第十一章 第二节 二项式定理

合集下载

11.3 二项式定理

11.3 二项式定理
11.3
二项式定理
第十一章
11.3 二项式定理
考纲要求 知识梳理 双击自测 核心考点
-2-
1.二项式定理
二项式定理 二项展开式 的通项公式 二项式系数
0 1 r (a+b)n=������n ������������ + ������n ������������ − 1������ + ⋯ + ������n ������������ − ������������������ + n n ⋯ + ������n b (n∈N+) ������ n-r r Tr+1=C������ a b
解析 答案
第十一章
考点1 考点2 考点3
11.3 二项式定理
考纲要求 知识方法 知识梳理 易错易混 双击自测 核心考点
-13-
(2)(2015皖南八校联考)(x2-4x+4)5的展开式中x的系数 是 . 思考:如何求三项式中某一特定项的系数?
关闭
������ 10-r 由(x2-4x+4)5=(x-2)10,得二项展开式的通项为 Tr+1= C10 x (-2)r, 9 所以 x 的系数为(-2)9C10 =-5 120.
,
第十一章
11.3 二项式定理
考纲要求 知识梳理 双击自测 核心考点
-4-
1 2 3 4 5
1.下列结论正确的打“√”,错误的打“×”.
������ n-r r (1)C������ a b 是(a+b)n 的展开式中的第 r 项. ( × )
(2)在二项展开式中,系数最大的项为中间一项或中间两项. ( × ) (3)在(a+b)n的展开式中,每一项的二项式系数与a,b无关.( √ ) (4)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a6+…+a1的值为128. (× ) (5)(a+b)n展开式中某项的系数与该项的二项式系数相同. ( × )

二项式定理 课件

二项式定理  课件

(1)求3
x+
1 4 x
的展开式;
(2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
[思路导引] (1)直接利用二项式定理展开即可;(2)为二项式
定理的逆用,找好对应的 a,b 及 n 的值.
[解]
(1)解法一:3
x+
1 4 x
=04(3
x)4+C41(3
运用二项式定理的解题策略 (1)正用:求形式简单的二项展开式时可直接由二项式定理展 开,展开时注意二项展开式的特点:前一个字母是降幂,后一个 字母是升幂.形如(a-b)n 的展开式中会出现正负间隔的情况.对 较繁杂的式子,先化简再用二项式定理展开. (2)逆用:逆用二项式定理可将多项式化简,对于这类问题的 求解,要熟悉公式的特点、项数、各项幂指数的规律以及各项的 系数.
[要点梳理] 1.二项式定理 (a+b)n= C0nan+C1nan-1b+C2nan-2b2+…+Cknan-kbk+…+Cnnbn (n∈N*). (1)这个公式所表示的规律叫做二项式定理. (2)展开式:等号右边的多项式叫做(a+b)n 的二项展开式,展 开式中一共有 n+1 项.
(3)二项式系数:各项的系数 Ckn(k∈{0,1,2,…,n}叫做 二项式系数.
题型二 二项式定理中的特定项与系数问题 思考 1:在(a+b)n 展开式中,第 k 项是什么? 提示:Tk=T(k-1)+1=Ckn-1an-k+1bk-1. 思考 2:在(a+b)n 的二项展开式中,Tk+1=Cknan-kbk 是二项展 开式的第几项?其二项式系数是什么? 提示:Tk+1=Cknan-kbk 是第 k+1 项,其二项式系数为 Cnk.
用二项式定理证明 1110-1 能被 100 整除. [思路导引] 由于 100 是 10 的整数倍,故可将 1110 转化为(10 +1)10,用二项式定理展开. [证明] 1110-1=(10+1)10-1 =C0101010+C110109+C210108+…+C910·10+C1100-1 =C010·1010+C110·109+C210·108+…+102 =100(108+C110·107+C210·106+…+1) 显然上式括号内的数是正整数,所以 1110-1 能被 100 整除.

二项式定理 课件

二项式定理 课件

[点评] 二项式的展开式的某一项为常数项,就是这项不含“变元”,一般采用令通项Tr+1中 的变元的指数为零的方法求得常数项.
[例 4]

x+ 1 4
2
n x
展开式中前三项系数成等差数
列.求:
(1)展开式中含 x 的一次幂的项;
(2)展开式中所有 x 的有理项.
[分析] 首先由“前三项系数成等差数列”,得到关于n的方程,解得n的值,然后根据题目的 要求解答每一问.每问都与二项展开式的通项公式有关.
[点评] 要注意区分二项式系数与项的系数:二项式系数与项的系数是两个不同的概念,前者 仅与二项式的指数及项数有关,与二项式的构成无关,后者与二项式的构成、二项式的指数 及项数均有关.
[例6] 试判断7777-1能否被19整除? [分析] 由题目可获取以下主要信息: ①76是19的倍数; ②7777=(76+1)77可用二项式定理展开.解答本题可用二项式定理求得(76+1)77-1能被19整
3.①Cknan-kbk 是二项展开式中的第 k+1 项,不是第 k 项,a 与 b 不可随便更换;
②(a-b)n 的展开式通项为:Tk+1=Cknan-k(-b)k=(- 1)kCknan-kbk;
③取 a=1,b=x,则(1+x)n=1+Cn1x+C2nx2+…+ Crnxr+…+xn 在解题中是很有用的,要认真体会,熟练掌 握.
[例 2] 设 n 为自然数,化简 Cn0·2n-C1n·2n-1+…+(- 1)k·Ckn·2n-k+…+(-1)n·Cnn.
[分析] 由题目可获取以下主要信息: ①展开式中“+”与“-”相间隔; ②2的指数最高为n,依次递减至0且每一项的指数等于对应的组合数的下标与上标的差. 解答本题可先分析结构形式,然后逆用二项式定理求解.

二项式定理ppt课件

二项式定理ppt课件
1
答案:10
课堂小结
1.二项式定理的概念、特点,用二项式定理解决整除问题.
2.通项的应用.利用通项求二项展开式的某一项,特定项和特定项的系数.
3.简单了解二项式系数.
点击进入
课时作业
(2)解:0.998 =(1-0.002) =1+ ×(-0.002)+ ×(-0.002) +…+ ×(-0.002) .
2
2
由题意知 T3= ×(-0.002) =15×0.002 =0.000 06<0.001,
且第 3 项以后(包括第 3 项)的项的绝对值都远小于 0.001,
探究点一
角度1
通项公式及其应用
求二项展开式中的特定项

[例 1] ( -


10
) 的展开式中,所有的有理项为

.
解析:二项展开式的通项为
-

Tk+1= (- ) .

