行列式计算方法研究毕业论文
行列式计算方法研究毕业论文
行列式计算方法研究毕业论文目录摘要………………………………………………………………………………………...错误!未定义书签。
Abstract……………………………………………………………………………………...错误!未定义书签。
第1章行列式的计算方法 (1)第1节利用行列式定义与性质计算 (1)第2节化三角形法 (3)第3节降阶法 (4)第4节递推公式法及数学归纳法 (5)第5节利用德蒙行列 (7)第6节行列式的特殊计算法 (8)第2章行列式的应用 (11)第1节行列式在代数中的应用 (11)第2节行列式在几何中的应用 (12)第3节行列式在多项式理论中的应用 (14)结论 (16)参考文献 (17)致谢 (18)第1章 行列式的计算方法第1 节 利用行列式定义与性质计算定义1[1] 对任何n 阶方阵()ij nA a =,其行列式记为ij nA a = .()()121212121n n n nt p p p ij p p p np p p A a a a a ==-∑ .其中12n p p p 是数组1,2,…,n 的全排列,∑表示对关于这些全排列的项(共有!n项)全体求和.性质1 行列互换,行列式不变,即nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=.性质1表明,行列式中行与列的地位是对称的,所以凡是有关行的性质,对列同样成立.性质2 对换行列式两行的位置,行列式反号. 性质3 若行列式有两行相同,则行列式等于0.性质4 用一个数乘以行列式的某一行,等于用这个数乘以这个行列式,或者说某一行的公因式可以提出来,即nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111************=. 推论1 若行列式某行(列)元素都是0,则行列式等于0. 推论2 若一个行列式的任两行成比例,则行列式值为0. 性质5 行列式具有分行相加性,即nnn n n n na a a cbc b c b a a a21221111211+++=nn n n n n a a a b b b a a a212111211+nnn n n n a a a c c c a a a212111211. 性质6 把行列式的某一行的若干倍加到另一行,行列式值不变, 即nnn n kn h k in i i nnn n n kn k k kn in k i k i na a a a a a a a a a a a a a a a a a ca a ca a ca a a a a212121112112121221111211=+++. 例1[1] 计算行列式0005004003002000=D . 解 展开式中项的一般形式是12341234j j j j a a a a .显然,如果51≠j ,那么011=j a ,从而这个项都等于零.因此只需考虑51=j 的那些项;同理,只需考虑24j =,33j =,42j =这些列指标的项.这就是说行列式不为零的项只有41322314a a a a 这一项,而6)3421(=τ这一项前面的符号应该是正的,所以1205432=⋅⋅⋅=D .例2[2] 计算n 级行列式cdddd c d dd d c dd d d c d =.解 这个行列式的特点是每一行有一个元素是c ,其余1-n 个是d . 根据性质6,把行列式第二列加到第一列,行列式不变,再把第三列加到第一列,行列式不变,直到第n 列也加到第一列,即得cddddn c d c d dn c dd c d n c dd d d n c d )1()1()1()1(-+-+-+-+= =[]11(1)11d d d d c d d d c n d d c d ddddc+-. 把第二行到第n 行都分别加上第一行的-1倍,就有[]dc dd c d d dc d d d d n c d ----+= 00001)1(.根据例1得[]1)()1(---+=n d c d n c d .把行列式的某一行(或列)的元素写成两数和的形式,然后利用行列式的性质5将原行列式写成两行列式之和, 进而使行列式简化以便计算.例3 计算行列式332132213211λλλ+++=a a a a a a a a a D .解332322321332132213210λλλλλ+++++=a a a a a a a a a a a a a a a D=[]3233221321))((a a a a a -+++λλλλλ.第2节 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法,这是计算行列式的重要方法之一. 利用行列式的定义容易求得上(下)三角形行列式或对角形行列式.对于各行(或各列)之和相等的行列式,将其各行(或列)加到第1行(或第1列)或第n 行(或第n 列),然后再化简.例1 计算行列式0112032120113110--=D . 解 4132310311020112423212-----=--↔r r r r r r D132014003110201123243----=+-r r r r 25132003110401143432-----=+↔r r r r =50. 原则上,每个行列式都可利用行列式的性质化为三角形行列式.但对于阶数高的行列式,在一般情况下,计算往往较繁,因此,在许多情况下,总是先利用行列式的性质将其作某种保值变形,再化为三角形行列式.例2 计算行列式xa a a a x a a aa x a a a a x D =.解 它的特点是各列元素之和为)3(x a +,因此把各行都加到第一行,然后第一行再提出)3(x a +,得xaa a ax a a aa x a x a D 1111)3(+=.将第一行乘以)(a -分别加到其余各行,化为三角形行列式,则ax a x a x x a D ---+=00000001111)3(=3))(3(a x x a -+.第3节 降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用行列式的性质化简,使行列式中有较多的零出现,然后再展开.例1 计算行列式4122743221010113-=D . 解221132214)1(21211432010021143223134--=---+--=c c c c D213767)1(22137067013423132-=----=---+-+=r r r r .第4节 递推公式法及数学归纳法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,1n -阶或1n -阶与2n -阶等)的线性关系式,这种关系式称为递推关系式.根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n 阶行列式的值,这种计算行列式的方法称为递推法.使用递推方法首先要利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明.但给定一个行列式要猜想其值是比较困难的,因此数学归纳法一般直是用来证明行列式等式.例1 计算n 阶行列式4314314314=n D . 解 按第一列展开2113443143143140134----=-=n n n n D D D D .于是有32211333------=-=-n n n n n n D D D D D D =1312=-=D D ,及)(3)(3322211------=-=-n n n n n n D D D D D D =n n D D 3)(3122=-=- .从上两式削去1-n D ,得)13(211-=+n n D . 对于形如 的所谓三角行列式,可直接展开得两项递推公式21--+=n n n D D D βα,然后采用如下方法求解.方法1 如果n 较小,则直接递推计算.方法2 用第二数学归纳法:即验证1=n 时结论成立,设k n ≤结论成立,若可证明出1+=k n 时结论也成立,则对任意自然数结论也成立.方法3 将21--+=n n n D D D βα变形为)(211----=-n n n n pD D q pD D ,其中α=+q p ,β=-pq .由韦达定理知p 和q 是一元二次方程02=--βαx x 的两个根.确定p 和q 后,令1)(--=n n pD D x f ,利用)1()(-=n qf n f 递推求出)(n f ,再由)(1n f pD D n n +=-递推求出n D .方法4 设n n D x =,代入021=----n n n D D D βα,得021=----n n n x x x βα,因此有02=--βαx x (称为特征方程),求出根1x 和2x (假设21x x ≠),则1122n n n D k x k x =+这里1k ,2k 可通过取1n =和2n =来确定.例2 求n 阶行列式的值0110110110110=n D .解 按第一行展开得2--=n n D D ,即.02=+-n n D D 作特征方程012=+x 解得i x i x -==21,,则n n n i b i a D )(-⋅+⋅= )1(当1=n 时,01=D ,代入)1(式得;0=-ib ia 当2=n 时,12-=D ,代入)1(得1-=--b a 联立求解得21==b a ,故1()2n nn D i i ⎡⎤=+-⎣⎦. 例3 计算n 阶行列式xa a a a a x x xD n n nn +---=--12211000010001. 解 用数学归纳法 当2=n 时21122)(1a a x x a x a x D ++=+-==212a x a x ++.假设k n =时,有k k k k k k a x a x a x a x D +++++=---12211 .则当1+=k n 时,把1+k D 按第一列展开,得11+++=k k k D xD D=1111)(+--+++++k k k k k a a x a x a x x =12111+-++++++k k k k k a x a x a x a x .第5节 利用德蒙行列式德蒙行列式具有逐行元素方幂递增的特点,因次遇到具有逐行(或列)元素方幂递增或者递减的行列式时,可以考虑将其转化为德蒙行列式并利用相应的结果求值.定义 1 德蒙行列式()1232222123111111231111n n ijnj i nn n n n na a a a D ab a a a a a a a a ≤≤----==-∏.例1 计算行列式2122122111222212121111111------+++++++++=n n n n n n n n n n x x x x x x x x x x x x x x x D. 解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得德蒙行列式112112222121111---=n nn n n n x x x x x x x x x D=1()i j j i nx x ≤<≤-∏,其中“∏”表示连乘号.第6节 计算行列式杂例计算某些行列式有时特意把原行列式加上一行一列再进行计算,这种计算行列式的方法叫做加边法.当然,加边后要保证行列式的值不变,并且要使所得的高一阶行列式容易计算.要根据需要和原行列式的特点选取所加的行和列.加边法适用于某一行(列)有一个相同的字母的行列式,也可用于其列(行)的元素分别为1-n 个元素的倍数的情况.例1[3] 计算行列式db aD +++=111111111.解 给原行列式加边dba D +++=1110111011101111=+->ir r i 11db a 0010010011111---=+++121313111c c a c c dc c b db a d b a 000000001111111+++=abd d b a )1111(+++.例2[3]计算行列式229132413232213211x x D --=.解 由行列式定义知D 为x 的4次多项式,当1±=x 时,1,2行相同,有0=D ,所以1±=x 为D 的根;当2±=x 时,3,4行相同,有0=D , 所以2±=x 为0D =的根.故0D =有4个1次因式:1x +,1x -,2x +,2x -.设)2)(2)(1)(1(-+-+=x x x x a D ,令0=x ,则129132513232213211-==D ,即,12)2)(1(1-=--⋅⋅a ,所以3-=a .所以)2)(2)(1)(1(3-+-+-=x x x x D .当行列式各行(列)和相等,且除对角线外其余元素都相同可采用如下步骤. (1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式D *除主对角线外,其余元素均为0;(2)计算D *的主对角线各元素的代数余子式()ij 1,2,,A i n =;(3) ∑=*-=nj i ij A x D D 1.例 3[3] 求行列式的值n 111211212111n n D n --=-.解 在n D 上的各个元素上加上(-1)后()()1(1)2001-n 001-n 0D1(1)1-n 0n n n n n -*==--.又12)1(11,21)1()1(-----====n n n n n n n A A A ,其它的是零,所以()()()()()()()()()1211211111)1(1121n -----*--=--+--=+=-∑n n n n n n nnij ij n n n n n A D D n .以上是行列式计算常用的方法,在实际计算中,不同的方法适应于具有不同特征的行列式,如定义法一般适用于0比较多的行列式.当某行或某列含有较多的零元素,可采用降阶的方法每一种方法都有其各自的优点及其独特之处,因此研究行列式的解法有非常重要的意义.第2章 行列式的应用第1节 行列式在代数中的应用2.1 用行列式解线性方程组如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* ,的系数行列式0≠D , 那么,这个方程组有解,并且解是唯一的,可表示为DD x D Dx D D x n n ===,,,2211 . 例1[4] 求一个二次多项式()f x ,使(1)1f =-,(1)9f -=,(2)3f =-. 解 设所求的二次多项式为,2012()f x a x a x a =++,则有012012012(1)1(1)9(2)423f a a a f a a a f a a a =++=-⎧⎪-=-+=⎨⎪=++=-⎩ ,可求得系数行列式11111160421D =-=≠,所以可用克拉默法则求解,又11119116321D -=-=-, 211119130431D -==--, 311111918423D -=-=-. 解得101D a D ==,215D a D ==-,323Da D==. 于是所求的二次多项式为2()53f x x x =-+.2.2 用行列式证明恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零,利用行列式的这些性质,我们可以构造行列式来证明等式.例2 已知0a b c ++=,求证abc c b a 3333=++. 证明 令abc c b a D 3333-++=,则0111)(=++=++++++==acb b ac c b a acbb ac c b a c b a c b a ac bb a cc b a D ,命题得证.第2节 行列式在几何中的应用利用行列式我们可以解决集合中的一些问题,例如求平面三角形面积,在解析几何中用行列式表示直线的方程,以及三线共点和三点共线的几何问题,接下来我们就来讨论一下行列式在这几方面的应用.1[5]用行列式表示三角形的面积以平面三点),(11y x P ,),(22y x Q ,),(33y x R 为顶点的PQR ∆的面积S 是11121332211y x y x y x . 证明 将平面),(11y x P ,),(22y x Q ,),(33y x R 三点扩充到三维空间,其坐标分别为),,(11k y x ,),,(22k y x ,),,(33k y x ,其中k 为任意常数, 由此可得)0,,(1212y y x x PQ --=,)0,,(1313y y x x PR --=.),0,0(13131212y y x x y y x x PR PQ ----=⨯.PQR ∆面积为><=PR PQ S ,21313121221yyxxyyxx----==1313121221yyxxyyxx----=11121332211yxyxyx.例1 (2001年全国高考试题)设抛物线pxy22=(0p>)的焦点为F,经过焦点F的直线交抛物线交于A、B两点,点C在抛物线的准线上,且xBC//轴,求证AC 经过原点.证明设A、B两点的坐标为),(11yxA、),(22yxB,由于点C在抛物线的准线上,且xBC//轴,则),2(2ypC-,由抛物线焦点弦性质221pyy-=,得122ypy-=,故ccccaaaayxyxyxyxyxyx+-ccccyxyxyxyx01111+-=22)22(112211221=-=+=ypyppyypypy,所以AC经过原点.2[5]用行列式表示直线方程直线通过两点),(11yxP和),(22yxQ的直线方程为11221101x yx yx y=)1(证明由两点式,直线PQ方程为221212x x y yx x y y--=--.将上式展开并化简,得2122121=+-+--xyyxyxyxxyxy,此式可进一步变形为0111122112121=+-y x y x x x yy y x,此式为行列式)1(按第三行展开所得结果,原式得证.3[6] 三线共点 平面三条互不平行的直线,0,0,333322221111=++=++=++c y b x a L c y b x a L c y b x a L 相交于一点的充要条件是1112223330a b c a b c a b c =. 4[6] 三点共线平面三点),(11y x P ,),(22y x Q ,),(33y x R 在一直线的充要条件是1122331101x y x y x y =. 第3节 行列式在多项式理论中的应用实系数二元二次多项式F Ey Dx Cy Bxy Ax +++++22在复数域是否可以分解因式,是初等数学的一个重要问题,它不仅关系到因式分解,而且关系到判别方程022=+++++F Ey Dx Cy Bxy Ax 表示曲线的类型及解二元二次方程,能简单明了地判定二元二次多项式的可分解性.例1[7] 求证)()()()(222cz by ax cy bx az cx bz ay cz by ax ++-++++++++))(())(()(cy bx az cz by ax cy bx az cx bz ay cx bz ay ++++-++++-++ ))((222222xz yz xy z y x ac bc ab c b a ---++---++=.证明 左边cxbz ay cz by ax cy bx az cy bx az cx bz ay cz by ax ++++++++++++=111xb a y ac z c b z a c y c b x b a cy bx az z a c y c b x b a z c b y b a x a c cz by ax )()()()()()()()()()()()(01-------+-+-++-------+-+-++= xb a y ac z c b z a c y c b x b a z a c y c b x b a z c b y b a x a c )()()()()()()()()()()()(-------+-+--------+-+-=⎝⎛------+------+------+------=)()()()()()()()(222a c b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c ⎝⎛------+⎪⎪⎭⎫------+ ⎝⎛------+⎪⎪⎭⎫------+)()()()()()()()(b a b a a c a c yz a c a c c b c b b a c b a c b a xy c b c b b a b a xz c b a c b a c b ⎪⎪⎭⎫------+)()(xy b a b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c )()()()()()()()(222------+------+------+------=xz c b a c b a c b yz b a c b a c b a )()()()(------+------+))((222222xz yz xy z y x ac bc ab c b a ---++---++=.结论本文对行列式的计算方法进行了概括和总结,主要从n阶行列式的特点出发,通过例题的形式列举了行列式的几种主要计算方法.不仅较完满地解决了一些较难的求解问题,而且解决了代数,解析几何等方面的问题,从数形结合方面又开辟了新的思考途径,使得行列式的作用不仅限于对方程组的研究,在初等数学的各个方面也看到了行列式的妙用.参考文献[1] 大学数学系几何与代数教研室代数小组,高等代数(第三版) [M],: 高等教育出社,(2003):27-38[2] 乔林,关于行列式的定义及其计算方法 [J],科技信息,2007(25):[3] 万广龙,行列式的计算方法与技巧 [J],China's Foreign Trade ,2011(04)[4] 梁波,例谈行列式的几个应用 [J],学院学报,2006,(4):27-28[5] 汤茂林,行列式在初等代数中的巧用 [J],师学院学报,2008,(3):9-10[6] 周立仁,行列式在初等数学中的几个应用 [J],理工学院学报,2008,(4):17-18[7] 彭丽清,行列式的应用 [J],师学院学报,2005,(5):40-41致谢在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到付丽老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,向她表示衷心的感谢!我还要感谢在一起愉快的度过大学生活的同学们,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成.感谢师长,同学,朋友们给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。
