排列组合与二项式定理
35:排列组合和二项式定理高三复习数学知识点总结(全)
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合二项式定理
排列组合和二项式定理一、排列组合1.1 排列排列是指从一组元素中选取一部分进行操作,按照一定的顺序进行排列。
在排列中,每个元素只能使用一次。
例如,从1、2、3这三个元素中选出两个进行排列,可以得到以下6个排列: 12、13、21、23、31、32。
排列的数目可以用符号P表示,表示从n个元素中选取r 个进行排列。
排列数的计算公式如下所示: P(n, r) = n! / (n - r)!其中,!表示阶乘,例如4! = 4 × 3 × 2 × 1 = 24。
1.2 组合组合是指从一组元素中选取一部分进行操作,不考虑元素的顺序。
与排列不同,组合中的元素只有选择与不选择两种情况。
例如,从1、2、3这三个元素中选出两个进行组合,可以得到以下三个组合: 12、13、23。
组合的数目可以用符号C表示,表示从n个元素中选取r 个进行组合。
组合数的计算公式如下所示: C(n, r) = n! / (r! × (n - r)!)二、二项式定理二项式定理是代数学中的一个重要定理,用于展开任意幂的二项式。
二项式定理公式如下所示: (a + b)^n = C(n, 0) × a^n × b^0 + C(n, 1) × a^(n-1) × b^1 + C(n, 2) × a^(n-2) × b^2 + … + C(n, n) × a^0 × b^n其中,C(n, r)表示组合数,表示从n个元素中选取r个进行组合。
a和b表示两个变量,n表示幂。
在二项式定理中,展开后的式子包含了各个组合数和变量的乘积,这些乘积的和即为二项式定理的展开结果。
二项式定理在代数学中有着广泛的应用,它可以用于计算各种复杂的代数表达式的展开结果。
二项式定理也是高中数学课程中常见的内容,通过学习二项式定理,可以帮助学生更好地理解代数学中的概念。
排列组合二项式定理
排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。
排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。
排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。
对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。
排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。
此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。
此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。
对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。
组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。
它用于展开一个二项式的幂。
二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。
三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。
在展开式中,每一项的系数就是对应的组合数。
举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。
二项式定理在概率论、组合数学、代数等领域具有广泛的应用。
排列组合、二项式定理与概率统计
排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。
它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。
排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。
它的公式有:A(n,m)=n(n-1)...(n-m+1)。
这里的A表示从n个中取出m个的排列数。
二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。
它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。
概率统计用来研究不同事件出现的可能性和规律。
这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。
概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。
排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。
排列组合二项式定理
排列:表达的是事件中元素是有顺序的或有区分的例如(1)在袋子中逐个取出。
排队有先后之分。
表达式:!()!n m n nn m n m A n A A n m --==-(表达n 个中选m 个进行排序)计算:1.解方程:3322126xx x A A A +=+ 2. 解不等式:2996x x AA -> (1)已知101095mA =⨯⨯⨯,那么m = ; (2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ; (4)已知2247n n A A -=,那么n = .情况次数讨论:互斥分类——分类法 先后有序——位置法 反面明了——排除法相邻排列——捆绑法 分离排列——插空法 排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”例1求不同的排法种数:(1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻.例2 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?例3 7位同学站成一排(1)甲、乙两同学必须相邻的排法共有多少种? (2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? (4例4 (1)一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?组合:表达事件中元素没有顺序或相互之间没有区分 例如(1)在袋子中一次拿出3个小球(没有顺序)(2)将三个相同的黄色小球排成一列(没有区分)表达式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 规定: 01n C =.m n nmnC C -=. m n C 1+=m n C +1-m n C 计算:(1)设,+∈N x 求321132-+--+x x x x C C (2)解方程:3213113-+=x x C C ; (3)解方程:333222101+-+-+=+x x x x x A C C . 情况次数讨论:例1 (1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?例2 在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?例3 (1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?】例4 4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 6、分类组合,隔板处理从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?二项式定理:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++二项式定理:01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈(1)右边的多项式叫()na b +的二项展开式, (2)它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,(3)rn rr n C ab -叫二项展开式的通项,用1r T +表示,即通项1r n r rr nT C a b -+=. (4)二项式定理中,设1,ab x ==,则1(1)1n r rnn n x C x C x x +=+++++计算:(1)展开41(1)x+. 展开6. (2)求12()x a +的展开式中的倒数第4 求9(3x +的展开式常数项; 求9(3x +求7(12)x +的展开式的第4项的系数;求91()x x-的展开式中3x求60.998的近似值,使误差小于0.001. 解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+二项式定理的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn nC C -=). 