-
由题意知


∈Z,且 0≤k≤10,k∈N.
-



=r(r∈Z),则 10-2k=3r,k=5- r.
n
答案:(-1)n
.
4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=
.
解析:x 是(1+kx ) 的展开式的第 5 项,x 的系数为 k =15k .由已知得
4
4
15k <120,即 k <8.又 k 是正整数,故 k=1.
8
答案:1
2 6
8
4
4
课堂探究·素养培育
6
6

二项式定理 课件

二项式定理 课件
系数; (2)求x-1x9 的展开式中 x3 的系数. 解 (1)(1+2x)7 的展开式的第 4 项是 T3+1=C37×17-3×(2x)3 =C73×23×x3=35×8x3=280x3. 所以展开式的第 4 项的二项式系数是 35,系数是 280.
(2)x-1x9 的展开式的通项是 Cr9x9-r-1xr=(-1)rCr9x9-2r. 根据题意,得 9-2r=3,r=3. 因此,x3 的系数是(-1)3C93=-84.
1+1x4=1+C141x+C241x2+C341x3+1x4=1+4x+
方法二 1+1x4=1x4(x+1)4=1x4[x4+C14x3+C24x2+C34x+1] =1+4x+x62+x43+x14.
探究点二 二项展开式的通项 例 2 (1)求(1+2x)7 的展开式的第 4 项的二项式系数、项的
问题 3 二项式定理展开式的系数、指数、项数的特点是什么? 答 (1)它有 n+1 项,各项的系数 Ckn(k=0,1,…,n)叫二项 式系数; (2)各项的次数都等于二项式的次数 n.
问题 4 二项式定理展开式的结构特征是什么?哪一项最具有 代表性? 答 (1)字母 a 按降幂排列,次数由 n 递减到 0,字母 b 按升 幂排列,次数由 0 递增到 n; (2)Cknan-kbk 叫二项展开式的通项,用 Tk+1 表示,即通项 Tk+1=Cknan-kbk.
=81x2+108x+54+1x2+x12.
小结 在展开二项式之前根据二项式的结构特征进行必要变 形可使展开多项式的过程得到简化,例如求(1-x)5(1+x+x2)5 的展开式,可将原式变形为(1-x3)5,再展开较为方便.
跟踪训练 1 求1+1x4 的展开式.
解 方法一 x62+x43+x14.

2025年高考数学一轮复习-第十一章-第二节-二项式定理-专项训练【含答案】

2025年高考数学一轮复习-第十一章-第二节-二项式定理-专项训练【含答案】

14.64 [由题意,C3 > C ,且C3 > C ,所以 n=6,所以令 x=1,(1+x)6 的系
数和为 26=64.]
15.8 -2 [x2 系数之和为C3
3 혘 ·C (-1)2=8,即 a2=8;
令 x=1,得 a0+a1+a2+a3+a4+a5=0;令 x=0,得 a0=2,∴a1+a2+a3+a4 +a5=-2.] 16.120x2y3z3 [因为(x+1)4 的通项为C x4-k,(y+z)6 的通项为C6y6-rzr, 所以(x+1)4 展开式系数最大的项为C x2=6x2, (y+z)6 展开式系数最大的项为C63y3z3=20y3z3,
8.C [(1+x)9 展开式的通项为 Tk+1=C ·19-k·xk=C ·xk,k=0,1,2,…,9,
当 x2-x+1 选取 x2 时,由已知可得,应选取(1+x)9 展开式中含 x3 的项, 由 k=3,可得 T4=C3·x3=84x3;
当 x2-x+1 选取-x 时,由已知可得,应选取(1+x)9 展开式中含 x4 的项,
则 n=7.
又因为(x-2y)7 的展开式的通项公式为 Tk+1= C x7-k(-2y)k,
令 k=2,所以展开式中的 x5y2 项的系数为C (-2)2=84.
故选 B.]
4.A [在(x2+x+y)6 的展开式中,含 y2 的项为 C6 ·(x2+x)4·y2, 故含 x5y2 的系数为C6·C3=60. 故选 A.]
C.a1+a2+…+a12=-2
D. 혘 +…+ 혘 =-1
10.已知二项式(1+2x)13 的展开式中第 k 项系数最大,则(2+x)k 展开式的二项式
系数和是( )
A.210

二项式定理(PPT课件)

二项式定理(PPT课件)
2 组合证明
根据二项式定理的组合证明,我们可以证明组合数等于需要求和的系数。在$n$个元素中 选取$k$个的方案总数是$C_n^k$。而展开$(a+b)^n=\sum_{k=0}^nC_n^ka^{n-k}b^k$中项的 系数分别是选取$k$项$a$和$n-k$项$b$的方案数$C_n^k$。
总结和要点
牛顿二项式公式
$(a+b)^n=C_n^0a^n+C_n^1a^{n-1}b+C_n^2a^{n2}b^2+...+C_n^nb^n $
应用
1
概率统计
二项式分布常用来描述在$n$次独立重复的伯努利试验中出现$k$个成功的概率。
2
金融衍生品定价
期权定价中可能涉及到二项式树模型,具体方法是根据期权的类型和权利金预算 构建二叉树。
3
数学知识扩展
二项式定理为许多初等研究的基础知识,常被作为高中和大学的数学课程的一部 分。
杨辉三角
构造方法
每个数等于它上方两数之和。
性质
每行左右对称,从第$0$行开始, 第$n$行的数为 $C_n^0,C_n^1,...,C_n^n$。
个性化拓展
最大数和最小数为1,三角形中 的数有很多特殊性质,可以用来 引入更高维数的图形。
公式
基本形式
$(a+b)^n=\sum_{k=0}^nC^k_na^{n-k}b^k$
二项式反演公式
$\sum_{k=0}^n(-1)^kC_n^ia^k=(a-1)^n$
常见结论
$(a+b)^2=a^2+2ab+b^2, (a-b)^2=a^2-2ab+b^2, (a+b)(a-b)=a^2-b^2$

