轴上;故选:D .考点8:利用第一定义求解轨迹52.(2022·河南·濮阳一高高二期中(理))若双曲线C 的方程为22145x y -=,记双曲线C 的左、右顶点为A ,B .弦PQ ⊥x 轴,记直线PA 与直线QB 交点为M ,其轨迹为曲线T ,则曲线T 的离心率为________.【解析】设P (0x ,0y ),则Q (0x ,-0y ),设点M (x ,y ),又A (-2,0),B (2,0),所以直线PA 的方程为00(2)2y y x x =++①,直线QB 的方程为00(2)2y y x x -=--②.由①得0022y yx x =++,由②得0022y y x x =---,上述两个等式相乘可得22022044y y x x =---,∵P (0x ,0y )在双曲线22145x y -=上,∴2200145x y -=,可得2200454y x -=,∴2020544y x =-∴22544y x =--,化简可得22145x y +=,即曲线T 的方程为22145x y +=53.(2022·吉林·白城一中高二期中)已知ABC 的两个顶点A B ,分别为椭圆2255x y +=的左焦点和右焦点,且三个内角A B C ,,满足关系式1sin sin sin 2B AC -=.(1)求线段AB 的长度;(2)求顶点C 的轨迹方程.【解析】(1)椭圆的方程为2255x y +=∴椭圆的方程为2215x y +=222=514a b c ∴==,,2c ∴=A B ,分别为椭圆2215x y +=的左焦点和右焦点,()()2,02,0A B ∴-,=4AB ∴∴线段AB的长度4(2)ABC 中根据正弦定理得:=2sin sin sin AB BC ACR C A B==(R 为ABC 外接圆半径),sin =,sin 222BC AC ABA B C R R R∴==1sin sin sin 2B A C -=12222AC BC AB R R R∴-=⨯1242AC BC AB AB ∴-==<=∴C 点的轨迹是以A B ,为左右焦点的双曲线的右支,且22AC BC a -==,=4=2AB c=12a c ∴=,,2223b c a =-=,∴顶点C 的轨迹方程为()22113yx x -=>54.(2022·全国·高二专题练习)如图所示,已知定圆1F :()2251x y ++=,定圆2F :()22516x y -+=,动圆M 与定圆1F ,2F 都外切,求动圆圆心M的轨迹方程.【解析】圆1F :()2251x y ++=,圆心()15,0F -,半径11r =;圆2F :()22516x y -+=,圆心()25,0F ,半径24r =.设动圆M 的半径为R ,则有11=+MF R ,24=+MF R ,∴2112310MF MF F F -=<=.∴点M 的轨迹是以1F ,2F 为焦点的双曲线的左支,且32a =,5c =,于是222914b c a =-=.∴动圆圆心M 的轨迹方程为2231991244≤-⎛⎫-= ⎪⎝⎭x y x .55.(2022·福建·厦门一中高二期中)已知动圆M 与圆221:(4)4C x y ++=外切与圆222:(4)4C x y -+=内切,则动圆圆心M 的轨迹C 的方程为___________.【答案】()2212412x y x -=≥【解析】设动圆圆心(),M x y ,半径为r ,因为圆M 与圆221:(4)4C x y ++=外切与圆222:(4)4C x y -+=内切,圆心()()124,0,4,0C C -,12||8C C =,所以1222MC r MC r ⎧=+⎪⎨=-⎪⎩,则12||||48MC MC -=<,于是点M 的轨迹是以点12,C C 为焦点的双曲线的右支.由题意,224,282,4,12a c a c b ==⇒===,于是,C 的方程为:()2212412x y x -=≥.故答案为:()2212412x y x -=≥.56.(2022·上海市新场中学高二期中)已知两点()(),3,03,0A B -,若4PA PB -=±,那么P 点的轨迹方程是______.【答案】22145x y -=【解析】设P 点的坐标为(),x y 因为44PA PB PA PB -=±⇒-=所以P 点的轨迹为焦点在x 轴的双曲线且3,242c a a ==⇒=所以b ==所以P 点的轨迹方程为:22145x y -=故答案为:22145x y -=57.(2022·吉林一中高二期中)若动圆过定点A ()3,0-且和定圆C :()2234x y -+=外切,则动圆圆心P 的轨迹方程是_________.