直线2nr=是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk nn n n n n k n k C C k k----+-+==⋅,∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<,当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr rn n n x C x C x x +=+++++,令1x =,则0122n r nn n n n nC C C C C =++++++例1 在()na b +证明:在展开式01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nn n n n nC C C C C -=-+-++-, 即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++.解:(1)当1x=时,77(12)(12)1x -=-=-,展开式右边为0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ①令1x=-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴ 70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-702461357()()3a a a a a a a a =+++-+++= 例3 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n例4 (江西卷)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.7(安徽卷)若(2x 3+x1)a的展开式中含有常数项,则最小的正整数n 等于 .例5 在10)32(y x -的展开式中,求:①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关.解:设10102829110010)32(y a y x a y x a x a y x ++++=- (*),各项系数和即为1010a a a +++ ,奇数项系数和为0210a a a +++,偶数项系数和为9531a a a a ++++ ,x 的奇次项系数和为9531a a a a ++++ ,x 的偶次项系数和10420a a a a ++++ .由于(*)是恒等式,故可用“赋值法”求出相关的系数和. ①二项式系数和为1010101100102=+++C C C .②令1==y x ,各项系数和为1)1()32(1010=-=-.③奇数项的二项式系数和为910102100102=+++C C C ,偶数项的二项式系数和为99103101102=+++C C C .④设10102829110010)32(y a y x a y x a x a y x ++++=- ,令1==y x ,得到110210=++++a a a a …(1),令1=x ,1-=y (或1-=x ,1=y )得101032105=++-+-a a a a a (2)(1)+(2)得10102051)(2+=+++a a a ,∴奇数项的系数和为25110+;(1)-(2)得1093151)(2-=+++a a a ,∴偶数项的系数和为25110-.⑤x 的奇次项系数和为251109531-=++++a a a a ;x 的偶次项系数和为2511010420+=++++a a a a .。
第讲排列组合和二项式定理概率(2022高考数学---新东方内部
第讲排列组合和二项式定理概率(2022高考数学---新东方内部第十一章排列、组合和二项式定理1.排列数公式mAnn(n1)(n2)(nm1)n!n(mn);Ann!n(n1)(n2)21。
(nm)!如①1!+2!+3!+…+n!(n4,nN某)的个位数字为;(答:3)②满足A8某6A8某2的某=(答:8)组合数公式mAnn(n1)(nm1)n!0Cm(mn);规定0!1,Cn1.Amm(m1)21m!nm!mnmnm如已知CnCm1An6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①CnmCnnm;1②CnmCnm1Cnm1;kk1③kCn;nCn11④CrrCrr1Crr2CnrCnr;1⑤nn!(n1)!n!;n11⑥.(n1)!n!(n1)!2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③从集合1,2,3和1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤A的一边AB上有4个点,另一边AC上有5个点,连同A的A顶点共10个点,以这些点为顶点,可以构成_____个三角形;(答:CB90)⑥用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有D种不同涂法;(答:480)⑦同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种;(答:9)⑧f是集合Ma,b,c到集合N1,0,1的映射,且f(a)f(b)f(c),则不同的映射共有个;(答:7)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
高中数学知识点总结 第十章排列组合和二项式定理
高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
高中数学排列组合及二项式定理知识点
高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。
高考数学真题题型分类解析专题专题08 排列组合与二项式定理
高考数学专题命题解读1.高考对排列组合的考查,重点是特殊元素与特殊位置、两元素相邻或不相邻、分组、分配等问题。
题型一般与生活实际联系紧密。
2.高考对二项式定理的考查,重点是二项展开基本定理考查特定项、系数、二项式系数等问题,同时会涉及到赋值法的应用。
命题分析2024年高考新高考Ⅰ卷的排列组确定所有可能结果,其实Ⅰ卷的题目也其中逻辑推理能力比较重要,而且都是试题精讲一、填空题1.(2024新高考Ⅱ卷·14)在如图的则共有种选法,在所有符合上述要求的考数学真题题型分类解析08排列组合与二项式定理考向 点是特殊或不相一般与生重点是二特定项的时会涉及排列组合202202202202二项式定理 202排列组合是体现在概率中的,后续专题会体现出来。
题目也可以采用列举法,这两题考查的方向偏向于与实且都是压轴题。
预计2025年高考还是主要考查排列组合图的4×4方格表中选4个方格,要求每行和每列均恰要求的选法中,选中方格中的4个数之和的最大值是解析解析 式定理式定理考查统计2023·新高考Ⅰ卷,13 2022·新高考Ⅱ卷,5 2023·新高考Ⅱ卷,3 2024·新高考Ⅱ卷,14 2022·新高考Ⅰ卷,13 。
Ⅱ卷考查了通过列举来于与实际生活联系在一起;列组合的应用,题型多变。
列均恰有一个方格被选中,大值是.【答案答案】】 24 112【分析分析】】由题意可知第一由题意可知第一、、二、三、四列分别有4、3、2、1个方格可选个方格可选;;利用列举法写出所有的可能结果利用列举法写出所有的可能结果,,即可求解.【详解详解】】由题意知由题意知,,选4个方格个方格,,每行和每列均恰有一个方格被选中每行和每列均恰有一个方格被选中,, 则第一列有4个方格可选个方格可选,,第二列有3个方格可选个方格可选,, 第三列有2个方格可选个方格可选,,第四列有1个方格可选个方格可选,, 所以共有432124×××=种选法种选法;;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一分别表示第一、、二、三、四列的数四列的数字字, 则所有的可能结果为则所有的可能结果为:: (11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中所以选中的方格中,,(15,21,33,43)的4个数之和最大个数之和最大,,为152********+++=. 故答案为故答案为::24;112 【点睛点睛】】关键点点睛关键点点睛::解决本题的关键是确定第一解决本题的关键是确定第一、、二、三、四列分别有4、3、2、1个方格可选个方格可选,,利用列举法写出所有的可能结果.一、单选题1.(2022新高考Ⅱ卷·5)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种【答案答案】】B【分析分析】】利用捆绑法处理丙丁利用捆绑法处理丙丁,,用插空法安排甲用插空法安排甲,,利用排列组合与计数原理即可得解【详解详解】】因为丙丁要在一起因为丙丁要在一起,,先把丙丁捆绑先把丙丁捆绑,,看做一个元素看做一个元素,,连同乙连同乙,,戊看成三个元素排列,有3!