第二节 二项式定理

第二节 二项式定理

第二节二项式定理考试要求1.理解二项式定理,二项式系数的性质.2.会用二项式定理解决与二项展开式有关的简单问题.[知识排查·微点淘金]知识点1二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k·b k+…+C n n b n(n∈N*);上述公式叫做二项式定理.[微思考](a+b)n与(b+a)n的展开式有何区别与联系?提示:(a+b)n的展开式与(b+a)n的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.(2)通项公式:T k+1=C k n a n-k b k叫做二项展开式的通项,它表示展开式的第k+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n叫做二项式系数.知识点2二项式系数的性质[微提醒]易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n(k=0,1,…,n).[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.(×)(2)二项展开式中,系数最大的项为中间一项或中间两项.(×)(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√)(4)通项公式T k +1=C k n an -k b k中的a 和b 不能互换.(√) (5)(a +b )n 的展示式中某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.(√)2.(链接教材选修2-3 P 37A 组T 5)二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是 .答案:73.(链接教材选修2-3 P 37A 组T 8)在二项式⎝⎛⎭⎫x -1x n 的展开式中只有第5项的二项式系数最大,则展开式中含x 2项的系数是 .答案:-564.(链接教材选修2-3 P 40A 组T 8)若⎝⎛⎭⎫x 3+1x n的展开式的所有二项式系数的和为128,则n = .答案:75.(混淆项的系数与二项式系数)在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为 .答案:-1一、基础探究点——求展开式中的特定项或特定项的系数(题组练透)1.(2020·北京卷)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10D .10解析:选C 由二项式定理得(x -2)5的展开式的通项T r +1=C r 5(x )5-r (-2)r =C r 5(-2)rx5-r2,令5-r2=2,得r =1,所以T 2=C 15(-2)x 2=-10x 2,所以x 2的系数为-10,故选C . 2.(2020·全国卷Ⅰ)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15D .20解析:选C 解法一:∵⎝⎛⎭⎫x +y 2x (x +y )5=⎝⎛⎭⎫x +y2x (x 5+5x 4y +10x 3y 2+10x 2y 3+5xy 4+y 5),∴x 3y 3的系数为10+5=15.解法二:当x +y 2x 中取x 时,x 3y 3的系数为C 35, 当x +y 2x 中取y 2x时,x 3y 3的系数为C 15, ∴x 3y 3的系数为C 35+C 15=10+5=15.故选C .3.(2021·北京卷)⎝⎛⎭⎫x 3-1x 4的展开式中常数项是 . 解析:由二项式的展开式可得C 34·(x 3)1·⎝⎛⎭⎫-1x 3=-4. 答案:-44.(2021·江西南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a = .解析:(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.答案:255. (x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 解法一:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5.所以x 5y 2的系数为C 25×C 13=30. 解法二:(x 2+x +y )5表示5个x 2+x +y 之积,所以x 5y 2可从其中5个因式中,2个取因式中的x 2,剩余的3个因式中1个取x, 2个因式取y ,因此x 5y 2的系数为C 25C 13C 22=30.1.求二项展开式中的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要先建立方 程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).2.求三项展开式中某些特定项的系数的方法:(1)通过变形先把三项式转化为二项式,再用二项式定理求解;(2)两次利用二项式定理的通项公式求解;(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.二、综合探究点——二项式系数与各项系数和问题(思维拓展)[典例剖析][例](1)在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A.-960B.960C.1120 D.1680解析:根据题意,奇数项的二项式系数之和也应为128,所以在(1-2x)n的展开式中,二项式系数之和为256,即2n=256,解得n=8,则(1-2x)8的展开式的中间项为第5项,且T5=C48(-2)4x4=1120x4,即展开式的中间项的系数为1120.故选C.答案:C(2)若(1-2x)8=a0+a1x+a2x2+…+a8x8,则|a0|+|a1|+|a2|+|a3|+…+|a8|=()A.28-1 B.28C.38-1 D.38解析:由题可知,x的奇数次幂的系数均为负数,所以|a0|+|a1|+|a2|+|a3|+…+|a8|=a0-a1+a2-a3+…+a8.因为(1-2x)8=a0+a1x+a2x2+…+a8x8,令x=-1得a0-a1+a2-a3+…+a8=38,则|a0|+|a1|+|a2|+|a3|+…+|a8|=38.故选D.答案:D(3)(2021·浙江卷)已知多项式(x-1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=,a2+a3+a4=.解析:(x-1)3的展开式的通项为T r+1=C r3x3-r·(-1)r,(x+1)4的展开式的通项为T r+1=C r4x4-r1r,则a1x3=C03x3·(-1)0+C14x311=5x3,所以a1=5.同理,a2x2=C13x2(-1)1+C24x212=-3x2+6x2=3x2,a3x=C23x1(-1)2+C34x113=3x+4x=7x,a4=C33x0(-1)3+C44x014=0,所以a2=3,a3=7,a4=0,所以a2+a3+a4=10.答案:5101.赋值法的应用二项式定理给出的是一个恒等式,对于x,y的一切值都成立.因此,可将x,y设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,求解出正整数k 即可.[学会用活]1.(2021·安徽宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( )A .1B .2C .129D .2188解析:选C 令x =0得a 0+a 1+a 2+…+a 7=27=128,又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1.故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 2.(2021·广西高三5月联考)若(a +x 2)(1+x )n 的展开式中各项系数之和为192,且常数项为2,则该展开式中x 4的系数为( )A .30B .45C .60D .81解析:选B 令x =0,得a =2,所以(a +x 2)(1+x )n =(2+x 2)(1+x )n .令x =1,得3×2n=192,所以n =6.故该展开式中x 4的系数为2C 46+C 26=45.故选B .3.已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( )A .5B .6C .7D .8解析:选B 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·2m !m !m !=7·2m +1!m !m +1!,即137=2m +1m +1,解得m =6.限时规范训练 基础夯实练1.(2021·河北唐山二模)在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( ) A .20 B .-20 C .160D .-160解析:选D ⎝⎛⎭⎫x -2x 6展开式的通项T k +1=C k 6x 6-k ⎝⎛⎭⎫-2x k =(-1)k 2k C k 6x 6-2k ,令6-2k =0,得k =3,所常数项T 3+1=(-1)323C 36=-160,故选D .2.