【答案】2218y x -=()1x ≤-【解析】定圆的圆心为C()3,0,与A ()3,0-关于原点对称,设动圆P 的半径为r ,则有PA r =,因为两圆外切,所以2=+PC r ,即26PC PA AC -=<=,所以点P 的轨迹是以A ,C 为焦点的双曲线的左支,则1a =,3c =,2228b c a =-=,所以轨迹方程为2218y x -=()1x ≤-故答案为:2218y x -=()1x ≤-58.(2022·广东·深圳市宝安中学(集团)高二期中)已知点(3,0),(3,0),(1,0)M N B -,动圆C 与直线MN 相切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则点P 的轨迹方程为()A .221(1)8y x x -=>B .221(1)8y x x -=<-C .221(0)8y x x +=>D .221(1)10y x x -=>【答案】A【解析】设直线PM ,PN 与圆C 相切的切点分别为点Q ,T,如图,由切线长定理知,MB =MQ ,PQ =PT ,NB =NT ,于是有|PM|-|PN|=|MQ|-|NT|=|MB|-|NB|=2<6=|MN|,则点P 的轨迹是以M ,N 为左右焦点,实轴长2a =2的双曲线右支,虚半轴长b 有22238b a =-=,所以点P 的轨迹方程为221(1)8y x x -=>.故选:A59.(2022·江苏省镇江中学高二期中)动圆M 与圆1C :()2241x y ++=,圆2C :22870x y x +-+=,都外切,则动圆圆心M 的轨迹方程为()A .22115x y +=B .22115y x -=C .()221115y x x -=≥D .()221115y x x -=≤-【答案】D【解析】圆1C :()2241x y ++=,圆心()14,0C -,半径11r =.圆2C :()222287049x y x x y +-+=⇒-+=,圆心()24,0C ,半径23r =.设(),M x y ,半径为r ,因为动圆M 与圆1C ,2C 都外切,所以121122123MC r MC MC C C MC r ⎧=+⎪⇒-=<⎨=+⎪⎩,所以M 的轨迹为以12,C C 为焦点,22a =的双曲线左支.所以1a =,4c =,解得b =即M 的轨迹方程为:()221115y x x -=≤-.故选:D60.(2022·新疆·博尔塔拉蒙古自治州蒙古中学高二期中)动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是()A .双曲线B .双曲线的一支C .两条射线D .一条射线【答案】D。
双曲线专题复习课件(精品,完美,好用)
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
菜
单
新课标 ·文科数学(广东专用)
自 主 落 实 · 固 基 础
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
菜
单
新课标 ·文科数学(广东专用)
自 主 落 实 · 固 基 础
已知动圆M与圆C1 :(x+4)2 +y2 =2外切,与圆C2 :(x -4)2+y2=2内切,求动圆圆心M的轨迹方程.
自 主 落 实 · 固 基 础
其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+ |PF2|的值为________.
【解析】 设P在双曲线的右支上,|PF1|=2+x,|PF2| =x(x>0),因为PF1⊥PF2, 所以(x+2)2+x2=(2c)2=8, 所以x= 3 -1,x+2= 3 +1,所以|PF2|+|PF1|= 2 3.
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
菜
单
新课标 ·文科数学(广东专用)
自 主 落 实 · 固 基 础
1.(人教A版 材 题 编 教习改
)设 曲 双线
的渐近线方程为3x± 2y=0,则a的值为( A.4 B.3 C.2
【析 解】 渐线程化 近方可为
x2 y2 - =1 >0) a ( a2 9 ) D.1
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
1 22 ( (1· 大 全 卷 )已知F1、F2为 曲 ) 0 纲国 双 线 C:x2-y2= 2的 、 焦 , 左右点点 P在C上,|F 1|=2 2|,则c ∠F1PF2 P P |F o s =( ) 1 3 3 4 A. B. C. D. 4 5 4 5 (2)已知定点A(0,7),B(0,-7),C(12,2);以点C为 一个焦点作过A、B的椭圆,求另一个焦点F的轨迹方程.
(完整版)双曲线专题复习(精心整理).