种排列方式;为使甲不在两端为使甲不在两端,,必须且只需甲在此三个元素的中间两个位置任选一个位置插入必须且只需甲在此三个元素的中间两个位置任选一个位置插入,,有2种插空方式种插空方式;;注意到丙丁两人的顺序可交换注意到丙丁两人的顺序可交换,,有2种排列方式种排列方式,,故安排这5名同学共有名同学共有::3!2224××=种不同的排列方式种不同的排列方式,,故选故选::B 2.(2023新高考Ⅱ卷·3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种二、填空题3.(2022新高考Ⅰ卷·13)81()y x y x −+的展开式中26x y 的系数为(用数字作答).修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答). 【答案答案】】64【分析分析】】分类讨论选修2门或3门课门课,,对选修3门,再讨论具体选修课的分配再讨论具体选修课的分配,,结合组合数运算求解.【详解详解】(】(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类若体育类选修课选修课2门,则不同的选课方案共有2144C C 24=种;综上所述综上所述::不同的选课方案共有16242464++=种. 故答案为故答案为::64.一、排列与排列数1、定义:从n 个不同元素中取出()m m n ≤个元素排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号mn A 表示.2、排列数的公式:()()()()!121!mnn A n n n n m n m =−−−+=− . 特例:当m n =时,()()!12321m n A n n n n ==−−⋅⋅ ;规定:0!1=. 3、排列数的性质:①11m m n n A nA −−=;②111mm m n n n n A A A n m n m+−==−−;③111m m m n n n A mA A −−−=+.二、组合与组合数1、定义:从n 个不同元素中取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.从n 个不同元素中取出()m m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号mn C 表示.2、组合数公式及其推导求从n 个不同元素中取出m 个元素的排列数m n A ,可以按以下两步来考虑: 第一步,先求出从这n 个不同元素中取出m 个元素的组合数m n C ; 第二步,求每一个组合中m 个元素的全排列数m n A ; 根据分步计数原理,得到m m m n n m A C A =⋅;因此()()()121!m mn nm m n n n n m A C A m −−−+== .这里n ,m N +∈,且m n ≤,这个公式叫做组合数公式.因为()!!m n n A n m =−,所以组合数公式还可表示为:()!!!m n n C m n m =−.特例:01n n n C C ==.注意:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题.公式(1)(2)(1)C !m n n n n n m m −−⋅⋅⋅−+=常用于具体数字计算,!C !()!m n n m nm =−常用于含字母算式的化简或证明.3、组合数的主要性质:①m n m n n C C −=;②11m m mn n n C C C −++=.4、组合应用题的常见题型:①“含有”或“不含有”某些元素的组合题型 ②“至少”或“最多”含有几个元素的题型三、排列和组合的区别组合:取出的元素地位平等,没有不同去向和分工. 排列:取出的元素地位不同,去向、分工或职位不同.注意:排列、组合都是研究事物在某种给定的模式下所有可能的配置数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题.排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合综合问题的基本思维是“先组合,后排列”.四、二项式展开式的特定项二项式展开式的特定项、、特定项的系数问题1、二项式定理一般地,对于任意正整数,都有:011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N −−∗+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b −+=, 其中的系数r n C (r =0,1,2,…,n )叫做二项式系数,2、二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次 数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).3、两个常用的二项展开式:①()②4、二项展开式的通项公式二项展开式的通项:1r n r r r n T C a b −+=()0,1,2,3,,r n =…公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n .n n b a )(+011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b −−−=−++−⋅++−⋅ *N n ∈122(1)1n r r n n n n x C x C x C x x +=++++++ r n C注意:①二项式()n a b +的二项展开式的第r +1项和()n b a +的二项展开式的第r +1项是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b −的二项展开式的通项是(只需把b −看成b 代入二项式定理).五、二项式展开式中的最值问题1、二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C −+=+. ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n m n n C C −=.③二项式系数和令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++= ,变形式1221r n n n n n n C C C C +++++=− .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==−,,则0123(1)(11)0n n n n n n n n C C C C C −+−++−=−= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +−++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= . ⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T +的二项式系数12n nC−,12n nC+相等且最大.2、系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r r r r A A A A +++≥ ≥ ,从而解出r 来.六、二项式展开式中系数和有关问题常用赋值举例:1、设, 二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令,可得:②令11a b ==,,可得:,即:(假设为偶数),再结合①可得:.r n r rnC a b −r n r r n C b a −1(1)r r n r rr nT C a b −+=−()011222nn n n r n r r n nn nn n n a b C a C a b C a b C a b C b −−−+=++++++ 1a b ==012n nn n n C C C =+++ ()012301nnn n n n n C C C C C =−+−+− 02131n n n n n n n n C C C C C C −+++=+++ n 0213112n n n n n n n n n C C C C C C −−+++=+++=2、若121210()n n n n n n f x a x a x a x a x a −−−−=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a −=+++++ . ③奇数项的系数和与偶数项的系数和(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +−+++= ;偶数项的系数和为135(1)(1)2f f a a a −−+++=. (可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配) (ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a −−+++= ;偶数项的系数和为135(1)(1)2f f a a a +−+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配) 若1210121()n n n n f x a a x a x a x a x −−=+++++ ,同理可得.