行列式计算方法论文
本科生毕业论文(设计)题目:行列式计算及其应用研究系部数学系学科门类理学专业数学与应用数学学号**********姓名张大儒指导教师王吟2011年 5 月15 日行列式计算及其应用研究摘要行列式是高等代数课程里基本而重要的内容之一,在数学和现实生活中有着广泛的应用,懂得如何计算行列式显得尤为重要.本文阐述行列式的定义及基本性质,介绍了利用行列式的性质计算、化三角形法、代数余子式法、加边法(升阶法)、范德蒙得行列式法等5种基本计算方法和数学归纳法、递推法、利用矩阵特征值计算、拆项法、因式分解法等5种特殊计算方法.本文也介绍了行列式在解析几何、代数中的理论应用和在工程建设、经济管理中的实践应用.这些行列式的计算方法及其应用可以提高我们对行列式的认识,有利于把行列式的研究推向深入.关键词:行列式;因式分解;化三角形法;解析几何ABSTRACTDeterminant of higher algebra curriculum content of basic and important one in mathematics and real life has a wide range of applications, know how to calculate the determinant is very important. This paper describes the definition and basic properties of determinant, the determinant of the nature described by calculation of the triangle method, algebraic method, adding edge method (Ascending Order), Vandermonde determinant method of 5 basic calculation methods and mathematical induction, recursion, the use of eigenvalue calculation, the dissolution of entry method, such as the factorization method of 5 special calculation methods. This article also describes the determinant in analytic geometry, algebra theory is applied and engineering construction, the practical application of economic management. The determinant of the calculation method and its applications can improve our understanding of the determinant, to facilitate the determinant of research depth.Key words: determinant; factorization; triangle method; analytic geometry.目录1 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1排列 (1)1.1.2定义 (1)1.2 行列式的相关性质 (2)2 行列式的计算方法 (4)2.1 行列式计算的基本方法 (4)2.1.1 利用行列式的性质计算 (4)2.1.2 化三角形法 (5)2.1.3 代数余子式法 (5)2.1.4 加边法(升阶法) (7)2.1.5 范德蒙得行列式法 (9)2.2 行列式计算特殊方法 (12)2.2.1 数学归纳法 (12)2.2.2 递推法 (13)2.2.3 利用矩阵特征值计算 (16)2.2.4拆项法 (17)2.2.5 因式分解法 (18)3 行列式的应用 (19)3.1 行列式的理论应用 (19)3.1.1在解析几何中的应用 (19)3.1.2在代数中的应用 (21)3.2 行列式在实践中的应用 (24)参考文献 (1)1 行列式的定义及性质行列式的定义及性质是计算行列式的基础有必要进行介绍.1.1 行列式的定义 1.1.1排列]4[在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列.如2431中,21,43,41,31是逆序,逆序数是4,为偶排列.1.1.2定义]6[n 阶行列式111212122212n n n n nna a a a a a D a a a =等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (1-1)的代数和,这里n j j j j 321是n 2,1的一个排列,每一项(1-1)都按下列规则带有符号:当n j j j j 321是偶排列时,(1-1)带有正号,当n j j j j 321是奇排列时,(1-1)带有负号.这一定义可以写成12121211121()212221212(1)n n nn j j j n j j nj j j j n n nna a a a a a a a a a a a τ=-∑(1-2)这里表示对所有n 级排列求和.1.2 行列式的相关性质]2[记111212122212n n n n nn a a a a a a D a a a =,112111222212n n nnnna a a a a a D a a a '=,行列式D '称为行列式D 的转置行列式. 性质1 行列式与它的转置行列式相等.证: 记111212122212n n n n nnb b b b b b D b b b '=,即ij ij b a = ),2,1,(n j i =,按行列式定义121212()12(1)n n nj j j j j nj j j j D b b b τ'=-∑121212()12(1)n n nj j j j j j n j j j b b b D τ=-=∑.性质2:互换行列式的两行(列),行列式反号.证:11111212221pq n p q n n npnqnna a a a a a a a D a a a a =,交换第q p ,两列得行列式111112122211q p n q p n n nqnpnna a a a a a a a D a a a a =.将D 与1D 按(1.6)式计算,对于D 中任一项1212(1)p q n I i i i p i q i n a a a a a -其中I 为排列1pqn i i i i 的逆序数,在1D 中必有对应一项11212(1)q p n I i i i q i p i n a a a a a -(当q p j ,≠时,第j 列元素取ij a ,第p 列元素取q i q a ,第q 列元素取p i p a ),其中1I 为排列1qpn i i i i 的逆序数,而1pqn i i i i与1qpn i i i i只经过一次对换,由定理1知,(1)I -与1(1)I -相差一个符号,又因12121212(1)q p n p q n I i i i q i pi n i i i p i q i n a a a a a a a a a a =-,所以对于D 中任一项,1D 中必定有一项与它的符号相反而绝对值相等,又D 与1D 的项数相同,所以1D D -=.交换行列式j i ,两行记作),(j i r ,交换行列式j i ,两列,记作),(j i c .推论 若行列式有两行(列)元素对应相等,则行列式为零.性质3:行列式的某一行(列)中所有元素都乘以同一个数k ,等于用数k 乘以此行列式. 第i 行(列)乘以数k ,记作.))((k i r ))](([k i c .性质4:行列式中若有两行元素对应成比例,则此行列式为零. 性质5:若行列式的某行(列)的元素都是两个数之和,例如1112121222112212n n i i i i in inn n nna a a a a a D a a a a a a a a a ='''+++,则行列式D 等于下列两个行列式之和:1112111121212222122212121212n n n n i i in i i in n n nnn n nna a a a a a a a a a a a D a a a a a a a a a a a a =+'''.性质6:把行列式某一行(列)的元素乘以数k ,加到另一行(列)对应的元素上去,行列式的值不变.例如,以数k 乘以第i 行上的元素加到第j 行对应元素上记作)]([k i j r +,有111211112112121211221211[()]()n n i i ini i inj j jn j j j j jn jnn n nnn n nna a a a a a a a a a a a r j i k i j a a a a ka a ka a ka a a a a a a +≠+++2 行列式的计算方法这一部分阐述两个方面内容:2.1行列式计算的基本方法, 2.2 行列式计算特殊方法.2.1 行列式计算的基本方法基本的行列式解法包括:性质法、化三角形法、代数余子式法、升阶法、范德蒙的行列式法.2.1.1 利用行列式的性质计算例1: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称n D 为反对称行列式,证明:奇数阶反对称行列式为零. 证:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式n D 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----, 由行列式的性质A A '=,121311223213233123000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ =n n D )1(-当n 为奇数时,得n D =n D ,因而得n D = 0.2.1.2 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例2 计算n 阶行列式n ab b b a b D bb a=解:()[]a b b a bbb n a D n1111-+=()[]ba b a bbb n a ---+=000011()[])1()(1---+=n b a b n a2.1.3 代数余子式法在一个n 级行列式D 中,把元素ij a 所在的行与列划去后,剩下的2)1(-n 个元素按照原来的次序组成的一个)1(-n 阶行列式ij M ,称为元ij a 的余子式,ij M 带上符号)()1(j i +-称为的ij a 代数余子式,记作ij j i ij M A )()1(+-=定理1: 行列式等于其第 i 行诸元素与各自代数余子式的乘积之和 , 即ij nj ij nn nn ij ij A a A a A a A a A a A a D ∑==+++++=1131312121111证:先证特殊情况元素11a 位于第一行、第一列,而该行其余元素均为零;1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000ni iin nn nna a a D a a a a a a =+++++++++111211112111121121212120000n n n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++ 1122i i i i in in a A a A a A =++同理有:nj nj j j j j A a A a A a D +++= 2211.例3 计算四阶行列式 4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.证: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a b D a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.2.1.4 加边法(升阶法)加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法.它要求:1 保持原行列式的值不变; 2 新行列式的值容易计算.根据需要和原行列式的特点选取所加的行和列.加边法适用于某一行(列)有一个相同的字母外,例4计算n 阶行列式nn n nn a x a a a a a x a a a a a x a a a a a x D ++++=321321321321. 解:110nn na a D D =1211002,,11001n i a a a x i n x x-=+--第行减第1行1211000000nj nj a a a a xx x x=+=∑11nj n j a x x =⎛⎫=+ ⎪⎝⎭∑例5]3[ 计算)2(≥n n 阶行列nn a a a a D ++++=1111111111111111321,其中12n a a a ≠.解: 先将n D 添上一行一列,变成下面的1+n 阶行列式:nn a a a D +++=+1110111011101111211显然,n n D D =+1.将1+n D 的第一行乘以1-后加到其余各行,得nn a a a D 0010010011111211---=+ 因0≠i a ,将上面这个行列式第一列加第)1,,2(+=n i i 列的11-i a 倍,得:111122111111111100000100 00010ni in n nna a a D D a a a a =++-==-=-∑121211000011 1 10nnn i i i ina a a a a a a a ==⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭∑∑.2.1.5 范德蒙得行列式法根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式.其中范德蒙行列式就是一种.这种变形法是计算行列式最常用的方法.例1 计算行列式1222211221212121122111111n n nn n n n n n n nx x x D x x x x x x x x x x x x ------+++=++++++解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得范德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏例2 计算1n +阶行列式122111111111122122222222122111111111n n n n n n n n n nn n n n n n n n n n n n n a a b a b a b b a a b a b a b b D a a b a b a b b ---------++++++++=.其中1210n a a a +≠.解 这个行列式的每一行元素的形状都是k i k n i b a -,k =0,1,2,…,n .即i a 按降幂排列,i b 按升幂排列,且次数之和都是n ,又因0i a ≠,若在第i 行(i =1,2,…,n )提出公因子n i a ,则D 可化为一个转置的范德蒙得行列式∏∏+≤≤≤+=+++++++⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=1111112111122222221121111121111n i j j j i i n i n i nn n n n n n nnn n n na b a b a a b a b a b a b a b a b a b a b a b aa a D()∏+≤≤≤-=11n i j j i jib a ab例3 计算行列式xyxzyzz y x z y xD 222=.解:))()()((222222)1()3(22222)1)(()3(y z x z x y xz yz xy xzyz xy z xz yz xy y xz yz xy x z y x z y xxyz yz xz yz y yz xz xy z y x z y x D x z y ---++=+++++++++=++++++=+++例4 计算行列式n nn n n n n n nnn x x x x x x x x x x x x D21222212222121111---=解:作如下行列式,使之配成范德蒙行列式nn nn n n n n n n n n n n n nny x x x y x x x y x x x y x x x y x x x y P21111211222221222221211111)(--------= = ∏∏≤<≤=--ni j j ini i x xx y 11)()(易知n D 等于)(y P 中1-n y 的系数的相反数,而)(y P 中1-n y 的系数为∏∑≤<≤=--ni j j i nk kx x x 11)( ,因此,∑∏==≤<≤-=nk ni j j ikn x xx D 11)(例5 计算n 阶行列式11112222(1)(2)(1)(1)(2)(1)1211111n n n n n n n n n a n a n a a a n a n a a D a n a n a a ---------+-+--+-+-=-+-+-解:显然该题与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质把它化为范德蒙行列式的类型.先将的第n 行依次与第1-n 行,2-n 行,…,2行,1行对换,再将得到到的新的行列式的第n 行与第1-n 行,2-n 行,…, 2行对换,继续仿此作法,直到最后将第n 行与第1-n 行对换,这样,共经过2)1(12)2()1(-=+++-+-n n n n 次行对换后,得到(1)2222211111111121(1)(1)(2)(1)(1)(2)(1)n n n n n n n n n n n a n a n a a D a n a n a a a n a n a a ----------+-+-=--+-+--+-+-上式右端的行列式已是范德蒙行列式,故利用范德蒙行列式的结果得:∏∏≤<≤≤<≤----=+--+--=ni j ni j n n n n n j i j n a i n a D 112)!(2)1()()1()]()[()1(2.2 行列式计算特殊方法在2.1中介绍了一些行列式基本计算方法,但基本方法只能处理一些较为简单的行列式,不能满足实际应用的需要.下面将在基本方法的基础上介绍一些较为复杂的方法.2.2.1 数学归纳法当n D 与 1+n D 是同型的行列式时,可考虑用数学归纳法求之. 一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明.因此,数学归纳法一般是用来证明行列式等式.例6 计算行列式 xa a a a a x xx D n n n +---=--1232100000100001. 