概率论与数理统计_20_中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

概率论与数理统计 中心极限定理

概率论与数理统计 中心极限定理
假定每个部件的称量误差 X ~ U (1,1) (单位:kg ),且
每个部件的称量误差相互独立,试求机床重量的总误差的
绝对值不超过 10 kg 的概率。
作业: 第115页,习题5-2,A组:2.

n
近似
Xi ~ N (n, n 2 ) 或
i 1
即对任意的 x,有
n
X i n 近似
i 1
~ N (0,1)
n
Hale Waihona Puke nlimP
i 1
n
X i n n

x ( x)



例 5.2.1 为了测定一台机床的质量,把它分解成 75 个部件来称量。
第五章 中心极限定理
中心极限定理解决的问题:
n
大量的随机变量的和 X i 的近似分布是什么? i 1
结论
n
一定条件下, X i 近似服从正态分布。 i 1
一 独立同分布中心极限定理(列维-林德贝格)
设随机变量序列 X1, X 2, , X n , 独立同分布,且数学
期望和方差存在:E(Xi ) , D(Xi ) 2 (i 1,2, , n)

概率论与数理统计:中心极限定理

概率论与数理统计:中心极限定理

中心极限定理无论随机变量12,,,,n X X X 服从什么分布,当n 充分大时,其和的极限分布是正态分布,这就是我们今天要讲的中心极限定理。

定理 5.5(独立同分布中心极限定理)设随机变量12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,则随机变量之和1ni i X =∑的标准化变量nin Xn Y μ-=∑的分布函数()n F x 对于任意X 满足2/2lim ()lim d ()n i x t n n n X n F x P x t x μΦ-→∞→∞⎧⎫-⎪⎪⎪=≤==⎬⎪⎪⎩⎭∑⎰定理 5.5表明,对于均值为,μ方差为20σ>的独立同分布的随机变量的和1ni i X =∑的标准化随机变量,不论12,,,,n X X X 服从什么分布,当n 充分大时,都有~(0,1)nin Xn Y N μ-=∑近似,从而,当n 充分大时21~(,)nii XN n n μσ=∑近似.定理5.5′ 设随机变量列12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,令11nn i i X X n ==∑,则当n 充分大时~(0,1)N 近似,即2~(,/)n X N n μσ近似.例5.3 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100 g,标准差是10 g,求一盒螺丝钉的重量超过10.2 kg 的概率.解 设i X 为第i 个螺丝钉的重量,,100,,2,1 =i Y 为一盒螺丝钉的重量,则1001,i i Y X ==∑12100,,,X X X 相互独立,由()100,i E X=10,σ= 100n =知()100()10 000,i E X E X =⨯=()100()10 000,i D X D X =⨯=由独立同分布中心极限定理,~(10000,10000)Y N 近似,{}{10 200}110 200P Y P Y >=-≤10 00010 20010 0001100100Y P --⎧⎫=-≤⎨⎬⎩⎭1(2)10.977 20.022 8.Φ≈-=-=定理5.6(李雅普诺夫定理)设随机变量 ,,,,21n X X X 相互独立,它们具有数学期望和方差2(),()0,1,2,k k k kE X D X k μσ==>=,记.122∑==nk k nB σ若存在正数δ,使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE B δδμ则随机变量之和∑=n k k X 1的标准化变量nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x ,满足2/211lim ()lim d ().n nk k x t k k n n n n X F x P x t x B μΦ-==→∞→∞⎧⎫-⎪⎪⎪⎪=≤==⎨⎬⎪⎪⎪⎪⎩⎭∑∑⎰ 定理5.7(棣莫佛—拉普拉斯定理)设随机变量(1,2,)~(,)(01),n n b n p p η=<<则对任意x ,有22lim d ().t x n P x t x Φ--∞→∞⎧⎫⎪≤==⎬⎪⎭⎰证明 由于n η可视为n 个相互独立、服从同一参数p 的(01)-分布的随机变量12,,,n X X X 的和,即有1nn i i X η==∑,其中(),()(1),i i E X p D X p p ==-1,2,i =,故由独立同分布中心极限定理可得22lim lim d ().n i n n t xX np P x P x t x Φ→∞→∞-⎧⎫-⎪⎪⎧⎫⎪⎪≤=≤⎬⎬⎪⎪⎭⎪⎭==∑⎰, 定理5.7表明:若随机变量n η服从二项分布,即~(,)n b n p η,则当n 充分大时,有~(0,1)npN η-近似,从而,当n 充分大时~(,(1))n N np np p η-近似例5.4 假如某保险公司开设人寿保险业务,该保险有1万人购买(每人一份),每人每年付100元保险费,若被保险人在年度内死亡, 保险公司赔付其家属1万元.设一年内一个人死亡的概率为0.005试问:在此项业务中保险公司亏本的概率有多大?保险公司每年利润不少于10万的概率是多少?解 设X 表示一年内被保险人的死亡人数,则,~(10000,0.005)X b ,于是()100000.00550,()100000.0050.99549.75E X D X =⨯==⨯⨯=由棣莫佛—拉普拉斯定理,~(50,49.75)X N 近似.保险公司亏本,也就是赔偿金额大于10 000100100⨯=万元,即死亡人数大于100人的概率所以保险公司亏本的概率为(){100}1{100}117.050P X P X P Φ>=-≤=-≈-= 这说明,保险公司亏本的概率几乎是零.如果保险公司每年的利润不少于10万元,即赔偿人数不超过90人,则保险公司每年利润不少于10万的概率为(){90} 5.671P X ≤≈Φ≈Φ=.可见,保险公司每年利润不少于10万元的概率几乎是100%.。

