“化折为直”的数学思想解题方法汇总(包含“将军饮马”,“费马点”,“胡不归题”, “阿氏圆”等问题)
中考数学常见几何模型专题09 最值模型-将军饮马(解析版)
专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A关于直线m的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD的边长为2,45ABC∠=︒,点P、Q分别是BC、BD上的动点,CQ PQ+的最小值为______.【分析】过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG 的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,在直角三角形BEC中,勾股定理即可求解.【详解】解:如图,过点C作CE⊥AB于E,交BD于G,根据轴对称确定最短路线问题以及垂线段最短可知CE为FG+CG的最小值,当P与点F重合,Q与G重合时,PQ+QC最小,mABmmABm菱形ABCD 的边长为2,45ABC ∠=︒,Rt BEC ∴中,EC =∴PQ +QC 【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC 的中点,连接PE ,PB ,若4AB =,BC =PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;然后求出B B '和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;⊥AC 是矩形的对角线,⊥AB =CD =4,⊥ABC =90°,在直角⊥ABC 中,4AB =,BC =⊥tanAB ACB BC ∠===,⊥30ACB ∠=︒,由对称的性质,得2B B BF '=,B B AC '⊥,⊥12BF BC ==⊥2B B BF '==⊥BE EF ==60CBF ∠=︒,⊥⊥BEF 是等边三角形,⊥BE BF B F '==,⊥BEB '∆是直角三角形,⊥6B E '==,⊥PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】85【分析】过点M 作MF ⊥CD 于F ,推出MN +NP 的最小值为MF 的长,证明四边形DEMG 为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P 关于CE 的对称点P ′,由折叠的性质知CE 是⊥DCM 的平分线,⊥点P ′在CD 上,过点M 作MF ⊥CD 于F ,交CE 于点G ,⊥MN +NP =MN +NP ′≤MF ,⊥MN +NP 的最小值为MF 的长,连接DG ,DM ,由折叠的性质知CE 为线段 DM 的垂直平分线,⊥AD =CD =2,DE =1,⊥CE⊥12CE ×DO =12CD ×DE , ⊥DO ⊥EO ⊥MF ⊥CD ,⊥EDC =90°,⊥DE ⊥MF ,⊥⊥EDO =⊥GMO ,⊥CE 为线段DM 的垂直平分线,⊥DO =OM ,⊥DOE =⊥MOG =90°,⊥⊥DOE ⊥⊥MOG ,⊥DE =GM ,⊥四边形DEMG 为平行四边形,⊥⊥MOG =90°,⊥四边形DEMG 为菱形,⊥EG =2OE GM = DE =1,⊥CG , ⊥DE ⊥MF ,即DE ⊥GF ,⊥⊥CFG ⊥⊥CDE ,⊥FG CG DE CE =,即1FG = ⊥FG =35,⊥MF =1+35=85, ⊥MN +NP 的最小值为85.故答案为:85. 【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',⊥直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)⊥PB =__________,P B '=_________,⊥AP PB AP PB '+=+=____________.在AP B ''∆中,⊥AB AP P B ''''<+,⊥AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC于点F,则EF FB+的最小值就是线段ED的长度,则EF FB+的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm,底面周长为16cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂的最短路程为_____cm.(4)如图⑥,在边长为2的菱形ABCD中,60ABC∠=︒,将ABD∆沿射线BD的方向平移,得到A B D'''∆,分别连接A C',A D',B C',则A C B C''+的最小值为____________.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3【最值原理】两点之间线段最短。
(完整版)“化折为直”的数学思想解题方法汇总(包含“将军饮马”,“费马点”,“胡不归题”,“阿氏圆”
“化折为直”的数学思想解题方法汇总古老的数学问题“将军饮马”,“费马点”,“胡不归题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?今天我们就根据问题的不同特点来研究一下相应的应对策略。
知识和方法知识:1.两点之间线段最短;2.三角形的两边之和大于第三边;3.点到直线之间的距离垂线段最短;两条平行线之间垂线段最短。