《圆锥曲线》 ---------双曲线主要知识点1、双曲线的定义 :(1)定义: _____________________________________________________________(2)数学符号: ________________________(3)应注意问题:2、双曲线的标准方程:图像标准方程不一样点同样点注意:怎样依据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,怎样求出焦点坐标?3、双曲线的几何性质标准方程焦点焦距性范围极点质实轴虚轴对称性离心率渐近线注意:( 1)怎样比较标准地在直角坐标系中画出双曲线的图像?(2)双曲线的离心率的取值范围是什么?离心率有什么作用?(3)当a b时,双曲线有什么特色?4.双曲线的方程的求法(1)双曲线的方程与双曲线渐近线的关系①已知双曲线段的标准方程是x2y21 (a 0, b 0)x2y21(a 0, b 0) ),a2b2(或2a2b则渐近线方程为________________________________________________________________ ;②已知渐近线方程为 bx ay0 ,则双曲线的方程可表示为__________________________ 。
(2)待定系数法求双曲线的方程x2y21 有共同渐近线的双曲线的方程可表示为_______________________ ;①与双曲线b2a2②若双曲线的渐近线方程是y b_____________________ ;x ,则双曲线的方程可表示为ax2y21 共焦点的双曲线方程可表示为_______________________________ ;③与双曲线b2a2④过两个已知点的双曲线的标准方程可表示为______________________________________ ;x2y2⑤与椭圆a2b2 1 (a b 0) 有共同焦点的双曲线的方程可表示为______________________________________________________________________________ 。
高二数学双曲线复习专题及考试题型
双曲线---专项复习 【1、基本知识点】 双曲线的第一定义: 双曲线的第二定义:注意点:(1)双曲线定义中,“距离的差”一定要加绝对值,否则只表示双曲线的一支。
(2)定义中的小于||21F F 这一限制条件 标准方程:【2、几何性质】【 3、弦长公式】1、若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则221212()()AB x x y y =-+-,()22221212121141||AB k x x k x x x x k a ∆=+-=++-=+, 若12,y y 分别为A 、B 的纵坐标,则()21212122211114AB y y y y y y k k =+-=++-。
2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=。
3、若弦AB 所在直线方程设为x ky b =+,则AB =2121ky y +-。
4、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 【4、常见双曲线题型】题型一 双曲线定义的应用1、如图所示,在△ABC 中,已知|AB|=42,且三内角A 、B 、C 满足2sinA+sinC=2sinB ,建立适当的坐标系,求顶点C 的轨迹方程.解 :如图所示,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立直角坐标系,则A(-22,0)、B(22 , 0 ).由正弦定理得sinA =2a R ,sinB =2b R ,sinC =2c R . ∵2sinA+sinC=2sinB ,∴2a+c=2b ,即b -a=2c .从而有|CA| - |CB|=21|AB|=22<|AB|.由双曲线的定义知,点C 的轨迹为双曲线的右支. ∵a=2,c=22,∴b 2= c 2 - a 2= 6.所以顶点C 的轨迹方程为221,26x y -= (x>2). 【反思感悟】 使用双曲线的定义时易漏掉“差的绝对值”,即||PF 1|-|PF 2||=2a ,而|PF1|-|PF2|=2a 表示一支.2、P 是双曲线x216-y220=1上一点,F1、F2是双曲线的两个焦点,且|PF1|=9,求|PF2|的值.解 在双曲线x216-y220=1中,a =4,b =2 5.故c =6.由P 是双曲线上一点, 得||PF1|-|PF2||=8. ∴|PF2|=1或|PF2|=17.又|PF2|≥c -a =2,得|PF2|=17.3、已知双曲线116922=-y x 的左右焦点分别是1F 、2F ,若双曲线上一点P 使得02190=∠PF F ,求21PF F ∆的面积。
专题23 双曲线(解答题压轴题)(学生版)-2024年高考数学压轴专题复习
专题23 双曲线(解答题压轴题)
目录
①双曲线的弦长问题 (1)
②双曲线的中点弦问题 (2)
③双曲线中的参数及范围问题 (4)
④双曲线中的最值问题 (6)
⑤双曲线中面积问题 (8)
⑥双曲线中定点、定值、定直线问题 (10)
⑦双曲线中向量问题 (12)
⑧双曲线综合问题 (13)
①双曲线的弦长问题
②双曲线的中点弦问题
1.(2023·全国·高三专题练习)已知()()2,0,2,0A B -,直线,AM BM 相交于点M ,且它们的斜率之积是3.(1)求点M 的轨迹C 的方程;
(2)过点()2,3N 能否作一条直线m 与轨迹C 交于两点P ,Q ,且点N 是线段PQ 的中点?若能,求出直线m 的方程;若不能,说明理由.
(1)求点N的轨迹方程;
(2)记点N的轨迹为曲线Γ,过点
31
,
22
P⎛⎫
⎪
⎝⎭
是否存在一条直线l,
线段CD中点.
③双曲线中的参数及范围问题
(1)求双曲线E 的方程;
(2)若直线:1l y kx =-与双曲线P ,Q 两点,求
MN
PQ
的取值范围.
④双曲线中的最值问题
⑤双曲线中面积问题
⑥双曲线中定点、定值、定直线问题
(1)求双曲线C的标准方程;
(2)设直线AP,AQ的斜率分别为
(3)证明:直线MN过定点.