概率论与数理统计:中心极限定理

概率论与数理统计:中心极限定理
X Xk
k 1
E(X ) 300, D(X ) 600
X ~ N (300,600) (近似)
P(280
X
320)
320 300 600
280603000
2
20 600
1
2 0.8165 1 0.5878
中心极限定理的意义
在实际问题中,若某随机变量可以看 作是有相互独立的大量随机变量综合作用 的结果,每一个因素在总的影响中的作用 都很微小,则综合作用的结果服从正态分 布.
1
x t2
e 2 dt
2
即对任意的 a < b,
lim P a Yn np b
n
np(1 p)
1
b t2
e 2 dt
2 a
Y n ~ N (np , np(1-p)) (近似)
正态分布的概率密度的图形
x
二项分布的随机变量可看作许多相互独立的0-1
分布的随机变量之和, 下面是当x-B(20,0.5)时, x的
k 1
定理2 李雅普诺夫(Liapunov)定理
设随机变量序列 X1, X 2,, X n , 相互 独立,且有有限的期望和方差:
E(Xk ) k ,
D(X k
)
2 k
0
,
k 1,2,

n
n
Bn2
D(X k )
2 k
k 1
k 1
若 0,
1
B 2 n
n
E(| X k
k 1
k
|2 ) n0
n
lim P k1
x
n
n
1
x t2
e 2 dt

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

大数定律与中心极限定理总结

大数定律与中心极限定理总结

大数定律与中心极限定理总结大数定律与中心极限定理是概率论与数理统计中的两个重要定理,用于描述随机变量序列的性质。

下面我将分别对这两个定理进行总结,并给出相关的参考内容。

一、大数定律大数定律是概率论中的一个基本定理,描述了随机变量序列的极限性质。

大数定律可以分为弱大数定律和强大数定律两种。

1. 弱大数定律弱大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值收敛于某个常数,那么这个序列就满足弱大数定律。

弱大数定律的代表是辛钦大数定律。

具体来说,如果一个随机变量序列X1, X2, ..., Xn,其中Xi是相互独立、同样分布的随机变量序列,它们的均值为μ,方差为σ^2。

那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1这意味着当样本数量趋向于无穷大时,样本均值的概率逼近于1,即样本均值趋近于总体均值μ。

2. 强大数定律强大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值以概率1收敛于某个常数,那么这个序列就满足强大数定律。

强大数定律的代表是伯努利大数定律和切比雪夫大数定律。

伯努利大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其中每个随机变量取值为0或1,概率为p或1-p,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - p| ≤ ε ) = 1切比雪夫大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其具有相同的均值μ和方差σ^2,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1以上的大数定律说明了随机变量序列的均值具有稳定的性质,当样本数量足够大时,样本均值可以准确地反映总体均值。