(2021·北京东城区二模)已知(2x +a )5的展开式中x 2的系数为-40,那么a =( ) A .-2 B .-1 C .1D .2解析:选B (2x +a )5的展开式通项为T r +1=C r 5·(2x )5-r ·a r =C r 5·25-r a r x 5-r ,令5-r =2,可得r =3,所以,C 35·22a 3=40a 3=-40,解得a =-1.故选B . 3.(2021·四川乐至中学月考)(1+2x )5的展开式中,各项二项式系数的和是( ) A .1 B .-1 C .25D .35解析:选C 由题得各项二项式系数和为C 05+C 15+C 25+C 35+C 45+C 55=25.故选C .4.(2021·陕西西安模拟)若(2-x )10展开式中二项式系数和为A ,所有项系数和为B ,一次项系数为C ,则A +B +C =( )A .4095B .4097C .-4095D .-4097解析:选C 由(2-x )10展开式的通项公式为T r +1=C r 10·210-r ·(-x )r =(-1)r ·210-r C r 10·x r ,所以一次项系数C =(-1)1·29·C 110=-5120,二项式系数和A =210=1024,令x =1,则所有项的系数和B =(2-1)10=1,所以A +B +C =-4095.故选C .5.⎝⎛⎭⎫x -x2y (x +2y )5的展开式中x 2y 4的系数为( )A .24B .36C .48D .72解析:选C 因为⎝⎛⎭⎫x -x 2y (x +2y )5=x (x +2y )5-x2y(x +2y )5,可得(x +2y )5的展开式通项为T r +1=C r 5x 5-r (2y )r =2r C r 5x5-r y r, 令r =4可得x 2y 4的系数为24C 45=80,令r =5,可得x 2y 4的系数为-25C 55=-32,故展开式中x 2y 4的系数为80-32=48.故选C .6.(2021·福建福州二模)在(x +y +z )6的展开式中,xyz 4的系数是( ) A .15 B .30 C .36D .60解析:选B 因为(x +y +z )6=[(x +y )+z ]6,所以[(x +y )+z ]6的通项公式为C r 6·(x +y )6-r·z r ,令r =4,所以C 46·(x +y )2·z 4=15(x 2+2xy +y 2)z 4,因此xyz 4的系数是15×2=30,故选B . 7.(2021·广东韶关一模)已知(1+x )10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,则a 9=( )A .-10B .10C .-45D .45解析:选A (1+x )10=[1-(2+x )]10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,T r +1=C r 10[-(2+x )]r ,a 9=C 910(-1)9=-10.故选A .8.(2021·山东潍坊二模)已知正整数n ≥7,若⎝⎛⎭⎫x -1x (1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10解析:选D (1-x )n 的二项展开式中第k +1项为T k +1=C k n (-1)k x k,又因为⎝⎛⎭⎫x -1x (1-x )n =x (1-x )n -1x (1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1x C 6n(-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n,所以n =10,故选D . 9.(2021·湖南岳阳二模)若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7+a 8的值为 .解析:令x =1,得a 0+a 1+a 2+…+a 7+a 8=-2,令x =0,得a 0=1,则a 1+a 2+…+a 7+a 8=-2-1=-3.答案:-3综合提升练10.“杨辉三角”是我国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是一个三角形数阵,记a n 为图中第n 行各数之和,则a 5+a 11的值为( )1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1……A .528B .1020C .1038D .1040解析:选D a 5=C 04+C 14+C 24+C 34+C 44=24=16,a 11=C 010+C 110+C 210+…+C 1010=210=1024,所以a 5+a 11=1040.故选D .11.(2021·河北饶阳中学模拟)(x +x +1)⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为( )A .72B .60C .48D .36解析:选C ⎝⎛⎭⎫x -2x 6的展开式的通项公式为T r +1=C r 6(x )6-r ·⎝⎛⎭⎫-2x r =(-2)r ·C r 6·x 3-r (r =0,1,2,3,4,5,6).令3-r =1,得r =2;令3-r =32,得r =32∉Z ,舍去;令3-r =2,得r =1.故(x +x +1)·⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为(-2)2·C 26+(-2)1·C 16=60-12=48.故选C .12.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87解析:选B 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.13.(2021·广东梅州模拟)记(1-x )6=a 0+a 1(1+x )+a 2(1+x )2+a 3(1+x )3+a 4(1+x )4+a 5(1+x )5+a 6(1+x )6,则a 4= .解析:(1-x )6=(-1+x )6=[-2+(1+x )]6,展开式的通项公式为T r +1=C r 6(-2)6-r(1+x )r ,令r =4 即可,a 4=C 46(-2)2=4C 26=60.答案:6014.(2021·黑龙江哈尔滨三模)在⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数最大,且所有项的系数和为0,则含x 6项的系数为 .解析:∵⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数C 5n 最大,∴n =10,再令x =1,可得所有项的系数和为(1+a )10=0,∴a =-1.故二项展开式的通项公式为T r +1=C r 10·(-1)r ·x 10-2r ,令10-2r =6,求得r =2,可得含x 6项的系数为C 210=45.答案:4515.(2021·浙江绍兴模拟)二项展开式(2x +4)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1= ;a 0+a 2+a 4= (可采用指数的形式或数字的方式作答).解析:因为(2x +4)5的展开式的通项为C r 5(2x )5-r 4r =C r 5·25-r ·4r ·x 5-r , 令r =4,则a 1=C 45×21×44=2560,令r =5,则a 0=C 55×20×45=1024,令r =3,则a 2=C 35×22×43=2560,令r =1,则a 4=C 15×24×41=320,故a 0+a 2+a 4=1024+2560+320=3904.答案:2560 390416.已知⎝⎛⎭⎫mx 2-4+x 25的展开式中所有项的系数和为1,则x 4的系数为 . 解析:令x =1,则(m -3)5=1,解得m =4,∴⎝⎛⎭⎫m x 2-4+x 25=⎝⎛⎭⎫4x 2-4+x 25,⎝⎛⎭⎫4x 2-4+x 25展开式的通项公式为C r 5⎝⎛⎭⎫4x 2-45-r (x 2)r ;∵⎝⎛⎭⎫4x 2-45-r 展开式通项公式为C k 5-r ⎝⎛⎭⎫4x 25-r -k (-4)k ,∴当k =1,r =3时,展开式中的项为 -320x 4;当k =3,r =2时,展开式中的项为-640x 4;∴x 4的系数为-320-640=-960.答案:-960创新应用练17.(2021·湖北黄冈月考)若(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,则a 1-2a 2-4a 4+5a 5-6a 6+7a 7-8a 8= (用数字作答).解析:∵(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,∴等式两边求导得8(x+2)7=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6+8a8x7.令x=-1,有8×(-1+2)7=a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8,即a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8=8.又a3=C5825=1792,故所求值为8-1792×3=-5368.答案:-5368。