注意:常见的赋值为令0x =,1x =或1x =−,然后通过加减运算即可得到相应的结果. 【排列组合常用结论排列组合常用结论】】一、解决排列组合综合问题的一般过程1、认真审题,确定要做什么事;2、确定怎样做才能完成这件事,即采取分步还是分类或是分步与分类同时进行,弄清楚分多少类及多少步;3、确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少个元素;4、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略.二、常见排列组合类型及解法1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M , ,(2)n M n …,现取(2)k k …种颜色对这n个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k −−+−种.2、错位排列公式1(1)(1)!!inn i D n n =−=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论. 4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A −+−+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k nk kk A A −+−+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤−+),求不同排法种数的方法是:先将(n k −)个元素排成一排,共有n kn k A −−种排法;然后把k 个元素插入1n k −+个空隙中,共有1k n k A −+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A −−·1k n k A −+种.一、单选题1.(2024·重庆·三模)重庆某高校去年招收学生来自成渝地区2400人,除成渝外的西部地区2000人,中部地区1400人,东部地区1800人,港澳台地区400人.学校为了解学生的饮食习惯,拟选取40人作样本调研,为保证调研结果的代表性,则从该校去年招收的成渝地区学生中不同的抽样结果种数为( )A .402400CB .242400C C .122400CD .102400C2.(2024·北京·三模)已知x的二项式系数之和为64,则其展开式的常数项为( )A .240−B .240C .60D .60−的票价分别对应球场三个不同的区域,五位球迷相约看球赛,则五人中恰有三人在同一区域的不同座位方式共有( )A .30种B .60种C .120种D .240种【答案答案】】C【分析分析】】依题意依题意,,先将在同一区域的三个先将在同一区域的三个人选出并选定区域人选出并选定区域人选出并选定区域,,再对余下的两人分别在其它两个区域进行选择,由分步乘法计数原理即得.【详解详解】】要使五人中恰有三人在同一区域要使五人中恰有三人在同一区域,,可以分成三步完成可以分成三步完成:: 第一步第一步,,先从五人中任选三人先从五人中任选三人,,有35C 种方法种方法;; 第二步再选这三人所在的区域第二步再选这三人所在的区域,,有13C 种方法种方法;;第三步第三步,,将另外两人从余下的两个区域里任选将另外两人从余下的两个区域里任选,,有1122C C ⋅种方法.由分步乘法计数原理由分步乘法计数原理,,共有31115322C C C C 120⋅⋅⋅=种方法.故选:C.4.(2024·四川成都·三模)成实外教育集团自2000年成立以来,一直行走在民办教育的前端,致力于学生的全面发展,对学生的教育视为终身己任,在教育事业上砥砺前行,永不止步.截至目前,集团已开办29所K-12学校和两所大学,其中高中教育学校有11所.集团拟召开综合考评会.经考评后,11所学校得分互不相同,现从中任选3所学校的代表交流发言,则排名为第一名或第五名的学校代表去交流发言的概率为( ) A .2455B .2855C .811D .2755 【答案答案】】D【分析分析】】利用古典概率结合组合数的计算求解即可. 【详解详解】】从11所学校中任选3所学校共有种311C 165=选法. 其中排名为第一名或第五名的学校其中排名为第一名或第五名的学校,,可以分为三种情况可以分为三种情况::第一类第一类::只含有排名为第一名的学校的有29C 36=种选法种选法;;邻的条件下,数字2,4,6也相邻的概率为( ) A .310B .35C .110D .156.(2024·新疆喀什·三模)21x x ++展开式中,3x 的系数为( )A .20B .30C .25D .40【答案答案】】B【分析分析】】分不含2x 项和含有一个2x 项两种情况求解项两种情况求解..【详解详解】】25(1)++x x 展开式中展开式中,,3x 的项为33212133554C 1C C 130x x x x ⋅+⋅⋅=,则3x 的系数为30. 故选故选::B .7.(2024·新疆·三模)西安、洛阳、北京、南京和开封并称中国的五大古都.某旅游博主为领略五大古都之美,决定用两个月的时间游览完五大古都,且每个月只游览五大古都中的两个或三个(五大古都只游览一次),则恰好在同一个月游览西安和洛阳的概率为( )A .15B .25C .12D .35【答案答案】】B【分析分析】】求出事件的总数以及目标事件的数量求出事件的总数以及目标事件的数量,,再用古典再用古典概型计算即可概型计算即可..【详解详解】】将古都分成2个、3个两组个两组,,再在两个月安排旅游顺序再在两个月安排旅游顺序,,故事件总数为2252C A 20⋅=,分2个古都组中含西安个古都组中含西安、、洛阳洛阳,,或3个古都组中含西安个古都组中含西安、、洛阳洛阳,,故恰好在同一个月游览西安和洛阳的事件8.(2024·北京·三模)在2221x x −−的展开式中,5x 项的系数为( ) A .144−B .16−C .16D .144【答案答案】】C【分析分析】】写出()()552112x x −=−−的展开式通项,即可列式求解.【详解详解】】()()552112x x −=−−,其展开式通项公式为()15C 2rr r T x +=−−,0,1,2,3,4,5r =,所以所求5x 项的系数为()()353555C 22C 2806416−−+−=−=,故选故选:: C . 9.(2024·河北秦皇岛·三模)三人被邀请参加同一个时间段的两个晚会,若两个晚会都必须有人去,去几人自行决定,且每人最多参加一个晚会,则不同的去法有( ) A .8种B .12种C .16种D .24种【答案答案】】B【分析分析】】根据参加晚会的人数分类讨论根据参加晚会的人数分类讨论,,利用排列组合数求解即可.【详解详解】】第一种情况第一种情况,,只有两人参加晚会只有两人参加晚会,,有23A 6=种去法种去法;; 第二种情况第二种情况,,三人参加晚会三人参加晚会,,有2232C A 6=种去法种去法,,共12种去法.故选故选::B10.(2024·安徽芜湖·三模)已知A 、B 、C 、D 、E 、F 六个人站成一排,要求A 和B 不相邻,C 不站两端,则不同的排法共有( )种A .186B .264C .284D .336【答案答案】】D【分析分析】】先考虑A 和B 不相邻的排法不相邻的排法,,再考虑A 和B 不相邻不相邻,,且C 站两端的情况站两端的情况,,相减后得到答案. 【详解详解】】先考虑A 和B 不相邻的排法不相邻的排法,,将C 、D 、E 、F 四个人进行全排列四个人进行全排列,,有44A 种情况种情况,,C 、D 、E 、F 四个人之间共有5个空个空,,选择2个排A 和B ,有25A 种情况种情况,,故有4245480A A =种选择种选择,,再考虑A 和B 不相邻不相邻,,且C 站两端的情况站两端的情况,, 先从两端选择一个位置安排C ,有12C 种情况种情况,, 再将D 、E 、F 三个人进行全排列三个人进行全排列,,有33A 种情况最后D 、E 、F 三个人之间共有4个空个空,,选择2个排A 和B ,有24A 种情况种情况,,故有132234C A A 144=种情况种情况,,则要求A 和B 不相邻不相邻,,C 不站两端不站两端,,则不同的安排有480144336−=种情况. 故选故选::D 11.(2024·浙江绍兴·三模)在()()()()()123x x x x a x b +++++的展开式中,含4x 项的系数是10,则()2log a b +=( )A .0B .1C .2D .4【答案答案】】C【分析分析】】在()()()()()123x x x x a x b +++++的展开式中含4x 的项即从5个因式中取4个x ,1个常数项即可写出含4x 的项的项,,则可得出答案.