方法:1.通过轴对称变换转化;2.通过旋转变换转化;3.通过平移转换转化;4.通过构造全等三角形转化分类探索:、不做任何变换1_二在四边形ABCD中,ABnCD r AB=AD=BC=2,zC=zD=60\点P为四边形PB^PC+PD的最小值为BC 方法策略:像第1题这样的题目,不用做任何几何变换,可直接用两边之和大于第三边,三点共线时,两条线段和等于第三条线段。
二、先做轴对称变换1•如网』若点儿日圧直妊皿同傭,在直匪祖上求律一点从使AP5的信最小,保雷作圏痕迹.平写作法;■02°如SL疋方^AECD^边长为1T」凶是AS±—侖BE=5,卩星对角经』&上一团点'则PLflPE的最小值足/TH.:1如图「在Z1A2JC中.AC=2VC=2a ZAC^=90\D是毗愆的中点「E是占R上的一动点「MFC的聂护直是・方法策略:以上这些题目,都是常见的将军饮马类问题,采用的解题策略是先做轴对称变换,再用两点之间线段最短,或者是点到直线之间的距离垂线段最短,或者用两边之和大于等于第三边(共线时取等号),此类问题可以总结为:化折为直,化直为垂。
三、先做旋转变换L,回KAB3中,A3=4,BC=6r点卩是矩形內部-动点.PE丄AA分别谨f£PB和PC・求PE#PB+PC的最小值口AE2.如匿・已知在-AB匚中=zAca=90°■AC-1.BC=v.i点。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文
图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,
中考数学必学几何模型:将军饮马模型(几何最值)含答案解析
2
A A
P
C
B
D
P
C
B
A'
解答:
如图所示,作点 A 关于 CD 的对称点 A′,连接 A′C,连接 A′B 并延长交 CD 于点 P,则点 P
就是 PA PB 的值最大时的点, PA PB =A′B.
∵△ABC 为等腰直角三角形,AC=BC 等于 4,∴∠ACB=90°. ∵∠BCD=15°,∴∠ACD=75°. ∵点 A、A′关于 CD 对称,∴AA′⊥CD,AC=CA′, ∵∠ACD=∠DCA′=75°,∴∠BCA′=60°.
A
M
l1
A′
N
l2
B
将 A 向下平移 d 个单位到 A,连接 A′B 交直线 l2 于 点 N,过点 N 作 MN⊥l1,连接 AM.点 M、N 即 为所求.
AM+MN+NB 的最小值为 A'B+d.
例题:在平面直角坐标系中,矩形 OABC 如图所示,点 A 在 x 轴正半轴上,点 C 在 y 轴正 半轴上,且 OA=6,OC=4,D 为 OC 中点,点 E、F 在线段 OA 上,点 E 在点 F 左侧,EF =2.当四边形 BDEF 的周长最小时,求点 E 的坐标.
2.如图,点 C 的坐标为(3,y),当△ABC 的周长最短时,求 y 的值.
3
y A(0,3)
O
B(2,0)
x
解:解:(1)作 A 关于 x=3 的对称点 A′,连接 A′B 交直线 x=3 与点 C.
∵点 A 与点 A′关于 x=3 对称,∴AC=A′C.∴AC+BC=A′C+BC.
当点 B、C、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值.
化折为直思想解题方法总结
化折为直思想解题方法总结古老的数学问题“将军饮马”,“费马点”,“胡不归题”,”阿氏圆“等都运用了化折为直的数学思想,化折为直的数学思想也一直受到中考命题老师的青睐,这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?今天我们就根据问题的不同特点来研究一下相应的应对策略。
知识和方法知识:①两点之间线段最短;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;两条平行线之间垂线段最短。
方法:(1)通过轴对称变换转化;(2)通过旋转变换转化。
(3)通过平移转换转化。
(4)通过构造全等三角形转化。
分类探索不做任何变换,如图在四边形ABCD中,AB∥CD,AB=AD=BC=2, ∠C=∠D=60°。
点P为四边形ABCD内任意一点,PA+PB+PC+PD的最小值是。
方法策略像上题这样的题目,不用做任何几何变换,可直接用两边之和大于第三边,三点共线时,两条线段和等于第三条线段。
先做轴对称变换。
1.如图,若点A. B在直线m同侧,在直线m上求作一点P,使AP+BP的值最小,保留作图痕迹,不写做法。
2,如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是cm,3,如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB上的一动点,则EC+ED的最小值是.4,如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为。
5.菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是。
6.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB= .7,如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P 是直径MN上的一个动点,⊙O半径为2,则PA+PB的最小值是,8,在平面直角坐标系中,设P(-1,1),Q(2,3),x轴上有一点R,则PR+RQ的最小值为。
初中数学几何《将军饮马》模型题汇编含答案解析
