数学建模2010A题

合集下载

2010年北美数学建模竞赛中英文A、B题目

2010年北美数学建模竞赛中英文A、B题目

2010年北美数学建模比赛中英文题目(MCM)2010 MCM题目A题:棒球棒上的最佳击球点Explain the “sweet spot” on a baseball bat.Every hitter knows that there is a spot on the fat part of a baseball bat where maximum power is transferred to the ball when hit. Why isn’t this spot at the end of the bat? A simple explanation based on torque might seem to identify the end of the bat as the sweet spot, but this is known to be empirically incorrect. Develop a model that helps explain this empirical finding.Some players believe that “corking” a bat (hollowing out a cylinder in the head of the bat and filling it with cork or rubber, then replacing a wood cap) enhances the “sweet spot” effect. Augment your model to confirm or deny this effect. Does this explain why Major League Baseball prohibit s “corking”?Does the material out of which the bat is constructed matter? That is, does this model predict different behavior for wood (usually ash) or metal (usually aluminum) bats? Is this why Major League Baseball prohibits metal bats?中文翻译:解释棒球棒上的“最佳击球点”。

广东工业大学数学建模试卷和答案—2010A

广东工业大学数学建模试卷和答案—2010A

广东工业大学试卷用纸,共 页,第 页
广东工业大学试卷参考答案及评分标准 (A)
课程名称:
பைடு நூலகம்
数学建模
试卷满分 100 分
考试时间: 2010 年 6 月 28 日 (第 18 周 星期一)
一.(本小题 15 分) 1、1.数学建模的基本步骤主要是:
1)模型准备。了解问题的实际背景,明确建模的目的,搜集必要的信息如现象,数据等,尽量弄清楚 对象的特征,由此初步确定用那一类模型。(2 分); 2)模型假设。根据对象的特征和建模目的,抓住问题的本质,忽略次要因素,做出必要的合理的假设。 (3 分); 3)模型构成。根据所做的假设,用数学语言,符号描述对象的内在规律,建立包含常量,变量等的数 学模型。(4 分); 4)模型求解。可以采用解方程,画图形,优化方法,数值方法,统计分析等各种数学方法,特别是数 学软件和计算机技术。(6 分)。 5)模型分析。对求解结果进行数学上的分析。(8 分) 6)模型检验。把求解和分析结果翻译到实际问题,与实际的现象,数据比较,检验模型的合理性和适 用性。(9 分) 7)模型应用。 (10 分)
型,确定应该如何投资?(只需建模,不用求解)
债券名称
债券种类
信用等级
到期年限
到期税前收益
率(%)
A
国债
1
9
4.3
B
企业债
3
10
5.4
C
地方政府债
2
4
5.0
D
地方政府债
2
3
4.4
E
国债
1
5
4.5
2.某广告公司想在电视、广播上做广告,其目的是尽可能多的招揽顾客。下面是市
场调查结果:

2010“高教社杯”全国大学生数学建模大赛A题论文

2010“高教社杯”全国大学生数学建模大赛A题论文

基于微元法的变位储油罐罐容表标定问题摘要加油站当地下储油罐发生一定程度变位时,需要重新标定其罐容表,优化“油位计量管理系统”,目的是得到地下储油罐内油量的真实值,所以研究该问题对加油站具有重要意义。

本文主要利用微元法建立积分模型,解决了储油罐的变位识别与罐容表标定的问题,得到了实验储油罐变位后罐容表新的标定值,实际储油罐变位后储油量与油位高度及变位参数之间的关系,以及实际储油罐变位后罐容表新的标定值。

问题一中,首先对纵向倾斜的小椭圆油罐进行分析,将油罐从罐中无油到加满油的过程分为7个部分来分析,分别是:(1)从罐中无油到将油加到刚好不接触油浮子;(2)从油开始接触油浮子到油灌满倾斜角但刚好不接触罐右侧壁;(3)从罐中油开始接触右侧壁到油灌到左侧壁中点水平线;(4)油从左侧壁中点灌到左侧壁终点水平线;(5)油从左侧壁终点灌到右侧壁中点水平线;(6)油从右侧壁中点灌到油浮子刚好显示油满;(7)从油浮子刚好显示油满到将油罐灌满。

分别分析这7个加油的过程,建立模型,用微元法求解每个部分罐中油体积的变化,根据体积的变化得到油面高度的变化,将变位后的油面高度与无变位时的油面高度作比较,分析得出变位对罐容表的影响。