【详解详解】】根据二项展开式可知含4x 项即从5个因式中取4个x ,1个常数项即可写出含4x 的项;所以含4x 的项是()4412310a b x x ++++=,可得4a b +=;即可得()22log log 42a b +==. 故选故选::C 12.(2024·湖北荆州·三模)已知()202422024012202431a a x a x a x x =+++−+L ,则122024a a a +++L 被3除的余数为( )A .3B .2C .1D .0【答案答案】】D【分析分析】】先对二项展开式中的x 进行赋值进行赋值,,得出101212202441a a a +++=− ,再将10124看作()101231+进行展开,再利用二项展开式特点分析即得.【详解详解】】令0x =,得01a =,令1x =,得202401220242a a a a ++++= , 两式相减两式相减,,202410121220242141a a a +++=−=− ,因为()101210120101211011101110121012101210121012431C 3C 3C 3C =+=++++ ,其中01012110111011101210121012C 3C 3C 3+++L 被3整除整除,,所以10124被3除的余数为1, 综上综上,,122024a a a +++L 能被3整除整除.. 故选故选::D.二、多选题13.(2024·山西临汾·三模)在82x 的展开式中( ) A .所有奇数项的二项式系数的和为128 B .二项式系数最大的项为第5项 C .有理项共有两项D .所有项的系数的和为8314.(2024·江西南昌·三模)已知12x x − 的展开式中二项式系数的最大值与+a x x的展开式中1x 的系数相等,则实数a 的值可能为( )A B .D .15.(2024·山西·三模)已知函数2120121241f x x a a x a x a x =−=+++⋅⋅⋅+,则( )A .333124C a =×B .()f x 展开式中,二项式系数的最大值为612CC .12123123a a a a +++⋅⋅⋅+=D .()5f 的个位数字是1【答案答案】】BD【分析分析】】对于A :根据二项展开式分析求解根据二项展开式分析求解;;对于B :根据二项式系数的性质分析求解根据二项式系数的性质分析求解;;对于C :利用赋值法值法,,令0x =、1x =即可得结果即可得结果;;对于D :因为()()125201f =−,结合二项展开式分析求解.【详解详解】】对于选项A :()1241x −的展开式的通项为()()()12121211212C 4114C ,0,1,2,,12rr rr r rr r T x x r −−−+=⋅−=−⋅⋅⋅=⋅⋅⋅,令9r =,可得()93933334121214C 4C T x x =−⋅⋅⋅=−×⋅, 所以333124C a =−×,故A 错误错误;;对于选项B :因为12n =为偶数为偶数,,可知二项式系数的最大值为612C ,故B 正确正确;; 对于选项C :令0x =,可得01a =;令1x =,可得12012123a a a a +++⋅⋅⋅+=; 所以121231231a a a a +++⋅⋅⋅+=−,故C 错误错误;;对于选项D :因为()()125201f =−,且()12201−的展开式的通项为()12112C 201,0,1,2,,12kkk k T k −+=⋅⋅−=⋅⋅⋅, 可知当0,1,2,,11k =⋅⋅⋅,1k T +均为20的倍数的倍数,,即个位数为0, 当12k =时,131T =,所以()5f 的个位数字是1,故D 正确正确;; 故选故选::BD.三、填空题16.(2024·山东烟台·三模)614x展开式的中间一项的系数为.胜杰,江新林3人)顺利打开“家门”,欢迎远道而来的神舟十八号航天员乘组(叶光富、李聪、李广苏3人)入驻“天宫”.随后,两个航天员乘组拍下“全家福”,共同向全国人民报平安.若这6名航天员站成一排合影留念,叶光富不站最左边,汤洪波不站最右边,则不同的排法有. 【答案答案】】504【分析分析】】本题考查排列中分类加法计数原理和分步乘法计数原理.根据题目要求根据题目要求,,分两类进行讨论分两类进行讨论,,第一类叶光富在最右侧叶光富在最右侧,,第二类叶光富不在最右侧.然后根据分类加法计数原理相加即可得到答案. 【详解详解】】根据叶光富不站最左边根据叶光富不站最左边,,可以分为两种情况可以分为两种情况::第一种情况第一种情况::叶光富站在最右边叶光富站在最右边,,此时剩余的5人可以进行全排列人可以进行全排列,,共有55A 120=种排法.第二种情况第二种情况::叶光富不站在最右边叶光富不站在最右边,,根据题目条件叶光富不站最左边根据题目条件叶光富不站最左边,,此时叶光富有4种站法.根据题目条件汤洪波不站在最右边件汤洪波不站在最右边,,可知杨洪波只有4种站法.剩余的4人进行全排列,共有4444A 384××=种排法种排法,,由分类加法计数原理可知由分类加法计数原理可知,,总共有120384504+=种排法种排法.. 故答案为故答案为::504 18.(2024·福建福州·三模)421x x +−的展开式中常数项为.4,1,5,9进行某种排列得到密码.若排列时要求相同数字不相邻,且相同数字之间一个数字,则小明可以设置的不同密码种数为. 【答案答案】】96【分析分析】】利用捆绑法即可求解.【详解详解】】从3,4,5,9中选择一个数字放入两个1之间之间,,将其与两个1看作一个整体看作一个整体,,与剩下元素全排列与剩下元素全排列,,故不同的密码个数为1444C A 96=,故答案为故答案为::96 20.(2024·河北衡水·三模)()()7222x y x y +−的展开式中46x y 的系数为(用数字作答)【答案答案】】35−【分析分析】】根据题意根据题意,,结合二项式的展开式的性质结合二项式的展开式的性质,,准确计算准确计算,,即可求解.【详解详解】】由题意由题意,,多项式()()7222x y x y +−的展开式中含有46x y 的项为的项为::()()()265262524677C 2C 35x x y y xy x y ⋅⋅−+⋅−=−,所以46x y 的系数为35−. 故答案为故答案为::35−.21.(2024·河南·三模)若()*nn∈N 的展开式中存在常数项,则n 的值可以是(写出一个值即可)场为女双,一场为男女混双),每名选手只参加1场表演赛,则所有不同的安排方法有种. 【答案答案】】4050【分析分析】】先考虑两对混双的组合先考虑两对混双的组合,,再从余下4名男选手和4名女选手各有3种不同的配对方法组成两对男双组合双组合,,两对女双组合双组合,,利用分步乘法原理可求得结果. 【详解详解】】先考虑两对混双的组合有22662C C ⋅种不同的方法种不同的方法,,余下4名男选手和4名女选手各有3种不同的配对方法组成两对男双组合对方法组成两对男双组合,,两对女双组合双组合,,故共有22662C C 334050⋅××=.故答案为故答案为::4050。
二项式定理与排列组合的知识点总结
二项式定理与排列组合的知识点总结二项式定理是高中数学中的一个重要定理,它与排列组合有着密切的联系。
本文将对二项式定理和排列组合的知识点进行总结,希望能够为读者提供清晰明了的概念和理解。
一、排列组合的基本概念排列组合是数学中研究对象的一种组织方式。
排列是指将一组元素按照一定顺序进行布置,而组合是指从一组元素中取出若干元素组成一个集合。
1. 排列排列是指从一组元素中有序地选取若干个元素进行布置。
主要分为两种类型:有放回排列和无放回排列。
有放回排列是指在选择完元素后将其放回原处,元素可以被多次选取。
而无放回排列是指在选择完元素后不放回,下次选择时不能再选取。
2. 组合组合是指从一组元素中无序地选择若干个元素进行组合。
同样地,组合也可以分为有放回组合和无放回组合两种类型。
二、二项式定理的概念和公式二项式定理是代数学中的一个重要定理,用于展开二项式的幂。
它表述了如下公式:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中,a,b是实数或者变量,n为非负整数。
C(n, k)表示从n个元素中取出k个元素的组合数,也称为二项系数。
具体计算公式如下:C(n, k) = n! / (k!(n-k)!)三、二项式定理与排列组合的关系二项式定理中的二项系数C(n, k)正是组合数的计算公式,说明了二项式展开式中各项系数的求解方法。
1. 二项式系数的性质二项系数具有一些重要的性质,包括对称性、加法原理和乘法原理等。
这些性质在解决排列组合问题时具有重要的指导作用。
2. 应用举例利用二项式定理和排列组合的知识,可以解决一些实际问题。
比如,求解一组数的幂展开式中某一项的系数、计算某些特殊排列组合的总数等等。
四、应用示例在实际应用中,二项式定理与排列组合经常被用于解决一些概率、统计和计算问题。
排列组合与二项式定理
B. 24种 D. 36种
解析:因为恰有2人选修课程甲,共有C2 4 6 种结果,所以余下的两个人各有两种选法, 共有2 2 4种结果,根据分步计数原理知共 有6 4 24种结果.