二、中心极限定理中心极限定理是概率论与数理统计中的一个基本定理,描述了独立随机变量和的分布的极限性质。

大数定律与中心极限定理知识点整理

大数定律与中心极限定理知识点整理

大数定律与中心极限定理知识点整理大数定律和中心极限定理是概率论与数理统计中两个重要的概念,它们在统计学和经济学等领域中具有广泛的应用。

下面将对它们的主要知识点进行整理。

一、大数定律(Law of Large Numbers)大数定律是关于随机变量序列均值的收敛性的一个法则。

它表明,当独立同分布的随机变量不断增加时,其均值将会趋近于理论期望。

具体来说,大数定律包含以下几个重要概念:1. 弱大数定律(Weak Law of Large Numbers)弱大数定律指的是当随机变量序列无限增加时,其均值以概率1收敛于理论期望。

这个定律要求序列中的随机变量具有有限的方差和独立同分布的性质。

2. 强大数定律(Strong Law of Large Numbers)强大数定律指的是当随机变量序列无限增加时,其均值几乎处处收敛于理论期望。

与弱大数定律相比,强大数定律要求序列中的随机变量只需要具有独立性,而不需要具有方差的有限性。

二、中心极限定理(Central Limit Theorem)中心极限定理是关于随机变量和其样本均值之间关系的一个重要定理。

它表明,当样本量增加时,随机变量的分布将趋近于正态分布。

中心极限定理包含以下几个关键点:1. 独立同分布的随机变量之和的分布趋近于正态分布。

2. 标准化后的样本均值的分布趋近于标准正态分布。

3. 样本量越大,越接近正态分布。

总结:大数定律和中心极限定理是概率论与数理统计中非常重要的概念。

大数定律研究随机变量序列均值的收敛性,而中心极限定理研究随机变量和其样本均值的分布趋近于正态分布的关系。

它们的应用广泛,对于统计学、经济学等领域的研究与实践具有重要意义。

概率论与数理统计§中心极限定理

概率论与数理统计§中心极限定理
概率论与数理统计之中心 极限定理
• 引言 • 中心极限定理的基本概念 • 中心极限定理的证明 • 中心极限定理的应用 • 中心极限定理的扩展与推广 • 案例分析与实践应用 • 总结与展望
01
引言
主题简介
中心极限定理是概率论与数理统计中的重要概念,它描述了在独立同分布的随机 变量序列下,无论这些随机变量的分布是什么,它们的平均值的分布将趋近于正 态分布。
03
中心极限定理的证明
证明方法概述
方法一:基于特征函数的 证明
方法二:基于概率密度函 数的证明
ABCD
通过对特征函数的性质进 行分析,利用泰勒展开和 收敛性质,证明中心极限 定理。
通过分析概率密度函数的 性质,利用大数定律和收 敛定理,证明中心极限定 理。
重要极限公式
公式一: $lim_{{n to infty}} frac{S_n}{sqrt{n}} = N(0,1)$
中心极限定理的应用范围广泛,不仅限于金融、保险、医学等领域,还涉来研究的展望
01
随着大数据时代的到来,中心极限定理在处理大规模数据和复杂 随机现象方面的应用价值将更加凸显。未来研究可以进一步探索 如何优化中心极限定理的应用,提高其在实际问题中的适用性和 准确性。
02
随着数学和其他学科的交叉融合,中心极限定理与其他理 论或方法的结合应用将成为一个重要的研究方向。例如, 如何将中心极限定理与机器学习、人工智能等新兴技术相 结合,以解决更加复杂和具体的问题。
03
中心极限定理的理论基础和证明方法仍有进一步完善的空 间。未来研究可以深入探讨中心极限定理的数学原理,发 现新的证明方法和技巧,推动概率论与数理统计理论的进 一步发展。
07
总结与展望