⑦双曲线中向量问题
⑧双曲线综合问题
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线
积恒为8,试探究:是否存在总与直线若不存在,说明理由.。
双曲线专题复习(附答案)
双曲线专题考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义1.设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
2. P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为( ) (A )a -(B )b -(C )c -(D )c b a -+[解析]设21F PF ∆的内切圆的圆心的横坐标为0x ,由圆的切线性质知,a x a c x x c PF PF -=⇒=----=-000122|)(|||题型2 求双曲线的标准方程3.已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.[解析] 解法一:设双曲线方程为22a x -22by =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x -82y =1.解法二:设双曲线方程为k x -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.4.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; [解析]设双曲线方程为λ=-224y x ,当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ, 综上,双曲线方程为221205x y -=或120522=-x y 5.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________. [解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x 6.已知点(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .221(1)8y x x -=>C .1822=+y x (x > 0) D .221(1)10y x x -=> [解析]2=-=-BN BM PN PM ,P 点的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支,选B 考点2 双曲线的几何性质 题型1 求离心率或离心率的范围7.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .[解析](方法1)由定义知12||||2PF PF a -=,又已知12||4||PF PF =,解得183PF a =,223PF a =,在12PF F ∆中,由余弦定理,得2222218981732382494964cos e a a c a a PF F -=⋅⋅-+=∠,要求e 的最大值,即求21cos PF F ∠的最小值,当1cos 21-=∠PF F 时,解得53e =.即e 的最大值为53.(方法2) ac aPF a PF PF a PF PF -+≤+=+=21||21||||2||||22221 , 双曲线上存在一点P 使12||4||PF PF =,等价于35,421≤∴≥-+e a c a(方法3)设),(y x P ,由焦半径公式得a ex PF a ex PF -=+=21,,∵214PF PF=,∴)(4)(a ex a ex -=+,∴x a e 35=,∵a x ≥,∴35≤e ,∴e 的最大值为53.8. 已知双曲线)0,0(12222>>=-b a by a x 的右顶点为E ,双曲线的左准线与该双曲线的两渐近线的交点分别为A 、B 两点,若∠AEB=60°,则该双曲线的离心率e 是( )A .215+B .2C .215+或2 D .不存在[解析]设双曲线的左准线与x 轴交于点D,则c ab AD =,c a a ED 2+=,=+∴c a a 2cab⋅3,2=∴e 题型2 与渐近线有关的问题9.若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.2[解析] 焦点到渐近线的距离等于实轴长,故a b 2=,5122222=+==ab ac e ,所以5=e10.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x基础巩固训练1..已知双曲线的两个焦点为1(10,0)F -、2(10,0)F ,M 是此双曲线上的一点,且满足120MF MF ⋅=,12||||2MF MF ⋅=,则该双曲线的方程是 ( )A .2219x y -=B .2219y x -= C .22137x y -= D .22173x y -=[解析]由 12||||2MF MF ⋅=和402221=+PF PF 得6||21=-PF PF ,选A2..已知F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )(A).),21(+∞+(B).)21,1(+ (C).)3,1( (D).)22,3([解析] 210122122222+<⇒<--⇒<-⇒<e e e ac a c ca b ,选B3.曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-n ny n x 的 ( )A .焦距相等B .焦点相同C .离心率相等D .以上都不对[解析] 方程)6(161022<=-+-m m y m x 的曲线为焦点在x 轴的椭圆,方程)95(19522<<=-+-n ny n x 的曲线为焦点在y 轴的双曲线,)5()9()6()10(-+-=---n n m m ,故选A 综合提高训练4. 