二项式定理 课件

二项式定理     课件
100 的余数.
0
90
91
1
又 992=(10-1)92=C92
·1092-C92
·1091+…+C92
·102-C92
·10+1,
前 91 项均能被 100 整除,后两项和为-919,因余数为正,可从前
面的数中分离出 1 000,结果为 1 000-919=81,故 9192 被 100 除所得
余数为 81.
用1110=(10+1)10的展开式进行证明,第(2)小题则可利用9192=(1009)92的展开式,或利用(90+1)92的展开式进行求解.
9
1
(1)证明 ∵1110-1=(10+1)10-1=(1010+C10
·109+…+C10
·10+1)-1
1
2
=1010+C10
·109+C10
·108+…+102
答案:-56
1.如何正确区分二项展开式中某一项的系数与二项式系数
剖析两者是不同的概念. C (r=0,1,2,…,n)叫做二项式系数,而某
一项的系数是指此项中除字母外的部分.如(1+2x)7 的二项展开式的
第 4 项的二项式系数为C73 =35,而其第 4 项的系数为C73 ·23=280.
2.如何用组合的知识理解二项式定理
二项式定理
1.二项式定理
二项展开式:(a+b)n=C0 + C1 − 1 + ⋯ + C − +
⋯ + C (n∈N*)叫做二项式定理,其中各项的系数C (k∈
{0,1,2,…,n})叫做二项式系数.