中心极限定理【概率论与数理统计+浙江大学】

中心极限定理【概率论与数理统计+浙江大学】

k 1
k 1
近似地
Zn ~ N (0,1)
2、随机变量X k 无论服从什么分布,只要满足
定理条件,随即变量之和
n

X
k,当n很大时,就近
k 1
似服从正态分布,这就是为什么正态分布在概率论
中所占的重要地位的一个基本原因.
定理3(棣莫佛-拉普拉斯(De Laplace定理)
设随机变量n(n=1,2,‥‥)服从参数n,p(0<p<1)
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.
高斯
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布.
现在我们就来研究独立随机变量之和所特有 的规律性问题. 当n无限增大时,这个和的极限分布是什么呢?
P(Y>1920)=1-P(Y1920) 1- (1920 1600) 400
=1-(0.8) =1-0.7881=0.2119
例2解答:
(1)解:设应取球n次,0出现频率为
1 n
n k 1
Xk
E(
1 n
n k 1
Xk
)

0.1,
D(
1 n
n k 1
Xk
)

0.09 n
n

Xk
近似地
~
N
(n , n
2
)
;
k 1
n
X k n 近似地
k 1
n
~ N (0,1).
2、独立同分布中心极限定理的另一种形式可写为
近似地

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

概率论与数理统计大数定律及中心极限定理

概率论与数理统计大数定律及中心极限定理

且具有相同的数学期望和方差:E( Xk ) ,
D( X k ) 2 (k 1, 2, ), 作前 n 个随机变量
的算术平均
X
1 n
n k 1
X
k
,
则对于任意正
数 有
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
X
k
1.
表 达
{| X | }是一个随机事件, 等式表
式 明,当n 时这个事件的概率趋于1,
切比雪夫大数定律 伯努利大数定律 辛钦大数定律
一、问题的引入
实例 频率的稳定性
随着试验次数的增加, 事件发生的频率逐渐稳 定于某个常数. 单击图形播放/暂停 ESC键退出
启示:从实践 中人们发现 大量测量值 的算术平均 值有稳定性.
二、基本定理
定理一(切比雪夫大数定律)
切比雪夫
设随机变量 X1, X 2 , , X n , 相互独立,
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| Xn|来自}limn
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
X
k
1 n
n k 1
E(Xk )
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k

中心极限定理的内涵和应用

中心极限定理的内涵和应用

中心极限定理的内涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。

中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。

这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。

故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。

一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn X Y n i i n σμ-=∑=1 则对任意实数y ,有 {}⎰∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。

由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。

为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。

于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ 从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→n n Y n n t o nt t n )(21lim )(lim 22ϕ22t e - 而22t e -正是N(0,1)分布的特征函数,定理得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习2解答(续)
方法二:把二项分布看成多个独立 同分布的1-0分布之和,再根据中心 极限定理用标准正态分布近似计算
练习2解答(续2)
方法二续
小结:当n很大时,二项分布 B(n,p)可看成是很多独立同分布 的1-0分布之和,从而可以用正 态分布的CDF连续函数来近似原 来二项分布的CDF(离散值)。 用Mathematica作图来对比,这 个近似很优秀。
k 1 n
练习1解答
练习2
某车间有200台车床,它们独立地工作着,开工 率为0.6,开工时耗电各为1千瓦,问供电所至少要 供给这个车间多少电力才能以99.9%的概率保证 这个车间不会因供电不足而影响生产?
练习2求。
……
用Mathematica可求得 r_min = 141
n
讨论Yn的极限分布是否为标准 正态分布
独立同分布的中心极限定理 设 X1,, X n , 是独立同分布的随机变量序 列,且 EX k ,DX k 2 0, (k 1,2,) 则 { X n } 服从中心极限定理,即:
lim P{
X
k 1
n
k
n x}
n
n
则 { X n } 服从中心极限定理,即:
lim P{
X
k 1 k k 1
n
n
k
n
DX k
k 1
n
1 x} 2

