专题3——三角形中常见的辅助线
直角三角形中的常见辅助线
直角三角形中的常见辅助线
直角三角形是一种特殊的三角形,其中一个角度为90度。
在解决直角三角形问题时,常常使用辅助线来帮助我们找到所需的长度或角度。
以下是在直角三角形中常见的辅助线:
1. 高线:直角三角形的高线是从直角顶点到对边的垂直线段。
它将三角形分成两个相似的三角形,可以用来计算三角形的面积或找到缺失的边长。
2. 中线:直角三角形的中线是连接斜边的中点和直角顶点的线段。
它将直角三角形分成两个相等的直角三角形,并且中线的长度等于斜边的一半。
中线可用于找到直角三角形的重心或计算斜边的长度。
3. 角平分线:直角三角形的角平分线是从直角顶点到斜边上的一点,将直角顶点的角分成两个相等的角。
它可以帮助我们计算三角形的角度或找到未知的边长。
4. 媒线:直角三角形的媒线是连接斜边的中点和对边中点的线段。
媒线将直角三角形分成两个相似的三角形,并且媒线的长度等于斜边的一半。
媒线可用于计算三角形的面积或找到三角形的中点坐标。
这些常见的辅助线在解决直角三角形问题时非常有用,可以使问题变得更加简单和直观。
无论是计算边长、角度、面积还是寻找三角形的特殊点,这些辅助线都可以提供宝贵的帮助。
注意:在使用辅助线时,我们可以根据具体问题的需要选择适当的辅助线来解决问题,并结合三角函数等相关知识进行计算。
希望这份文档对您在解决直角三角形问题时有所帮助!。
中考数学第四章 三角形 重难 微专项3 全等三角形中常用的辅助线技巧
= ,
在△ACD和△AED中,ቐ ∠1 = ∠2,
= ,
∴△ACD≌△AED,
∴∠AED=∠C=90°,CD=ED.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
又AC=BC,∴∠B=45°,∴∠EDB=∠B=45°,
∴DE=BE,∴CD=BE.
∴∠DBE=60°,
1
∴BD= BE,
2
∴TF=2BD,即BF-AB=2BD.
重难·微专项3 全等三角形中常用的辅助线技巧
突破点2 旋转
运用旋转的全等变换,可以把分散的条件集中到一个三角形中.
模型1
绕定点旋转60°,构造全等三角形
如图,△ABC为等边三角形,点P在△ABC内,将△ABP绕点A逆时针旋转
明剩下的线段等于另一条短线段.
补短法:延长短线段,使其延长部分等于另一条短线段,然后证明延长
后的线段等于长线段(或延长短线段,使延长后的线段等于长线段,然
后证明延长部分等于另一条短线段).
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例1
如图,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于点D.
60°,得到△ACP',则△ABP≌△ACP',且△APP'为等边三角形.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例2
如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,则线段
AD,CD和BD之间的数量关系为 AD2+CD2=BD2 .
重难·微专项3 全等三角形中常用的辅助线技巧
∵BA=BT,∠ABT=60°,
等边三角形中的常见辅助线
等边三角形中的常见辅助线等边三角形是一种具有特殊性质的三角形,其三条边都相等。
在解决与等边三角形相关的问题时,使用常见的辅助线可以简化计算并找到解决方案。
1. 高线(Perpendicular Bisector)高线是等边三角形中常见的辅助线之一。
它从等边三角形的顶点垂直地分割底边,并且和底边的中点连线垂直。
等边三角形的高线相互垂直,并且交于三角形的外心。
2. 中线(Median)中线是等边三角形中另一种常见的辅助线。
它连接三角形的顶点和底边的中点,并且与底边垂直。
等边三角形的中线也相互垂直,在三角形的重心交汇。
3. 角平分线(Angle Bisector)角平分线是等边三角形中可以用来解决角度相关问题的辅助线。
它从三角形的顶点分割等边三角形的底角,并且和底边相交于一点。
4. 中垂线(Perpendicular from Vertex to Base)中垂线是等边三角形中另一种常见的辅助线。
它从等边三角形的顶点垂直地连接底边,并且与底边的中点相交。
等边三角形的中垂线相互垂直,并且交于三角形的垂心。
这些常见的辅助线可以帮助我们在等边三角形中解决各种问题。
通过利用这些辅助线的性质,我们能够简化计算,找到解决问题的方法。
在实践中,我们还可以设计不同的问题来加深对这些辅助线的理解和应用。
总结:等边三角形中的常见辅助线包括高线、中线、角平分线和中垂线。
它们在解决等边三角形相关问题时起到了重要的作用,并且具有特殊性质。
通过熟练掌握这些辅助线的性质和用法,我们能够更加灵活地解决等边三角形的各种问题。
专题——三角形中常见的辅助线
三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点 目的:找等量关系,或2倍(1/2)的关系。
结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC例2、如图,直角三角形ABC 中,∠C=90 ,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED例4如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少?例5如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?ADCMABDEC213N CE D B A MN CD BA MNMBCA等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点 二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC 边上的中点。
求证:ME=MD例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC例4 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T 求证:FG ∥AT4321C BAO 654321MGFE D CB A 4321FE D BA54321F EDCBA MK N L FE DA例5、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?三、三角形中位线模型构成:△ABC 中,D 为AB 边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE ∥BC,DE=12BC ②△ADE ∽△ABC例1 已知:在△ABC 中,AB=AC,AD ⊥BC 于D,DE ⊥AC 于E,F 为DE 中点 求证:AF ⊥BE例2 已知 BD 、CE 为△ABC 的角平分线,AF ⊥CE 于F,AG ⊥CE 于F,AG ⊥BD 于G求证:①FG ∥BC ② FG=12(AB+AC-BC)例3 已知 ,如图在ABCD 中,P 为CD 中点,AP 延长线交BC 延长线于E,PQ ∥CE 交DE 于Q求证:PQ=12BC例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DLA BCD E GFED HCB A4321G F N ME CD B AL MK HFEDCBAQ PED CBAOF DC BA108054321ECBAD例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME四“补长截短”模型(1) 截长法: 构成:线段a,b,c目的:确定一线段,找令一线段的等量关系结果:→ a-b '=c ⇒a=b+c , b=b ' (2)补短法: 构成:线段a,b,c目的:构造一等长线段,再找等量关系结果:c=c ',b+c '=a ⇒a=b+c例1 已知:△ABC 中,AD 平分∠BAC求:(1)若∠B=2∠C,则AB+BD=AC (2) 若AB+BD=AC,则∠B=2∠C例2:在ABC 中,∠C=2∠B ,AD ⊥BCY 于D ,求证BD=AC+CD例3如图所示,等腰直角ABC 中,∠BAC=90︒过点A 做直线DE ,BD ⊥DE 于D ,CE ⊥DE 于E ,求证:DE=BD+CE例4已知:等腰△ABC 中,AB=AC, ∠A=0108,BD 平分∠ABC求证:BC=AB+DC7654321MG F EDCBAc ab c4321E BDCACD B ACBEDA54321GMFE D CB A例6、已知如图所示,在ABC 中,AB=AC ∠A=100︒,BD 平分∠ABC 交AC 于D求证:BC=AD+BD例 7 已知:在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM求证:AE=BC+CE例 8已知:在正方形ABCD 中,E 为BC 上任一点,∠EAD 的平分线交DC 于F 求证:BE+DF=AE构造等边三角形、等腰三角形例9、如图,已知∠ABD=∠ACD=60︒∠ADB=90︒-12∠BDC 且∠BAC=20︒求:∠ACB 的度数。