已知椭圆1532222=+ny m x 和双曲线1322222=-n y m x 有公共的焦点,(1)求双曲线的渐近线方程(2)直线l 过焦点且垂直于x 轴,若直线l 与双曲线的渐近线围成的三角形的面积为43,求双曲线的方程[解析](1)依题意,有22223523m n m n -=+,即228m n =,即双曲线方程为22221163x y n n -=,故双曲线的渐近线方程是22220163x y n n-=,即x y 43±=,. (2)设渐近线x y 43±=与直线c x l =:交于A 、B ,则23||c AB =,=⋅=∆2321c c S OAB 43,解得1=c 即122=+b a ,又43=a b ,193,191622==∴b a 双曲线的方程为1319161922=-y x 5..已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为()3,0.(Ⅰ)求双曲线C 的方程(Ⅱ)若直线:2=+l y kx 与双曲线恒有两个不同的交点A 和B 且2∙>OA OB (其中O 为原点),求k 的取值范围解(1)设双曲线方程为22221-=x y a b由已知得3,2==a c ,再由2222+=a b ,得21=b故双曲线C 的方程为2213-=x y . (2)将2=+y kx 代入2213-=x y 得22(13)6290---=k x kx 由直线l 与双曲线交与不同的两点得()22221306236(13)36(1)0⎧-≠⎪⎨∆=+-=->⎪⎩k k k即213≠k 且21<k . ① 设(),,(,),A A A B A x y B x y ,则 22629,1313-+==--A B A Bx y x y k k ,由2∙>OA OB 得2+>A B A B x x y y , 而2(2)(2)(1)2()2+=+++=++++A B A B A B A b A B A B x x y y x x kx kx k x x k x x2222296237(1)222131331-+=+++=---k k k k k k k . 于是2237231+>-k k ,即2239031-+>-k k 解此不等式得21 3.3<<k ② 由①+②得2113<<k 故的取值范围为33(1,),133⎛⎫--⎪ ⎪⎝⎭。
双曲线专题复习
双曲线单元复习测试一、选择题1.(09年高考全国卷二)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 交C 于A B 、两点,若4AF FB =,则C 的离心率为 A .65B .75C .58D .95【答案解析】A解:设双曲线22221x y C a b-=:的右准线为l ,过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , BD AM D ⊥于,由直线AB 知直线AB 的倾斜角为16060,||||2BAD AD AB ︒∴∠=︒=, 由双曲线的第二定义有1||||||(||||)AM BN AD AF FB e -==-11||(||||)22AB AF FB ==+. 又15643||||25AF FB FB FB e e =∴⋅=∴= 故选A2.(09年高考江西卷)设F 1和F 2为双曲线)0,0(12222>>=-b a by a x 的两个焦点, 若F 1,F 2,P(0,2b )是正三角形的三个顶点,则双曲线的离心率为 A .23B .2C .25 D .3【答案解析】B【解析】由tan62c b π==2222344()c b c a ==-,则2c e a ==,故选B. 3.(2008年高考数学试题全国卷2(理)全解全析)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(2【答案解析】【答案】B【解析】222222)11(1)1()(a aa a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数的交汇点4.(2008年高考数学试题全国卷2(文)全解全析)设ABC △是等腰三角形,120ABC ∠=,则以A B,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案解析】【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用5.(08年高考陕西卷)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A B C D 【答案解析】B6.(2008年高考数学海南、宁夏文数全解全析)双曲线221102x y -=的焦距为( )A .B .C .D . 【答案解析】【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是==c c ,选D 【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高7.(08年高考四川卷)已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于A .24B .36C .48D .96【答案解析】C∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - ∵212PF F F = ∴12261016PF a PF =+=+=作1PF 边上的高2AF ,则18AF = ∴26AF == ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯= 故选C 【解2】:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - 设()()000,0P x y x >,, 则由212PF F F =得()22200510x y -+= 又∵P 为C 的右支上一点 ∴22001916x y -= ∴22001619x y ⎛⎫=- ⎪⎝⎭ ∴()22051611009x x ⎛⎫-+-= ⎪⎝⎭即20025908190x x +-=解得0215x =或03905x =-<(舍去)∴0485y ===∴12PF F ∆的面积为12011481048225F F y ⋅=⨯⨯= 故选B 【点评】:此题重点考察双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;【突破】:由题意准确画出图象,解法1利用数形结合,注意到三角形的特殊性;解法2利用待定系数法求P 点坐标,有较大的运算量;8.