解:结合行列式的性质与次行列式本身的规律,可以采用数学归纳法对此行列式进行求解当2=n 时,21221222)(1a x a x a a x x a x a x D ++=++=+-=假设k n =时,有k k k k k k a x a x a x a x D +++++=---12211则当1+=k n 时,把1+k D 按第一列展开,得11221111)(+---++++++++=+=k k k k k k k k k a a x a x a x a x x a xD D12111k k k k k x a x a x a x a +-+=+++++由此,对任意的正整数n ,有n n n n n n a x a x a x a x D +++++=---12211 .2.2.2 递推法 2.2.2.1基本概念定义1]7[: 形为02211=++++---r n r n n n d k d k d k d (2-1) 的关系式称为r 阶齐次线性递推关系式,其中n k k k k 321,,,均为常数,并且r k ≠0,对应的方程02211=++++--n r r r k x k x k x (2-2)称为(2-1)的特征方程. 定义2:对于序列 ,,,210a a a 定义 +++=2210)(x a x a a x G ,为序列 ,,,210a a a 的母函数.2.2.2.2 二阶常系数齐次递推表达式的解]8[已知递推表达式021=++--n n n qd pd d (p ,q 为常数且q 不为零) (2-3)对应的特征方程为02=++q px x (2-4)10,d d 的值已知.下面来解递推表达式(2-3)满足初始条件的特解: 对于序列 3210,,,d d d d令 332210)(t d t d t d d t G +++= 为序列 3210,,,d d d d 的母函数则 t pd d d t G qt pt )()()21(010++=++ 从而 21)()(010qtpt tpd d d t G ++++=再令 211)(qt pt t H ++=以下分三种情况来讨论:a) 特征方程02=++q px x 有两个相异实根:21,r r 时tr Bt r A t r t r t H 212111)1)(1(1)(-+-=--=n n n n nn n nt Br Ar t r B t r A)()()(2010201+=+=∑∑∑∞=∞=∞=其中212211,r r r B r r r A --=-= 所以)(])([)(010t H t pd d d t G ++=nn n n n n n n n n n nn n n t r r pd d t r r d r r d t r r r r pd d t r r r r d )])(()([1)()(2101121100210112110210112110210-++--+=--++--=++∞=+++∞=++∞=∑∑∑故=n d 211r r -)])(()(210112110n n n n n r r pd d t r r d -++-++ )2(≥n 特征方程02=++q px x 有两个共轭复根:21,r r 时这种情况下(5)式也正确,但其中含有复数形式,以下来消除复数形式)sin (cos 2,1θθi r r ±=,其中pp q b aq b a r --===+=2224arctanarctan ,θ 根据欧拉公式得 θ)1sin(2211211+=-+++n iqr r n n n (2-5)θn iq r r n n n sin 2)(221=- (2-6)把(2-6)、(2-7)代入(2-5)得]sin )()1sin([sin 1210120θθθn q pd d n q d d n n n -+++= (2-7)特征方程02=++q px x 有两个相等实根:221pr r -==时)()11()1(1)1(1)(02121∑∞==-=-=-=n nu du d udu d u t r u t r t H111111-∞=-∞=-∑∑==n n n n n t nr nu)(])([)(010t H t pd d d t G ++=nn n n nn n n n n t r pd d n r d n d t r pd d n tnr d ])()1[()(110111001101111110-∞=-∞=∞=--++++=++=∑∑∑故 110110)()1(-+++=n n n r pd d n r d n d (2-8)2.2.2.3 举例例7求n 阶行列式5000005100015100015100015的值解:利用行列式的性质,按第一行展开得递推关系式0521=+---n n n d d d )2(>n (2-9)对应的1,5=-=q p .计算21,d d 得24,521==d d 对于(2-10)令2=n ,得0d =1,( 0d 无实际意义) 递推关系(2-10)对应的特征方程为0152=+-x x (2-10)得两个不同实特征解为2215,221521-=+=r r 代入(2-5)得212)215()215(111+++--+=n n n n d例2]9[ 求n 阶行列式2000002100012100012100012的值解 利用行列式的性质用第一行展开得递推关系式0221=+---n n n d d d )2(>n (2-11)对应的1,2=-=q p .计算21,d d 得3,221==d d 对于(2-11)令2=n ,得0d =1,( 0d 无实际意义) 递推关系(2-11)对应的特征方程为0122=+-x x (2-12)得两个相同实特征解为121==r r把1,2=-=q p ,0d =1,21=d 以及121==r r 代入(2-9)得1+=n d n2.2.3 利用矩阵特征值计算1.特征值的定义]5[设 A 是n 阶方阵,如果存在数λ和非零n 维列向量x ,使得 x Ax λ= 成立,则称λ是A 的一个特征值.非零n 维列向量x 称为矩阵A 的属于(对应于)特征值λ的特征向量,简称A 的特征向量.求矩阵特征值的方法:x Ax λ=,等价于求λ,使得0)(=-A E λ其中E 是单位阵,0为零矩阵,0=-A E λ求得的λ值即为A 值.定理2:如果n 阶矩阵A 的全部特征值为n λλλλ 321,,,则n A λλλλ⋅⋅⋅⋅= 321. 定理3:设λ为方阵A 的特征值,)(A ϕ为A 的多项式,则)(λϕ为)(A ϕ的特征值. 利用特征值的求法及定理2可以计算行列式的值,举例如下例8 已知三阶矩阵A 特征值为-1,1,2.设(),523A A A -=Φ求:EA A A 5,)(,-Φ]3[解 ① 由定理2得: 22)1(1-=⨯-⨯=A② 因为(),523A A A -=Φ由定理3得)(A Φ的特征值为:1,6,4321-=-=-=λλλ 所以24)1()6()4()(-=-⨯-⨯-=ΦA③A 的特征多项式为)1)(2)(1()()(+--=-=λλλλA E x f令5=λ,得72)15)(25)(15()5()5(=+--=-=A E f故725)1(53-=--=-A E E A例9 求n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=011101110A 的特征值及行列式. 解 ααμλλ'-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-+=-E E A E 111111111)1( ,其中1+=λμ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 α.由以上讨论ααμ'-E 的根是0=μ(1-n 重)和n ='=ααμ.于是A 的特征值中有1-n 个满足01=+λ,另一个满足n =+1λ.所以A 的特征值为111-===-n λλ 和1-=n n λ.又=A )1()1(121--=-n n n λλλ2.2.4拆项法拆项法是将给定的行列式的某一行(列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,把一个复杂的行列式简化成两个较为简单的,使问题简化以利计算.例10 计算行列式 nn n n n a a a a a a a a a D λλλ+++=21221211.解: nn n n n n n n n a a a a a a a a a a a a a a a a a D λλλλλ+++++=212212121221211122100-+=n nnnD a a a a λλλ ⎪⎪⎭⎫⎝⎛+=+=∑=-ni i in n n a D a 12111211λλλλλλλ . 2.2.5 因式分解法如果行列式D 是某个变数x 的多项式)(x f ,可对行列式施行某些变换,求出)(x f 的互不相同的一次因式,设这些一次因式的乘积为)(x g ,则)()(x cg x f D ==,再比较)(x f 与)(x g 的某一项的系数,求出c 值.例11计算行列式1321321311321+++=x n x n x n D n.解:时1=x ,,0=n D 所以,n D x |1-.同理)1(,,2---n x x 均为n D 的因式,又因为i x -与)(j i j x ≠-各不相同n D n x x x |)1()2)(1(+--- 所以 ,但n D 的展开式中最高次项1-n x 的系数为1,故)1()2)(1(+---=n x x x D n .计算行列式的方法很多,也比较灵活,上面介绍了计算行列式的常见方法,计算行列式时,我们应当针对具体问题,把握行列式的特点,灵活选用方法.总的原则是:充分利用所求行列式的特点,运用行列式性质及上述常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值.学习中多练习,多总结,才能更好地掌握行列式的计算.3 行列式的应用3.1 行列式的理论应用 3.1.1在解析几何中的应用例12 设),(11y x A ,),(22y x B 是平面上两个不同的点,那么过A ,B 的直线方程是1112211y x y x y x =0. 设直线的方程为, 0321=++a y a x a (1) 这里321,,a a a 不全为零. 由于A ,B 在直线上,故它们满足方程(1),代入后得⎩⎨⎧=++=++.003222131211a y a x a a y a x a (2)将(1)与(2)合并,得到方程组⎪⎩⎪⎨⎧=++=++=++.0003221232111321a a y a x a a y a x a ya xa (3)这是一个关于待定系数321,,a a a 的齐次线性方程组,由于321,,a a a 不全为零,所以(3)有非零解. 于是方程组的系数行列式为零,即 1112211y x y x y x (4)凡是在直线上的点必须满足(4),反之,满足方程(4)的每一点必在经过A ,B 两点的直线上. 因此,方程(4)是通过平面上两定点),(11y x A ,),(22y x B 的直线方程.类似地有例13 设通过几何空间中不在同一直线上三点),,(111z y x ,),,(222z y x 与),,(333z y x 的平面方程为04321=+++a z a y a x a .把上述三点的坐标代入方程,得到关于4321,,,a a a a 的齐次线性方程组,它有非零解,因此系数行列式应等于零,即1111333222111z y x z y x z y x z y x =0. (5) 这是一个由行列式表示的平面方程.例14 设,0:,0:,0:321=++=++=++αγββαγγβαy x L y x L y x L 是三条不同的直线,若1L ,2L ,3L 交于一点,试证0=++γβα设交点为),(b a ,则⎪⎩⎪⎨⎧=++=++=++.000αγββαγγβαb a b a b a (6)由于齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x αγββαγγβα (7)有非零解1,,===z b y a x ,故系数行列式D =αγββαγγβα=0.根据行列式的性质D=αγββαγγβα=αγγβαβαγβαγβγβα++++++=)(γβα++αγβαγβ111=)(γβα++γαβγγββαγβ----001=])())()[((2γβγαβαγβα-+--++=])()())[((21222αγγββαγβα-+-+-++. 由于1L ,2L ,3L 是三条不同的直线,所以 αγγββα---,, 不全为零. 且均为实数,因此,由0=D 知0=++γβα.3.1.2在代数中的应用]10[3.1.2.1分解因式利用行列式分解因式的关键, 是把所给的多项式写成行列式的形式, 并注意行列式的排列规则. 下面列举几个例子来说明.例15ab c c ab bc a =abc c b a 3222-++ 而a b c c a b b c a =a b c b a c a c b a b c c b a ++++++=)(c b a ++ab c a b c 111=)(c b a ++ba cb bc c a bc ----001=))((222bc ac ab c b a c b a ---++++.故有分解因式))((3222222bc ac ab c b a c b a abc c b a ---++++=-++.例16 分解因式 b a bc ac bc ab c a 222222---++. 原式=)()()(222222b a ab c a ac c b bc -+---=22c c b b -22c c a a +22b b aa =222111c c b b a a=222111c b a c b a =))()((b c a c a b ---. (范德蒙行列式) 所以))()((222222b c a c a b b a bc ac bc ab c a ---=---++.3.1.2.2 证明不等式和恒等式我们知道, 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上, 行列式不变; 如果行列式中有一行(列)的元素全部是零, 那么这个行列式等于零. 利用行列式的这些性质, 我们可以构造行列式来证明等式和不等式.例17]10[ 已知0=++c b a , 求证abc c b a 3333=++. 证明 令abc c b a D 3333-++=, 则0000321==++++++==++ac b b a c acbb ac c b a c b a c b a a cb b a cc b a D r r r .命题得证.例18已知0≥≥≥c b a , 求证a c c b b a c a b c a b 333333++≤++. 证明 令)(333333c a b c a b a c c b b a D ++-++=, 则21312222222222221111c c c c ab bc caab bc ab ca abbc ab ca ab D cb ac a c b c a c b c ------==--=--()()()()()()b c a b c b c a c b a c a c =-+---+-()()()()b c a c a b c a c =--++-而0≥≥≥c b a , 则0≥D , 命题得证.例19]1[“杨辉三角形”中的行列式问题. 考察下面的行列式D =2010411063143211111,它的结果等于1,同时不难发现1=1,2111=1, 631321111=1. 这一现象并非偶然. 经观察,发现这些行列式的元素从某一角度看构成“杨辉三角”的一部分,现表示如下:1 1 1 12 1 13 3 1 1 46 4 1 1 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 217 1… … … … … … … … … … … … … … … … …规定00C =1,上面的三角形可写成下面的形式: 00C01C11C 02C 12C 22C03C13C 23C 33C 04C 14C 24C 34C 44C … … …… … … … … … 01-n C 11-n C … … … … … 21--n n C 11--n n C 0n C 1n C … …… r n C… … ⋯ 1-n n C n n C于是,猜想有如下命题:n D =1222322110113224221102121231211122221100----+--------------n n n n n nn n n n n n n n n nn n n n n n C C C C C C C C C C C C C C C C C C C C=1.下面证明这个猜想是对的.我们用数学归纳法来证明.(1)1D =|00C |=1,命题成立; (2)假设k D =1,即k D =1222322110113224221102121231211122221100----+--------------k k k k k kk k k k k k k k k k k k k k k k C C C C C C C C C C C C C C C C C C C C=1.对1+k D 讲,1+k D =k kk k k k k kk k k k k k k k k k k k k k k k k k k k k k kk k k k k C C C C C C C C C C C C C C C C C C C C C C C C C 2112222110121222321012213224211021121120111221100----+-------------+-------.从最后一行起,每一行减去相邻的上一行,并根据组合数的性质m n C 1+-m n C =1-m nC 得 1+kD =1122221101222321011121302121120111221100001----+------+------k k k k k k k k k k k k k k k k k k k k k k k k C C C C C C C C C C C C C C C C C C C C.按照第1列展开1+k D ,得=+1k D 11222211012223210111213021211201----+------+----k k k k k k k k k k k k k k k k k k k k C C C C C C C C C C C C C C C C从最后一列起,每一列减去它相邻的前1列,并根据组合数的性质m n C 1+-1-m nC =mn C 得 1+k D =122232101322421101121120211221101-----------------k k k k kkk k k k k k k kk k k k k k C C C C C C C C C C C C C C C C=k D =1.因此,由数学归纳法原理知n D =1.3.2 行列式在实践中的应用例18]11[江堤边一洼地发生了管涌,江水不断的涌出,假定每分钟涌出的水量相等.如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机多少台?解:设开始抽水前管涌已经涌出的水量为a 立方米,管涌每分钟涌出的水量为b 立方米,每台抽水机每分钟可抽水c 立方米(0≠c ),由此再设x 台抽水机抽完水需t 分钟,则依题意,即得⎪⎩⎪⎨⎧=-+=-+=-+00641608040xtc tb a c b a c b a 这是一个关于c b a ,,为未知数的三元齐次线性方程组,因为它有非零解,所以系数行列式D =016416180401=---xtt展开,得:23160-=x t ∵ 10≤t ,∴ 1023160≤-x ,解之得:6≥x ,所以如果在10分钟内抽完水,至少需要抽水机6台.行列式在诸如建筑小区的楼房排列、单片机设计等工程中,都有很大的用途.合肥师范学院2011届本科生毕业论文(设计)参考文献[1] 蒋省吾.杨辉三角中的行列式[J],教学通报,1988,5:8-10[2] 张禾瑞.郝新高等代数[M].北京:人民教育出版社,1996.[3] 王品超.高等代数新方法[M].济南,山东教育出版社,1989.[4] 北京大学数学系几何与代数教研室代数小组. 高等代数(第三版)[M]. 北京: 高等教育出社,2003.[5]同济大学数学教研室.工程数学线性代数(第三版) [M].北京:高等教育出版社,1999.[6] 王萼芳, 石生明修订. 高等代数(第三版)[M]. 北京: 高等教育出版社, 2003.[7] 李宇寰.组合数学[M].北京:北京师范大学出版社,1988.[8] 杨振声.组合数学及其算法[M].北京:中国科学技术出版社,1997.[9] 陈景润.组合数学简介[M].天津:天津科学技术出版社,1988.[10] 汤茂林. 行列式在初等代数中的巧用[J]. 廊坊师范学院学报, 2008,3:9-10.[11] [美]David y.Linear Algebra and Its Applications[M].电子工业出版社,2004.1。