最后由变位后油面的高度,用Matlab编程序得到变位后罐容表新的标定值。

问题二中,经过对实际储油罐的形状与倾斜及偏转角度情况的分析,我们利用割补法建立罐体变位后的数学模型,先分别分析储油罐只纵向倾斜和只横向偏转的情况,用h的函数关系式,再分析储油罐同时纵向倾微元法得到罐中油体积与变位后罐容表刻度斜和横向偏转的情况,我们将模型转变为先将储油罐横向偏转,然后在横向偏转的基础上再纵向倾斜,由所给的实际储油罐的数据,分别结合只进行纵向倾斜和只进行横向偏转的情况,用拟合的方法,利用Simpson公式,近似得到了倾斜角α=4.5230,偏转角β=1.220。

在α和β确定之后,罐内储油量与油位高度及倾斜角α、偏转角β的关系式即转化为油体积与油位高度的关系式,进而计算得到变位后油位间隔为10cm的罐容表新标定值。

2010年数学建模A题论文

2010年数学建模A题论文

储油罐的变位识别与罐容表标定摘要本文主要运用了积分知识和几何知识分析解决储油罐的变位识别和罐容表标定问题。

模型一的对象是小椭圆形储油罐(两端平头的椭圆柱体)。

我们首先运用几何知识对变位罐体进行分析,得到垂直于罐体的液高1h 和储油罐水平状态下的液高2h 之间的关系,2h =1h +1L ×tan()α(倾斜角α,1L =0.4m ,为罐体长的一部分)。

然后以椭圆中心为中心,以椭圆的长轴和短轴分别为x 轴y 轴,建立空间直角坐标系,再对x 求定积分可得椭圆面上的储油面积为S =(2)f h dx ⎰,继而求得储油的体积V =S ×L (L 为罐体的水平总长度)。

并且在不同的情况下,运用分段函数的思想将罐容分为四段,解得各部分罐容表达式。

并且,以附件一中给出的油位高度为自变量,运用matlab 求得对应的罐容。

将求的的罐容与附件一中加上初始油量后的罐容相比较,分析数据得到其平均误差率为0.038371<0.05,较为合理。

因此,便可根据上述函数关系编定小椭圆罐体罐体变位后的油位高度1h 间隔为1cm 的罐容表标定。

模型二对于图4所示的实际储油罐,可由题中所给数据算出球冠形封头的半径为1.625m,所对应的圆心角为134.76度,弧长为 3.822m考虑到所对圆心角较大及弧长相对于油罐的高度D = 3m 相差不是很大,利用问题一中的模型可近似的认为 当液面由倾斜状态转化为水平状态时,两球冠形内的液面高度与卧式圆柱体内的液面高度近似相等,都等于圆柱体内的油在水平状态下的高度2h ,此时罐内液体的体积为两球冠形封头内液体的体积与圆柱体内液体的体积之和。

当油罐同时在倾斜和偏转的状态下时,利用油浮子测得的液面高度为3h ,3h 可化为仅在倾斜状态下的液面高度1h ,进而转化为水平状态下的液面高度2h ,从而h2可油位高度及纵向倾斜角α和横向偏转角β 表示出来,即()()()()()()13cos ,212tan 3cos tan h R h R h h R h R βαβα=+-=+=+-+cos(β)在已建立的较合理的模型一的基础上建立问题二的模型,将h2带入即可求得罐体变位后储油量与油位高度和变位参数α,β的关系。

2010华东数学建模A题

2010华东数学建模A题

面包店问题摘要关键词:目录一、问题重述…………………………………………………………………………………二、问题分析…………………………………………………………………………………三、模型假设…………………………………………………………………………………四、符号说明…………………………………………………………………………………五、模型的建立与求解………………………………………………………………………六、模型的检验………………………………………………………………………………七、模型的优缺点分析………………………………………………………………………八、模型的推广与改进………………………………………………………………………参考文献………………………………………………………………………………………附录……………………………………………………………………………………………一、问题重述某个面包店有两个烤箱,每个烤箱有数个烤盘。

该店可以烤制数十种样式的面包。

不同种类的面包的烤制时间不一样,但可以在同一个烤箱中烤制。

当天烤制的面包只能当天销售,过期销毁。

(1)如果该面包店只为某些宾馆服务,宾馆每天分四批来取货,每次取货的面包样式及数量提前一天告知面包店,则面包店应该如何安排,才能使每天的收益最大?(2)如果面包店同时还面向大众零售服务,则应该如何安排生产计划才能使预期的收益最大?请为面包店建立模型安排每天的生产计划,并自己给出数据检验模型的效果。

说明你的数据产生的方式,评价模型的优缺点。

二、问题分析2.1这个优化问题的目标就是要使面包店的收益最大,要做的决策就是生产计划,而宾馆所需面包的样式和总类已经提前知道,所以只需考虑面包烘烤的时间,建立模型从而求出的时间最小值,即为利润最高的最优解。

2.2根据市场分析目前消费市场竞争日趋激烈,面包店的整体布局也应该随着由于每一天市场的不稳定性以及一些问题的不确定性,我们对求解的模型作一些合理化的假设:1、不考虑产品需求预测估计值的误差,也不考虑产品各项成本费用在此阶段时间的变化。