二项式定理PPT课件

二项式定理PPT课件

第21页
返回导航
数学
解析:(x2+x+y)5 为 5 个 x2+x+y 之积,其中有三个取 y,一个取 x2,一个取 x 即可,所以 x3y3 的系数为 C53C21C11=10×2×1=20.
第22页
返回导航
数学
考点二 二项展开式的系数和问题 1.二项式系数和
命题点 2.各项的系数和 3.部分项的系数和
当 r=1 时,T2= 当 r=2 时,T3= 故系数最大的项为 T2 或 T3.
数学
第18页
返回导航
数学
2.在本例(2)中,求展开式中的常数项.
第19页
返回导航
解:由 Tr+1=Cr6x6-r·ir 可知,当 r=6 时. 常数项为 T7=C66·i6=-1.
数学
第20页
返回导航
数学
3.在本例(4)中,求展开式中含x3y3的系数.
第23页
返回导航
数学
[例 2] 在(2x-3y)10 的展开式中,求: (1)二项式系数的和; (2)各项系数的和; (3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与 x 的偶次项系数和.
第24页
返回导航
数学
解:设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)
第4页
返回导航
数学
3.判断下列结论的正误(正确的打“√”错误的打“×”) (1)Crnan-rbr 是二项展开式的第 r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a+b)n 的展开式中某一项的二项式系数与 a,b 无关.(√) (4)在(1-x)9 的展开式中系数最大的项是第五、第六两项.(×) (5)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则 a7+a6+…+a1 的值为 128.(×)

二项式定理ppt课件

二项式定理ppt课件
b=29.
题型分类 深度剖析
题型一 求展开式中的特定项或特定项的系数
【例1】在二项式 ( x 1 )n 的展开式中,前三项的 24 x
系数成等差数列,求展开式中的有理项和二项式系
数最大的项.
思维启迪 利用已知条件前三项的系数成等差数
列求出n,再用通项公式求有理项.
解 ∵二项展开式的前三项的系数分别是1,n ,
探究提高 用二项式定理处理整除问题,通常把 底数写成除数(或与除数密切关联的数)与某数的 和或差的形式,再用二项式定理展开,只考虑后面 (或者是前面)一、二项就可以了. 同时,要注意余数的范围,a=cr+b,其中余数b∈ [0,r),r是除数,利用二项式定理展开变形后, 若剩余部分是负数要注意转换.
(
1)r x
(1)r
Crn
x2n3r ,
常数项是15,则2n=3r,且 C=rn 15,验证n=6时,r=4
合题意.
5.(2009·北京理,6)若(1+ 2)5=a+b 2(a、b为
有理数),则a+b=
(C )
A.45
B.55
C.70
D.80
解析 ∵(1+ 2 )5=1+5 2 +20+20 2 +20+4 2 =41+29 2 =a+b 2, 又a、b为有理数,∴ a=41, ∴a+b=41+29=70.
2)3,则a2的值为
( B)
A.3
B.6
C.9
D.12
解析 ∵x3=[2+(x-2)]3,
∴展开式中含(x-2)2项的系数为
a2=T2+1= C32 ×23-2=3×2=6.

二项式定理-PPT课件

二项式定理-PPT课件
1.3 二项式定理 1.3.1 二项式定理
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布列 第二节 二项式定理实用课件 理

高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布列 第二节 二项式定理实用课件 理
答案:1 (2)(1-2x)7 展开式中 x3 的系数为________. 解析:Tr+1=Cr717-r(-2x)r=C7r(-2)rxr,令 r=3,得 x3 的系数 为 C37(-2)3=35×(-8)=-280. 答案:-280
12/13/2021
第七页,共四十八页。
(3)
x- 1 24
8 x
所以2x+1x-15 的展开式中的常数项为(-1)5C05+(- 1)3C25×2C12+(-1)1C45×22C24=-161.
[答案] (1)C (2)-161
12/13/2021
第十六页,共四十八页。
[方法技巧] 求形如(a+b+c)n 展开式中特定项的步骤
12/13/2021
第十七页,共四十八页。
解析:(1+3x)n 的展开式中含 x5 的项为 C5n(3x)5=C5n35x5,展 开式中含 x6 的项为 C6n36x6. 由两项的系数相等得 C5n·35=C6n·36,解得 n=7.
答案:7
12/13/2021
第九页,共四十八页。
讲练区 研透高考(wá(nɡāo kǎo)· 完成 chéng) 情况
12/13/2021
第二十页,共四十八页。
4.[考点二](1+x)8(1+y)4 的展开式中 x2y2 的系数是( )
A.56
B.84
C.112
D.168
解析:(1+x)8 的展开式中 x2 的系数为 C28,(1+y)4 的展 开式中 y2 的系数为 C24,所以 x2y2 的系数为 C28C24=168. 答案:D
12/13/2021
第十二页,共四十八页。
形如(a+b)m(c+d)n 的展开式问题
[例 2] (1)已知(1+ɑx)(1+x)5 的展开式中 x2 的系数为

《二项式定理》(共17张)-完整版PPT课件全文

《二项式定理》(共17张)-完整版PPT课件全文

展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x

2021版新高考数学一轮复习第十一章11.2排列组合与二项式定理课件新人教B版

2021版新高考数学一轮复习第十一章11.2排列组合与二项式定理课件新人教B版

3.对于任意正整数n,定义“n的双阶乘n!!”如下: 当n为偶数时,n!!=n·(n 2)(n 4)……6·4·2, 当n为奇数时,n!!=n·(n 2)(n 4)……5·3·1, 现有四个结论:①(2018!!)·(2019!!)=2019!, ②(2n)!!=2n (n!),③2018!!的个位数字是8,
2.各二项式系数的和 (1)(a+b)n的展开式的各个二项式系数和等于2n,即 C0n+C1n+Cn2 …+Cnn 2n. (2)(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和, 都等于2n-1,即 C0n+Cn2+Cn4+…=C1n+C3n+C5n +…=2n-1.
【知识点辨析】(正确的打“√”,错误的打“×”)
【解析】展开式的通项为Tr+1=C7r (ax)r, 因为x5与x6系数相等,所以C57a5= C67a6,解得a=3. 答案:3
5.(选修2-3P12例6改编)由1,2,3,4,5,6,7,8八个数字,组成无重复数字
的两位数的个数为_________.(用数字作答)
【解析】问题转化为求从8个不同元素中选取2个元素的排列数,
小于43 521的数共有 ( )
A.56个
B.57个
C.58个
D.60个
3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共
有________种安排办法.
4.(2018·浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一 共可以组成________个没有重复数字的四位数.(用数字作答) 世纪金榜导学 号
【解析】1.选C.因为A参加时参赛方案有 C34A12=A433 8(种);A不参加时参赛方案