行列式的计算方法及其在线性方程组中的应用毕业论文
ANAMtm tJhi・I TV本科生毕业论文题目:姓名:学号:系别:年级:专业:指导教师:指导教师:行列式的计算方法及其在线性方程组中的应用2008020230462008 级数学职称:副教授职称:讲师2012年4月20日安顺学院毕业论文任务书数学与计算机科学系数学与应用数学专业2008年级学生姓名韦诚毕业论文题目:行列式的计算方法及其在线性方程组中的应用任务下达日期:2011年9月5日毕业论文写作日期:20H年9月5日至2012年4月20指导老师签字:学生签字:《高等代数》是数学专业学生的一门必修基础课程。
行列式的计算是高等代数中的重点、难点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。
讣算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。
当看到一个貌似非常复朵的n阶行列式时,仔细观察, 会发现其实它们的元素在行或列的排列方式上都有某些规律。
掌握住这些规律, 选择合适的il•算方法,能使我们在极短的时间内达到事半功倍的效果!本文首先介绍n阶行列式的定义、性质,再归纳总结行列式的各种汁算方法、技巧及其在线性方程组中的初步应用。
行列式是线性方程组理论的一个组成部分,是中学数学有关内容的提高和推广。
它不仅是解线性方程组的重要工具,而且在其它一些学科分支中也有广泛的应用。
关键词:n阶行列式计算方法归纳线性方程组ABST RACTAlgebra is a courses of mathematics specialized coinpulsory of the basic mathematic- The determinant's calculation is the most difficulty in higher algebra, especially, the n order determinant's calculation , alway is student's difficulty in the learning process, so ,it is difficult to master for ours • There are a lot of calculations of n order determinant in method , but when we say a problem of the calculation of n order determinant, according to its characteristics, selecting the appropriate method to solving is a very good idea. When you see a seemingly so complex n order determinant, we should observe them carefully,“nd we will find that their elements are arranged in row s or columns have some regularity. Grasping of these laws, finding a appropriate calculation method can help us to achieve a multiplier effect in a very short time! This paper mainly introduces the definition of n order determinant, nature, and calculation methods, the skills of calculation of n order determinant and application in linear equation group. Determinant is an importanf theory in linear equations and it is an indis pensable part of linear equations, determinant is also the middle school mathematics' content raise and proinotion. It is not only the solution of linear equations of the important took but also in some other branch has a wide range of app lications.Key words: n order determinant calculation method induce linear equations引言1屛介行列式的定义 2屛介行列式的性质 3计算屛介行列式的具体方法与技巧利用行列式定义直接计算 利用行列式的性质计算 化为三角形行列式逆推公式法拆开法3.4 降阶法 3.6 利用范德蒙德行列式 3.7 加边法(升阶法) 3.8数学归纳法 10 4行列式在线性方程组中的初步应用 11 4.1克拉默(Gramer )法则 12 4.2克拉默(Gramer )法则的应用1211421用克拉默(Gramer)法则解线性方程组13 422克拉默法则及其推论在几何上的应用14 结论16 参考文献17 致谢1817解方程是代数中一个基本问题,特别是在中学中所学的代数中,解方程占有重要的地位•因此这个问题是读者所熟悉的.比如说,如果我们知道了一段导线的电阻r它的两端的电位差y,那么通过这段导线的电流强度八就可以有关系式ir = V求出来•这就是所谓解一元一次方程的问题•在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组.线性方程组的理论在数学中是基本的也是®要的内容.对于二元线性方程组当4心22-如佝*0时,次方程组有惟一解,即”•…“ _ “山一如勺Aj — * ---------------- —^*11^22 -如切如“处-0皿21我们称5如-mSl为二级行列式,用符号表示为于是上述解可以用二级行列式叙述为:当二级行列式时,该方程组有惟一解,即对于三元线性方程组有相仿的结论•设有三元线性方程组«21(»2 2«11 %“21 ©2勺心22你如一竹S I =«21如5內+如兀2+"/3=久+"22X2 +^23^3 =®, «3 內 +432大2 +"33X3 =%利'彳弋 工弋 1^22^^33 + ^12^23^^31 + ^13^21^^321^23^32 ^12^^21^^33 ^^13^^22^31 丿7^5行列式,用符号表示为:"H "22"33 +“12°23"刃 +«)3«21^32 "^^11^23^32 "如①心彳 _'WWsi =我们有:当三级行列式«11 «12 "|3«21 «22 «23“31 ^32 “33时,上述三元线性方程组有惟一解,解为4厶X 严+,尤2=〒,a a其中S «12 勺3«H 勺"|3£ =■■■«23,J,="21 勺 “23,〃3 =5 U" b 、妇"32 “33«31 % "33如]“32 S在本论文中我们将把这个结果推广到畀元线性方程组4内+4胪2+…+你忑=勺 “2 內+"22兀2+…+ “2届=2弘内+0小:2+…+ 4汁為="/<的情形•为此,我们首先要给出〃阶行列式的定义并讨论它的性质,这就是 本论文的主要内容.«11 ®2 ®3"21 ^22 "23 "31 “32 “33cl =1 n阶行列式的定义“21 “22.... -^211"川...... 弘"等于所有取自不同行不同列的个元素的乘积仙几(1)的代数和,这里jj2…h是12…,”的一个排列,每一项(5)都按下列规则带有符号:当j|j2…人是偶排列时,(1)带正号,当是奇排列时,(1)带有负号•这一定义可以写成二2(_严"5畑..%恥…人这里X表示对所有阶排列求和・丿"2・・・人定义表明,为了计算《阶行列式,首先作所有有可能山位于不同行不同列元素构成的乘积。
行列式的计算方法总结 毕业论文
1 行列式的概念及性质1.1 行列式的概念n 级行列式nnn n nn a a a a a a a a a212222111211等于所有取自不同行不同列的个元素的乘积n nj j j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。
这一定义可写成,这里∑nj j j 21表示对所有n 级排列的求和。
1.2 行列式的性质[1]性质1 行列互换,行列式值不变,即=nn n n n na a a a a a a a a212222111211nnn n n n a a a a a a a a a 212221212111性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外,即=nnn n in i i na a a ka ka ka a a a212111211nnn n in i i na a a a a a a a a k 212111211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个nn nnj j j j j j r j j j nnn n nn a a a a a a a a a a a a 21212121)(212222111211)1(∑-=数乘以此行列式。
事实上,nnn n in i i n a a a ka ka ka a a a212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a +nnn n in i i n a a a a a a a a a k212111211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。
性质3 如果行列式中某列(或行)中各元素均为两项之和,即),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。
行列式的计算方法 毕业论文 (2)
行列式的计算方法摘要行列式最早是由解线性方程而引进的,时至今日,行列式已不止如此,在许多方面都有广泛的应用。
本文,我们学习行列式的定义、性质,化为“三角形”行列式,利用行列式的性质,使行列式化简或化为“三角形”行列式计算。
利用拉普拉斯展开定理,按某一行(列)或某几行(列)展开,使行列式降级,利用范德蒙行列式的计算公式,利用递推关系等,在计算行列式中最常用的是利用行列式的性质,和按某行(列)展开行列式,而某些方法是针对于某些特殊类型的行列代而言,对一般的n级行列式的计算,往往要利用行列式的性质和拉普拉斯展开定理,导出一个递推公式,化为2级或3级行列式,以及化为“三角形”行列式来计算。
关键词计算方法线性方程组行列式引言解方程是代数中一个基本问题,特别是在中学代数中,解方程占有重要地位。
因此这个问题是读者所熟悉的。
譬如说,如果我们知道了一段导线的电阴r,它的两端的电位差v,那么通过这段导线的电流强度i,就可以由关系式vir ,求出来。
这就是通常所谓解一元一次方程的问题。
在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组。
而n 元一次方程组,即线性方程组的理论,在数学中是基本的也是重要的内容。
在中学代数课中学过,对于二元线性方程组:⎩⎨⎧=+=+22221211212111b x a x a b x a x a 当二级行列式022211211≠a a a a 时,该方程组有唯一解,即222112112221211a a a a ab a b x =,222112112211112a a a a b a b a x =,对于三元线性方程组有相仿的结论。
为了把此结果推广到n 元线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********的情形。
我们首先要掌握n 级行列式的相关知识。
n阶行列式的计算方法探索毕业论文
目:N阶行列式计算方法探索
毕业设计(论文)原创性声明和使用授权说明
原创性声明
本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教 师的指导下进行的研究工作及取得的成果。 尽我所知,除文中特别加 以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研 究成果,也不包含我为获得 及其它教育机构的学位或学历
to calculate the determinant. Firstly, we list some common methods. For example:the direct method of calculation by using the determinant definition,the method of
而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体, 均已在文中作了明确的说明并表示了谢意。
作者签名: 日 期:
指导教师签名: 日 期:
使用授权说明
本人完全了解 大学关于收集、保存、使用毕业设计(论
文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电 子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供 目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制 手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分 或全部内容。
1) 设计(论文)
2) 附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装
指导教师评阅书
指导教师评价:
一、 撰写(设计)过程
1、 学生在论文(设计)过程中的治学态度、工作精神
□优 □良 □中 □及格□不及格
2、 学生掌握专业知识、技能的扎实程度
□优 □良 □中 □及格□不及格
行列式的计算技巧及其应用毕业论文.docx
本科生毕业论文(设计)题目:行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要 (1)关键词 (1)0、前言 (1)1、基础知识及预备引理 (2)1.1行列式的由来及定义 (2)1.2行列式的性质 (3)1.3拉普拉斯定理及范德蒙德行列式的定义 (4)2、行列式的计算方法 (4)2.1定义法 (4)2.2利用行列式的性质(化三角型)计算 (5)2.3拆行(列)法 (6)2.4加边法(升阶法) (6)2.5范德蒙德行列式的应用 (7)3、n阶行列式的计算 (8)4、行列式的应用 (9)4.1行列式在代数中的应用 (9)4.2行列式在几何中的应用 (10)参考文献 (10)致谢 (11)行列式的计算技巧及应用数学与应用数学12101班谢芳指导老师颜亮摘要:行列式的计算是高等代数中一个重要的知识点,也是我们学好高等代数的重要工具 .无论是高等数学领域还是现实生活中的实际问题,都或多或少的包含了行列式的思想,所以学好行列式尤为重要.本文主要介绍几种行列式的思想,并从实例进行具体说明,介绍方法的同时加以应用.并通过举例说明行列式在代数和几何方面的应用,从而更好的了解行列式的普遍性.关键词:行列式,线性方程组,计算,方法Abstract: the calculation of the determinant is an important part of the knowledge of higher algebra, also an important tool for us to learn advanced algebra. Both higher mathematics and practical problems in real life, more or less contains the ideas of the determinant, so learning determinant is particularly important. This paper mainly introduces several kinds of determinant, and illustrate the application of the determinant in algebra and geometry, so we can understand the universality of the determinant better.Keywords: determinant, system of linear equations, calculation, the method0前言行列式是学习线性代数的基本工具,行列式的解法有很多种,在解题过程中我们先要观察行列式的特征,然后再考虑用什么样的方法解.本文主要介绍几种常用的解行列式的方法,如定义法、化三角型法、拆行(列)法、加边法、利用范德蒙德行列式计算相关行列式的方法,并通过一定的例题对所介绍的方法进行透彻的讲解,使之更好的理解.当然,解行列式的方法还有很多,只要我们善于总结.行列式在数学的很多领域都有广泛的应用,在线性代数和高等数学中更是一个重要的解题工具.本文主要介绍行列式在代数和几何方面的应用.1 线性方程组与行列式1.1 行列式的由来及定义在中学数学中,我们学习了含有一个未知数和两个未知数的方程的解法,那在这里我们来讨论含n 个未知数n 个方程的多元一次方程组即线性方程组的解法.首先我们先来看未知数的个数不多的时候的情形.我们先讨论n=2时的二元线性方程组 {0212111=+x a x a 0222121=+x a x a (1)为了解这一类方程,我们将引入一个很重要的工具——行列式 我们把线性方程组(1)的系数作成二阶行列式,1221221122211211a a a a a a a a -=当a a a a 22211211≠0时,方程组(1)有唯一解x 1=a a a a ab a b 22211211222121x 2=a a a a b a b a 22211211221111同样的,对于三元线性方程组{b x a x a x a 1313212111=++b x a x a x a 3323222121=++b x a x a x a 3333232131=++ (2) 的系数作成三阶行列式D=a a a a a a a a a 333231232221131211= a a a a a a a a a a a a a a a a a a 322311332112312213322113312312332211---++当0D ≠时,那么方程组(3)有解D D D D D D x x x 332211,,===其中D 1=a a b a a b a a b 333232322213121,D 2=a b a a b a a b a 333312322113111,D 3=b a a b a a b a a 332312222111211我们的目的是要把二阶、三阶行列式推广到n 阶行列式,然后用这一工具来解含有n 个未知量n 个方程的线性方程组.定义1[1]用符号 ||a a a a a a a a a nnn n n n 212222111211||表示n 阶行列式指的是n!项的代数和,这些项是所有取自该行列式不同行与不同列上的n 个元素的乘积a 1j 1a 2j 2⋯a nj n ,项的符号为(−1)π(j 1j 2⋯j n ),也就是说,当j 1j 2⋯j n 为偶排列时,这一项的符号为正,当j 1j 2⋯j n 为奇排列时符号为负.这一定义还可以表示成||a a a a a a a a a nnn n n n212222111211||=∑(−j 1j 2⋯j n 1)π(j 1j 2⋯j n )a 1j 1a 2j 2⋯a nj n1.2 n 阶行列式性质:[2]引理1 把行列式的行变成列、列变成行,行列式的值不变.引理2 把一个行列式的两行(或两列)交换位置,行列式的值改变符号.引理3 把行列式的某一行(或一列)的所有元素乘以某个数c,等于用数c 乘原行列式.引理4 若一个行列式的两行(或两列)的对应元素成比例,那么行列式的值等于零.引理5 把行列式某一行(或列)的所有元素同乘以一个数c,加到另一行(或一列)的对应元素上,所得行列式的值与原行列式的值相等.引理6 行列式某一行(或列)的各元与另一行(或列)对应元的代数余子式的乘积之和等于零.1.3 拉普拉斯定理及范德蒙德行列式的定义拉普拉斯定理]3[ 设D 为一n 阶行列式,任意取定D 中的k (≤1k<n )行,由这k 行元素所构成的一切k 阶子式与它们所对应的代数余子式的乘积的和等于行列式D 的值.