2.(2011 重庆卷) 1 2x 的展开式中x 4的系数是
6
_________ .
r r 解析:展开式的通项为Tr 1 2r C6 x. 4 令r 4得展开式中x 4的系数是24 C6 240.
4 得常数1 1 C8 70; 4
当第一个括号中取2x 2时,则第二个括号必取
5
1 x2
5 项,由通项易知当r 5时,取得常数2 1 C8
112,所以展开式中常数项为 112 70 42.
【思维启迪】本题主要考查二项式定理的通项 公式及分类讨论的思想方法.解答两个因式 积的展开式问题主要有两种途径:
究;
6 近似计算:构造二项式,展开后根据精确度的要
求分析应取前几项,从哪项开始去掉后面的所有项.
拍卖预展 龙威
1.(2 011 全国大纲卷)4位同学每人从甲、乙、丙3 门课程中选修1门,则恰有2人选修课程甲的不同 选法共有 A. 12种 C. 30种
专题三
排列、组合、二项式 定理、概率与统计
1.计数原理 分类计数原理:完成一件事,有n类办法,在第1类办 法中有m1种不同的方法,在第2类办法中有m2种不同 的方法, ,在第n类办法中有mn种不同的方法,那么 完成这件事共有N m1 m2 mn种不同的方法. 分步计数原理:完成一件事,需要n个步骤,做 第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有 N m1 m2 mn种不同的方法.
数学中的排列组合与二项式定理
数学中的排列组合与二项式定理在数学中,排列组合和二项式定理是重要的概念和原理。
它们在解决问题、计算概率等方面起着重要的作用。
一、排列组合排列组合是数学中用来描述和计算对象排列和选择方式的概念。
排列是从一组对象中选取若干个进行有序排列,而组合是从一组对象中选取若干个进行无序组合。
1.1 排列排列是从一组对象中选取若干个进行有序排列的方式。
假设我们有n个不同的对象,要从中选取r个进行排列,则排列的方式数用P(n,r)表示。
计算排列的方式数的公式为:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
排列的应用非常广泛,比如在数学竞赛中,求解一道题目需要按照一定的规则对给定的元素进行排列。
1.2 组合组合是从一组对象中选取若干个进行无序组合的方式。
与排列不同,组合不考虑对象的顺序。
假设我们有n个不同的对象,要从中选取r个进行组合,则组合的方式数用C(n,r)表示。
计算组合的方式数的公式为:C(n,r) = n! / (r! * (n-r)!)组合通常用于解决计算概率、统计样本等问题。
比如在概率问题中,我们需要计算从一组给定的元素中选取若干个元素的所有可能组合的概率。
二、二项式定理二项式定理是数学中一个非常重要的定理,它描述了如何展开一个二项式的幂。
一个二项式表示如下:(a + b)^n其中,a和b是实数或者变量,n是非负整数。
二项式定理给出了展开(a + b)^n所得的多项式的各项系数。
二项式定理的表达式如下:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中,C(n,r)表示从n个元素中选取r个元素的组合数量。
排列组合和二项式定理
排列组合和二项式定理一、排列数1.全排列:一般地,从n个不同对象中,任取m(m≤n)个对象,按照一定的顺序排成一列,称为从n个不同对象中取出m个对象的一个排列。
特别地,时的排列(即取出所有对象的排列)称为全排列。
2.排列数:从n个不同对象中取出m个对象的所有排列的个数,称为从n个不同对象中取出m个对象的排列数,用符号A n m(m,n都是正整数)表示。
所谓排成一列是指与顺序有关。
3.排列数公式:A n m=n(n−1)(n−2)⋯(n−(m−1))m个数=n(n−1)(n−2)⋯(n−m+1).(应用公式时,要注意最后一项)4.阶乘:n!=n×(n−1)×(n−2)×⋯×2×1.规定:0!=1.因此,排列数公式可改写为:A n m=n!(n−m)!.5.公式:A n m+mA n m−1=A n+1m,证明如下:A n m+mA n m−1=n!(n−m)!+m n!(n−m+1)!=n! (n−m)!×[1+mn−(m−1)]=n!(n−m)!×n+1n−(m−1)=(n+1)![(n+1)−m]!=A n+1m.二、组合数1.组合:从n个不同对象中取出m个对象并成一组,称为从n个不同对象中取出m个对象的一个组合.2.组合数:从n个不同对象中取出m个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数,用符号C n m(m,n都是正整数)表示.所谓并成一组是指与顺序无关。
3. 组合数公式:C n m =(n−1)(n−2)⋯(n−m+1)m×(m−1)×⋯×2×1=n!(n−m )!m!. 4. 公式1:C n m =C n n−m .5. 公式2:C n m +C n m−1=C n+1m .6. 公式3:A m m +A m+1m +⋯+A 2m m =A 2m+1m (排列数和组合数的关系,结合C n m +C n m−1=C n+1m 和A n m =m!C n m 可证得。
排列组合二项式
0 2 4 C n + C n + C n + L = 2 n−1
11、a + b ) n 展开式偶数项二项式系 数之和: ( 数之和:
1 3 5 C n + C n + C n + L = 2 n −1
12、二项式展开式系数问 题常用赋值法
Tr + 1 ≥ Tr + 2 13、二项式展开式系数最 大值: 大值: Tr + 1 ≥ Tr
10
(4)(1 + x ) + (1 + x ) 2 + (1 + x ) 3 + L + (1 + x ) 6 展开式中含 x 2 项 的系数 ___ 1 24 的展开式中, (5)在( x + 3 ) 的展开式中,常数项有 __ 项,整式项有 x __ 项,有理项有 __ 项 (6)( x 2 + x − 1)9 ( 2 x + 1) 4 的展开式中所有 x的奇次项系数之和 为 _______ (7 ( x + 1) 2 ( x − 1) 5 展开式中 x 4的系数是 ____ )
6、二项式展开式: 二项式展开式:
0 1 2 n ( a + b ) n = C n a n b 0 + C n a n −1b 1 + C n a n − 2b 2 + L + C n a 0 b n
排列组合与二项式定理
排列组合和二项式定理是数学中的重要概念,它们在很多领域都有应用,包括统计学、概率论和计算物理等。
排列组合主要研究的是从n个不同元素中取出m个元素(m≤n)的排列和组合问题。
排列是指按照一定的顺序将元素进行排列,而组合则是指不考虑顺序地将元素进行组合。
排列和组合都有各自的数量表示方法,即排列数和组合数。
二项式定理则是用来展开二项式的定理,它的一般形式是(a+b)的n次方的展开式。
这个定理的证明可以通过归纳法和乘法原理进行。
二项式定理的各项系数,即合并同类项后的系数,可以用排列数来表示。
二项式定理的证明有很多种,其中一种基于其组合意义的证明方法是通过选择第i 个元素或者不选择第i个元素来进行证明。
此外,排列组合和二项式定理都涉及到可重元素的问题。
对于可重元素的情况,需要考虑到元素的重复次数和排列的顺序等因素。
对于含有相同元素的排列问题,可以通过设重集S的方法来求解排列个数。
总的来说,排列组合和二项式定理是密切相关的数学概念,它们在很多数学问题和实际问题中都有应用。
高考数学复习课件:排列组合与二项式定理
直接法:在处理有限制条件的排列,优先排 特殊元素,后再排其他元素。
定元定位优先排
间接法:先不考虑特殊元素,而列出所有元 素的全排列数,从中减去不满足特殊元素 要求的排列数。
注意:不重不漏
• 成才后翻P56 T13
• 六个人从左到右排成一行,最左端只能排甲或已,最右端不 能排甲,则不同的排法?