(完整版)三角形中位线中的常见辅助线
三角形中位线中的常见辅助线知识梳理知识点一中点一、与中点有关的概念三角形中线的定义:三角形顶点和对边中点的连线等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形二、与中点有关的辅助线方法一:倍长中线解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。
方法二:构造中位线解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。
方法三:构造三线合一解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口其他位置的也要能看出方法四:构造斜边中线解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。
其他位置的也要能看出常见考点构造三角形中位线考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角三角形斜边中点或其他线段中点;②延长三角形一边,从而达到构造三角形中位线的目的。
“题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用.CEDBA典型例题【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.举一反三1. 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.2. 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.MNF EDCB A举一反三1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GBCDEFM N AMN ABEF DC(N )M F EDCBA2. 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠(2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明.【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA举一反三1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.3. 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA4. 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE 的中点.(1)求证MB MC =.(2)设BAD CAE ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EM DCBAEDEDBC5. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图2所示,若AB≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; (3)在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图3中补全图形,并直接判断△MED 的形状.图1 图2 图3图【例4】 以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90BAD CAE ∠=∠=︒.连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是________;线段AM 与DE 的数量关系是________;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.图①NM EDCB A图②NMEDCBA举一反三1. (1)如图1,BD 、CE 分别是ABC △的外角平分线,过点A 作AD BD AE CE ⊥⊥、,垂足分别为D E 、,连接DE .求证:()12DE BC DE AB BC AC =++,∥ (2)如图2,BD CE 、分别是ABC △的内角平分线,其他条件不变; (3)如图3,BD 为ABC △的内角平分线,CE 为ABC △的外角平分线,其他条件不变。
三角形常见辅助线的作法
三角形中作辅助线的常用方法举例常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N ,在△AMN 中,AM +AN > MD +DE +NE;(1)在△BDM 中,MB +MD >BD ; (2)在△CEN 中,CN +NE >CE ; (3)由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1)GF +FC >GE +CE (同上) (2)DG +GE >DE (同上) (3)AB C D E N M 11-图A B C D EF G 21-图由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
三角形中作辅助线的八种常见方法
三角形中作辅助线的八种常见方法
1.垂线分割法:在三角形的一边上作一条垂线,将三角形分割为两个小三角形,便于进行角度和边长的计算。
2. 中位线法:从三角形的一个角出发,作一条经过对边中点的线段,将三角形分割为两个小三角形,便于进行面积和长度的计算。
3. 角平分线法:从三角形的一个角出发,作一条平分角的直线,将三角形分割为两个小三角形,便于进行角度和边长的计算。
4. 高线法:从三角形的一个角出发,作一条垂直于对边的线段,将三角形分割为两个小三角形,便于进行面积和长度的计算。
5. 中心连线法:将三角形的三条中心(外心、内心、重心)连起来,将三角形分割为六个小三角形,便于进行角度和边长的计算。
6. 正弦定理法:利用三角形中某个角的正弦值与对边长度的关系,求解未知量。
7. 余弦定理法:利用三角形中某个角的余弦值与两边长度的关系,求解未知量。
8. 海伦公式法:利用三角形的三边长度求解面积,公式为:S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2为半周长。
- 1 -。
微专题三 等腰(边)三角形中常见辅助线的作法探究
又∵AP=CQ,
∴PM=CQ.
在△DPM 和△DQC 中,
DPM Q, ∵PDM QDC,
PM CQ, ∴△DPM≌△DQC.
∴DP=DQ.
探究三 利用加倍、折半法证明线段的倍分关系
典型例题 3 如图,CE,CB 分别是△ABC, △ADC 的中线,且 AB=AC. 求证:CD=2CE.
探究二 作平行线构造等腰(边)三角形
典型例题 2 如图,P 为等边△ABC 的边 AB 上 的一点,Q 为 BC 延长线上一点,AP=CQ,PQ 交 AC 于点 D.求证:DP=DQ.
证明:过点 P 作 PM∥BC 交 AC 于点 M, 则∠DPM=∠Q, ∵△ABC 是等边三角形, ∴△APM 是等边三角形, ∴AP=PM.
解:证明:延长 CE 到点 F,使 EF=CE, 连结 FB.
∵CE 是△ABC 的中线, ∴AE=EB. 又∵∠AEC=∠BEF, ∴△AEC≌△BEF(SAS), ∴∠A=∠EBF,AC=FB.
∵AB=AC, ∴∠ABC=∠ACB. ∴ ∠ CBD = ∠A + ∠ACB = ∠EBF + ∠ABC=∠CBF. ∵CB 是△ADC 的中线, ∴AB=BD.
探究一 作“三线”中的“一线”
典型例题 1 如图,在△ABC 中,AB=AC,D 是 BC 的中点,过点 A 作 EF∥BC, 且 AE=AF.求证:DE=DF.
证明:连结 AD, ∵△ABC 中,AB=AC,D 是 BC 的中点, ∴AD⊥BC. ∵EF∥BC, ∴AD⊥EF. 又 AE=AF, ∴AD 垂直平分 EF, ∴DE=DF.
又∵AB=AC,AC=FB, ∴FB=BD. 又 CB=CB, ∴△CBF≌△CBD(SAS). ∴ CD = CF = CE + EF = 2CE.