用符号可以表示为D=A i mi i ∑=1N ,其中m=C k n行列式||a a a a a a a a a n nn n n n 112112222121111---||叫作一个n 阶范德蒙德行列式. 2 行列式的计算2.1 定义法例1 计算行列式D=|d hc g f b e a 0000000|解 由定义可知,D 是一个4!=24项的和,展开式的一般项为a 1j 1a 2j 2⋯a nj n ,在这个行列式中,除了abcd,afgd,ebch,efgh 外,其余各项均含有0,故乘积为0,与上面四项相对应列标的排列依次为1234,1324,4231,4321,而π(1234)=0,π(1324)=1,π(4231)=5, π(4321)=6,故D=abcd+efgh-afgd-ebch.利用定义法求解行列式时,只适合一些比较简单的行列式,如对角线行列式,三角行列式等,定义法常用于解低阶的行列式,对于一些高阶的行列式,我们将介绍其他方法来求解.2.2 利用行列式的性质计算例2 证明n 阶上三角行列式(主对角线以下的元素都为零)]4[|a a a a a a nnnn 0022211211|=a a a nn 2211证明 在这个行列式中,当j i <i 时,元素a j ii =0,由定义可知所有取自各行各列的项的乘积除了a a a nn 2211外,其余项中均含有因子0,故乘积为零,又π(a a a nn 2211)=0,故|a a a a a a nn nn00022211211|=a a a nn 2211特别的λλλn00021=λλλn 21 由性质1可知,下三角行列式也等于主对角线上元素的积.那么对于可化为三角行列式的计算,就可先利用行列式的性质把它变成三角行列式例3 计算行列式2111121********* 解 把行列式除开第一行外其他行上的对应元素分别减去第一行上的元素,得原式=1000010000101111=1 如果一个行列式可化为三角行列式,我们可以优先考虑化成三角形后再进行计算,计算起来更简便.2.3 按行(列)展开按行(列)展开又称降阶法,按某一行展开时,可以使行列式降一阶,更一般的,如果可以用拉普拉斯定理就可以降很多阶了.但为了让计算更加简便,我们一般先利用行列式的性质使行列式中的元出现尽可能多的零,然后再展开.例4 计算行列式4122743221010113-=D 解 原行列式c c 31- 41217432-210001-14c c c 334__21211-432-010021-14=)(1-32+2211-32214=-2213706-7-0=-376-7-=-21对于这种阶数稍微高点的行列式用定义法一般比较复杂,这时我们考虑利用行列式的性质降阶后再按行或列展开.2.4 加边法(升阶法)加边法即把行列式添加一行和一列,使升阶(加边)后的行列式的值与原行列式相等,这种方法叫加边法.这种方法一般适用于所加边的元素和原行列式的元素有直接关系,如相等或倍数关系,或原来的行列式中有大片元素相同的行列式.例5 计算行列式D =a xx x x a x x xx a x xxx a n321(x a a a n ,,21≠) 解 原行列式中存在“大片”的x,故用加边法把原行列式变成n+1阶行列式,则有a x xxx a x x x x a x x x x a x x x x D n0001321=r r k n k 1)1,,3,2(-+==xa x a x a x a x x x x n ----001-0001-0001-0001-1321c a c ii x n i -++==11,,3,21 xa x a x a xa x xxxx a x n ni -----+∑=000000000000132111=(1+)()11x a x a xni i ni i --∏∑==利用加边法把行列式化为n+1阶行列式后,再利用行列式的性质把该行列式化为可直接计算的行列式,从而简便计算.2.5 范德蒙德行列式的应用由于范德蒙德行列式]5[=D n ||a a a a a a a a a n nn n n n 112112222121111---||=)1x x m nk m k -∏≤<≤( 范德蒙德行列式是一个很特殊的行列式,从第二行起每一行与前一行对应元素的比都等于同一个常数.那么对于可化为范德蒙德行列式的计算我们可先把它化成范德蒙德行列式后再进行计算.例6 计算D n =nn nnn n n323232333322221111解 从该行列式的第k (k=2,3,…,n )行中提取公因子后,得到n nnn D nnn n2221333122211111!=该行列式为范德蒙德行列式的转置行列式,故D n=n!(n-1)!2!1!.3 n 阶行列式的计算对于n 阶行列式的计算,除了以上的方法外,我们还会根据行列式的特征采用递推法和归纳法来求解. 例1 计算D n =ba ab b a b a ab b a ++++100000100解 将D n 按第一行展开,再将按第一行展开的第二个行列式按第一列展开得abD D b a D n n n 21)(---+=,整理得aD D n 1-n -=b (D a D n n 21---)由递推关系可以得出:aD D n 1-n -=)(122D D b n --=][)()(22b a a ab b a b n +--+-=b n 在上式中,a 和b 的地位是相等的,因此有D D n 1-n -=a n两式联立解得ab a b D n n --=1-n ,可以得出a b a b D n n n --=++11递推法一般用于n 阶行列式的求解,递推法的关键是找出D D D D D n n n n n 211,---与或与的关系.除了上面讲到的递推法,我们还常用归纳法来证明某些行列式. 例2]6[ 证明αααααcos 211cos 200000cos 210001cos 210001cos=D n =cos(αn )证明 当n=1时,D 1=αcos ,等式成立当n=2时,ααcos 211cos 2=D =2cos 2α-1=cos2α,等式成立假设n=k 时等式仍然成立,即αk D k cos =,α)1cos(1-=-k D k那么,当n=k+1时,把行列式按最后一行展开得D D D k k k 211cos 2--+-=α 代入得α)1cos(1k +=+k D 由归纳法得αn D cos n =行列式的计算方法多种多样,本文中所提到的方法也只是解题过程中的一些常用方法,不同的题目有不同的计算方法,至于要采用哪种方法要视具体题目而定,只要我们多观察行列式的特征就能找到合适的方法来计算.4 行列式的应用4.1 行列式在代数中的应用行列式在代数中的应用主要有利用行列式解含n 元线性方程组b x a x a x a n n 11212111=+++ b x a x a x a n n 22222121=+++……b x a x a x a n n nn n n =+++ 2211当系数行列式D ≠0时,有唯一解:D D x k k =(k=1,2,…,n).对于齐次线性方程组,若D ≠0,则对应的方程组只有零解.4.2 行列式在几何中的应用我们还可以用行列式来表示直线方程,例如过两点M (y x 11,),N (y x 22,)的直线方程1112211y x y x y x=0 (1) 证明 由两点式,我们可以得出过MN 的直线方程为y y y y x x x x 211211--=-- 把上式化简得012212121=-+-+-y x y x y x y x y x y x再进一步进行化简得y x y x x x y y y x221121211111+-=0即为(1)式按第一行展开所得的结果,命题得证.行列式有着很广泛的应用,上面只是讲的比较特殊的两种,在几何方面,还有许多应用,还可利用行列式表示三角形的面积例如 以平面内三点P (y x 11,),Q(y x 22,),R (y x 33,)为顶点的△PQR 的面积S 是11121332211y x y x y x参考文献[1]张禾瑞,郝鈵新·高等代数(第五版)[M]·北京:高等教育出版社,2000[2]任功全,封建湖,薛仁智·线性代数[M]·北京:科学出版社,2005 [3]姚慕生·高等代数[M]·上海:复旦大学出版社,2002.8[4]马菊霞,吴云天·线性代数题型归纳与方法点拔考研辅导[M]·北京:国防工业出版社,2000[5]毛纲源·线性代数解题方法技巧归纳[M]·武汉:华中科技大学出版社,2000[6]王丽霞· N阶行列式的几种常见的计算方法[J]山西大同大学学报(自然科学版),2008致谢本文是在我的论文指导老师颜亮老师的精心指导下完成的.在整个论文写作的过程,颜老师给我提供了很多新颖的思路,并对我进行了耐心的指导和帮助,老师开阔的视野和广博的知识使我深受启发.颜老师严谨的治学态度、高度的敬业精神和大胆创新的精神让我深深的敬佩,在此,我向我的指导老师表示最诚挚的谢意.在这次本科毕业论文设计中我学到了许多关于行列式的知识,视野得到了很大的开阔.同时,我也要感谢我们小组的同学,感谢她们给我提出的建议,让我更好的完成了此次论文.。
关于行列式计算方法的进一步探讨
关于行列式计算方法的进一步探讨引言行列式的概念最初是伴随着方程组的求解而发展起来的,它不论是在线性代数,多项式理论还是微积分中都有广泛应用,所以掌握行列式的计算是十分必要的. 为此,我在查阅部分参考资料的基础上,结合自己的学习实践,对行列式的计算总结了二十一种方法.常规做法都是用行列式的性质和相关定理来求解.以下是对一些典型类型的行列式的计算,以拓宽行列式的解题思路,下面依次说明其求解方法和过程.1.定义法n 阶行列式的定义展开式式中包含!n 项,当n 较大时,利用定义进行计算就会很麻烦,只有当行列式中0比较多时考虑利用定义算行列式,这样可以大大减少行列式展开的项数.例1计算000100002000010n n -.解 根据行列式的定义,行列式展开式的每一项都是n 个元素的乘积,这些元素来自行列式不同的行和不同的列,由于行列式中只有一个非零项!)1(21n n n =⋅-⋅ ,这一项的逆序数为1-n ,有计算可得!)1(1n D n n --=.2.化三角形法化三角形法主要是利用行列式的性质把原来的行列式化为上(下)三角行列式.虽然每个行列式都可利用行列式的性质化为三角形行列式.但当行列式阶数较高时,计算往往较为复杂.因此,在许多情况下,总是先利用行列式的性质将其作某种变形,再将其化为三角形行列式.上(下)三角行列式的值就是对角线各项的积.例2 计算行列式 12311212332125113311231------=n n n n n n n n n n A .解 首先将行列式的第一行乘以()1-加到第n ,,3,2 行,再将其第1,2,,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得()()()!110200132100001002000200010001231)1(12121-=-=---=----n n n n n n n A n n n n)(.3.降阶法可利用按一行(列)展开定理降低n 阶行列式的阶数并且使得行列式的计算较为简便的方法称为降阶法.降阶比较适合于行列式中某行或列中零元素比较多时.例3 计算行列式 nA 222232222222221=.解 首先应考虑A 能不能化为上(下)三角形式,若将第一行乘以()2-加到第n ,,3,2 行,数字反而复杂了,要使行列式尽可能多的出现“0”项,将该行列式的第一行乘以()1-加到第n ,,3,2 行,得2001010100012221-=n A.上式仍不是上(下)三角形行列式,我们可以用降阶法,注意第二行除了第一项是1, 后面的项都是0,我们按第二行展开,得()!2221222--=-=n n A. 4.加边法加边法就是将原来的行列式添加一行一列,且其值不变,所得的新行列式更容易求出其值.该方法适用于除主对角线上元素外,各行(或列)对应的元素分别相同的类型.例4 计算行列式nn n na a a a a a a a a a a a a a a a D 321321321321111+++=. 解 利用加边法将行列式添加一行一列,使其值保持不变.则有nn n n a a a a a a a a a a a a a a a a D +++=1010101321321321321=1100101000111321---n a a a a =10001000001013211n ni ia a a a a ∑=+=∑=+ni i a 11=n a a a a +++++ 3211.加边法最大的特点是要找出每行或每列相同的因子,那么升阶之后,就可利用行列式的性质把绝大部分元素化为零,然后再化为三角形行列式,这样就可以大大减少计算量.5.分解行列法(拆项法)如果行列式某行(列)是两行(列)之和,将行列式分解为两行列式的和,然后再利用性质进行计算.即分解行列法.例5 计算 nn n nn n n x n x x x n x x x n x x D ααααααααα+++++++++=212222111211212121.解 将行列式n D 分解为若干行列式的和,则当2>n 时,每个行列式至少有两列成比例,故0=n D ;当1=n 时,1111x D α+=.当2=n 时,()()212121112212222112112222112121αααααααααα--=+=++++=x x x x x x x x x x D .则⎪⎪⎩⎪⎪⎨⎧>=--=+=.2,0,2),2)((,1,1212111n n x x n x D n ααα6.分解法利用矩阵乘积的性质可把行列式分解成若干个行列式乘积的方法称为分解法.如果矩阵A 分解为m A A A A A 321=,其中i A 都是n 阶方阵),,2,1(m i =,则.321m A A A A A =例6 计算行列式nn nn n n n nn n n nn n n nnn nn nn nnn n nn nn n b a b a b a b a b a b a b a b a b a b a ba b a b a b a b a b a b a b a D ------------------=111111111111111111221122222212121121211111. 解 首先用以前学过的公式化简行列式,然后再进行计算.由于 )1)(1()(11122111111--++++-=-n n n b a b a b a b a b a , 则有∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-==1010211121022101210110211011n k knk n n k k k n n k k k n n k k nk n k k k n k k k n k k n k n k k k n k k k n b a b abab abab ab a b a b aD=112112222121121222211211111.111------n nn n n n n n n n n n b b b b b b b b b a a a a a a aaa=∏≤≤≤--nj i i j i jb b a a1))((.7.拆元法把某一行或列的元素写成两个数的和的形式,再利用行列式的性质将其写成两个行列式的和,以简化计算.例7 计算行列式xm m m m xmm m mx m mm mxD n ------=.解xm m m m xmm m m xm mm m x D n ------=xm m m m xmm m m x m mm mm------=xm m mm xmmm m x m mm m mx -------+11)()(---++=n n D m x m x m (1)由于n nD D =' ,即将n D 中的m 换成m -,行列式的值不变,故 11)()(--++--=n n n D m x m x m D (2)(1))(m x +⨯122)()()(--++=+n n n D m x m x m D m x(2))(m x -⨯122)()()(--+--=-n n n D m x m x m D m x则])()[(21)()()()(n n n n n m x m x m x m x m x m m x m D --+=--+-++=.8.析因子法所谓析因子法就是当行列式为零时,求得方程的根,从而将行列式转化为其因子的积,这样会大大减少计算量,该方法适用于主对角线上含多项式的类型.对于一个n 次多项式,当最多找到r 个因子使其行列式值为零时,就要把它画成一个r 次多项式与一个r n -次多项式的乘积.但一般找到的使其行列式为零的个数与行列式的次数相差太多时,不适用本方法.例8 计算 1321121311321+++=x n x n x n D n.解 令(),n D x f =当1,,2,1-=n i 时,()0=i f ,即()()()1,,2,1+---n x x x 是()x f 的因子且它们互质.故()∏-=-11n i i x 是()x f 的因子,比较1-n x的系数知()=x f ()n n i D i x =-∏-=11.9.分块矩阵法我们学习了矩阵的分块,知道一个矩阵⎪⎪⎭⎫⎝⎛B A 00通过分块若能化为对角矩阵或下(上)三角矩阵⎪⎪⎭⎫⎝⎛B C A 0,那么行列式BA 00=BCA 0B A ⋅=,其中阶可逆矩分别是r s B A ,,s r C ⨯是阶矩阵,r s ⨯是0阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题,通过矩阵分块转换为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=rr r rsr r s sr s ss s r s b b c c b b c c d d a a d d a a G1111111111111111⎪⎪⎭⎫⎝⎛=B C D A , 其中,B A ,分别是s 阶和r 阶的可逆矩阵,s r C ⨯是阶矩阵, r s D ⨯是阶矩阵,则有下面公式成立.C DB A B B CD A G 1--⋅==或C D B A BC DA G 1A --⋅==. 下面推导公式,事实上当0≠A 时,有⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----B C D A E DB E D BCA D A B C D A E A E000111⎪⎪⎭⎫⎝⎛-=-B C CDB A 01. 上面两式两边同时取行列式即可得出上面的公式.例9计算 8710650143102101=D . 解法1 0440440043102101871650143102101===原式. 若用前面介绍的公式则可以直接得出结果.解法2 令⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=8765B ,⎪⎪⎭⎫ ⎝⎛=1001C ,⎪⎪⎭⎫ ⎝⎛=4321D , 则有⎪⎪⎭⎫⎝⎛=1001'A ,由公式知原行列式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=-⋅==-432110011001876510011D CA B A B CD A 04444432187651==⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=,这道题目还有一个特点,那就是C A =,如果我们把公式变形, 即D ACA AB D CA B A D CA B A BC DA 111)(----=-=-⋅=. 当C A =时CD AB D CAA AB D ACA AB -=-=---11.所以当C A =时CD AB BC DA -=, 这类题就可以直接写出答案了.解法3 令⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=8765B ,⎪⎪⎭⎫ ⎝⎛=1001C ,⎪⎪⎭⎫ ⎝⎛=4321D . 因为C A =,所以原行列式0432187654321100187651001=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-=CD AB .10.递推法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式,这种关系式称为递推关系.根据递推关系式及某个低阶初始行列式的值,便可递推求得所给行列式的值,这种计算行列式的方法称为递推法.注意 用此方法一定要看行列式是否具有较低阶的相同结构,如果没有的话,即很难找出递推关系式,从而不能使用此方法. (1) 1-=n n kD D 类例10 计算行列式 2n D =d cd c b a ba.解 将2n D 按第1行展开可得()0100122cd dc b a bab dc d c b a b a aD n n+-+=()()阶阶2222---=n n dcdc b a ba bcdc d c b a b a ad22--=n D bc ad )(.