2010数学建模竞赛A B题 高教社杯全国大学生数学建模竞赛题目

2010数学建模竞赛A B题   高教社杯全国大学生数学建模竞赛题目

2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

草根分享论坛 图吧 分享吧 海之南 分享斑竹 share8 好学吧附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据油油浮子 出油管油位探测装置 注油口 检查口地平线 2m 6m 1m 1m3 m油位高度 图1 储油罐正面示意图 油位探针油位探针α地平线 图2 储油罐纵向倾斜变位后示意图油油浮子出油管油位探测装置注油口 检查口水平线α油油浮子出油管油位探针注油口水平线1.2m1.2m1.78m图3 储油罐截面示意图(b )横向偏转倾斜后正截面图地平线β地平线垂直线油位探针(a )无偏转倾斜的正截面图油位探针油位探测装置地平线 油3m油2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题2010年上海世博会影响力的定量评估2010年上海世博会是首次在中国举办的世界博览会。

2010年研究生数学建模A题

2010年研究生数学建模A题

这里有个键固定着丆上台应该转不了
图 2 大型数控精密内外圆磨床的结构示意图 工件工作箱固装在上台上,它通过专用夹具装夹工件,使工件绕工件工作箱主轴以较慢的 转速旋转,同时随三个工作台的复合运动改变待加工工件与砂轮的相对位置。三个台的运动必 须相互配合,使工件与砂轮相切磨削,加工出满足要求的旋转体。 三个工作台的运动分别由三组步进电机控制。步进电机是一种精密数控电动机,每输入一
A 特殊工件磨削加工的数学建模
某科研单位和工厂研制了一种大型精密内外圆曲线磨床,用来加工具有复杂母线旋转体的 特殊工件,如导弹天线罩等,这些工件具有硬度高、尺度大、加工精度高和母线为连续光滑曲 线等特点。图 1 是几类加工工件示例,工件 1 的内外母线均为凸的,工件 2 的内母线是非单调 凸的。这些工件的最后精密成形工艺采用磨削加工。
中台转轴 工件工作箱 夹具基准面
`
中台两对称轴
b
中台 夹具基体 上台
R
螺母 丝杠
传动系统
步进电机
图 4 上台相对中台的转动示意关系 磨床的磨削工具是能磨削高硬度材质的金刚砂轮(指磨削表面含有超高硬度的金刚砂
2
粒) ,磨外圆时根据工件母线的形状,砂轮可采用圆柱体式或轮式,作内圆磨削的砂轮为轮式。 圆柱型砂轮的主要几何参数是砂轮直径 和砂轮厚度 a 。轮式砂轮的主要几何参数有砂轮最大 纵截面(垂直于砂轮转轴的最大截面)的直径 和砂轮厚度 a ,以及其横截面(通过砂轮转轴 的截面)的外端轮廓线参数(理论上它可以是任一凸光滑曲线,但工程上常选用半径为 r 、张 角 不大于 180 的圆弧) ,合理的砂轮几何参数是加工能否实现的关键因素之一(见图 5) 。 在 整个加工过程中工件与砂轮不应脱离接触。
3
3

2010年数学建模a题参考答案(权威)

2010年数学建模a题参考答案(权威)

题目 储油罐的变位识别与罐容表标定一、问题的重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,我们可以采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

然而许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

我们采用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题,并解决以下两个问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

(b) 小椭圆油罐截面示意图 α 油 油浮子出油管 油位探针注油口水平线2.05m 17cm 0.4m1.2m 1.2m 1.78m (a) 小椭圆油罐正面示意图 图4 小椭圆型油罐形状及尺寸示意图 油油浮子出油管油位探测装置注油口 检查口 地平线 2m 6m 1m 1m3 m油位图1 储油罐正面示意图 油位探针二、问题的假设(1)向罐内注入的油量数都是通过流量计来完成,是准确的;(2)罐内的储油量只有通过加油机加油流出,并且加油机的计量误差在允许的范围内;(3)不计外部环境的变化对内部油量所产生的影响。

2010年数学建模试题(全部)

2010年数学建模试题(全部)

2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学的罐地平线 图1 储油罐正面示意图 油位探针2010高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题 2010年上海世博会影响力的定量评估 20101851年伦互联网数据,定量评估2010年上海世博会的影响力。

2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C 题 输油管的布置某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。