那么 完成这件事共有
种不同的方法.
2、分步乘法计数原理:完成一件事,需要分成n个步
骤,做第1步有m1种不同的方法,做第2步有m2种不同
的方法……,做第n步有mn种不同的方法.那么完成这
件事共有
种不同的方法.
区别1 区别2
分类计数原理
分步计数原理
完成一件事,共有n类办法,关 键词“分类”
完成一件事,共分n个步骤,关 键词“分步”
解:(2)设f(x)=(3x-1)8 分别赋予x=1,-1
a0+a2+a4+a6+a8=[f(1)+f(-1)]/2
一般来说 多项式f(x)各项系数和为f(1) 奇数项系数和为1/2[f(1)-f(-1)] 偶数项系数和为1/2[f(1)+f(-1)]
求值、等式与不等式证明问题
(2)求证:5555+1能被8整除;
解:采用“隔板法” 得: C259 4095
类似练习: 1、将8个学生干部的培训指标分配给5个不同的班级, 共有多少种不同的分配方法?
2、从一楼到二楼的楼梯有17级,上楼时可以一步走 一级,也可以一步走两级,若要求11步走完,则有 多少种不同的走法?
3、方程x+y+z=12的非负整数解的个数为多少? 正整数解的个数呢?
高中数学专题讲解排列组合及二项式定理
排列组合及二项式定理【基本知识点】1.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++,令1x =,则0122n rn nn n n n C C C C C =++++++【常见考点】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。
(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.(4),,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 (5)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.(6)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种(7) 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504(8)马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的 二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元 素;再排其它的元素。
排列组合二项式定理
3 C 3 C 3 C 3C 1024
4 6 10 3 7 10 2 8 10 9 10
⑶求证: 3 2
n
n 1
(n 2)(n N , n 2)
例、 从6个学校中选出30名学生参加数学竞赛,每 校至少有1人,这样有几种选法?
分析:问题相当于把个30相同球放入6个不同盒子(盒 子不能空的)有几种放法?这类问题可用“隔板法”处 5 理. C29 4095 解:采用“隔板法” 得:
混合问题,先“组”后“排”
例:对某种产品的6件不同的正品和4件不同的次品, 一一进行测试,至区分出所有次品为止,若所有次 品恰好在第5次测试时全部发现,则这样的测试方法 有种可能? 解:由题意知前5次测试恰有4次测到次品,且第5 次测试是次品。故有: 3C 1 A4 576 种可能。 C
1.3:二项式定理
奇数项二项式系数和 偶数项二项式系数和: C C C C C C 2
0 n 2 n 4 n 1 n 3 n 5 n n 1
赋值法
x 2 5 1.求: ( ) 的有理项 2 x
4 3 2 ( 2.化简:x 1) 4( x 1) 6( x 1) 4( x 1) 1
A 6(种)
3 3
涂色问题
例3:如图,要给地图A、B、C、D四个区域 分别涂上3种不同颜色中的某一种,允许同一种 颜色使用多次,但相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
若用2色、4色、5色 等,结果又怎样呢?
1.3:二项式定理
1、二项定理: 一般地,对于n N*有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列、组合、二项式定理例1、一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?解:(1)将取出4个球分成三类情况1)取4个红球,没有白球,有44C 种取3个红球1个白球,有3146C C 种;3)取2个红球2个白球,有2246,C C ∴4312244646115C C C C C ++=种 (2)设取x 个红球,y 个白球,则5(04)27(06)x y x x y y +=≤≤⎧⎨+≥≤≤⎩∴23x y =⎧⎨=⎩或32x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴符合题意的取法种数有233241464646C C C C C C ++=186种例2、 摸球兑奖,口袋中装有4红4白共8个小球,其大小和手感都无区别,交4元钱摸4个球,具体奖金如下:4红(10元)、3红(5元)、2红(1元)、1红(1包0.2元的葵花籽),试解释其中的奥秘.解:摸出4球有48C =70种可能性,四“红”只有一种, 三“红”:3144C C =16种, 2“红”:2244C C =36种. 1“红”:1344C C =16种共计:赌70次收参赌费280元,平均奖金1×10+16×5+36×1+16×0.2=129.2(元). 所以,每赌70次,该赌者可净赚150.8元.例3、 如果三位数abc 满足条件:,a b c ><且b ,那么称这个三位数为“凹数”(如104,525等),否则称为“凸数”(如125,121,200等),试求所有三位凹数的个数。
解:对三位凹数abc 的b 进得分类:当0b =时,,a c 均可取1,2,…,9中的任何一个数,共有2999⨯=个数; 当1b =时,,a c 均可取2,…,9中的任何一个数,共有2888⨯=个数; ……依次类推,所有的三位凸数的个数为: 222981285+++=例4、已知集合{}{}1,2,3,4,5,6,5,6,7,8,9A B ==,从A 中选三个元素,B 中选两个元素,能够组成多少个有五个元素的新集合?解法1:{}5,6A B = ,所以按是否先5和6为标准进行分类:(1)若5和均不选,有3243C C 种; (2)若5和6中选一个有12C 种方法,则取另个的4个元素又有两种情形,若5在A 中,有2243C C 种方法;若5在B 中,有3143C C 种方法;所以共有()1223124343C C C C C +种不同的方法;(3)若5和6均选,又分为三类情形,若5和6均在A 中,有1243C C 种,若5和6均在B 中,有34C 种,若5和6一在A 中,一在B 中,则有2143C C 种;故共有:()()321223112321432434343443106C C C C C C C C C C C C ++++=种方法。
解法2:因为集合A 和B 中共有不同的元素9个,从这9个不同的元素中选5个元素有59C 种方法,但其中不合条件的有两类;5个元素中有4个分别是1,2,3,4的,共有15C 个,5个元素中有4个分别是7,8,9的,共有26C 个;故满足条件的集合共有:512956106C C C --=种。