e
x
t2 2
dt
中心极限定理是概率论中最著名的结果之一, 它不仅提供了计算独立随机变量之和的近似概率的 简单方法,而且有助于解释为什么很多自然群体的 经验频率呈现出钟形曲线这一值得注意的事实.
概率论与数理统计
第20讲 中心极限定理
张宏浩
中心极限定理的客观背景
在实际问题中许多随机变量是由相互独立随机因素的 综合影响所形成的. 例如:炮弹射击的落点与目标的偏差,就受着许多随机因素 (如瞄准,空气阻力,炮弹或炮身结构等)综合影响的.每 个随机因素的对弹着点(随机变量和)所起的作用都是很小 的. 那么弹着点服从怎样分布 ? 如果一个随机变量是由大量相互独立的随机因素的综 合影响所造成,而每一个别因素对这种综合影响中所起的作 用不大. 则这种随机变量一般都服从或近似服从正态分布.
小结 中 心 极 限 定 理
2 独立同分布 E ( X k ) ,D( X k ) n 近似地 2 中心极限定理 X N ( n , n ) k ~ k 1 n ~ N ( n, p ) 棣莫弗 拉普拉斯 近似地 中心极限定理 n ~ N ( np, np(1 p)) 李雅普诺夫 E ( X k ) k , D( xk ) k 2 n n 近似地 2 中心极限定理 X k ~ N ( k , Bn ) k 1 k 1
什么是中心极限定理 概率论中有关论证独立随机变量的和的极限分布 是正态分布的一系列定理称为中心极限定理。 由于无穷个随机变量之和可能趋于∞,故我们不 研究n个随机变量之和本身而考虑它的标准化的随机 变量,即:
Yn
k 1
X k E( X k )
k 1
n
n
D( X k )
k 1
练习4解答
练习4解答(续)
李雅普诺夫(Lyapunov)定理
设X 1 , , X n , 相互独立,且EX k k,DX k k 0,
2 2 (k 1,2, ),设Bn k2 , 若存在正数, k 1 n
1 使得当n 时, 2 Bn
2 E {| X | } 0 k k k 1
说明:这个公式给出了n 较大时二项分布的概率 计算方法。
用频率估计概率时误差的估计:
由上面的定理知
n np n P P p n n
P
n n np pq npq n pq n pq
n pq n pq 1
用这个关系式可解决 许多计算问题。
2
在n很大时有
第一类问题是已知 n, p, , 求概率
n P p ; n
第二类问题是要使
n
n
与 p 的差异不大于定数 的概率
n
1 2

e
x
t2 2
dt

证明见下面两页
独立同分布中心极限定理的证明:
(续下页)
(续上页)
练习1
一加法器同时收到20个噪声电压Vk ( k 1,2,n), 设它们是相互独立的随机变量,且都在区间(0, 10) 上服从均匀分布.记V Vk,求P V 105的近似值.
则对于任意 x ,恒有:
德莫佛-拉普拉斯(De Moivre—Laplace)定理 设随机变量 n (n 1,2,) 服从参数为n,p(0<p<1)的二 项分布 ,即 n ~ B(n, p).
n np 1 lim P{ x} n npq 2


x
t2 e 2 dt
不小于预先给定的数 ,问最少应做多少次试验?
这时只需求满足下式的最小的n,
2 n pq 1
n n 1 P p 2 pq n
第三类问题是已知 n , p 及 , 求 , 先求 x 使 n pq 2 x 1 , 有 x , 故 x . pq n
( q 1 p)
证:n X k ,
k 1
n
其中 X 1 ,, X n 相互独立且都服从于 (0-1) 分布。 EX k p, DX k pq 。 n
由独立同分布的中心极限 定理有结论成立。
n
lim P{
X
k 1
k
n
n
x}
1 2

e
x
t2 2
dt
推论: 设随机变量 n (n 1,2,) 服从参数为 n , p (0<p<1) 的 二项分布, 即n ~ B(n, p). 当 n 充分大时有:
a np n np b np P{a n b} P{ } npq npq npq b np a np ( ) ( ) npq npq
练习3
现有一批种子,其中良种占1/6。今任取6000粒, 问能以0.99的概率保证在这6000粒种子中良种所 占的比例与1/6的差不超过多少?相应的良种粒数 在哪个范围内?
练习3解答
练习3解答(续)
练习4
1 假设一批种子的良种率为 ,从中任意选出600粒, 6 试用切比雪夫(Chebyshev)不等式和中心极限定 理分别估计:这600粒种子中良种所占比例与 1 之 6 差的绝对值不超过0.02的概率。

随机变量X 1 , X 2 ,是相互独立的
相关文档
最新文档