所以 422222)()(---=-=n n n D bc ad D bc ad D n n bc ad D bc ad )()(22-=-==- . (2) 2211--+=n n n D k D k D 类例11 计算带形行列式1111n D αβαβαβαβαβαβαβαβαβ+++=++.解 将n D 按第一行展开可得,211)(111)(----+=+++-+=n n n n D D D D αββαβααββααββααβαββα所以12()n n n D D D αβαβ--=+-,112n n n n D D D D αβαβ----=-, 112()n n n n D D D D αβα----=-,223()n n D D βα--=- …………332()n D D βα-=-.2233311αββαβαβααββααββα+++=+++=D αββαβααββα++=++=2221D 323βα=-D D333132()n n n n n D D D D αβαβββ----=-==,同理可得 1n n n D D βα--=,联立解得 1n nn D αβαβ--=-,因此 11n n n D αβαβ++-=-.11.构造代数方程组法当所求行列式是由几个元素组成的,若用曾经求解过的行列式作系数行列式,构造一个n 元线性方程组,所求行列式中可作为线性方程组解的组成部分.例12 计算 n nn nn n n n nnn a a a a a a a a a a a a D21222212222121111---=. 解 如果使用常规的方法,解这道题是非常复杂的,而且困难的是因为n D 不是范德蒙行列式,若我们用刚刚介绍的代数方程组法求解这道题就变得十分容易了,因为n D 类似于范德蒙行列式,我们构造一个n 阶的范德蒙行列式()∏≤<≤----==nj i i jn nn n n n a aa a a a a a a a a D 1112112222121111.于是当j i a a ≠时,比值DD n是线形方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---.,,121212221111211nn n n n n n n n n n n a x a x a x a x a x a x a x a x a x 的解中的n x 值,又这个方程组x t x t x t n n n =-----121 可以看作是()是未知数t 有n 个根:n a a a ,,,21 .于是由高次方程与系数的关系有n n a a a x +++= 21, 因此,()()∏≤<≤-+++==nj i i jn n n a aa a a D x D 121 .12.数学归纳法数学归纳法多用于证明题.用数学归纳法计算n 阶行列式,需要对同结构的低阶行列式进行计算,从中发现规律并得出一般性结论,然后用归纳法证明其正确性.例13 证明αααααn cos cos 2100cos 210001cos 21001cos = .证明 第二数学归纳法.2=n 时,ααcos 211cos 2=D =αα2cos 1cos 22=-.结论成立.假设对级数小于n 的行列式,结论成立,则21cos 2---=n n n D D D α,由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n ,代入前一式得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D n=αααααn n n cos sin )1sin(cos )1cos(=---. 故对一切自然数n 结论成立.13.辅助行列式法辅助行列式法应用条件:行列式各行(列)和相等,且除对角线外其余元素都相同.解题程序1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式*D 除主对角线外,其余元素均为0;2)计算*D 的主对角线各元素的代数余子式);,,2,1(n i A ii = 3)∑-*-=nij ij A x D D 1 .例14 求下列n 阶行列式的值.111212112111 n n n D n ---=.解 在n D 的各元素上加上(1)-后,则有n n n n n nn n)1()1(000101001000)(D 2)1(-⋅-=---=-* ,又(1)1212,11(1)(1)n n n n n n A A A n ---====-⋅- ,其余的为零.故 ∑=*+=nj i ij n n A D D 1,)(=∑=+--+-⋅-ni i n i nn n A n 11,2)1()1()1(=12)1(2)1()1()1()1()1(----⋅⋅-+-⋅-n n n nn n n n n=1)1(2)1()1(--⋅--n n n n . 若知道辅助行列式法的解题程序,用此法就可轻松地解出此题.但根据该行列式的特点,我们也可以用加边法,把大部分元素化为零,再化为三角形行列式也可轻易解出该行列式.14.利用拉普拉斯展开法拉普拉斯定理的四种特殊情形1)0nn nn mm mnmmA ABC B =⋅2)0nn nm nn mm mm A C A B B =⋅3)0(1)nn mnnn mm mmmnA AB BC =-⋅ 4)(1)0nm nn mn nn mm mmC A A B B =-⋅例15 计算n 阶行列式n D ,其中aba b ab ab aa a a D nββββββββββββλ=.解 如果从第三行开始每一行都减去第二行,再从第三列开始每一列都加上第二列, 使行列式种更多的元素为零.先按上述分析对行列式进行变换βββββββββλ------=a aa a a a ab aa a a D n00000000βββββββλ----+-=a a a n a b aaaan00000000)2()1()2()2(2200000)2(1-⨯-⨯---⋅-+-=n n a a a n a ba n ββββλ)(2)()]1()2([--⋅---+=n a n ab n a ββλλ.15.利用范德蒙行列式例16 计算行列式1+n D ,其中111)()1()()1(1111---+----=n n n nnnn n a a a n a a a D .解 该行列式与范德蒙行列式类似,我们可以先利用行列式的性质把它变成范德蒙行列式在进行计算.通过相邻两行的交换,先把最后一行交换至第一行(交换n 次),再将新的最后一行交换至第二行(交换1-n 次)继续下去,经过2/)1(-n n 次交换以后,原行列式变成范德蒙行列式.由范德蒙行列式的性质得nn n n n n n a a a na a a D )()1(1111)1(2)1(1-----=++=∏∏≤<≤≤<≤--=----ni j ni j n n j i j a i a 002)1()()]()[()1(.推论 (超范德蒙行列式法)超范德蒙行列式法就是考察1+n 阶范德蒙行列式)(x f ,利用行列式n D 与)(x f 中某一元素余子式的关系来计算行列式的方法.这种方法适用于n D 具有范德蒙行列式形式的题型.例17 计算行列式n nn nn n n n nnn x x x x x x x x x x x x D21222212222121111---=. 解 1+n 阶范德蒙行列式为)(x f =∏≤<≤-------=ni j j i n n nn nn n n n nnx x x x x x x x x x x x x x x x x x x x 12121112112222121)()())((111由分析知n D 就是行列式)(x f 中元素1-n x 的余子式1,+n n M ,即1,1,++-==n n n n n A M D (1,+n n A 为代数余子式), 又由)(x f 的表达式及根与系数关系知)(x f 中1-n x 的系数为()()∏≤<≤-+++-ni j j in x xx x x 121 .即1,+n n A =()()∏≤<≤-+++-ni j j in x xx x x 121 .所以 =n D ()()∏≤<≤-+++ni j j in x xx x x 121 .16.利用矩阵行列式公式引理 设A 为n m ⨯型矩阵,B 为m n ⨯型矩阵,n E ,m E 分别表示n 阶,m 阶单位矩阵,则有)det()det(AB E BA E m n ±=±.例18 计算下行列式的值.ba a a a ab a a a a a b a a a a a b a n n n n n ++++=321321321321D .解 令矩阵 A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++=b a a a a a b a a a a a b a a a a a b a n n n n321321321321则可得A ),,,(11121321321321321n n n n n n n a a a bE a a a a a a a a a a a a a a a a bE⎪⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+=n n n C B bE ⨯⨯+=11.其中 ()n n T n a a a C B ,,,,)1,,1,1(2111 ==⨯⨯, 那么根据上面所提到的引理可得111D ⨯⨯-+=+=n n n n n B C b b BC bE .又()∑=⨯⨯=⎪⎪⎪⎪⎪⎭⎫⎝⎛=ni i n n n a a a a B C 12111111,故)(11b a bD ni i n n +=∑=-.17.利用方阵特征值与行列式的关系例19 计算下行列式的值 ba a a a ab a a a a a b a a a a a ba D n n n n n ++++=321321321321.解 令矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++=b a a a a a ba a a a ab a a a a a ba A n n n n321321321321⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=n n n n n a a a a a a a a a a a a a a a a bE321321321321n n A bE +=,显然 ,n bE 的n 个特征值为b b b ,,, .而n A 的n 个特征值为0,,0,0,1∑=ni i a .故A 的特征值为11,,,,-=∑+n ni i b b b a b .由矩阵特征值与对应行列式的关系知)(11∑=-+==ni i n n b a bA D .18.乘以已知行列式例 20 计算行列式abc db a dc cd a bd c b aD ------=4. 解 直接计算这种行列式比较困难.所给行列式易于利用行列式乘法公式求得4424D D D '=,再确定4D 的符号即可求出4D .根据行列式的乘法公式有 4424D D D '==abc db a dc cd a b d c b a------ab c d b a d c cd a b d c b a ------=22222222222222220000000d c b a d c b a d c b a d c b a ++++++++++++=42222)(d c b a +++,所以4D = 22222)(d c b a +++±.根据行列式的定义可知,4D 的展开式中有一项为444332211)1234()1(a a a a a =-τ,故4D = 22222)(d c b a +++.19.递推方程组方法例21 求行列式的值xz zzy x z zyy x zyy y xD n = . (3) 解 从)(1的行列式的第一列减第二列,第二列减第三列,…,第1-n 列减第n 列,得,00000000000xxz y y x y y x x z y y x x z y y x D n -------=(4)上面的行列式按第一行展开,有两项,一项是)(y x -乘一个1-n 阶行列式,这个1-n 阶行列式和(4)中的n 阶行列式的构造相同,即上述展开的第一项可表示为1)(--n D y x ;展开的另一项是111)1(1)()()1(00000000000)1(--+-+-=--=-------n n n n n z x y x z y x z x z y x x z y x xz y故递推式,)()(11---+-=n n n z x y D y x D (5)若y z =,则上式化为,)()(11---+-=n n n y x y D y x D (6)类似地有;)()(;)()(223221y x y D y x D y x y D y x D n n n -+-=-+-=---又))((2y x y x xy yx x xy y yx D +-==--=. 故可对(4)式递推计算如下:11)()(---+-=n n n y x y D y x D=(y x -)[]122)()()(----+-+-n n n y x y y x y D y x =1332)(2])()[()(----+-+--n n n y x y y x y D y x y x =133)(3)(---+-n n y x y D y x])1([)()()2())(()()()2()(112122y n x y x y x y n y x y x y x y x y n D y x n n n n n -+-=--++--=--+-==-----上面得到原行列式当y z =时的值.下面讨论y z ≠的情形.把(5)的行列式的z y 与对调,这相当于原行列式的行与列互换,这样的做法,行列式的值不变.于是z y 与对调后,1,-n n D D 的值不变,这时(5)式变为11)()(---+-=n n n y x z D z x D (7)从(5)与(7)(递推方程组)消去1-n D ,即(3)式乘以z x -,(5)乘以)(y x -,相减得n n n y x z z x y D y x z x )()()]()[(---=---)()()(y z zy y x z z x y D nn n ≠----=当注: 当y z =时,行列式n D 也可以用极限计算zy y x z z x y nn y z ----→)()(lim(固定y ) 1)()(lim 1----⋅-=-→nn y z y x z x n y (用罗必达法则)])1([)()()(1y n x y x y x y x ny nn n -+-=-+-=-又行列式n D 当y z =时可以用余式定理来做.推广 其实上述行列式我们仅仅能看见主对角线相等的情况,那么对于主对角线不等的我们更进一步考虑用函数来解决.()()()()()x x x x x f ba a bfb af x bbba xb baa xb aa a x D n n--=--==1321其中,b a ≠. 证明 作()xx xb xb xb x a x x x b xb x a x a x x xb x a xa x a xx x D n ++++++++++++++++=321. 可见()()())(,b f b D a f a D =-=-,又据行列式的性质,可知()x D 是x 的一次多项式,所以可令()d cx x D +=,又因D D d ==)0(,所以)()(),()(b f D cb b D a f D ca a D =+-=-=+-=-.故()()ba a bfb af D --=.20.导数在计算行列式中的应用1.行列式的求导法则定理1 设)(x f ij (n j i ,,2,1, =)为可导函数,则有行列式求导法则)()()()(11111x f Vf M Mf V x f M M x f V x f dxdnn n in i n =∑=ni nn n in i n x f Vf M M f dx dV x f dx dM Mx f Vx f 111111)()()()(. 即行列式的导数是数个项之和,其项数等于行列式的阶数,第一项是把原行列式的第一行(或第一列)的各元变成相应的导数,其余各行(或列)不变。
数学毕业论文《行列式计算的若干种方法及算法实现》
山西师范大学本科毕业论文行列式计算的若干种方法及算法实现姓名系别专业班级学号指导教师答辩日期成绩行列式计算的若干种方法及算法实现内容摘要行列式是高等数学中基本而又重要的内容之一,那么认识行列式,并且掌握行列式的性质就显得尤为重要,在此基础上,我们还需要搞清楚行列式的若干种计算方法,这不仅仅是用于高等数学中的计算,行列式也可用于解决许多实际问题。
本文通过行列式的定义,把握行列式的性质,透彻全面的概括了6种行列式的计算方法,包括定义法,化三角法,应用一行(列)展开公式,范德蒙行列式,递推公式法以及加边,本文还提出运用MATLAB来帮助计算行列式,正确的选择计算行列式的方法,使计算更为快捷。
通过这一系列的方法进一步提高我们对行列式的认识,为我们以后的学习带来十分有益的帮助。
【关键词】行列式性质计算方法 MATLABThe determinant of several kinds of calculating method andalgorithmAbstractThe determinant of higher mathematics is the basic and important content of, then know the determinant, and grasps the nature of the determinant is particularly important, based on this, we also need to figure out some kind of calculation method of the determinant, it is not used in the calculation of higher mathematics, the determinant can also be used to solve many problems. In this paper the determinant do understand after, grasp the nature of the determinant, thoroughly comprehensive summary six kinds of determinant calculation method, including definition method, the triangle method, the application of row(column) on a formula, Vander monde determinants, recursive formula method and add edge method. This paper also puts forward to help with MATLAB calculation determinants; the right choice calculation method of the determinant, making the calculation is more quickly. Through this a series of methods to future improve our understanding of the determinant, for the rest of learning brings very useful help.【Keywords】Determinant Properties Calculation method MATLAB目录一、行列式概念的提出 (1)二、行列式的定义 (1)(一)定义1 (2)(二)定义2 (2)(三)定义3 (2)三、行列式的性质 (2)四、行列式的若干种计算方法 (4)(一)定义法 (4)(二)化三角形法 (5)(三)应用一行(列)展开公式 (5)(四)范德蒙行列式 (5)(五)递推公式法 (6)(六)加边法 (7)五、运用MATLAB来解决行列式的问题 (8)六、结束语 (13)参考文献 (13)致谢 (14)行列式计算的若干种方法及算法实现学生姓名: 指导老师: 一、行列式概念的提出我们知道,行列式是高等代数中的一个计算工具,无论是数学中的高深领域,还是现实生活中的实际问题,都或多或少的与行列式有着直接或间接地关系。
行列式解法小结 数学毕业论文
行列式解法小结数学毕业论文
行列式解法是线性代数中重要的一种方法,可以广泛地应用于各个领域,如物理、工程、经济等。
本文就行列式解法进行了全面的介绍和分析,并探讨了它在实际应用
中的具体作用。
首先,本文阐述了行列式作为一个矩阵的一个属性,描述了它的定义、性质和计算方法。
行列式的定义是通过对一个矩阵中所有可能的排列进行组合,求得的一个标
量值。
它具有很多有用的性质,如行列式关于行和列的互换、行列式的线性性质等。