例5、 平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),也无两条互相平行。
求:(1)这些直线所交成的点的个数(除原10点外); (2)这些直线交成多少个三角形?解:(1)解法1,这10个点所确定的直线共有21045C =条,由条件知共有245C 个交点,但在原来的10个点有有9条直线共线于此,所以在原来的10个点上有2910C 个点被重复计算,所以这些直线交成新点的个数为:2245910630C C -=个; 解法2,对于给定的10个点中任取4个点,4点连成6条直线,这6条直线交出3个新点,故原题对应于在这10个点中任取4个点的不同取法的3倍,即这些直线新交成的点的个数为:4103630C =个。
(2)在45条直线中作任取3条构成345C 个三角形,但其中不合条件的是原来的10点上各有9条直线,从这10条直线中任取3条不能成三角形,所以有3345910C C -=例6、 已知*()()(,)n n x m mx n N m +++∈≠21210与的展开式中含n x 项的系数相等,求实数m 的取值范围.解:设21()n x m ++的通项公式为1r T +,则21121r n rr r n T C xm +-++=⋅.令21n r n +-=,得1r n =+故此展开式中n x 项的系数为1121n n n C m+++由题意知:11212n n n nn n C mC m +++=111(1),212211,,221,,31212(,]2323n m m n n n n N m n m m m *+∴==+++∈∴>==∴<≤ 为的减函数又当时故的取值范围是例7、 某市A 有四个郊县B 、C 、D 、E.(如图)现有5种颜色,若要使每相邻的两块涂不同颜色,且每块只涂一种颜色,问有多少种不同的涂色方法?解:符合题意的涂色至少要3种颜色,分类如下55(1)5,120A =用种颜色涂有种4112254232(2)4,240C C C C A ⋅⋅⋅⋅=用种颜色涂有种3353(3)3,60C A ⋅=有种颜色涂有种,12024060420++=由分类计数原理共有不同的涂色方法种例8、 已知:*,,,1a b R n n N +∈>∈.求证:2n n a b +≥()2na b +证明:,,1,0,0,()022n a b a b a b R n n N a b +*--∈>∈≥>≥≥ 不妨设则 0222444((22222[((),()()()(]2222222(2n n n nn n n n n n n n n n a b a b a b a b a b a b a b a b a b a b a b C C C C a b --+-+-+=++-++-+--=++⋅+++≥ 故∴()22n n na b a b ++≥ 例9、已知数列{}n a 满足2n n nS a =(n N *∈),n S 是{}n a 的前n 项的和,并且21a =. (1)求数列{}n a 的前n 项的和;(2)证明:32≤()n a n a +++111122<.解:解:(1)由题意2nn n S a =得1112n n n S a +++=两式相减得()()111211n n n n n a n a na n a na +++=+--=即所以()121n n n a na +++=再相加121222n n n n n n na na na a a a ++++=+=+,即所以数列{}na 是等差数列.又1112a a =∴10a =又21a = ∴1n a n =- 所以数列{}na 的前n 项的和为()122n n n n nS a -==. 120121111111(2)11222222n a nrnr n n n n n n n C C C C C a n n n n n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()111111,2,22!2rr nr r r n n n r C r n n r n --+⎛⎫=⋅<= ⎪⎝⎭∴111111112112212242212n nnn n +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭+<++++==-< ⎪ ⎪⎝⎭⎝⎭-而011131222nn n C C n n ⎛⎫+≥+⋅= ⎪⎝⎭∴32≤11112n a n a ++⎛⎫+ ⎪⎝⎭2<.例10、 五人站成一列,重新站队时,各人都不站在原来的位置上,有多少种站法?解:设原来站在第i 个位置的人是i a (i=1,2,3,4,5)。
重新站队时,1a 站在第2个位置的站法有44P 种,其中不符合要求的有:3a 站第3位的33P 种,4a 站第4位的33P 种,但有的站法在考虑3a 的情形时已经减去了,故只应再算(2233P P -)种,同理,5a 站第5位的应再算[)(11222233P P P P ---]种。
1a 站在第3,4,5位的情形与站在第2位的情形时对等的,故所有符合要求的站法有:)]}([)({41122223322333344P P P P P P P P -------=44(种)例11、 已知数列)(2}{1N n n a a n n n ∈⋅=-满足,是否存在等差数列}{n b ,使nnn n n n C b C b C b a ⋅++⋅+⋅= 2211对一切自然数n 都成立?并证明你的结论。
解:假设满足要求的等差数列}{n b 存在,由于所给等式对一切自然数n 均成立,故当n=1,2,3时等式成立,从而可解得1b =1,2b =2,3b =3,因此若满足要求的等差数列存在,则必须是n b =n 。
.然后再证明当n b =n 时所给等式确实成立即可。
答案是肯定的。
例12、 若某一等差数列的首项为mn n nnx x P C )5225(32223112115-----,公差为,其中m 是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值。
解:由已知得:10023112252111==∴∈⎩⎨⎧-≤-≤-a n N n nn nn ,从而首项,,又。
注意到45)176(777777-==+=d m ,进而知公差,可得,从而等差数列的通项公式是:n a n 4104-=,设其前k 项之和最大,则⎩⎨⎧<+-≥-0)1(410404104k k ,解得k=25或k=26, 故此数列的前25项之和与前26项之和相等且最大,13002625==S S 。
例13、 已知n a a)3(3-的展开式的各项系数之和等于53)514bb -展开式中的常数项,求n a a)3(3-展开式中含1-a 的项的二项式系数。
解:先求出53)514(bb -的常数项是27,从而可得n a a)3(3-中n=7,对于73)3(a a-由二项展开式的通项公式知,含1-a 的项是第4项,其二项式系数是35。
例14、 已知21211111,1222n n n n q q q T q q qS +++++⎛⎫⎛⎫=++++=++++ ⎪ ⎪⎝⎭⎝⎭,求证:12311111212n nn n n n n n C C T C T C T S +++++++++=⋅证明:当1q =时,1,1n n T n S n =+=+待证等式即为:()123111112312n nn n n n C C C nC n +++++++++=+ ,由倒序相加法或由()111k k n n kC n C -+=+即可证得。