数学专题 三角形中的常用辅助线
数学专题——三角形中的常用辅助线一、方法概述几何的难点就在辅助线。
辅助线如何添?把握定理和概念,还要刻苦加钻研,找出规律凭经验。
(一)找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
(二)三角形中常见辅助线的作法:(1)延长中线构造全等三角形;(2)利用翻折,构造全等三角形;(3)引平行线构造全等三角形;(4)作连线构造等腰三角形。
二、典型例题(一)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE。
1、思路分析:(1)题意分析:本题考查等腰三角形的三线合一定理的应用(2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来2、解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用,不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。
(二)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。
求证:ΔABC是等腰三角形。
1、思路分析:(1)题意分析:本题考查全等三角形常见辅助线的知识。
(2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形。
三角形中做辅助线的技巧及典型例题
三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
一、由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
与角有关的辅助线 (一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。
例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,D A =DB ,求证DC ⊥AC例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD图1-2DBC分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的线段上截取短的线段,来证明。
试试看可否把短的延长来证明呢?练习1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。
全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中罕见的辅助线的作法(有谜底)之南宫帮珍创作总论:全等三角形问题最主要的是构造全等三角形, 构造二条边之间的相等, 构造二个角之间的相等【三角形辅助线做法】图中有角平分线, 可向两边作垂线. 也可将图半数看, 对称以后关系现.角平分线平行线, 等腰三角形来添. 角平分线加垂线, 三线合一试试看.线段垂直平分线, 常向两端把线连. 要证线段倍与半, 延长缩短可试验.三角形中两中点, 连接则成中位线. 三角形中有中线, 延长中线等中线.1.等腰三角形“三线合一”法:遇到等腰三角形, 可作底边上的高, 利用“三线合一”的性质解题2.倍长中线:倍长中线, 使延长线段与原中线长相等, 构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和即是第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度, 可以从角一边上一点向角的另一边作垂线, 目的是构成30-60-90的特殊直角三角形, 然后计算边的长度与角的度数, 这样可以获得在数值上相等的二条边或二个角.从而为证明全等三角形缔造边、角之间的相等条件.8.计算数值法:遇到等腰直角三角形, 正方形时, 或30-60-90的特殊直角三角形, 或40-60-80的特殊直角三角形,常计算边的长度与角的度数, 这样可以获得在数值上相等的二条边或二个角, 从而为证明全等三角形缔造边、角之间的相等条件.罕见辅助线的作法有以下几种:最主要的是构造全等三角形, 构造二条边之间的相等, 二个角之间的相等.1)遇到等腰三角形, 可作底边上的高, 利用“三线合一”的性质解题, 思维模式是全等变换中的“半数”法构造全等三角形.2)遇到三角形的中线, 倍长中线, 使延长线段与原中线长相等,构造全等三角形, 利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法, (1)可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全DCBAEA等变换中的“半数”, 所考知识点经常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交, 形成一对全等三角形.(3)可以在该角的两边上, 距离角的极点相等长度的位置上截取二点, 然后从这两点再向角平分线上的某点作边线, 构造一对全等三角形.4)过图形上某一点作特定的平分线, 构造全等三角形, 利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法, 具体做法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长, 是之与特定线段相等, 再利用三角形全等的有关性质加以说明.这种作法, 适合于证明线段的和、差、倍、分等类的题目.6)已知某线段的垂直平分线, 那么可以在垂直平分线上的某点向该线段的两个端点作连线, 出一对全等三角形.特殊方法:在求有关三角形的定值一类的问题时, 常把某点到原三角形各极点的线段连接起来, 利用三角形面积的知识解答.一、倍长中线(线段)造全等例1、(“希望杯”试题)已知, 如图△ABC 中, AB=5, AC=3, 则中线AD 的取值范围是_________.例2、如图, △ABC 中, E 、F 分别在AB 、AC 上, DE ⊥DF, D 是中点, 试比力BE+CF 与EF 的年夜小.CA例3、如图, △ABC 中, BD=DC=AC, E 是DC 的中点, 求证:AD 平分∠BAE. 应用:1、(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆, 90,BAD CAE ∠=∠=︒连接DE, M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图①当ABC ∆为直角三角形时, AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后, 如图②所示, (1)问中获得的两个结论是否发生改变?并说明理由. 二、截长补短1、如图, ABC ∆中, AB=2AC, AD 平分BAC ∠, 且AD=BD, 求证:CD ⊥AC2、如图, AD ∥BC, EA,EB 分别平分∠DAB,∠CBA,CD 过点E, 求证;AB =AD+BC.3、如图, 已知在ABC 内, 060BAC ∠=040C ∠=, P, Q 分别在BC, CA 上, 而且BQ 分别是BAC ∠, ABC ∠的角平分线.BQ+AQ=AB+BP4、如图, 在四边形ABCD 中, BC >BA,AD =ABC ∠,O ECB求证:0180=∠+∠C A5、如图在△ABC 中, AB >AC, ∠1=∠2, P 为AD 上任意一点, 求证;AB-AC >PB-PC 应用:三、平移变换例1AD 为△ABC 的角平分线, 直线MN ⊥AD 于A.E 为MN 上一点, △ABC 周长记为A P , △EBC 周长记为B P .求证B P >A P .例2如图, 在△ABC 的边上取两点D 、E, 且BD=CE, 求证:AB+AC>AD+AE. 四、借助角平分线造全等1、如图, 已知在△ABC 中, ∠B=60°, △ABC 的角平分线AD,CE 相交于点O, 求证:OE=OD2、如图, △ABC 中, AD 平分∠BAC, DG ⊥BC 且平分BC, DE ⊥AB 于E, DF ⊥AC 于F.(1)说明BE=CF 的理由;(2)如果AB=a , AC=b , 求AE 、BE 的长. 应用:1、如图①, OP 是∠MON 的平分线, 请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法, 解答下列问题:(1)如图②, 在△ABC 中, ∠ACB 是直角, ∠B =60°, AD 、AFED CBACE 分别是∠BAC 、∠BCA 的平分线, AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③, 在△ABC 中, 如果∠ACB 不是直角, 而(1)中的其它条件不变, 请问, 你在(1)中所得结论是否仍然成立?若成立, 请证明;若不成立, 请说明理由. 