2010全国大学生数学建模竞赛_A题_论文

2010全国大学生数学建模竞赛_A题_论文
式中
x m k x m1 i
i 1 k
(k=1,2,„,n)
一般通过一次累加生成就能使数据呈现一定的规律,若规律不够,可增加累 加生成的次数。同理一次累加序列为
x 1 {x 1 1, x 1 2, x 1 n}
在数据生成的基础上,用线性动态模型对生成数据拟合和逼近。对 x 1 建立 模型
v
u
hj
Y I K
C
MPC
C
Y
六、模型建立、求解
6.1 模型一 6.1.1 模型分析: 经过对多篇往届世博会总结报告的感性认识, 世博会参观人次数可以作为评 估世博会影响力的重要指标之一。 目前世博会正在进行, 参观人数总量还未统计。 故建立灰色系统模型 GM(1,1) ,通过对上海近十年的入境旅游人数,对 2010 年 上海入境人数进行预测, 进而预测出参观世博会的人数。再通过现有的每天的上 海世博会进园人数估算整个世博会的参观人数,最终与模型对比,在验证模型可 靠性的同时, 得出相对准确的上海世博会参观人数。最后与历届世博会参观人次 数定量分析比较得出上海世博会的影响力。 6.1.2 模型建立: 灰色系统是指既含有已知信息、又含有未知信息或非确知信息的系统,也称 为贫信息系统。 入境旅游人数的发展变化受到错综复杂的因素影响,他们的共同
x (0) (i )
x ( m ) (i )
xij
yห้องสมุดไป่ตู้j
vi
ur
7 8 9 10 11 12 13 14 15 16 17 18
Xj
决策单元 j 的输入量 决策单元 j 的输出量 输入权重 输出权重 效率评价指数 国民收入增量 政府投资增量 投资乘数 消费增量 边际消费倾向 人均消费 人均收入

2010年全国大学生数学建模竞赛A题论文

2010年全国大学生数学建模竞赛A题论文

1问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。

利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

2 模型假设1.假设浮子是一个质点,不考虑浮子的大小;2.假设油量计测出的油量是绝对准确的;3.假设储油罐是完全密闭的,其中的油不会渗透,蒸发以及以其他形式流失;4.假设储油罐是理想几何体,且不考虑其厚度3符号说明符号含义S储油罐横截面面积h油位高度 α 纵向倾斜角度 β横向倾斜角度 V储油体积 (1,2,3)i f i =储油罐三个区段 l储油罐罐身纵向长度 a截面椭圆半长轴长 b 截面椭圆半短轴长d罐身边缘距油浮子水平距离(较近端)R截面圆半径'h消除纵向倾斜影响后的油位高度(1,2,)i U i n =出油量4问题一:椭球型储油罐变位的罐容表分析4.1问题分析首先,应该得出没有变位时,椭圆型储油罐中油面高度与油量的关系,若储油罐发生倾斜,油浮子测的距离不再是液面距储油罐低端的距离,因此需要建立空间坐标系,分析变位后的储油罐中测量,仍然按照无变位的情况计算储油量必然是不准确的,但是影响有多大。

2010全国大学生数学建模A题参考答案

2010全国大学生数学建模A题参考答案

2010高教社杯全国大学生数学建模竞赛A 题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

该问题是来自于加油站设备研究与生产企业的一个实际课题,问题由两大部分组成:(1)为了观察检验罐体变位对罐容表的影响,在已知变位参数的情况下,检测出油位高度和油量的对应数值,建模分析罐容表的变化规律,并给出修正的罐容表,属于“正问题”。

(2)根据实际检测数据,正确识别罐体是如何变位的,具体变了多少?同时要给出罐容表的修正标定方法和结果,属于“反问题”。

具体需要把握以下几个方面:第一部分:小椭圆型实验罐的有关问题(1)要明确给出小椭圆型油罐正常体位(无变位)的不同油位高度与储油量的计算模型和公式,正确的结果(具体表达形式不唯一)是:21[()2arcsin ]2a h b V ab h b bh h ab L b bπ-=+--+,其中,,a b L 分别为罐体截面椭圆的长半轴、短半轴和罐体长度,h 为罐内的油位高度。

通过代入几何参数计算得到正常(即标准)的罐容表对应值。

表1:正常情况下小椭圆罐的罐容表部分结果油位高度/cm油量/L 油位高度/cm油量/L 油位高度/cm油量/L 油位高度/cm油量/L 10 163.59 40 1199.31 70 2489.15 100 3659.88 20 450.27 50 1621.00 80 2910.84 110 3946.55 30803.54602055.07903306.611204110.15(2)讨论罐体变位的影响,要求给出纵向倾斜变位后修正模型,用不同方法可能有不同的表达形式,但需要分别考虑罐体两端有油/无油的不同情况。