计算行列式可以使用伴随矩阵或展开式等方法。
其次,本文讨论了行列式作为一个代数工具的应用。
通过分析行列式与线性方程组之间的关系,我们可以发现,行列式可以被用来检测线性方程组解的性质。
如果行
列式的值为零,则该线性方程组无唯一解。
但如果其值不为零,则有唯一解。
此外,本文还阐释了行列式在求解矩阵乘法、求逆矩阵及求解特征值的应用。
通过行列式解法可以很容易地计算出矩阵的乘积、逆矩阵以及特征值等,这对于实际应
用中的矩阵相关问题具有很大的意义。
最后,本文对于行列式的具体应用进行了分析。
在物理领域中,如电学和热学计算问题里,行列式经常出现在方程组的解中。
在机器学习领域,行列式也被广泛地应
用于求解数据的特征值和特征向量。
在工业制造领域中,行列式可以用于计算机器人
的运动,以及控制系统的分析。
综上所述,行列式在数学中具有很重要的地位,并且在各个应用领域都有着非常广泛的应用。
因此,学习和掌握行列式解法对于从事数学及相关领域的人员来说是非
常必要的。
行列式的计算及应用毕业论文
行列式的计算及应用毕业论文行列式的计算及应用毕业论文目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (15)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (17)3.6 行列式在实际中的应用 (18)总结 (20)参考文献 (21)附录1 (22)附录2 (22)附录3 (23)谢辞 (24)1. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D21212121)(212222111211)1(∑-==τ, (1-1-2)这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为n i i i i i i i i i nn n n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ.(1-1-3) 1.2 行列式的相关性质记 nnn n n na a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='.性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D += 可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -= 性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D ,交换D 相同的那两行,由性质4可得D D -=,故.0=D性质6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.2. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算。
行列式的计算方法和解析论文
行列式的计算方法和解析论文行列式是线性代数中重要的概念,其在矩阵理论、向量空间等方面有广泛的应用。
行列式的计算方法包括拉普拉斯展开、按行(列)展开、递推法等。
行列式的计算方法在不同的场景下有不同的适用性,下面将详细介绍行列式的计算方法及其应用,并从一篇经典的解析论文中探讨行列式在数学研究中的作用。
一、行列式的计算方法1.拉普拉斯展开法:拉普拉斯展开法是求行列式的一种常用的计算方法。
假设A是一个n阶方阵,其中元素用a_ij表示,对于任意一个a_ij,可以通过展开该元素所在的行和列的其他元素来计算行列式的值。
拉普拉斯展开法的基本原理是递归地求解子行列式的值,直到得到一个1阶行列式。
例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过拉普拉斯展开法按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(a_22*a_33-a_23*a_32)-a_12*(a_21*a_33-a_23*a_31)+a_13*(a_21*a_32-a_22*a_31)其中,A_11,表示去掉第一行第一列元素的2阶子行列式,以此类推。
2.按行(列)展开法:按行(列)展开法是求行列式的另一种计算方法。
通过选择其中一行(列),将行列式扩展为若干个较小阶的子行列式,最终递归地计算行列式的值。
按行展开和按列展开所得到的计算表达式相同,只是展开的方式不同而已。
例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(-1)^(1+1)*(a_22*a_33-a_23*a_32)-a_12*(-1)^(1+2)*(a_21*a_33-a_23*a_31)+a_13*(-1)^(1+3)*(a_21*a_32-a_22*a_31)其中,(-1)^(i+j)是代数余子式。
行列式计算方法的归纳 毕业论文
行列式计算方法的归纳摘 要 行列式的计算是一个很重要的问题,也是一个复杂的问题,阶数不超过 3的行列式可直接按行列式的定义求值,零元素很多的行列式(三角形行列式) 也可按行列式的定义求值.对于一般n 阶行列式,特别是当n 较大时,直接用定 义计算行列式几乎是不可能的事.因此,研究一般n 阶行列式的计算方法是十分 必要的.由于不存在计算n 阶行列式的一般方法,所以,本文只给出4种特殊的 计算方法给出了行列式的4种计算方法,综合利用所给解法,基本上可解决一般 4阶行列式的计算方法问题.关键词 行列式; 三角形行列式; 递推关系式1 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例 计算n 阶行列式ab b b a b b b aD n=解 ()[]a bb a bbb n a D n1111-+=()[]ba b a b bb n a ---+=000011()[]()b a n b n a ---+=112 提取公因式法若行列式满足下列条件之一,则可以用此法:(1)有一行(列)元素相同,称为“a a a ,,, 型”;(2)有两行(列)的对应元素之和或差相等,称为“邻和型”;(3)各行(列)元素之和相等,称为“全和型”.满足条件(1)的行列式可直接提取公因式a 变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶.满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法.例 计算n 阶行列式a aaa aa a aa D nn n n x x x +++=212121解 该行列式各行元素之和都等于 x+∑=ni i a 1,属于“全和型”,所以a aaaa a a Dnnn ni i nx x x ++⎪⎭⎫ ⎝⎛+=∑=2221111xx x a a a nni i0000121⎪⎭⎫ ⎝⎛+=∑= ⎪⎭⎫ ⎝⎛+=∑=-ni i n a xx 11()b aab b a nn ab b a 221-=*==-3 利用范德蒙德(Vandermonde )行列式法著名的范德蒙行列式,在线性代数中占有重要地位,研究它的应用引起了一些数学家的兴趣,因此在计算行列式时,可直接用其结果.例 计算n 阶行列式()()()()()()()()()112111121111111112111222122211---------=---xx xx x x x x x x x x x x x x x x D nn n n nn n n n n解 将第一行可视为()()()1,,1,12211------x x x x x x nn,再由行列式的性质()()()()()()1121111111112111221121-------------xx xx x x x x x x x x x x x nn n n nnn n把第一个行列式从第一行起依次将i 行加到i+1行;第二个行列式的第i 列提取1-x i (i=1,2,3……n ),得x x x x x x x xx D nnnnn nn212122221=()()()()()()()1121111111111211122111-----------=∏xx x x x x xx x x x x x nn n n nn ni in()()∏∏∏≤≤==-*⎥⎦⎤⎢⎣⎡--=ni j j i ni i n i i x x x x 1111b a D 1111+=4利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值.例 计算n 阶行列式accb ac b b aD n=,其中0,≠≠bc c b解 将D n 的第一行视为(a-c )+c,0+c,……,0+c,据行列式的性质,得accb ac b b c a cb a b bc a a ccb ac b b cc a D n+-=+++-=000()()b a D D n n n cc a ---+-=∴11(1)于b 与c 的对称性,不难得到()()c a D D n n n bb a ---+-=11 (2)联立(1),(2)解之,得 ()()()⎥⎦⎤⎢⎣⎡-=----b a c a c b D nnnc b 1例 计算n 阶行列式ba ab ba b a abb a ab b a D n +++++=0000010001000解 将D n 按第一行展开,得()ba ab b a b a ab ab b a D D n n +++-+=-100000000011于是得到一个递推关系式()D DD n n nab b a 21---+=,变形得()D D D Dn n n nb a b 111----=- ,易知()()D Da D D aD D n n n n n n b b b 4333221------=-=- ()()()a b a aD D a nn n b a b ab b =⎥⎦⎤⎢⎣⎡+--=-==+--22122所以D a D n nn b 1-+=,据此关系式在递推,有()Dba a D aa D n n n n n nn b b b 22121----++=++=b ba a D bbaa a nn n n n n n na b b ++++=++++==-----1111221如果我们将Dn的第一列元素看作a+b,1+0,……0+0,按第一列坼成两个行列式的和,那么可直接得到递推关系式D a D n nn b 1-+=,同样可D n 的值.综上述,我们介绍了计算行列式的4种方法,还有一些方法和技巧由于篇幅所限不再列举.最后指出:计算一个行列式常常有多种方法,有时计算一个行列式需要几种方法配合使用.对于给定的行列式,究竟选择何种方法为好,好需要在实践中积累经验.参考文献[1] 王品超.高等代数新方法.山东教育出版社,1989.。
行列式的计算毕业论文
渤海大学毕业论文题目:行列式的计算系别:数学系专业:数学与应用数学班级: 03级五班姓名:徐元姣指导教师:李春目录摘要 (2)引言 (3)一、行列式的定义和性质 (3)1、行列式的定义 (3)2、行列式的性质 (5)二、行列式计算的若干方法 (8)1、化三角形法 (8)2、降阶法(按行(列)展开法) (14)3、升阶法(加边法) (18)4、拆分法 (19)5、泰勒公式法 (21)6、利用范德蒙行列式 (23)7、导数法 (24)8、积分求行列式 (25)9、行列式乘积法 (27)10、递推法 (29)11、数学归纳法 (32)12、循环矩阵的行列式的计算方法 (35)13、利用矩阵行列式公式 (39)14、利用方阵特征值与行列式的关系 (40)结束语………………………………………………………………………………………42参考文献……………………………………………………………………………………43行列式的计算摘要:行列式是高等数学的一个基本的概念。
求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法。
本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式求值方法。
如:化三角形法、降阶法、升阶法、泰勒公式法、范德蒙行列式等十多种方法。
并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征。
关键词:行列式,定义,计算方法。
The Calculation of DeterminantXu Yuanjiao(Department of Mathematics BohaiUniversity Liaoning Jinzhou 121000 China)Abstract: The determinant is a basic concept of higher mathematics. The solution of determinant is the basic question, and each kind of complex higher order determinant has its special solution method. This paper mainly introduces the methods for calculation of determinant. For example, the triangle method, rise-lower method, analyzes the law, Taylor formula, Vandermonde determinant, and so on. The paper also analyzes the corresponding examples, and summarizes the characteristic of determinants corresponding to each method.Key words: Determinant, Definition, Calculation.引言行列式是高等代数中的重点部分,讲到行列式,我们通常会联想到用克兰姆法则求解线性方程组.但是行列式的作用不仅仅只用于求解线性方程组.在解析几何中,用行列式方法可以判别三点共线和三向量共面、计算平行六面体的体积等等.它不仅是研究线性方程组基本工具,也是讨论向量矩阵和二次型的重要工具之一。
行列式的计算技巧——毕业论文.doc
2016届本科毕业论文行列式的计算方法姓名:____ *** ____________ 院别:____数学与信息科学学院________ 专业:____数学与应用数学____________ 学号:___ 0000000000______________ 指导教师:__ __ *** ___ ____ 2016年 5月 1日2016届本科生毕业论文目录摘要.................................................... 错误!未定义书签。
关键词....................................................... 错误!未定义书签。
Abstract ..................................................... 错误!未定义书签。
Key words .................................................... 错误!未定义书签。
0 引言....................................................... 错误!未定义书签。
1 基本理论................................................... 错误!未定义书签。
2 行列式的计算技巧........................................... 错误!未定义书签。
2.1 化三角形法........................................... 错误!未定义书签。
2.2 递推法............................................... 错误!未定义书签。
2.3降阶法............................................... 错误!未定义书签。
行列式的解法技巧 毕业论文
目录摘要 (1)前言 (2)一、行列式的基本理论 (2)(一)行列式定义 (2)(二)行列式的性质 (2)(三)基本理论 (4)(四)几种特殊行列式的结果 (4)二、行列式的计算技巧 (5)(一)定义法 (5)(二)化成三角形行列式法 (5)(三)两条线型行列式的计算 (7)(四)箭型行列式的计算 (8)(五)三对角行列式的计算 (8)(六)利用范德蒙行列式 (10)(七)H ESSENBERG型行列式的计算 (10)(八)降阶法 (11)(九)加边法(升阶法) (12)(十)计算行(列)和相等的行列式 (13)(十一)相邻行(列)元素差1的行列式计算 (14)(十二)线性因子法 (15)(十三)辅助行列式法 (16)(十四)n阶循环行列式算法 (17)(十五)有关矩阵的行列式计算 (18)(十六)用构造法解行列式 (19)(十七)利用拉普拉斯展开 (20)三、用多种方法解题 (21)总结 (25)参考文献: (25)行列式的解法技巧摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。
本文先阐述行列式的基本理论,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。
通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。
关键词:行列式 , 矩阵, 范德蒙行列式 ,递推法Determinant of the solution techniqueAbstract:Determinant is an basic and important subject in advanced algebra ,it is veryuseful in mathematic. It is very important to know how to calculate determinant. The paperfirst introduced the basic nature of determinant,then introduced some methods, Finally,withthe other determinant of knowledge on the links in several other ways.,through this series ofmethods will futher enhance our understanding of the determinant,on our learning will bringvery useful help.Keywords: Determinant,matrix,Vandermonde Determinant,recurrence method前言行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题技巧进行总结归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式计算方法研究毕业论文目录摘要………………………………………………………………………………………...错误!未定义书签。
Abstract……………………………………………………………………………………...错误!未定义书签。