五、旋转例1正方形ABCD 中, E 为BC 上的一点, F 为CD 上的一点,BE+DF=EF, 求∠EAF 的度数.例2D 为等腰Rt ABC ∆斜边AB 的中点, DM ⊥DN,DM,DN 分别交BC,CA 于点E,F.(1)当MDN ∠绕点D 转动时, 求证DE=DF.(2)若AB=2, 求四边形DECF 例3如图, ABC ∆是边长为3的等边三角形BDC ∆是等腰三角形, 且0120BDC ∠=, 以060角, 使其两边分别交AB 于点M, 交AC 于点N, 连接MN, 则AMN ∆的周长为;应用:1、已知四边形ABCD 中, AB AD ⊥, BC CD ⊥, AB BC =,120ABC =∠, 60MBN =∠, MBN ∠绕B 点旋转, 它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1), 易证(第23题图)OP AM NEB CD F ACEFBD图①图②图③AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时, 在图2和图3这两种情况下, 上述结论是否成立?若成立, 请给予证明;若不成立, 线段AE CF ,, EF 又有怎样的数量关系?请写出你的猜想, 不需证明.2、(西城09年一模)已知,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变动,且其它条件不变时,求PD 的最年夜值,及相应∠APB 的年夜小.3、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N, D 为ABC 外一点, 且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N分别在直线AB 、AC 上移动时, BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1, 当点M 、N 边AB 、AC 上, 且DM=DN 时, BM 、NC 、MN 之间的数量关系是; 此时=LQ; (II )如图2, 点M 、N 边AB 、AC 上, 且当DM ≠DN 时, 猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3, 当M 、N 分别在边AB 、CA 的延长线上时,(图1)A B C D EF MN (图2)C (图3)ABC DEF MND C BAED F CB A若AN=x, 则Q=(用x、L暗示).参考谜底与提示一、倍长中线(线段)造全等例1、(“希望杯”试题)已知, 如图△ABC中, AB=5, AC=3, 则中线AD的取值范围是_________.解:延长AD至E使AE=2AD, 连BE, 由三角形性质知AB-BE <2AD<AB+BE 故AD的取值范围是1<AD<4例2、如图, △ABC中, E、F分别在AB、AC上, DE⊥DF, D是中点, 试比力BE+CF与EF的年夜小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF, 连BG, EG,显然BG=FC,在△EFG中, 注意到DE⊥DF, 由等腰三角形的三线合一知EG=EF在△BEG中, 由三角形性质知EG<BG+BE故:EF<BE+FC例3、如图, △ABC中, BD=DC=AC, E是DC的中点, 求证:AD平分∠BAE.解:延长AE至G使AG=2AE, 连BG, DG,显然DG=AC, ∠GDC=∠ACD由于DC=AC, 故∠ADC=∠DAC在△ADB 与△ADG 中, BD =AC=DG, AD =AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG, 故有∠BAD=∠DAG, 即AD 平分∠BAE 应用:1、(09崇文二模)以的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆, 90,BAD CAE ∠=∠=︒连接DE, M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图①当ABC ∆为直角三角形时, AM 与DE 的位置关系是, 线段AM 与DE 的数量关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后, 如图②所示, (1)问中获得的两个结论是否发生改变?并说明理由.ABC ∆∴DE AM ⊥, DE AM 21=二、截长补短1、如图, ABC ∆中, AB=2AC, AD 平分BAC ∠, 且AD=BD, 求证:CD ⊥AC解:(截长法)在AB 上取中点F, 连FD△ADB 是等腰三角形, F 是底AB 中点, 由三线合一知 DF ⊥AB, 故∠AFD =90°CACBA△ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图, AD ∥BC, EA,EB 分别平分∠DAB,∠CBA,CD 过点E, 求证;AB =AD+BC解:(截长法)在AB 上取点F, 使AF =FE△ADE ≌△AFE (SAS ) ∠ADE =∠AFE, ∠ADE+∠BCE =180° ∠AFE+∠BFE =180° 故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图, 已知在△ABC 内, 060BAC ∠=, 040C ∠=, P, Q 分别在BC, CA 上, 而且AP, BQ 分别是BAC ∠, ABC ∠求证:BQ+AQ=AB+BP解:(补短法, 计算数值法)延长AB 至D, 使=BP, 连DP在等腰△BPD 中, 可得∠BDP =40° 从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA )故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4、如图, 在四边形ABCD 中, BC >BA,AD =CD, BD 平分ABC ∠,求证: 0180=∠+∠C A解:(补短法)延长BA 至F, 使BF =FD△BDF ≌△BDC (SAS ) 故∠DFB =∠DCB , FD =DC 又AD =CD故在等腰△BFD 中 ∠DFB =∠DAF故有∠BAD+∠BCD =180°5、如图在△ABC 中, AB >AC, ∠1=∠2, P 为AD 上任意一点, 求证;AB-AC >PB-PC解:(补短法)延长AC 至F, 使AF =AB, 连PD △ABP ≌△AFP (SAS ) 故BP =PF 由三角形性质知PB -PC =PF -PC < CF =AF -AC =AB -AC 应用:分析:此题连接AC , 把梯形的问题转化成等边三角形的问题, 然后利用已知条件和等边三角形的性质通过证明三角形全等解决它们的问题.解:有AE AD BC +=连接AC , 过E 作BC EF //并AC 于F 点 则可证AEF ∆为等边三角形 即EF AE =, ︒=∠=∠60AFE AEF ∴︒=∠120CFE又∵BC AD //, ︒=∠60B ∴︒=∠120BAD 又∵︒=∠60DEC ∴FEC AED ∠=∠ 在ADE ∆与FCE ∆中CFE EAD ∠=∠, EF AE =, FEC AED ∠=∠∴FCE ADE ∆≅∆ ∴FC AD = ∴AE AD BC +=点评:此题的解法比力新颖, 把梯形的问题转化成等边三角形的问题, 然后利用全等三角形的性质解决. 三、平移变换例1 AD 为△ABC 的角平分线, 直线MN ⊥AD 于A.E 为MN 上一点, △ABC 周长记为A P , △EBC 周长记为B P .DE ACBDE ACBF求证P>A P.B解:(镜面反射法)延长BA至F, 使AF=AC, 连FEAD为△ABC的角平分线, MN⊥AD知∠FAE=∠CAE故有△FAE≌△CAE(SAS)故EF=CE在△BEF中有: BE+EF>BF=BA+AF=BA+AC从而P B=BE+CE+BC>BF+BC=BA+AC+BC=P A例 2 如图, 在△ABC的边上取两点D、E, 且BD=CE, 求证:AB+AC>AD+AE.证明:取BC中点M,连AM并延长至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,O ED CB A同理BN=CA.延长ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE.四、借助角平分线造全等1、如图, 已知在△ABC中, ∠B=60°, △ABC的角平分线AD,CE相交于点O, 求证:OE=OD, DC+AE =AC证明(角平分线在三种添辅助线,计算数值法)∠B=60度,则∠BAC+∠BCA=120度;AD,CE均为角平分线,则∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取线段AF=AE,连接OF.又AO=AO;∠OAE=∠OAF.