(08年高考浙江卷)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是 A .3B .5C .3D .5【答案解析】D9.(09年高考山东卷)设双曲线12222=-by a x 的一条渐近线与抛物线y =x 2+1 只有一个公共点,则双曲线的离心率为 A .45 B . 5 C .25 D .5【答案解析】D【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D.答案:D.10.(2008年高考数学福建文数全解全析)若双曲线()222213x y a o a -=>的离心率为2,则a 等于A . 2B .C.32D . 1【答案解析】解析解析由222123x y a a-===c 可知虚轴e=a ,解得a=1或a=3,参照选项知而应选D.11.(09年高考湖北卷)已知双曲线12222=-y x 的准线过椭圆14222=+by x 的焦点,则直线y=kx +2与椭圆至多有一个交点的充要条件是 A .K ]21,21[-∈B .K ),21[]21,(+∞⋃--∞∈C.K ]22,22[-∈D .),22[]22,(+∞⋃-∞∈K 【答案解析】A【解析】易得准线方程是2212a xb =±=±=±所以222241c a b b =-=-= 即23b =所以方程是22143x y +=联立 2 y kx =+可得22 3+(4k +16k)40x x +=由0∆≤可解得A12.(08年高考重庆卷)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为A .22x a-224y a =1B .222215x y a a -= C.222214x y b b -=D .222215x y b b-=【答案解析】C二、填空题13.(2010年高考试题(江西卷)解析版(文))点00(,)A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = ;【答案解析】【答案】2【解析】考查双曲线的比值定义,利用点A 到右焦点比上到右准线的距离等 于离心率得出0x =214.(09年高考湖南卷)过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点作圆x 2+y 2=2a 的两条切线,切点分别为A ,B ,若∠AOB=120°(O 是坐标原点),则双曲线线C 的离心率为 【答案解析】12060302AOB AOF AFO c a ∠=⇒∠=⇒∠=⇒=, 2.ce a∴== 15.(2010年高考试题(北京卷)解析版(理))已知双曲线22221x y a b-=的离心率为2,焦点与椭圆221259x y +=的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。
期末专题复习-双曲线
5、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法
6、椭圆、双曲线、抛物线与直线问题的解题步骤:
(1)根据已知条件设合适的直线方程
(2)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y或x
(3)求出判别式,并设点使用韦达定理
(4)若求弦长使用弦长公式;
期末专题复习:双曲线
一、双曲线的定义、双曲线的标准方程和性质
双曲线的图象和性质
双曲线定义
若 为双曲线上任意一点,则有 (2a<2c)
若 =2c,则点M的轨迹为两条射线
若 >2c,则点M无轨迹
焦点位置
x轴
y轴
图形
标准方程
焦点坐标
F1(c, 0 ), F2( c, 0 )
F1(0,c, ), F2( 0, c )
12、设P是双曲线 右支上的一点,M和N分别是圆 上的点,则 的最大值为。
对称轴
关于x轴、y轴和原点对称
离心率
(e>1)
范围
,
渐近线
2、判断双曲线是x型还是y型只要看 前的符号是正还是 前的符号是正,若 前的符号为正则x型,若 前的符号为正则y型,同样的,哪个分母前的符号为正,则哪个分母就为
3、求双曲线方程一般用待定系数法,先判定双曲线是x型还是y型,若为x型则可设为 ,若为y型则可设为 ,若不知什么型且双曲线过两点,则设为稀里糊涂型:
(1)与椭圆 有公共焦点,且离心率
(2)与双曲线 有共同的渐近线,且过点
(3)与双曲线 有公共焦点,且过点
10、已知双曲线 ( )的右焦点为F,点A在双曲线的渐近线上,△OAF(O为原点)是边长为2的等边三角形,则双曲线的方程为。
双曲线专题复习(附答案).doc
双曲线专题考点1双曲线的定义及标准方程题型L运用双曲线的定义21.设P为双曲线X2-^— = }上的一点F|、F?是该双曲线的两个焦点,若|PF,|: |PF2|=3: 2,贝O A PF,F2的面积为12()A. 6A/3B. 12C. 12-\/3D. 24解析:a = l,b =厄c = g由|Pg|:|Pg|=3:2 ①又\PF}\-\PF2 1= 2。
= 2,②由①、②解得|P鸟|=6,哗 |= 4.・."再\2+\PF2『=5ZI昭St. . PF】F?为直角三角形,•.•S AP时,=-|PF, |-|PF2 |= L X 6X4=12.故选B。
2 2X2 v22.P是双曲线土—土 = 1(。