将变位参数代入模型,计算出修正后的罐容表标定值,并与正常的标定值进行比较,分析罐体变位的影响。

实际上,对于纵向倾斜变位的影响明显,最大误差在257L 以上,平均误差达到190L 以上,平均相对误差达30%以上。

数学建模2010A题

数学建模2010A题
2010高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题. 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其 他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞 赛规则的行为,我们将受到严肃处理。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生 纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变.按照有 关规定,需要定期对罐容表进行重新标定.图1是一种典型的储油罐尺寸及形状示 意图,其主体为圆柱体,两端为球冠体.图2是其罐体纵向倾斜变位的示意图,图 3是罐体横向偏转变位的截面示意图。
我们参赛选择的题号是(从A/B/C/D 中选择一项填写):
A
‫ ﻩ‬我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
南通大学
参赛队员 (打印并签名) :1.
2.
3。
指导教师或指导教师组负责人 (打印并签名):
7月 7日
日期: 2016 年
赛区评阅编号(由赛区组委会评阅前进行编号):
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两 端平头的椭圆柱体),分别对罐体无变位和倾斜角为 =4.10的纵向变位两种情况 做了实验,实验数据如附件1所示.请建立数学模型研究罐体变位后对罐容表的影 响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型, 即罐内储油量与油位高度及变位参数(纵向倾斜角度 和横向偏转角度 )之 间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2), 根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为 10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型 的正确性与方法的可靠性。

2010年全国大学生数学建模竞赛A题全国一等奖论文

2010年全国大学生数学建模竞赛A题全国一等奖论文

4012.74L V12 abL1
Ⅴ:当油面在图五中⑤线以下,即 H 0 mm 时,由于显示油面高度为 0 ,所以只能得到 此时储油罐内燃油体积的上限,此上限可在第Ⅰ种情况中得到。得
§2
问题分析
储油罐是根据无变位情况下油面高度 H 与燃油体积 V 的关系进行标定的, 若要实现 储油罐的变位识别和罐容表标定,就需要建立燃油体积 V 与油面高度 H 的数学模型。 问题一: 若要探究发生纵向变位对罐容表的影响,应首先建立无变位和发生纵向变位时,罐 容表标定值与油面高度 H 分别满足的关系。由变量 H 计算发生纵向变位后的实际燃油 体积,将其与罐容表的标定值进行比较,分析变位对罐容表的影响。由此,需要分别建 立无变位情况下和发生纵向变位情况下,储油罐内燃油体积 V 与油面测量高度 H 的模 型。利用几何知识和微积分的理论,可以很容易建立无变位情况下的模型。对于发生纵 向变位,可以用微元分析法,分情况计算储油罐内的实际燃油体积。得出模型后,对模 型计算所得数据与题目所给数据进行比较,分析误差,加以改进。 问题二: 问题二要求对这种两边是球冠体, 中间为柱体的实际储油罐建立燃油体积 V 与油面 测量高度 H 的数学模型。 由于这种储油罐的形状比椭圆型储油罐复杂, 而且又发生了 、
的纵向倾斜和横向偏转,处理起来比较麻烦。可以将这种实际储油罐分为左球冠、中
间圆柱体和右球冠三个部分,对油面测量高度为 H 的情况下,分别计算三个部分内燃油 的体积,然后将其求和即为储油罐内燃油体积。可以采用微元法分别建立三部分内燃油 体积与油面测量高度 H 的模型,不过要考虑 H 取不同范围内的值时,体积求解方法可 能不同。如果积分形式过于复杂,可以考虑采用积分的数值算法,用和逼近。考虑到模 型建立时,参数 和 是未知的,可以用回归分析的方法,求得使理论计算值与实际值

北师大第六届数学建模竞赛题A

北师大第六届数学建模竞赛题A

2010年北京师范大学数学建模竞赛题目A题:高等学校规模分析1999年,我国做出了“扩大高等教育规模”的重大决策。

10年时间里,我国高等教育实现了历史性跨越,规模先后超过俄罗斯、印度、美国,成为世界第一。

2008年,我国高等教育毛入学率达到23.3%,《国家中长期教育改革和发展规划纲要(2010—2020年)》制订了2020年高等教育毛入学率达40.0%的目标,我国目前已进入国际公认的大众化发展阶段。

对于高等教育而言,教育成本中大部分属于固定成本,高等学校具有一定的“非排他性”,即增加一名学生不会使学校的总成本有所变化,并且也不会对其他学生上学有所影响。

在一定范围内,学生数的增加不会影响教学质量,但高校生均成本随着学生规模的扩大而降低,高校办学显现出规模经济现象。

但当学校规模扩大到超出现有资源水平能够满足的范围,资源的超负荷使用会造成教学质量的下降,高校需要新的资源,例如修建教学楼、宿舍、食堂、增加教师数量等,新资源的投入又将导致办学成本上升。

我国从1999年高等学校扩招到现在已经进行到一个阶段,高校规模扩大到一定程度,不同类型的高校呈现出不同的规律。

附件数据是随机抽取我国部分高校的某年度主要收支数据。

其中经费收入项目中事业拨款和科研拨款为国家财政拨款,事业收入指高等学校开展教学、科研及其辅助活动取得的收入,经费支出项目只包含事业经费支出和基建经费支出两项。

请根据资料但不局限于给定材料,研究以下问题:1.选取适当变量,建立模型,判断这些高校是否存在规模经济现象2.探讨这些高校是否应当进行扩招,扩招空间有多大3.根据1、2的结论,从办学目标、办学规模和经济的角度上提出适合这些高校的办学建议。