则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF. OE=ODDC+AE=CF+AF=AC.2、如图, △ABC 中, AD 平分∠BAC, DG ⊥BC 且平分BC, DE ⊥AB 于E, DF ⊥AC 于F.(1)说明BE=CF 的理由;(2)如果AB=a , AC=b , 求AE 、BE 的长.解:(垂直平分线联结线段两端)连接BD,DCDG 垂直平分BC, 故BD =DC由于AD 平分∠BAC, DE ⊥AB 于E, DF ⊥AC 于F, 故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF. AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 应用:1、如图①, OP 是∠MON 的平分线, 请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法, 解答下列问题:E DGFC BA(1)如图②, 在△ABC 中, ∠ACB 是直角, ∠B =60°, AD 、CE 分别是∠BAC 、∠BCA 的平分线, AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③, 在△ABC 中, 如果∠ACB 不是直角, 而(1)中的其它条件不变, 请问, 你在(1)中所得结论是否仍然成立?若成立, 请证明;若不成立, 请说明理由. 解:(1)FE 与FD 之间的数量关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立.证法一:如图1, 在AC 上截取AE AG =, 连结FG ∵21∠=∠, AF 为公共边, ∴AGF AEF ∆≅∆∴AFG AFE ∠=∠, FG FE =∵︒=∠60B , AD 、CE 分别是BAC ∠、BCA ∠∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2, 过点F 分别作AB FG ⊥于点G , BC FH ⊥于点H ∵︒=∠60B , AD 、CE 分别是BAC ∠、BCA ∠(第23题图) OP A M N E B C D F AEF BD图①图②图③图 1FED CBA∴可得︒=∠+∠6032, F 是ABC ∆的内心 ∴160∠+︒=∠GEF , FG FH = 又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE = 五、旋转例1 正方形ABCD 中, E 为BC 上的一点, F 为CD 上的一点, BE+DF=EF, 求∠EAF 的度数.证明:将三角形ADF 绕点A 顺时针旋转90度, 至三角形ABG则GE=GB+BE=DF+BE=EF 又AE=AE, AF=AG,所以三角形AEF 全即是AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF 又∠EAF+∠BAE+∠DAF=90 所以∠EAF=45度例2 D 为等腰Rt ABC ∆斜边AB 的中点, DM ⊥DN,DM,DN 分别交BC,CA 于点E,F.(1)当MDN ∠绕点D 转动时, 求证DE=DF. (2)若AB=2, 求四边形DECF 的面积.解:(计算数值法)(1)连接DC,D为等腰Rt ABC∆斜边AB的中点, 故有CD⊥AB, CD=DA CD平分∠BCA=90°, ∠ECD=∠DCA=45°由于DM⊥DN, 有∠EDN=90°由于 CD⊥AB, 有∠CDA=90°从而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2, S四DECF= S△ACD=1例3 如图, ABC∆是等腰三角形, ∆是边长为3的等边三角形, BDC且060角, 使其两边分别交AB于120∠=, 以D为极点做一个0BDC点M, 交AC于点N, 连接MN, 则AMN∆的周长为;解:(图形补全法, “截长法”或“补短法”, 计算数值法) AC 的延长线与BD的延长线交于点F, 在线段CF上取点E, 使CE=BM∵△ABC为等边三角形, △BCD为等腰三角形, 且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE, BD=CD,∴△CDE ≌△BDM, ∴∠CDE=∠BDM, DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°, ∵在△DMN 和△DEN 中, DM=DE∠MDN=∠EDN=60° DN=DN ∴△DMN ≌△DEN, ∴MN=NE∵在△DMA 和△DEF 中, DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30° ∴△DMN ≌△DEN (AAS), ∴MA=FEAMN ∆的周长为AN+MN+AM=AN+NE+EF=AF=6应用:1、已知四边形ABCD 中, AB AD ⊥, BC CD ⊥, AB BC =,120ABC =∠, 60MBN =∠, MBN ∠绕B 点旋转, 它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1), 易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时, 在图2和图3这两种情况下, 上述结论是否成立?若成立, 请给予证明;若不成立, 线段AE CF ,, EF 又有怎样的数量关系?请写出你的猜想, 不需证明.解:(1)∵AD AB ⊥, CD BC ⊥, BC AB =, CF AE =∴CBF ABE ∆≅∆(SAS ); ∴CBF ABE ∠=∠, BF BE =∵︒=∠120ABC , ︒=∠60MBN∴︒=∠=∠30CBF ABE , BEF ∆为等边三角形 ∴BF EF BE ==, BE AE CF 21==∴EF BE CF AE ==+(2)图2成立, 图3不成立.证明图2, 延长DC 至点K , 使AE CK =, 连接BK 则BCK BAE ∆≅∆∴BK BE =, KBC ABE ∠=∠ ∵︒=∠60FBE , ︒=∠120ABC ∴︒=∠+∠60ABE FBC ∴︒=∠+∠60KBC FBC ∴︒=∠=∠60FBE KBF ∴EBF KBF ∆≅∆ ∴EF KF =(图1) A B C D EF MN (图2)AB C DE F MN(图3)ABC DE F MNK ABCDE FMN图 2∴EF CF KC =+ 即EF CF AE =+图3不成立, AE 、CF 、EF 的关系是EF CF AE =- 2、(西城09年一模)已知以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变动,且其它条件不变时,求PD 的最年夜值,及相应∠APB 的年夜小.分析:(1)作辅助线, 过点A 作PB AE ⊥于点E , 在PAE Rt ∆中, 已知APE ∠, AP 的值, 根据三角函数可将AE , PE 的值求出, 由PB 的值, 可求BE 的值, 在ABE Rt ∆中, 根据勾股定理可将AB 的值求出;求PD 的值有两种解法, 解法一:可将PAD ∆绕点A 顺时针旋转︒90获得AB P '∆, 可得AB P PAD '∆≅∆, 求PD 长即为求B P '的长, 在P AP Rt '∆中, 可将P P '的值求出, 在B P P Rt '∆中, 根据勾股定理可将BP '的值求出;解法二:过点P 作AB 的平行线, 与DA 的延长线交于F , 交PB 于G , 在AEG Rt ∆中, 可求出AG , EG 的长, 进而可知PG 的值, 在PFG Rt ∆中, 可求出PF , 在PDF Rt ∆中, 根据勾股定理可将PD 的值求出;(2)将PAD ∆绕点A 顺时针旋转︒90, 获得AB P '∆, PD 的最年夜值即为B P '的最年夜值, 故当P '、P 、B 三点共线时, B P '取得最年夜值, 根据PBP P B P +'='可求BP '的最年夜值, 此时︒='∠-︒=∠135180P AP APB .解:(1)①如图, 作PB AE ⊥于点E ∵PAE Rt ∆中, ︒=∠45APB , 2=PA∴()1222===PE AE∵4=PB∴3=-=PE PB BE在ABE Rt ∆中, ︒=∠90AEB ∴1022=+=BE AE AB②解法一:如图, 因为四边形ABCD 为正方形, 可将将PAD ∆绕点A 顺时针旋转︒90获得AB P '∆, , 可得AB P PAD '∆≅∆, B P PD '=, A P PA '=∴︒='∠90P PA , ︒='∠45P AP , ︒='∠90PB P ∴2='P P , 2=PA∴52422222=+=+'='=PB P P B P PD ;解法二:如图, 过点P 作AB 的平行线, 与DA 的延长线交于F , 设DA 的延长线交PB 于G .