第1章行列式的计算方法 (1)第1节利用行列式定义与性质计算 (1)第2节化三角形法 (3)第3节降阶法 (4)第4节递推公式法及数学归纳法 (5)第5节利用德蒙行列 (7)第6节行列式的特殊计算法 (8)第2章行列式的应用 (11)第1节行列式在代数中的应用 (11)第2节行列式在几何中的应用 (12)第3节行列式在多项式理论中的应用 (14)结论 (16)参考文献 (17)致谢 (18)第1章 行列式的计算方法第1 节 利用行列式定义与性质计算定义1[1] 对任何n 阶方阵()ij nA a =,其行列式记为ij nA a = .()()121212121n n n nt p p p ij p p p np p p A a a a a ==-∑ .其中12n p p p 是数组1,2,…,n 的全排列,∑表示对关于这些全排列的项(共有!n项)全体求和.性质1 行列互换,行列式不变,即nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=.性质1表明,行列式中行与列的地位是对称的,所以凡是有关行的性质,对列同样成立.性质2 对换行列式两行的位置,行列式反号. 性质3 若行列式有两行相同,则行列式等于0.性质4 用一个数乘以行列式的某一行,等于用这个数乘以这个行列式,或者说某一行的公因式可以提出来,即nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111************=. 推论1 若行列式某行(列)元素都是0,则行列式等于0. 推论2 若一个行列式的任两行成比例,则行列式值为0. 性质5 行列式具有分行相加性,即nnn n n n na a a cbc b c b a a a21221111211+++=nn n n n n a a a b b b a a a212111211+nnn n n n a a a c c c a a a212111211. 性质6 把行列式的某一行的若干倍加到另一行,行列式值不变, 即nnn n kn h k in i i nnn n n kn k k kn in k i k i na a a a a a a a a a a a a a a a a a ca a ca a ca a a a a212121112112121221111211=+++. 例1[1] 计算行列式0005004003002000=D . 解 展开式中项的一般形式是12341234j j j j a a a a .显然,如果51≠j ,那么011=j a ,从而这个项都等于零.因此只需考虑51=j 的那些项;同理,只需考虑24j =,33j =,42j =这些列指标的项.这就是说行列式不为零的项只有41322314a a a a 这一项,而6)3421(=τ这一项前面的符号应该是正的,所以1205432=⋅⋅⋅=D .例2[2] 计算n 级行列式cdddd c d dd d c dd d d c d =.解 这个行列式的特点是每一行有一个元素是c ,其余1-n 个是d . 根据性质6,把行列式第二列加到第一列,行列式不变,再把第三列加到第一列,行列式不变,直到第n 列也加到第一列,即得cddddn c d c d dn c dd c d n c dd d d n c d )1()1()1()1(-+-+-+-+= =[]11(1)11d d d d c d d d c n d d c d ddddc+-. 把第二行到第n 行都分别加上第一行的-1倍,就有[]dc dd c d d dc d d d d n c d ----+= 00001)1(.根据例1得[]1)()1(---+=n d c d n c d .把行列式的某一行(或列)的元素写成两数和的形式,然后利用行列式的性质5将原行列式写成两行列式之和, 进而使行列式简化以便计算.例3 计算行列式332132213211λλλ+++=a a a a a a a a a D .解332322321332132213210λλλλλ+++++=a a a a a a a a a a a a a a a D=[]3233221321))((a a a a a -+++λλλλλ.第2节 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法,这是计算行列式的重要方法之一. 利用行列式的定义容易求得上(下)三角形行列式或对角形行列式.对于各行(或各列)之和相等的行列式,将其各行(或列)加到第1行(或第1列)或第n 行(或第n 列),然后再化简.例1 计算行列式0112032120113110--=D . 解 4132310311020112423212-----=--↔r r r r r r D132014003110201123243----=+-r r r r 25132003110401143432-----=+↔r r r r =50. 原则上,每个行列式都可利用行列式的性质化为三角形行列式.但对于阶数高的行列式,在一般情况下,计算往往较繁,因此,在许多情况下,总是先利用行列式的性质将其作某种保值变形,再化为三角形行列式.例2 计算行列式xa a a a x a a aa x a a a a x D =.解 它的特点是各列元素之和为)3(x a +,因此把各行都加到第一行,然后第一行再提出)3(x a +,得xaa a ax a a aa x a x a D 1111)3(+=.将第一行乘以)(a -分别加到其余各行,化为三角形行列式,则ax a x a x x a D ---+=00000001111)3(=3))(3(a x x a -+.第3节 降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用行列式的性质化简,使行列式中有较多的零出现,然后再展开.例1 计算行列式4122743221010113-=D . 解221132214)1(21211432010021143223134--=---+--=c c c c D213767)1(22137067013423132-=----=---+-+=r r r r .第4节 递推公式法及数学归纳法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,1n -阶或1n -阶与2n -阶等)的线性关系式,这种关系式称为递推关系式.根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n 阶行列式的值,这种计算行列式的方法称为递推法.使用递推方法首先要利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明.但给定一个行列式要猜想其值是比较困难的,因此数学归纳法一般直是用来证明行列式等式.例1 计算n 阶行列式4314314314=n D . 解 按第一列展开2113443143143140134----=-=n n n n D D D D .于是有32211333------=-=-n n n n n n D D D D D D =1312=-=D D ,及)(3)(3322211------=-=-n n n n n n D D D D D D =n n D D 3)(3122=-=- .从上两式削去1-n D ,得)13(211-=+n n D . 对于形如 的所谓三角行列式,可直接展开得两项递推公式21--+=n n n D D D βα,然后采用如下方法求解.方法1 如果n 较小,则直接递推计算.方法2 用第二数学归纳法:即验证1=n 时结论成立,设k n ≤结论成立,若可证明出1+=k n 时结论也成立,则对任意自然数结论也成立.方法3 将21--+=n n n D D D βα变形为)(211----=-n n n n pD D q pD D ,其中α=+q p ,β=-pq .由韦达定理知p 和q 是一元二次方程02=--βαx x 的两个根.确定p 和q 后,令1)(--=n n pD D x f ,利用)1()(-=n qf n f 递推求出)(n f ,再由)(1n f pD D n n +=-递推求出n D .方法4 设n n D x =,代入021=----n n n D D D βα,得021=----n n n x x x βα,因此有02=--βαx x (称为特征方程),求出根1x 和2x (假设21x x ≠),则1122n n n D k x k x =+这里1k ,2k 可通过取1n =和2n =来确定.例2 求n 阶行列式的值0110110110110=n D .解 按第一行展开得2--=n n D D ,即.02=+-n n D D 作特征方程012=+x 解得i x i x -==21,,则n n n i b i a D )(-⋅+⋅= )1(当1=n 时,01=D ,代入)1(式得;0=-ib ia 当2=n 时,12-=D ,代入)1(得1-=--b a 联立求解得21==b a ,故1()2n nn D i i ⎡⎤=+-⎣⎦. 例3 计算n 阶行列式xa a a a a x x xD n n nn +---=--12211000010001. 解 用数学归纳法 当2=n 时21122)(1a a x x a x a x D ++=+-==212a x a x ++.假设k n =时,有k k k k k k a x a x a x a x D +++++=---12211 .则当1+=k n 时,把1+k D 按第一列展开,得11+++=k k k D xD D=1111)(+--+++++k k k k k a a x a x a x x =12111+-++++++k k k k k a x a x a x a x .第5节 利用德蒙行列式德蒙行列式具有逐行元素方幂递增的特点,因次遇到具有逐行(或列)元素方幂递增或者递减的行列式时,可以考虑将其转化为德蒙行列式并利用相应的结果求值.定义 1 德蒙行列式()1232222123111111231111n n ijnj i nn n n n na a a a D ab a a a a a a a a ≤≤----==-∏.例1 计算行列式2122122111222212121111111------+++++++++=n n n n n n n n n n x x x x x x x x x x x x x x x D. 解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得德蒙行列式112112222121111---=n nn n n n x x x x x x x x x D=1()i j j i nx x ≤<≤-∏,其中“∏”表示连乘号.第6节 计算行列式杂例计算某些行列式有时特意把原行列式加上一行一列再进行计算,这种计算行列式的方法叫做加边法.当然,加边后要保证行列式的值不变,并且要使所得的高一阶行列式容易计算.要根据需要和原行列式的特点选取所加的行和列.加边法适用于某一行(列)有一个相同的字母的行列式,也可用于其列(行)的元素分别为1-n 个元素的倍数的情况.例1[3] 计算行列式db aD +++=111111111.解 给原行列式加边dba D +++=1110111011101111=+->ir r i 11db a 0010010011111---=+++121313111c c a c c dc c b db a d b a 000000001111111+++=abd d b a )1111(+++.例2[3]计算行列式229132413232213211x x D --=.解 由行列式定义知D 为x 的4次多项式,当1±=x 时,1,2行相同,有0=D ,所以1±=x 为D 的根;当2±=x 时,3,4行相同,有0=D , 所以2±=x 为0D =的根.故0D =有4个1次因式:1x +,1x -,2x +,2x -.设)2)(2)(1)(1(-+-+=x x x x a D ,令0=x ,则129132513232213211-==D ,即,12)2)(1(1-=--⋅⋅a ,所以3-=a .所以)2)(2)(1)(1(3-+-+-=x x x x D .当行列式各行(列)和相等,且除对角线外其余元素都相同可采用如下步骤. (1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式D *除主对角线外,其余元素均为0;(2)计算D *的主对角线各元素的代数余子式()ij 1,2,,A i n =;(3) ∑=*-=nj i ij A x D D 1.例 3[3] 求行列式的值n 111211212111n n D n --=-.解 在n D 上的各个元素上加上(-1)后()()1(1)2001-n 001-n 0D1(1)1-n 0n n n n n -*==--.又12)1(11,21)1()1(-----====n n n n n n n A A A ,其它的是零,所以()()()()()()()()()1211211111)1(1121n -----*--=--+--=+=-∑n n n n n n nnij ij n n n n n A D D n .以上是行列式计算常用的方法,在实际计算中,不同的方法适应于具有不同特征的行列式,如定义法一般适用于0比较多的行列式.当某行或某列含有较多的零元素,可采用降阶的方法每一种方法都有其各自的优点及其独特之处,因此研究行列式的解法有非常重要的意义.第2章 行列式的应用第1节 行列式在代数中的应用2.1 用行列式解线性方程组如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* ,的系数行列式0≠D , 那么,这个方程组有解,并且解是唯一的,可表示为DD x D Dx D D x n n ===,,,2211 . 例1[4] 求一个二次多项式()f x ,使(1)1f =-,(1)9f -=,(2)3f =-. 解 设所求的二次多项式为,2012()f x a x a x a =++,则有012012012(1)1(1)9(2)423f a a a f a a a f a a a =++=-⎧⎪-=-+=⎨⎪=++=-⎩ ,可求得系数行列式11111160421D =-=≠,所以可用克拉默法则求解,又11119116321D -=-=-, 211119130431D -==--, 311111918423D -=-=-. 解得101D a D ==,215D a D ==-,323Da D==. 于是所求的二次多项式为2()53f x x x =-+.2.2 用行列式证明恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零,利用行列式的这些性质,我们可以构造行列式来证明等式.例2 已知0a b c ++=,求证abc c b a 3333=++. 证明 令abc c b a D 3333-++=,则0111)(=++=++++++==acb b ac c b a acbb ac c b a c b a c b a ac bb a cc b a D ,命题得证.第2节 行列式在几何中的应用利用行列式我们可以解决集合中的一些问题,例如求平面三角形面积,在解析几何中用行列式表示直线的方程,以及三线共点和三点共线的几何问题,接下来我们就来讨论一下行列式在这几方面的应用.1[5]用行列式表示三角形的面积以平面三点),(11y x P ,),(22y x Q ,),(33y x R 为顶点的PQR ∆的面积S 是11121332211y x y x y x . 证明 将平面),(11y x P ,),(22y x Q ,),(33y x R 三点扩充到三维空间,其坐标分别为),,(11k y x ,),,(22k y x ,),,(33k y x ,其中k 为任意常数, 由此可得)0,,(1212y y x x PQ --=,)0,,(1313y y x x PR --=.),0,0(13131212y y x x y y x x PR PQ ----=⨯.PQR ∆面积为><=PR PQ S ,21313121221yyxxyyxx----==1313121221yyxxyyxx----=11121332211yxyxyx.例1 (2001年全国高考试题)设抛物线pxy22=(0p>)的焦点为F,经过焦点F的直线交抛物线交于A、B两点,点C在抛物线的准线上,且xBC//轴,求证AC 经过原点.证明设A、B两点的坐标为),(11yxA、),(22yxB,由于点C在抛物线的准线上,且xBC//轴,则),2(2ypC-,由抛物线焦点弦性质221pyy-=,得122ypy-=,故ccccaaaayxyxyxyxyxyx+-ccccyxyxyxyx01111+-=22)22(112211221=-=+=ypyppyypypy,所以AC经过原点.2[5]用行列式表示直线方程直线通过两点),(11yxP和),(22yxQ的直线方程为11221101x yx yx y=)1(证明由两点式,直线PQ方程为221212x x y yx x y y--=--.将上式展开并化简,得2122121=+-+--xyyxyxyxxyxy,此式可进一步变形为0111122112121=+-y x y x x x yy y x,此式为行列式)1(按第三行展开所得结果,原式得证.3[6] 三线共点 平面三条互不平行的直线,0,0,333322221111=++=++=++c y b x a L c y b x a L c y b x a L 相交于一点的充要条件是1112223330a b c a b c a b c =. 4[6] 三点共线平面三点),(11y x P ,),(22y x Q ,),(33y x R 在一直线的充要条件是1122331101x y x y x y =. 第3节 行列式在多项式理论中的应用实系数二元二次多项式F Ey Dx Cy Bxy Ax +++++22在复数域是否可以分解因式,是初等数学的一个重要问题,它不仅关系到因式分解,而且关系到判别方程022=+++++F Ey Dx Cy Bxy Ax 表示曲线的类型及解二元二次方程,能简单明了地判定二元二次多项式的可分解性.例1[7] 求证)()()()(222cz by ax cy bx az cx bz ay cz by ax ++-++++++++))(())(()(cy bx az cz by ax cy bx az cx bz ay cx bz ay ++++-++++-++ ))((222222xz yz xy z y x ac bc ab c b a ---++---++=.证明 左边cxbz ay cz by ax cy bx az cy bx az cx bz ay cz by ax ++++++++++++=111xb a y ac z c b z a c y c b x b a cy bx az z a c y c b x b a z c b y b a x a c cz by ax )()()()()()()()()()()()(01-------+-+-++-------+-+-++= xb a y ac z c b z a c y c b x b a z a c y c b x b a z c b y b a x a c )()()()()()()()()()()()(-------+-+--------+-+-=⎝⎛------+------+------+------=)()()()()()()()(222a c b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c ⎝⎛------+⎪⎪⎭⎫------+ ⎝⎛------+⎪⎪⎭⎫------+)()()()()()()()(b a b a a c a c yz a c a c c b c b b a c b a c b a xy c b c b b a b a xz c b a c b a c b ⎪⎪⎭⎫------+)()(xy b a b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c )()()()()()()()(222------+------+------+------=xz c b a c b a c b yz b a c b a c b a )()()()(------+------+))((222222xz yz xy z y x ac bc ab c b a ---++---++=.结论本文对行列式的计算方法进行了概括和总结,主要从n阶行列式的特点出发,通过例题的形式列举了行列式的几种主要计算方法.不仅较完满地解决了一些较难的求解问题,而且解决了代数,解析几何等方面的问题,从数形结合方面又开辟了新的思考途径,使得行列式的作用不仅限于对方程组的研究,在初等数学的各个方面也看到了行列式的妙用.参考文献[1] 大学数学系几何与代数教研室代数小组,高等代数(第三版) [M],: 高等教育出社,(2003):27-38[2] 乔林,关于行列式的定义及其计算方法 [J],科技信息,2007(25):[3] 万广龙,行列式的计算方法与技巧 [J],China's Foreign Trade ,2011(04)[4] 梁波,例谈行列式的几个应用 [J],学院学报,2006,(4):27-28[5] 汤茂林,行列式在初等代数中的巧用 [J],师学院学报,2008,(3):9-10[6] 周立仁,行列式在初等数学中的几个应用 [J],理工学院学报,2008,(4):17-18[7] 彭丽清,行列式的应用 [J],师学院学报,2005,(5):40-41致谢在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到付丽老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,向她表示衷心的感谢!我还要感谢在一起愉快的度过大学生活的同学们,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成.感谢师长,同学,朋友们给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。