提示:规模经济和办学规模可将一定数量学校视作整体共同考虑,不必对单独学校进行逐个分析,可整体判断所有学校的情况,也可考虑采取适当方法对高校进行适当分类。

需要更多参考资料请查阅:中国教育经济信息网/index.jsp。

2010年全国大学生数学建模竞赛A题获奖论文—储油罐的变位识别与罐容表标定

2010年全国大学生数学建模竞赛A题获奖论文—储油罐的变位识别与罐容表标定

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):江西师范大学参赛队员(打印并签名) :1. 洪情2. 杨玉花3. 袁定欢指导教师或指导教师组负责人(打印并签名):教练组日期: 2010 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

2010全国大学生数学建模竞赛A题贵州一等奖

2010全国大学生数学建模竞赛A题贵州一等奖

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):毕节学院参赛队员(打印并签名) :1. 罗卫2. 陈友华3. 张德秀指导教师或指导教师组负责人(打印并签名):数学建模教练组日期: 2010 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):分析储油罐的变位对罐容表标定的影响摘要本文通过对微积分性质求面积和体积的分析,首先建立高度h 和面积s 的函数关系式,然后通过体积是面积和高度乘积求积分,得出油罐无变位和倾斜变位后罐内油位高度与储油量的关系式,运用Matlab 软件拟合出无变位和倾斜两种情况的数据与两种实验数据进行比较,从而得到罐体变位后对罐容表的影响。

问题一,首先针对油罐无变位时小椭圆型储油罐(两端平头的椭圆柱体)中椭圆的有关性质建立直角坐标系得出油位高度与储油量的关系,其次针对油罐倾斜α=4.10,油罐内的油因为倾斜,当油还没有达到一定高度或超过探针入口时其高度不显示或不再变化。

因此,将这一过程分为五种情况分别讨论。

通过Matlab 计算得到:情况一,当00.4l m ≤≤时,H=0,1V =1.6764L 。

2010A 数学建模国家一等奖

2010A 数学建模国家一等奖

储油罐的变位识别与罐容表标定问题的探讨摘要通常加油站都有多个储存燃油的地下储油罐。

许多储油罐在使用一段时间后,由于 种种原因,罐体的位置会发生变位,从而导致罐容表发生改变,给计量工作带来一定误 差。

因此用数学建模方法研究解决储油罐的变位识别与罐容表标定问题具有重要意义。

对于问题一,分别进行了精确理论推演与数值模拟求解,均取得很好效果。

第一步,在罐体无变位时,利用元素法用定积分求出油位高度与油量体积之间的关 系式 )] 1 / ( ) 1 / ( 1 2 / ) 1 / arcsin( [ 2 - - - + + - = b h b h b b b h b al v p ,用其计算的理论值与实验 测量值之间有偏差(测量误差),于是分析建立了测量误差和油位高度之间的显著回归 函数: h e 13493 . 0 01203 . 0 + - = ,将函数对上述关系式进行修正得到无变位的数学模型, 模型的精确度可以达到99.5%。

第二步,给定倾角纵向变位时,根据油位高度的不同,分三种情形建立了油量与油 位高度之间二重积分模型。

利用 MATLAB 求解得到表达式,然后给出了测量误差与油位 高度之间的显著回归函数: 2 2 39739 . 0 58340 . 0 12424 . 0 h h e - + -= ,将其对上述表达式进 行修正,从而建立出精确度可达到99.6%的数学模型。

第三步,对于罐体变位后对罐容表的影响,我们认为有两部分:其一是理论公式计 算上的变化,通过对有变位与无变位的积分表达式做差,结合泰勒公式,得到体积改变 量与油高和倾角的关系式;其二是测量误差的变化。

对前面的表达式进行分析,给出测 量误差 e v D 与油高h 和倾角a 的函数关系形式,然后确定函数中的参数,最后得到了在 任意纵向倾角情况下的误差项模型:01203 . 0 30852 . 4 ) 6511 . 30 13493 . 0 ( 9435 . 38 7611 . 11 2 / 3 2 - - + + - = D a a a a h h h v e 此模型对前两种有无变位的测量误差都具有显著回归效果。