在AEGRt ∆中, 可得310cos cos =∠=∠=ABE AE EAG AE AG ,31=EG ,32=-=EG PE PG 在PFG Rt ∆中, 可得510cos cos =∠=∠=ABE PG FPG PG PF , 1510=FG在PDF Rt ∆中, 可得(2)如图所示, 将PAD ∆绕点A 顺时针旋转︒90,获得AB P '∆, PD 的最年夜值, 即为B P '的最年夜值∵B P P '∆中, PB P P B P +'' , 22=='PA P P , 4=PB 且P 、D 两点落EPA DCBP ′PA CBD EG F P A CBDEP ′PACBDP ′PACBD在直线AB 的两侧∴当P '、P 、B 三点共线时, B P '取得最年夜值(如图)此时6=+'='PB P P B P , 即B P '的最年夜值为6此时︒='∠-︒=∠135180P AP APB3、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N, D 为ABC 外一点, 且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N分别在直线AB 、AC 上移动时, BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1, 当点M 、N 边AB 、AC 上, 且DM=DN 时, BM 、NC 、MN 之间的数量关系是; 此时=LQ; (II )如图2, 点M 、N 边AB 、AC 上, 且当DM ≠DN 时, 猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3, 当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x , 则Q=(用x 、L 暗示).分析:(1)如果DN DM =, DNM DMN ∠=∠, 因为DC BD =, 那么︒=∠=∠30DCB DBC , 也就有︒=︒+︒=∠=∠903060NCD MBD , 直角三角形MBD 、NCD 中, 因为DC BD =, DN DM =, 根据HL 定理, 两三角形全等.那么NC BM =, ︒=∠=∠60DNC BMD , 三角形NCD 中, ︒=∠30NDC ,NC DN 2=, 在三角形DNM 中, DN DM =, ︒=∠60MDN , 因此三角形DMN 是个等边三角形, 因此BM NC NC DN MN +===2, 三角形AMN 的周长=++=MN AN AM QAB AC AB NC MB AN AM 2=+=+++, 三角形ABC 的周长AB L 3=, 因此3:2:=L Q .(2)如果DN DM ≠, 我们可通过构建全等三角形来实现线段的转换.延长AC 至E , 使BM CE =, 连接DE .(1)中我们已经得出,︒=∠=∠90NCD MBD , 那么三角形MBD 和ECD 中, 有了一组直角,CEMB =,DCBD =, 因此两三角形全等, 那么DEDM =,CDE BDM ∠=∠, ︒=∠-∠=∠60MDN BDC EDN .三角形MDN 和EDN 中, 有DE DM =, ︒=∠=∠60MDN EDN , 有一条公共边, 因此两三角形全等, NE MN =, 至此我们把BM 转换成了CE , 把MN 转换成了NE , 因为CE CN NE +=, 因此CN BM MN +=.Q与L 的关系的求法同(1), 得出的结果是一样的.(3)我们可通过构建全等三角形来实现线段的转换, 思路同(2)过D 作MDB CDH ∠=∠, 三角形BDM 和CDH 中, 由(1)中已经得出的︒=∠=∠90MB DCH , 我们做的角CDH BDM ∠=∠, CD BD =, 因此两三角形全等(ASA ).那么CH BM =, DH DM =, 三角形MDN 和NDH 中, 已知的条件有DH MD =, 一条公共边ND , 要想证得两三角图 1N MAD CB形全等就需要知道HDNMDN ∠=∠, 因为MDBCDH ∠=∠, 因此︒=∠=∠120BDC MDH , 因为︒=∠60MDN , 那么︒-︒=∠60120NDH︒=60, 因此NDH MDN ∠=∠, 这样就构成了两三角形全等的条件.三角形MDN 和DNH 就全等了.那么BM AC AN NH NM -+==, 三角形AMN 的周长+++=++=BM AB AN MN AM AN QAB AN BM AC AN 22+=-+.因为x AN =, L AB 31=, 因此三角形AMN 的周长L x Q 322+=.解:(1)如图1, BM 、NC 、MN 之间的数量关系:MN NC BM =+;此时32=L Q . (2)猜想:结论仍然成立.证明:如图2, 延长AC 至E , 使BM CE =, 连接DE∵CD BD =, 且︒=∠120BDC ∴︒=∠=∠30DCB DBC 又ABC ∆是等边三角形 ∴︒=∠=∠90NCD MBD 在MBD ∆与ECD ∆中 ∴ECD MBD ∆≅∆(SAS ) ∴DE DM =, CDE BDM ∠=∠ ∴︒=∠-∠=∠60MDN BDC EDN 在MDN ∆与EDN ∆中 ∴EDN MDN ∆≅∆(SAS ) ∴BM NC NE MN +==E图 2 NMAD C B H 图 3NMAD CB故AMN∆的周长=++=MN AN AM Q ()()AB AC AB NC AN BM AM 2=+=+++而等边ABC ∆的周长AB L 3= ∴3232==ABAB LQ(3)如图3, 当M 、N 分别在AB 、CA 的延长线上时, 若x AN =, 则L x Q 322+=(用x 、L 暗示).点评:本题考查了三角形全等的判定及性质;题目中线段的转换都是根据全等三角形来实现的, 当题中没有明显的全等三角形时, 我们要根据条件通过作辅助线来构建于已知和所求条件相关的全等三角形.。
专题:三角形全等常用辅助线及模型(答案)
专题:三角形全等常用辅助线及模型※题型讲练考点一三角形全等常见辅助线一:倍长中线法1.如图,在△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.解:(1)延长AD至点E,使DE=AD,连接BE.∵D为BC的中点,∴CD=BD.又∵AD=ED,∠ADC=∠EDB,∴△ADC≌△EDB.∴AC=EB.∵AB+BE>AE,∴AB+AC>2AD.(2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB+AC.∵AB=5,AC=3,∴2<2AD<8.∴1<AD<4.2.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,M为BC的中点,求证:(1)DE=2AM;(2) AM⊥DE.证明:(1)延长AM至点N,使MN=AM,连接BN.∵M为BC的中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS),∴AC=BN,∠C=∠NBM,∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD.∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS),∴DE=NA.又∵AM=MN,∴DE=2AM.(2)互余证法,证明略;3.如图,△ABC中,BD=AC,∠ADC=∠CAD,E是DC的中点,求证:AD平分∠BAE.解:延长AE到M,使EM=AE,连结DM易证△DEM≌△CEA∴∠C=∠MDE, DM=AC又BD=AC∴DM=BD,又∠ADB=∠C +∠CAD,∠ADM=∠MDE+∠ADC,∠ADC=∠CAD∴∠ADM=∠ADB∴△ADM≌△ADB∴∠BAD=∠MAD即AD平分∠BAE考点二三角形全等常见辅助线二:截长补短法1.如图,已知AP∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,CE的延长线交AP于点D.求证:AD+BC=AB.证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE.∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C.∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.2.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B =∠ADC=90°.E、F分别是BC、CD上的点,且∠EAF=60°.求证:EF=FD+BE.证明:如图,延长FD到点G,使DG=BE,连结AG.∵∠B=∠ADC=90°,∴∠B=∠ADG=90°.∵AB=AD,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠FAD=60°,∠DAG+∠FAD=60°.即∠GAF=60°,∴∠EAF=∠GAF=60°.∴△EAF≌△GAF.∴EF=GF=FD+DG,∴EF=FD+BE.