二项式定理课件ppt

二项式定理课件ppt

二项式定理的应用举例
04
求解某些特定形式的幂级数展开式
01
幂级数展开式的求解
二项式定理可以用于求解某些特定形式的幂级数展开式 ,例如$(a+b)^n$的展开式。
02
泰勒级数展开
利用二项式定理,我们可以求解一些函数的泰勒级数展 开,从而得到函数在某个点的近似值。
03
幂级数的求和
对于一些特定的幂级数,我们可以利用二项式定理找到 其求和的方法。
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数。
二项式系数的性质
二项式系数是组合数的推广 ,它具有与组合数相同的性 质,例如
1. 对称性:对于任何自然数n ,C(n,k) = C(n,n-k)。
2. 递推性:C(n+1,k) = C(n,k-1) + C(n,k)。
3. 组合恒等式:C(n,k) + C(n,k-1) = C(n+1,k)。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的基本工具之一。
二项式定理的意义与应用
01
二项式定理是组合数学的基础,可以帮助我们理解和分 析一些组合问题的内在规律。
02
在统计学中,二项式定理可以用于计算样本数量较少时 的置信区间和置信度。
深化理解的进阶题目
总结词
深入理解概念
详细描述
在基本掌握二项式定理的基础上,通过解决 一些相对复杂的进阶题目,帮助学生深入理 解二项式定理的概念和变形方式,进一步提 高解题能力。
有趣的开放性问题
总结词
激发学习兴趣
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点一二项式的通项公式及应用[基本知识]1.二项式定理2.二项式系数与项的系数[基本能力]一、判断题(对的打“√”,错的打“×”)(1)C r n an -r b r是(a +b )n 的展开式中的第r 项.( ) (2)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( ) (3)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)√ (3)√ 二、填空题1.⎝⎛⎭⎫1x -x 10的展开式中x 2的系数等于________. 答案:452.在⎝⎛⎭⎫x 2-2x 6的展开式中,常数项为________. 答案:2403.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项.答案:3[全析考法]考法一 形如(a +b )n 的展开式问题[例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10 B .20 C .40D .80(2)(2019·陕西黄陵中学月考)⎝⎛⎭⎫x +12x 6的展开式中常数项为( ) A.52 B .160 C .-52D .-160[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)⎝⎛⎭⎫x +12x 6的展开式的通项T r +1=C r 6x 6-r ⎝⎛⎭⎫12x r =⎝⎛⎭⎫12r C r 6x 6-2r,令6-2r =0,得r =3,所以展开式中的常数项是T 4=⎝⎛⎭⎫123C 36=52,选A.[答案] (1)C (2)A [方法技巧]二项展开式问题的常见类型及解法(1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.[例2] (1)(2018·广东一模)⎝⎛⎭⎫x +1x (1+2x )5的展开式中,x 3的系数为( ) A .120 B .160 C .100D .80(2)(2019·陕西两校联考)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .168[解析] (1)⎝⎛⎭⎫x +1x (1+2x )5=x (1+2x )5+1x (1+2x )5,∵x (1+2x )5的展开式中含x 3的项为x ·C 25(2x )2=40x 3,1x (1+2x )5的展开式中含x 3的项为1x ·C 45(2x )4=80x 3,∴x 3的系数为40+80=120.故选A.(2)根据(1+x )8和(1+y )4的展开式的通项公式可得,x 2y 2的系数为C 28C 24=168.故选D.[答案] (1)A (2)D [方法技巧]求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n ,m 中一个比较小,可考虑把它展开得到多个,如(a +b )2(c +d )m =(a 2+2ab +b 2)(c +d )m ,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )n ,(c +d )m 的通项公式,综合考虑.[例3] (1)(2019·枣阳模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60(2)(2019·太原模拟)⎝⎛⎭⎫2x +1x -15的展开式中常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r , 令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x6-k , 令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.(2)由⎝⎛⎭⎫2x +1x -15=⎝⎛⎭⎫-1+2x +1x 5,则其通项公式为(-1)5-r C r 5⎝⎛⎭⎫2x +1x r (0≤r ≤5),其中⎝⎛⎭⎫2x +1x r 的通项公式为2r -t C t r x r -2t (0≤t ≤r ). 令r -2t =0,得⎩⎪⎨⎪⎧ r =0,t =0或⎩⎪⎨⎪⎧ r =2,t =1或⎩⎪⎨⎪⎧r =4,t =2,所以⎝⎛⎭⎫2x +1x -15的展开式中的常数项为(-1)5C 05+(-1)3C 25×2C 12+(-1)1C 45×22C 24= -161.[答案] (1)C (2)-161 [方法技巧]三项展开式问题的破解技巧破解(a +b +c )n 的展开式的特定项的系数题,常用如下技巧:若三项能用完全平方公式,那当然比较简单;若三项不能用完全平方公式,只需根据题目特点,把“三项”当成“两项”看,再利用二项展开式的通项公式去求特定项的系数.[集训冲关]1.[考法一](2+33)100的展开式中,无理数项的个数是( ) A .84 B .85 C .86D .87解析:选A (2+33)100展开式的通项为T r +1=C r 100(2)100-r ·(33)r =C r 100250-r 2×3r 3,r=0,1,2, (100)所以当r 是6的倍数时,T r +1为有理项, 所以r =0,6,12,…,96,共17项,因为展开式共有101项,所以展开式中无理项的个数是101-17=84.故选A. 2.[考法二](x 2-2)⎝⎛⎭⎫1+2x 5的展开式中x -1的系数为( ) A .60 B .50 C .40D .20解析:选A 由通项公式得展开式中x -1的系数为23C 35-22C 15=60.3.[考法二](x +y )(2x -y )6的展开式中x 4y 3的系数为( ) A .-80 B .-40 C .40D .80解析:选D (2x -y )6的展开式的通项公式为T r +1=C r 6(2x )6-r (-y )r ,当r =2时,T 3=240x 4y 2,当r =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D.4.[考法三]在⎝⎛⎭⎫x +1x -16的展开式中,含x 5项的系数为( ) A .6 B .-6 C .24D .-24解析:选B 由⎝⎛⎭⎫x +1x -16=C 06⎝⎛⎭⎫x +1x 6-C 16⎝⎛⎭⎫x +1x 5+C 26⎝⎛⎭⎫x +1x 4+…-C 56⎝⎛⎭⎫x +1x +C 66,可知只有-C 16⎝⎛⎭⎫x +1x 5的展开式中含有x 5,所以⎝⎛⎭⎫x +1x -16的展开式中含x 5项的系数为-C 05C 16=-6,故选B.突破点二 二项式系数性质及应用[基本知识]二项式系数的性质[基本能力]一、判断题(对的打“√”,错的打“×”)(1)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (2)在(1-x )9的展开式中,系数最大的项是第5项和第6项.( )(3)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( ) 答案:(1)× (2)× (3)× 二、填空题1.若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为________.答案:842.已知m 是常数,若(mx -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0且a 1+a 2+a 3+a 4+a 5=33,则m =________.答案:33.若(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=________. 答案:2[全析考法]考法一二项展开式中系数和的问题赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,②偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[例1] (1)(2019·郑州一中月考)若二项式⎝⎛⎭⎫x 2-2x n 的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( )A .-1B .1C .27D .-27(2)(2019·襄阳四中月考)设(x 2+1)(2x +1)8=a 0+a 1(x +2)+a 2(x +2)2+…+a 10(x +2)10,则a 0+a 1+a 2+…+a 10的值为________.[解析] (1)依题意得2n =8,解得n =3,取x =1,得该二项展开式每一项的系数之和为(1-2)3=-1.故选A.(2)在所给的多项式中,令x =-1可得(1+1)×(-2+1)8=a 0+a 1+a 2+…+a 10,即a 0+a 1+a 2+…+a 10=2.[答案] (1)A (2)2 [易错提醒](1)利用赋值法求解时,注意各项的系数是指某一项的字母前面的数值(包括符号);(2)在求各项的系数的绝对值的和时,首先要判断各项系数的符号,然后将绝对值去掉,再进行赋值.考法二二项式系数或展开式系数的最值问题求解二项式系数或展开式系数的最值问题的一般步骤第一步,要弄清所求问题是“展开式系数最大”、“二项式系数最大”两者中的哪一个.第二步,若是求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二次项系数的性质求解.[例2] (1)(2019·内蒙古鄂尔多斯模拟)在⎝⎛⎭⎫x -ax 5的展开式中,x 3的系数等于-5,则该展开式的各项的系数中最大值为( )A .5B .10C .15D .20(2)(2019·福州高三期末)设n 为正整数,⎝⎛⎭⎫x -2x 3n 的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为________.[解析] (1)⎝⎛⎭⎫x -a x 5的展开式的通项T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =(-a )r C r 5x 5-2r ,令5-2r =3,则r =1,所以-a ×5=-5,即a =1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为C 25=10,选B.(2)依题意得,n =8,所以展开式的通项T r +1=C r 8x 8-r ·⎝⎛⎭⎫-2x 3r =C r 8x 8-4r (-2)r ,令8-4r=0,解得r =2,所以展开式中的常数项为T 3=C 28(-2)2=112.[答案](1)B(2)112[方法技巧]求展开式系数最值的2个思路1.