〉0,人>0)左支上的一点,F|、F2分别是左、右焦点,且焦距为2c,则AP4凡的内/ /?-切圆的圆心的横坐标为()(A)—a(B)-h(C)—c(D)a + h-c[解析]设△Pg%的内切圆的圆心的横坐标为工°,由圆的切线性质知,PF^ — PR =| c — x()| — | 天)—(―c) |= 2a => 天)=~a 题型2求双曲线的标准方程X2 y2f—3.己知双曲线C与双曲线\—二二1有公共焦点,且过点(3扼,2).求双曲线C的方程.16 42 2[解析]解法一:设双曲线方程为二一仁二1.由题意易求c=2V5.ci~ b~又双曲线过点(3扼,2),一兰二1. a2 b2又・.•/+序=(2妁2,・・.表12,度=8.X2 V2故所求双曲线的方程为壬一:二1.12 o2 2解法二:设双曲线方程为= 1, 16-k 4 + k2 2将点(3石,2)代入得妇4,所以双曲线方程为壬一:=1.12 84.己知双曲线的渐近线方程是),=±号,焦点在坐标轴上且焦距是10,则此双曲线的方程为[解析]设双曲线方程为/ 一4、2 =人,当人>0时,化为—-^ = 1, /.2J —=10.-./1 = 20,九4 V 4 4 当人<0时,化为土 —二=1人-A4..•2苧=10.・.人=—20,22综上,双曲线方程为土-匕=1或--—=120 5 5 205.以抛物线尸=8& 的焦点F 为右焦点,且两条渐近线是x ±^y = 0的双曲线方程为.[解析]抛物线y 2 = 8A /3X 的焦点F 为时,0),设双曲线方程为J —3;/=人,.・.牛二(2占尸.・.人=9 ,双曲22线方程为—-^- = 19 36 .己知点M (—3,0), N (3,0), B (l,0),动圆C 与直线枷切于点B,过M 、N 与圆C 相切的两直线相交于点P,则P 点的轨迹方程为A. x~ —= 1(X < — 1)822B. x~ —-- — 1 (x > 1)C. x~ + -— — 1 (x> 0)8 8D. x~ —-— = 1 (x >1)[解析1PM —PN = BM —BN =2, F 点的轨迹是以M 、N 为焦点、,实轴长为2的双曲线的右支,选B考点2双曲线的几何性质 题型1求离心率或离心率的范围7.已知双曲线十一± = 1,(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥曲线》---------双曲线主要知识点1、 双曲线的定义:(1) 定义:_____________________________________________________________ (2) 数学符号:________________________ (3) 应注意问题:2注意:如何根据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,如何求出焦点坐标?3注意:(1)如何比较标准地在直角坐标系中画出双曲线的图像? (2)双曲线的离心率的取值范围是什么?离心率有什么作用? (3)当时b a ,双曲线有什么特点? 4.双曲线的方程的求法(1)双曲线的方程与双曲线渐近线的关系①已知双曲线段的标准方程是22221x y a b -=(0,0)a b >>(或22221(0,0)x y a b b a-=>>),则渐近线方程为________________________________________________________________; ②已知渐近线方程为0bx ay ±=,则双曲线的方程可表示为__________________________。
(2)待定系数法求双曲线的方程①与双曲线22221x y a b-=有共同渐近线的双曲线的方程可表示为_______________________;②若双曲线的渐近线方程是by x a=±,则双曲线的方程可表示为_____________________;③与双曲线22221x y a b-=共焦点的双曲线方程可表示为_______________________________;④过两个已知点的双曲线的标准方程可表示为______________________________________;⑤与椭圆22221x y a b+=(0)a b >>有共同焦点的双曲线的方程可表示为______________________________________________________________________________。
5.双曲线离心率的有关问题 (1)ce a=,1e >,它决定双曲线的开口大小,e 越大,开口越大。
(2)等轴双曲线的两渐近线互相垂直,离心率2e =。
(3)双曲线离心率及其范围的求法。
①双曲线离心率的求解,一般可采用定义法、直接法等方法求解。
②双曲线离心率范围的求解,一般可以从以下几个方面考虑:a .与已知范围联系,通过求值域或解不等式来完成;b .通过判别式∆;c .利用点在曲线内部形成的不等式关系;d .利用解析式的结构特点。
6、直线与双曲线的位置关系的判定及相关计算(1)直线与双曲线的位置关系有:____________、____________、____________ 注意:如何来判断位置关系?(2)若斜率为k 的直线被双曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则相交弦长 =AB _____________________ 二、典型例题:考点一:双曲线的定义例1 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心M 的轨迹方程.变式训练:由双曲线4922y x -=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2的内切圆与边F 1F 2的切点坐标.巩固训练:(1). F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.(2).过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .(3).一动圆与两定圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为 A.椭圆 B. 双曲线 C.双曲线的一支 D.抛物线考点二:双曲线的方程例2 根据下列条件,求双曲线的标准方程. (1)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23);(2)与双曲线41622y x -=1有公共焦点,且过点(32,2).变式训练:已知双曲线的渐近线的方程为2x ±3y =0, (1)若双曲线经过P (6,2),求双曲线方程; (2)若双曲线的焦距是213,求双曲线方程; (3)若双曲线顶点间的距离是6,求双曲线方程.