考点三三角形全等常见模型一:一线三等角1.如图,在△ABC中,AB=AC,P、M分别在BC、AC边上,且∠APM=∠B,若AP=MP,求证:PB=MC.证明:∵∠B+∠BAP=∠APM+∠CPM,∠B=∠APM,∴∠BAP=∠CPM.∵AB=AC,∴△ABC为等腰三角形.∴∠B=∠C,又∵AP=PM,∴△APB≌△PMC.∴PB=MC 2.如图,一次函数y=-23x+4的图象分别与x轴、y轴交于点A,B,以AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B,C两点的直线表达式为y=15x+4.3.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,则线段BD、CE、DE之间的关系是:DE=BD+CE ;(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问(1)中结论是否成立?若成立,请你给出证明;若不成立,请说明理由.图①图②解:(1)DE=BD+CE.(2)当α为任意钝角时,结论DE=BD+CE仍成立,理由:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,⎩⎨⎧∠ABD=∠CAE,∠BDA=∠AEC,AB=CA,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.考点四三角形全等常见模型二:手拉手1.如图,△ABC,△CDE是等边三角形,B,C,E三点在同一直线上,连接AE、BD交于点O.(1)求证:AE=BD;(2)求∠BOE的度数;(3)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN.解:(1)∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°.∴∠BCD=∠ACE=120°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD.(2) ∠BOE的度数为120°;(3)∵△ACE≌△BCD,∴∠CBD=∠CAE.∵∠ACN=180°-∠ACB-∠DCE=60°,∴∠BCM=∠ACN.在△BCM和△ACN 中,∴△BCM≌△ACN(ASA),∴CM=CN.2.如图,∠BAD =∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)求证:BC=DE.(2)求∠EAF的度数;(3)若AC=10,求四边形ABCD的面积.解:(1)易证△ABC≌△ADE(SAS),∴BC=DE.(2) ∠EAF的度数为135°;(3) 四边形ABCD的面积=三角形ACE的面积=50.※课后练习1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.AD=3,BE=1,则DE的长是 2 .2.如图,C为线段AE上的一个动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②∠AOB=60°;③AP=BQ;④DE=DP.其中正确的是①②③.(填序号)3.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,∴AD=AE.4.正方形ABCD中,E为BC上的一点,F为CD上的一点,∠EAF=45°,求证:BE+DF=EF.证明:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,由AB=AD,∠ABG=∠ADF=90°,BG=DF,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵∠EAF=45°∴∠GAE=∠EAF=45°在△AEG和△AEF中,AE=AE,∠GAE=∠EAF,AG=AF∴△AEG≌△AEF(SAS),∴EF=GE= BG+BE即BE+DF=EF.5.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB= ∠BAD,AE是△ABD的中线.求证:AC=2AE.解:延长AE到M ,使EM=AE,连结DM易证△DEM≌△BEA∴∠B=∠MDE, DM=AB又CD=AB∴DM=CD,又∠ADC=∠B+∠BAD,∠ADM=∠MDE+∠ADB,∠ADB=∠BAD∴∠ADM=∠ADC∴△ADM≌△ADC∴AC=AM=2AE6.如图,在△ABC中,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB,AD,CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.解:(1)∵∠1+∠2+∠3+∠4=180°-∠B=120°,∠1=∠2,∠3=∠4,∴∠2+∠3=60°,∴∠AOC=180°-60°=120°;(2)在AC上截取AF=AE,连接OF,∵AE=AF,∠1=∠2,AO=AO,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF,∵∠AOC=120°,∴∠AOE=∠DOC=60°,∴∠AOF=∠COF=60°,在△OFC和△ODC中,⎩⎨⎧∠FOC=∠DOC=60°,OC=OC,∠3=∠4,∴△OFC≌△ODC(ASA),∴FC=DC,∵AF+FC=AC,∴AC=AE+CD.7.Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上分别在点C 的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.(1)当点D在线段AB上时(点D不与点A,B重合),如图1,线段BF,AD所在直线的位置关系为垂直,线段BF,AD的数量关系为相等.(2)当点D在线段AB的延长线上时,如图2,则(1)中的结论是否仍然成立?如果成立请证明;如果不成立,请说明理由.解:(2)成立.理由如下:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.8.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D 是中点,求证:BE+CF>EF.证明:延长FD至G,使得GD=DF,连接BG,EG∵在△DFC和△DGB中,DF=DG∠CDF=∠BDGDC=DB,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中DF=DG∠FDE=∠GDE=90°DE=DE∴△EDF≌△EDG(SAS),∴EF=EG在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF.9.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA的平分线交于E(1)求∠AEB的度数;(2)过点E作一直线交AM于D,交BN于C,求证:DE=CE;(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,①AD+BC=AB;②AD+BC=CD谁成立?并说明理由.解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,∵AM∥BN,EF∥BC,∴EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.所以①成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三:三角形中常见的辅助线的作法一、斜边中线模型构成:Rt △ABC,∠ACB=090,D 为AB 边的中点目的:找等量关系,或2倍(1/2)的关系。