2010美国数学建模竞赛A题

2010美国数学建模竞赛A题

Δt and Δv we can get the f to analysis the problems.
In solving the model, we use the momentum theorem, the equation of motion, elastic theory, and the important point is that we finally get the expressions about r and f; also, using MATLAB mapping makes the results more convincing. Finally, we get the following conclusions: The answer to the question 1: sweet spot at a distance of center of mass 0.0932m, 0.1717m from the end of the place, not at the end. The answer to the question2: after corking, the sweet spot is away from the center of mass 0.0922m, and 0.2028m from the end of the place. However, the sweet spot slightly move in the direction away from the end. The answer to the question3: In the case of using aluminum rod, the sweet spot is away from the center of mass 0.840m, and 0.3516m from the end of the place. Key words: sweet spot collision Momentum Theorem elastic theory Ⅰ.Introduction Every hitter knows that there is a spot on the fat part of a baseball bat where maximum power is transferred to the ball when hit. Develop a model to explain the "sweet spot" on a baseball bat. And solve following questions: (1)Why isn't this spot at the end of the bat? A simple explanation based on torque might seem to identify the end of the bat as the sweet spot, but this is known to be empirically incorrect. Develop a model that helps explain this empirical finding. (2)Some players believe that "corking" a bat (hollowing out a cylinder in the head of the bat and filling it with cork or rubber, then replacing a wood cap) enhances the "sweet spot" effect. Augment your model to confirm or deny this effect. Does this explain why Major League Baseball prohibits "corking”? (3)Does the material out of which the bat is constructed matter? That is, does this model predict different behavior for wood (usually ash) or metal (usually aluminum) bats? Is this why Major League Baseball prohibits metal bats?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):南通大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2016 年 7 月 7 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):摘 要本文主要研究当卧式储油罐发生位变时罐内油位高度和储油量的变化情况。

储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化,从而导致罐容表发生改变。

所以需要用数学建模方法研究解决储油罐的变位识别与罐容表标定。

针对问题一,要求研究罐体变位后对罐容表的影响问题,首先建立椭圆柱体在无变位时体积与高度的计算模型,并通过解析几何知识和微积分原理求解出液面高度与体积的关系模型为:2**h a V l b -=⎰ 利用Matlab 最终求解出椭圆柱体储油罐无变位时储油量与罐内油位高度的对应关系表达式。

然后再利用二重积分的方法建立了变位后的储油罐液面高度与体积之间的关系:20.54z V --=⎰⎰ 同样利用Matlab 求解出椭圆柱储油罐在发生变位以后的储油罐液面高度与体积和倾角之间的关系表达式(见正文第5页公式(1.2.2))。

通过V=f(h,)α可以得出罐体变位后油位高度间隔位1cm 的罐容表标定值。

通过无变位和变位的罐容表的数值比较,最终解释了罐体变位后对罐容表的影响(见正文第5页表1)。

并通过Excel 表格的图像对比形象的表现出来(见正文第7页表2)。

针对问题二,要求建立变位后罐内储油量与油位高度及变位参数之间的一般关系。

首先对图二储油罐发生纵向倾斜变位后的示意图根据图形的几何特点将储油罐分为圆柱形罐身和两个球缺封口,并分别建立模型求解了三部分图形体积与高度及纵向偏角之间的函数关系.通过图三横向偏转倾斜后正截面图建立了实际的液面高度与测量的液面高度之间的关系表达式:'()cos d d H R R H β=--。

通过变位过程中油位探针的连接关系最终求解出了罐内储油量与油位高度与变位参数之间的函数关系(见正文第13页公式(2.3.2)),由附件二中的实际检测数据求解出 2.4, 4.1αβ==,并给出罐体变位后油位高度间隔10cm 的罐容表标定值(见正文13页表4);最后通过spss 软件对数据进行误差分析(见正文14、15页图10和图11),从而验证了模型的正确行与方法的可靠性。

关键词:倾斜卧式储油罐标定、误差分析、变位识别、曲线拟合.一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

二、模型的基本假设结合本题的实际,为了确保模型求解的准确性和合理性,我们排除了一些位置因素的干扰,提出以下几点假设:1.不考虑浮子在地下储油罐内的体积;2.油量计测出的体积与实际无变位时的体积无误差,气测得的油量是准确的;3.储油罐的密闭性是绝对的,不存在储油罐中的有以任何形式减少;4.储油罐的体积就是它的容积,忽略它的厚度,并且其内壁是绝对光滑平整,储油罐是理想的标准几何体;5.在进油口和出油口是绝对光滑,不存在摩擦,并在进油口和出油口均没有残留物附着其上的情况下测得油量值;6.发生变位时,倾斜角α和β的范围在0到10之间;三、符号说明1.为了便于问题的求解,我们给出以下符号说明H:显示油位高度L:小椭圆型储油罐的长度a:椭圆的长半轴 :b:椭圆的短半轴h:横截面内油面的高度S:横截面中燃油所占的面积V:椭圆型储油罐无变位的情况下内部燃油的体积V11:椭圆形油罐内无变位的情况下内部燃油的体积V12:椭圆形油罐内纵向变位4.1的情况下内部燃油的体积α:纵向变位倾斜角β:横向变位倾斜角d:罐身边缘距油浮子的水平距离(较近端)V1:左球缺体内油料体积V2:中间圆柱体体内油料体积V3:右球缺体内油料体积说明:其他未说明的符号在文中第一次出现时会做详细的说明。