[考法一、二]设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大的项是()A.15x3B.20x3C.21x3D.35x3解析:选B在(1+x)n=a0+a1x+…+a n x n中,令x=1得2n=a0+a1+a2+…+a n;令x=0,得1=a0,∴a1+a2+…+a n=2n-1=63,∴n=6.而(1+x)6的展开式中系数最大的项为T4=C36x3=20x3.2.[考法一](a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②得16(a+1)=2(a1+a3+a5)=2×32,∴a=3.答案:33.[考法二]设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N =240,则展开式中二项式系数最大的项为________.解析:依题意得,M=4n=(2n)2,N=2n,于是有(2n )2-2n =240,(2n +15)(2n -16)=0, ∴2n =16=24,解得n =4.要使二项式系数C k 4最大,只有k =2, 故展开式中二项式系数最大的项为T 3=C 24(5x )2·(-x )2=150x 3. 答案:150x 3[课时跟踪检测][A 级 基础题——基稳才能楼高]1.⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5D .20解析:选A 由二项展开式的通项可得,第四项T 4=C 35⎝⎛⎭⎫12x 2(-2y )3=-20x 2y 3,故x 2y 3的系数为-20,选A.2.二项式⎝⎛⎭⎫x +2x 210的展开式中的常数项是( ) A .180 B .90 C .45D .360解析:选A ⎝⎛⎭⎫x +2x 210的展开式的通项为T k +1=C k 10·(x )10-k ⎝⎛⎭⎫2x 2k =2k C k 10x 5-52k , 令5-52k =0,得k =2,故常数项为22C 210=180. 3.在(1+x )n (x ∈N *)的二项展开式中,若只有x 5的系数最大,则n =( ) A .8 B .9 C .10D .11解析:选C 二项式中仅x 5项系数最大,其最大值必为C n 2n ,即得n2=5,解得n =10.4.(2019·东北三校联考)若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=( )A .0B .1C .32D .-1解析:选A 由(1-x )5的展开式的通项T r +1=C r 5(-x )r =C r 5(-1)r x r,可知a 1,a 3,a 5都小于0.则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=a 0+a 1+a 2+a 3+a 4+a 5.在原二项展开式中令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=0.故选A.5.(2019·广西阳朔中学月考)(x -y )(x +2y +z )6的展开式中,x 2y 3z 2的系数为( ) A .-30 B .120 C .240D .420解析:选B [(x +2y )+z ]6的展开式中含z 2的项为C 26(x +2y )4z 2,(x +2y )4的展开式中xy 3项的系数为C 34×23,x 2y 2项的系数为C 24×22,∴(x -y )(x +2y +z )6的展开式中x 2y 3z 2的系数为C 26C 34×23-C 26C 24×22=480-360=120,故选B.6.(2019·太原模拟)在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为________.解析:因为二项式(1+2x )6的展开式中含x 的项的系数为2C 16,二项式(1+y )5的展开式中含y 3的项的系数为C 35,所以在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为2C 16C 35=120.答案:120[B 级 保分题——准做快做达标]1.若二项式⎝⎛⎭⎫x -2x n 展开式中的第5项是常数,则自然数n 的值为( ) A .6 B .10 C .12D .15解析:选C 由二项式⎝⎛⎭⎫x -2x n 展开式的第5项C 4n (x )n -4⎝⎛⎭⎫-2x 4=16C 4n x n 2-6是常数项,可得n2-6=0,解得n =12.2.(2019·新乡模拟)(1-3x )7的展开式的第4项的系数为( )A .-27C 37B .-81C 47 C .27C 37D .81C 47解析:选A (1-3x )7的展开式的第4项为T 3+1=C 37×17-3×(-3x )3=-27C 37x 3,其系数为-27C 37,选A.3.(2019·益阳、湘潭高三调考)若(1-3x )2 018=a 0+a 1x +…+a 2 018x 2 018,x ∈R ,则a 1·3+a 2·32+…+a 2 018·32 018的值为( )A .22 018-1B .82 018-1C .22 018D .82 018解析:选B 由已知,令x =0,得a 0=1,令x =3,得a 0+a 1·3+a 2·32+…+a 2 018·32 018=(1-9)2 018=82 018,所以a 1·3+a 2·32+…+a 2 018·32 018=82 018-a 0=82 018-1,故选B.4.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18解析:选B 在二项式⎝⎛⎭⎫x +3x n 的展开式中,令x =1得各项系数之和为4n ,即A =4n ,二项展开式中的二项式系数之和为2n ,即B =2n .∵A +B =72,∴4n +2n =72,解得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3的展开式的通项为T r +1=C r 3(x )3-r ⎝⎛⎭⎫3x r =3r C r 3x 33-r2,令3-3r 2=0,得r =1,故展开式中的常数项为T 2=3×C 13=9,故选B.5.(2019·山西五校联考)⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5的展开式中常数项为( ) A .-30 B .30 C .-25D .25解析:选C ⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5=x 2⎝⎛⎭⎫1-1x 5-3x ⎝⎛⎭⎫1-1x 5+4x ⎝⎛⎭⎫1-1x 5,⎝⎛⎭⎫1-1x 5的展开式的通项T r +1=C r 5(-1)r⎝⎛⎭⎫1x r ,易知当r =4或r =2时原式有常数项,令r =4,T5=C 45(-1)4⎝⎛⎭⎫1x 4,令r =2,T 3=C 25(-1)2·⎝⎛⎭⎫1x 2,故所求常数项为C 45-3×C 25=5-30=-25,故选C.6.(2019·武昌调研)若⎝ ⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和为1 024,则该展开式中的常数项为( )A .-270B .270C .-90D .90解析:选C ⎝⎛⎭⎪⎫3x -3x n 的展开式中所有项系数的绝对值之和等于⎝ ⎛⎭⎪⎫3x +3x n 的展开式中所有项系数之和.令x =1,得4n =1 024,∴n =5.则⎝⎛⎭⎪⎫3x -3x n =⎝ ⎛⎭⎪⎫3x -3x 5,其通项T r +1=C r 5⎝⎛⎭⎫3x 5-r·(-3x )r =C r 5·35-r ·(-1)r ·x -+523r r,令r -52+r 3=0,解得r =3,∴该展开式中的常数项为T 4=C 35·32·(-1)3=-90,故选C.7.(2018·四川双流中学月考)在(x -2)6展开式中,二项式系数的最大值为m ,含x 5项的系数为n ,则nm=( )A.53 B .-53C.35D .-35解析:选D 因为n =6是偶数,所以展开式共有7项,其中中间一项的二项式系数最大,其二项式系数为m =C 36=20,含x 5项的系数为n =(-1)C 16×2=-12,则n m =-1220= -35.故选D. 8.(2019·河南师范大学附属中学月考)已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D 由题意得,因为(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,两边同时求导,可得9(x +2)8=a 1+2a 2x +3a 3x 2+…+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+9a 9=310,令x = -1,得a 1-2a 2+3a 3-4a 4+…+9a 9=9,又(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+4a 4+5a 5+6a 6+7a 7+8a 8+9a 9)·(a 1-2a 2+3a 3-4a 4+5a 5-6a 6+7a 7-8a 8+9a 9)=310×9=312.9.(2019·衡水调研)若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S 为( )A.152 B .154C .120D .240解析:选B 由题意知,S =C 06+C 16+…+C 66=26=64, P =C 46(-2)4=15×16=240,故P S =24064=154. 故选B.10.(2019·达州期末)已知(3x -1)n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *),设(3x -1)n展开式的二项式系数和为S n ,T n =a 1+a 2+a 3+…+a n (n ∈N *),S n 与T n 的大小关系是( )A .S n >T nB .S n <T nC .n 为奇数时,S n <T n ,n 为偶数时,S n >T nD .S n =T n解析:选C S n =2n ,令x =1,得a 0+a 1+a 2+…+a n =2n ,令x =0,得a 0=(-1)n ,所以T n =a 1+a 2+a 3+…+a n =S n -a 0=S n -(-1)n ,所以当n 为偶数时,T n =S n -1<S n ,当n 为奇数时,T n =S n +1>S n ,故选C.11.(2019·成都检测)在二项式⎝⎛⎭⎫ax 2+1x 5的展开式中,若常数项为-10,则a =________. 解析:⎝⎛⎭⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ×⎝⎛⎭⎫1x r =C r 5a 5-r x 10-5r 2,令10-5r 2=0,得r =4,所以C 45a 5-4=-10,解得a =-2. 答案:-212.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:因为展开式中各项系数的和为2,所以令x =1,得(1-a )×1=2,解得a = -1.⎝⎛⎭⎫2x -1x 5展开式的通项公式为T r +1=C r 5(2x )5-r ⎝⎛⎭⎫-1x r =(-1)r 25-r C r 5x 5-2r ,令5-2r =3,得r =1,展开式中含x 3项的系数为T 2=(-1)×24C 15=-80,令5-2r =5,得r =0,展开式中含x 5项的系数为T 1=25C 05=32,所以⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中含x 4项的系数为-80+32=-48.答案:-4813.(2019·贵阳调研)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,所以a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:014.(2019·天水一中一模)已知(1-2x )5(1+ax )4的展开式中x 的系数为2,则实数a 的值为________.解析:因为(1-2x)5的展开式中的常数项为1,x的系数为C15×(-2)=-10;(1+ax)4的展开式中的常数项为1,x的系数为C14·a=4a,所以(1-2x)5(1+ax)4的展开式中x的系数为1×4a+1×(-10)=2,所以a=3.答案:3。

相关文档
最新文档