巩固训练:(1)求与椭圆221255x y +=共焦点且过点的双曲线的方程;(2)中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,求双曲线的标准方程;(3)已知双曲线的离心率e =(5,3)M - ,求双曲线的方程;(4)与双曲线1422=-y x 有共同渐近线,且过点)2,2(的双曲线方程;(5)已知双曲线12222=-by a x (a >0,b >0)的两条渐近线方程为x y 33±=,若顶点到渐近线的距离为1,则双曲线方程为_________________.(6).已知方程22121x y m m -=++表示双曲线,则m 的取值范围是__________________. (7).经过两点)3,72(),26,7(B A --的双曲线的标准方程为___________.考点三:双曲线的几何性质例3 双曲线C :2222b y a x -=1 (a >0,b >0)的右顶点为A ,x 轴上有一点Q (2a ,0),若C 上存在一点P ,使·=0,求此双曲线离心率的取值范围.变式训练:已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:1·2MF =0;(3)求△F 1MF 2的面积.巩固训练:(1)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的一条渐近线平行,则此双曲线的离心率是:A.1B. 2C.3D.4(2)已知双曲线2221(2x y a a -=>的两条渐近线的夹角为3π,则双曲线的离心率为: A.2 B. 3 C.263 D.233(3)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_________.(4)双曲线22221(0,0)x y a b a b-=>>的一个焦点为F (4,0),过双曲线的右顶点作垂直于x 轴的垂线交双曲线的渐近线于A ,B 两点,O 为为坐标原点,则△AOB 面积的最大值为: A. 8 B. 16 C. 20 D. 24考点四:双曲线的离心率例1、已知F 1、F 2分别是双曲线 22221(0,0)x y a b a b-=>>的左、右焦点,过F 1作垂直于X轴的直线与双曲线交于A 、B 两点,若△AF 2B 是直角三角形,求双曲线的离心率。
变式训练:1、若△AF 2B 是等边三角形,则双曲线的离心率为__________。
2、若△AF 2B 是锐角三角形,则双曲线的离心率的取值范围为________。
3、若△AF 2B 是钝角三角形,则双曲线的离心率的取值范围为________。
巩固训练:1、已知F 1、F 2分别是双曲线 22221(0,0)x y a b a b-=>>的左、右焦点,过F 2作倾斜角为︒60的直线与双曲线的右支有且只有一个交点,求双曲线的离心率的取值范围。
2、已知F 1、F 2分别是双曲线 22221(0,0)x y a b a b-=>>的左、右焦点,过F 2作垂直于渐近线的直线与双曲线的两支都相交,求双曲线的离心率的取值范围。
3、直线1-=kx y 与双曲线422=-y x 没有公共点,则k 的取值范围为_______,有两个公共点,则k 的取值范围为_______,有一个公共点,则k 的取值范围为_______,与左支有两个公共点,则k 的取值范围为_______。
考点五:双曲线中的焦点三角形例、设F 1和F 2为双曲线22x y 1169-=的两个焦点,P 是双曲线上一点,已知∠F 1PF 2=600求△F 1PF 2的面积变式训练:设F 1和F 2为双曲线22x y 1169-=的两个焦点,P 是双曲线上一点, 已知∣PF 1∣∣PF 2∣=32,求∠F 1PF 2的余弦值与三角形F 1PF 2面积巩固训练:1. 双曲线221169x y -=左焦点1F 的弦AB 长为6,则2ABF △(2F 为右焦点)的周长是____________2、已知定点A B ,,且6AB =,动点P 满足4PA PB -=,则PA 的最小值是 .3、 设F 1和F 2为双曲线22xy 14-=的两个焦点,P 为双曲线上一点,若∠F 1PF 2=900, 则三角形F 1PF 2面积是4、设F 1和F 2为双曲线22x y 1169-=的两个焦点,P 是双曲线上一点,已知∠F 1PF 2=600则P 点到F 1和F 2两点的距离之和为___________5、已知双曲线C 2222x y 1a b-=(a>0,b>0)的两个焦点为F 1(-2,0) ,F 2(2,0),点P (3双曲线C 上(1)求双曲线C 的方程(2)记O 在坐标原点,过Q (0,2)的直线L 与双曲线C 相交于不同的两点E,F ,若△OEF 的面积,求直线L 的方程考点六:直线和双曲线的位置关系例4. 已知曲线22221(0,0)x y a b a b-=>>的离心率e =直线l 过A (a ,0)、B (0,)b -两点,原点O 到l 。
(1)求双曲线的方程;(2)过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅OM ,求直线m 的方程。
变式训练:直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(Ⅰ)求实数k 的取值范围;(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.巩固训练:1、已知双曲线2222x y -=的左、右两个焦点为1F , 2F ,动点P 满足|P 1F |+| P 2F |=4.①求动点P 的轨迹E 的方程;②设过2F 且不垂直于坐标轴的动直线l 交轨迹E 于A 、B 两点,问:终段O 2F 上是否存在一点D ,使得以DA 、DB 为邻边的平行四边形为菱形?作出判断并证明.2、已知双曲线C :λ-12x -λ2y =1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.3、已知中心在原点的双曲线C 的一个焦点是F 1(-3,0),一条渐近线的方程是5x -2y =0. (1)求双曲线C 的方程;(2)若以k (k ≠0)为斜率的直线l 与双曲线C 相交于两个不同的点M ,N 且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.。