四、问题分析1.储油量的计算及分析通读全题我们发现,“油位计量管理系统”主要是通过油浮子所测得的高度H来计算储油量,即体积V,然后再通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

所一对于变位后,我们必须通过油位高度H与体积V(H)之间的关系,建立数学模型问题一的分析问题一要求我们根据图4的小椭圆型储油罐(两端平头的椭圆柱体)来掌握罐体变位后对罐容表的影响,并利用附录1中罐体无变位和倾斜角为=4.10的纵向变位的实验数据,建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

所以若要建立数学模型研究管体变位后对罐容表的影响,应首先建立无变位和发生纵向变位时,罐容表标定值与油面高度H分别满足的关系。

并由变量H计算发生纵向变位后的实际燃油体积,将其与罐容表的标定值进行比较,分析变位对罐容表的影响。

由此,需要分别建立无变位情况下和发生纵向变位情况下,储油罐内燃油体积V与油面测量高度H 的模型。

利用几何知识和微积分的理论,可以很容易建立无变位情况下的模型。

对于发生纵向变位,可以用微元分析法,分情况计算储油罐内的实际燃油体积。

得出模型后,对模型计算所得数据与题目所给数据进行比较,分析误差,加以改进。

问题二的分析问题二要求我们对这种两边是球冠体,中间为柱体的实际储油罐建立燃油体积V与油面测量高度H的数学模型。

由于这种储油罐的形状比椭圆型储油罐复杂,而且又发生了α、β的纵向倾斜和横向偏转,处理起来比较麻烦。

可以将这种实际储油罐分为左球冠、中间圆柱体和右球冠三个部分,对油面测量高度为H的情况下,分别计算三个部分内燃油的体积,然后将其求和即为储油罐内燃油体积。

可以采用微元法分别建立三部分内燃油体积与油面测量高度H的模型,不过要考虑H取不同范围内的值时,体积求解方法可能不同。

如果积分形式过于复杂,可以考虑采用积分的数值算法,用和逼近。

考虑到模型建立时,参数α和β是未知的,可以用回归分析的方法,求得使理论计算值与实际值之间整体误差最小的α和β。

可以用遍历思想,设定两参数的取值范围,逐一代入模型计算比较。

模型确立后,用题目附件二中的其余数据对模型进行检验,分析误差,思考改进方法。

五、 模型的建立与求解1.模型的建立5.1.1无变位时椭圆形油罐的H-V 模型无变位时,椭圆形储油罐水平卧立,油浮子测得油面高度H ,此时,可根据公式V =SL 计算储油量,此时L =2.45。

以横向截面做平面直角坐标系如图: 椭圆满足的曲线方程为: x 2a 2+y 2b 2=1 又:S =∫dS =2a ∫√1−y 2b 2dy h−bbh−b b 令y =sin t ,则 S =∫(cos t)2dt arcsin h−bb −π2, 利用积分可求得: S =ab (arcsin h−b b +π2)+ab 2(sin2(arcsin h−bb )) (公式5.1.1)椭圆型油罐内燃油的体积: V =SL =abL (arcsin h −b b +π2)+ab 2(sin2(arcsin h −b b)) 其中a =0.89m ,b =0.6m ,L =2.45m 。

此时h =H .这就是无变位是的椭圆油罐油量高度H 与储油量V 的数学模型H −V 11。

5.1.2纵向变位时椭圆形油罐的H-V模型当椭圆形油罐发生纵向变位时,主要有以下四种情况,如图:图一 图二图三图四①如图一所示,当油浮子未达到测量高度而储油罐内有油,即h<0.4tanα,此时,H=0,我们无法知道油罐内油量的确切值,但V12<V,②如图二所示,当油浮子可以测得高度,且油未触及另一端边缘,即0.4tanα≤h≤2.45tanα,此时V12=12Sh,其中h=H+0.4tanα,S(h)为公式5.1.1.③如图三所示,当2.45tanα<h≤1.2时,此时以较近边缘的最大值h=2b为上界,此时V12=SL−12 S′h′其中h′=h−(Htanα+2.05)∗tanα=2.45tanα,h=H+0.4tanα,S(h),S′(h′)均为公式5.1.1。

④如图四所示,虽然h=1.2,但,H<1.2,依旧可以进油,此时认定可以继续加油,理论上1.2<ℎ≤1.2+0.4tanα,此时,V=πabL−12 S′h′其中h′=1.2−H+2.05tanα,S′(h′)为公式5.1.1.⑤当H=1.2时,虽然实际还有容量可以进油,但是油浮子已经达到最大值,默认不可以进油。

相关文档
最新文档