结果:AD=CD=BD例 1 已知:△ABC 中,∠A=060,CE ⊥AB,BD ⊥AC 求证:DE=12BC证明:取BC 中点M ,连结EM,DM先证EM=DM ⇐EM=12BC=DM 再证:∠2=π-∠1-∠3=π-(π-2∠ABC )-(π-2∠ACB )=060 则△EDM 为等边三角形,所以有DE=DM=12BC“Rt △中斜边上的中线等于斜边的一半”+“等腰对等底”+“等量代换” 例2、如图,直角三角形ABC 中,∠C=90︒,M 是AB 中点,AM=AN ,MN//AC 求证:MN=AC 证明:连结CM//AB AMMN AC MCA MAC AMN N ACM MNA MN AC∠︒∴=∴∠=∠=∠=∠∴∆≅∆∴=在直角三角形ABC 中,C=90M 是AB 的中点1CM=2又 例3已知:△ABC 中,CE ⊥AB,BD ⊥AC ,M,N 分别为BC,DE 的中点 求证:MN ⊥ED证明:连结EM,DM 先证 EM=DM ⇐EM=12BC=DM后证 MN ⊥ED ⇐N 为中点,EM=DM“RT △中斜边上的中线等于斜边的一半”+“三线合一定理” [思考]:若△ABC 为钝角△,又该如何呢?在Rt △中,又是怎样?例4已知:在△ABC 中,AB=AC,BD 为∠ABC 的角平分线,AM ⊥BC,DE ⊥BC, FD ⊥BDADCMABDEC213NEDBAMNMBCA求证:ME=14BF 证明:取BD 、BF 中点G 、N ,连结 DN , EF , GM 先证 DN=12BF再证:DN=DC ⇐∠DNC=∠C=∠ABC ⇐ ①DN ∥AB ⇐∠3=∠1②AB=AC 再证 GM=12DC后证 GM=ME ⇐∠MEG=∠MGE ⇐ ①∠GEM=∠2②∠GMB=∠C=2∠2 所以有ME=12DC=14BF “RT △中斜边上的中线等于斜边的一半(2次)”+“平行线性质1”+“等腰对等底”+“三角形中位线定理”例5如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 与D,M 为BC 边的中点,AB=10cm,则MD 长为多少? 解:取 AB 中点N,连结DN,NM,则DN=12AB, ∠NDB= ∠B, 且∠NMD= ∠C ∠NDB= ∠NMD+ ∠DNM ∠B= ∠C+ ∠DNM=2∠C∴∠DNM=∠C=∠NDM 则DM=DN=12AB“Rt △斜边上中线等于斜边的一半”+“三角形中位线定理”+“外角性质”+“等底对等腰” 例6如图 ,Rt △ABC 中,∠C=090,CD 平分∠C ,E 为AB 中点,PE ⊥AB,交CD 延长线于P,那么∠PAC+∠PBC 的大小是多少?解:连结 CE ,则∠EAC=∠ECA∴∠DCE=∠ECA-∠DCA=∠DAC-045又∠DAC=1800-∠ADC-045=0135-∠PDE∴∠DCE=(0135-∠PDE)- 045=∠DPE 则PE =EC=AE则可证∠PAC+∠PBC=∠PAB+∠BAC+∠PBA+∠ABC=1800“斜边中线性质”+“对顶角相等”+“等量代换”+“三角形内角和定理” 等腰三角形底边的中线例1、如图所示,在ABC 中,AB=2AC ,AD 平分∠BAC 且AD=BD ,求证:CD ⊥AC 提示:在AB 上取中点E ,连结DE ,可得DE ⊥AB ,并且AE=AC ,N GF 312CE D B AMNCD BA MPDCEBA证AED ≅ACD ,则有∠ACD=∠AED=90︒,即CD ⊥AC例2如图所示,等腰直角三角形ABC ,∠BAC=90︒,点D 是BC 的中点且AE=BF 求证:DE ⊥DF证明:连接AD二、“三线合一”模型“角平分线”+垂线→等腰三角形”构成:OC 为∠A0B 的角平分线,BC ⊥OC 于C 点 目的:构造等腰三角形结果: ⑴[边]:BC=AC,OA=OB →OC 为△OAB 的中线⑵[角]:∠3=∠4,∠ACO=090→ OC 为△ABO 的高线 ⑶[全等]:△ACO ≌△BCO4321C B AO 45459090BAC BD AD B C B DAEBDF ADE B DAE BD ADBDF ADE BDF ADEADF BDF ADE ADF DE DF∴⊥∠∠=︒=∠=∠=︒∴∠=∠⎧⎪∠=∠⎨⎪=⎩∴≅∴∠=∠∠+∠=︒∴∠+∠=︒⊥在等腰直角三角形ABC 中,AD 是中线1AD BC ,且DAE=,2又在和中BF=AE 又即例 1 已知:AD 是△ABC 的∠A 的平分线,CD ⊥AD 于D,BE ⊥AD 于AD 的延长线于E,M 是BC边上的中点。
求证:ME=MD证明:延长 CD 交AB 于F 点,BE 与AC延长线交于G点D为FC 中点,M为BC中点。
DM∥AB,∠1=∠3∠4+∠5=090,∠2+∠6=090 ∠5=∠G=∠6∠4=∠2 则∠3=∠4则MD=ME“‘三线合一’定理的逆定理”+“平行线的性质”+“等底对等腰” 例2已知:△ABC 为等腰直角三角形,∠A=090,∠1=∠2,CE ⊥BE求证:BD=2CE证明:延长 CE 、BA 交于F 点 先证 CF=2CE再证 RT △ABD ≌RT △CAF ⇐ “∠3=∠F ”+”AB=AC ”+”∠BAD=∠CAF ”则有BD=CF=2CE“‘三线合一’定理的逆定理”+“ASA ⇒全等”例3 已知:△ABC 中,CE 平分∠ACB ,且AE ⊥CE,∠AED+∠CAE=1800(∠3+∠4=1800)求证:DE ∥BC证明:延长AE 交BC 边于F 点,则有∠3=∠6且∠3=∠5⇐ ①∠3+∠4=1800② ∠4+∠5=1800∴∠5=∠6 则DE ∥BC“‘三线合一’定理的逆定理”+“平行线的判定”例4 已知:在△ABC 中,AC>AB,AM 为∠A 的平分线,AD ⊥BC 于D 求证 :∠MAD=12(∠B-∠C)证明:作BE ⊥AM,交AC 于E 点,交AM 于K 点 先证∠3=∠4⇐∠1=∠2654321MGFED CBA 4321FE D BA54321FE D CBA 54321KEMDCB A∠5=∠AEB ⇐ ① AM 为角平分线 ②BE ⊥AM 后证:∠B-∠C=∠4+∠5-∠C=∠4+∠AEB -∠C=2∠4 则∠3=∠4= 12(∠B-∠C )即∠MAD=12(∠B-∠C) “三线合一逆定理”+“平行四边形的判定”例5 已知:在△ABC 的两边AB 、AC 上分别取BD=CE ,F 、G 分别为DE 、BC 的中点,∠A 的平分线AT 交BC 于T求证:FG ∥AT证明:作EN ⊥AT 于N 点,交AB 于L 点,作CK ⊥AT 于K 点,连结FN 、GK 先证:NF ∥且=12LD,KG ∥且=12MB 再证:LD=MB ⇐LM=DB=EC最后证明四边形FNKG 为平行四边形。
“‘三线合一’定理的逆定理”+“平行四边形判定”例6、如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点 (1)求证:AF ⊥CD(2)在你连接BE 后,还能得出什么新结论?证明:(1)连接AC 、AD ,在△ABC 和△AED 中,AB=AE ,∠ABC=∠AED ,BC=ED∴△ABC ≅△AED ∴AC=AD在等腰△ACD 中,F 是底边CD 的中点∴AF ⊥CD例7、如图,△ABC ,∠ACB=90︒,AC=BC ,D 为AC 上一点,AE ⊥BD 的延长线于E ,且AE=12BD ,求证:BD 平分∠ABC提示:分别延长AE 和BC ,两者相交于F欲证BD 平分∠ABC ,只需证BE 是等腰三角形底边上的高与中线,MK NL G F TEDA BOF EDC BA FEDCBA蕴含着BE是AF的中垂线三、三角形中位线模型构成:△ABC中,D 为AB边中点目的:找中位线,构造:①2倍关系②相似三角形结果:①DE∥BC,DE=12BC ②△ADE∽△ABC例1 已知:在△ABC中,AB=AC,AD⊥BC于D,DE⊥AC于E,F为DE中点求证:AF⊥BE证明:取BE中点H,连DH先证:Rt△EDH∽Rt△AED 则22 DE EC HD AE DE EF==∴ Rt△EDH∽Rt△AEF 则∠BED= ∠1∴∠EAF+∠AEG=090则AF⊥BE“AAA⇒△∽”+“中位线定理”+“(两直线)定义”例2 已知 BD、CE为△ABC的角平分线,AF⊥CE 于F,AG⊥CE于F,AG⊥BD于G求证:①FG∥BC ② FG=12(AB+AC-BC)证明:延长AF、AG 分别交BC于M、N 两点证G为AN中点⇐①BD⊥AN ②∠1=∠2F为AM中点⇐①∠3=∠4 ②CE⊥AM①则GF为△ANM中位线 GF∥BC, GF=12 MN②MN=BN+CM-BC=AB+AC-BC“等腰△三线合一”+“△中位线定理”+“等量代换”思考:BD、CE为外角平分线时或一内一外角平分线时,又该如何证明?例3 已知,如图在ABCD中,P为CD中点,AP延长线交BC延长线于E,PQ∥CE 交DE于Q求证:PQ=12BC证明:先证△ADP≌△PCE 可得 CE=AD=BC再证 PQ为中位线,PQ=12CE“AAS⇒△≌”+“平行四边形性质”+“△中位线定理”AB CD EGFEDHBA4321GFNMECDAQPEDCBA例4 已知:梯形ABCD 中,AB=DC,AC ⊥BD,E 、F 为腰上中点,DL ⊥BC,M 为DL 与EF 的交点 求证:EF=DL证明:取AD 、EF 的中点 H 、K,连结 EH 、FH 、HK 易证EH ⊥HF 则HK=12EFRT △DLC 中可得M 为DL 中点,则DM=12DL由题意得 HK=DM 则EF=DL“三角形中位线定理(3次)”+“平行线性质”+“斜边上中线为斜边一半” 例 5 已知:锐角△ABC 中,以AB 、AC 为斜边向外作等腰直角△ADB ,△AEC,M 为 BC 中点,连结DM 、ME 求证:DM=EM ,DM ⊥EM证明:取AB 、AC 的中点F 、G,连结DF 、FM 、 ME 先证△DFM ≌△MGE ⇐① DF=GM②∠DFM=∠MGE ⇐∠1=∠2=∠3 ③FM=GE则DM=ME , ∠4=∠5再证∠DME=∠7+∠1+∠5=090,则 DM ⊥EM[思考]:∠BAC 为钝角时,又该如何证明?例6:如图所示,在等腰三角形ABC 中,AB=AC ,D 是AB 延长线上一点,且AB=BD ,CE 是腰AB 上的中线。