微专题将军饮马模型通关专练一、单选题1(2023·福建厦门·校考二模)如图,正方形ABCD的边长为4,点E、F分别为BC、CD的中点,点P是对角线BD上的动点,则四边形PECF周长的最小值为()A.4B.4+22C.8D.4+42【答案】C【分析】作E关于BD的对称点E ,连接E F交BD于点O,根据轴对称性质及两点之间,线段最短,得到四边形PECF的周长最小,即OE+OF最小,再利用三角形三边关系解题即可.【详解】解:如图,作E关于BD的对称点E ,连接E F交BD于点O,故点P与点O重合时,四边形PECF的周长最小,即OE+OF最小,∵E和E 关于BD对称,则OE=OE ,EO+OF=E O+OF=4连接E P,同样E P=PE,EP+PF=E P+PF>E F而E F=E O+OF=4,即EP+PF>E F所以当P与O重合时,四边形PECF周长最小,即为4+2+2=8,故选:C.【点睛】本题考查正方形的性质、轴对称与最值问题等知识,是重要考点,难度较易,掌握相关知识是解题关键.2(2023秋·八年级课时练习)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB与点D,∠A=30°,AE=6cm,那么CE等于()A.4cmB.2cmC.3cmD.1cm【答案】C【详解】∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.3(2023·福建福州·八年级福州日升中学校考期中)如图,在△ABC中,AB=3,AC=4,BC=5,EF 垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.7B.6C.5D.4【答案】D【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可.【详解】解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,AP+BP的最小值是4.故选:D.【点睛】本题考查了线段垂直平分线的性质,轴对称-最短路线问题的应用,解此题的关键是找出P的位置.4(2023秋·福建福州·八年级校考阶段练习)如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q 分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.60【答案】C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=20+15=35cm,∴AB=AC=2AD=70,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+ PQ=PE+EQ′=PQ′,∴QD=DQ′=15(cm),∴AQ′=AD+DQ′=35+15=50(cm)∵BP=20(cm),∴AP=AB-BP=70-20=50(cm)∴AP=AQ′=50(cm),∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=50(cm),∴PE+QE的最小值为50cm.故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.5(2023春·福建龙岩·七年级龙岩初级中学校考阶段练习)如图,点P是直线l外一点,A,B,C,D都在直线上,下列线段最短的是()A.PAB.PCC.PBD.PD【答案】C【分析】根据点到直线的距离可直接进行排除选项.【详解】解:∵点P是直线l外一点,A,B,C,D都在直线上,∴PB<PC<PA<PD,∴线段最短的是PB;故选C.【点睛】本题主要考查点到直线的距离,熟练掌握点到直线的距离是解题的关键.6(2023秋·福建宁德·八年级统考期末)如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0)B.(0,0)C.(2,0)D.(4,0)【答案】C 【分析】作A 关于x 轴的对称点C ,连接AC 交x 轴于D ,连接BC 交交x 轴于P ,连接AP ,此时点P 到点A 和点B 的距离之和最小,求出C (的坐标,设直线CB 的解析式是y =kx +b ,把C 、B 的坐标代入求出解析式是y =x -2,把y =0代入求出x 即可.【详解】如图:作A 关于x 轴的对称点C ,连接AC 交x 轴于D ,连接BC 交交x 轴于P ,连接AP ,则此时AP +PB 最小,即此时点P 到点A 和点B 的距离之和最小,∵A (-2,4),∴C (-2,-4),设直线CB 的解析式是y =kx +b ,把C 、B 的坐标代入得:{2=4k +b -4=-2k +b,解得:k =1,b =-2,∴y =x -2,把y =0代入得:0=x -2,x =2,即P 的坐标是(2,0),故选C .【点睛】本题考查了轴对称-最短路线问题,一次函数的解析式,坐标与图形性质等知识点,关键是能画出P 的位置,题目比较典型,是一道比较好的题目.7(2023·福建·校联考零模)如图,等腰Rt △ABC 中,AB ⊥AC 于A ,AB =CA =DC =2,M 为△ABC 内一点,当MA +MB +MC 最短时,在直线BM 上有一点E ,连接CE .12BE +CE 的最小值为()A.πB.263C.63D.6【答案】D 【分析】由M 为△ABC 内一点,当MA +MB +MC 最短时,得M 为△ABC 的费马点,以AC 为边向外作正三角形ACF ,据费马点的特征,直线BM 和直线BF 为同一条直线,由题意容易求得∠MBC =30°,以BF为边,B 为顶点向∠MBC 的外侧作∠FBG ,使∠FBG =30°,过E 作BG 的垂线,垂足为H ,显然12BE +CE =CE +EH ;再过点C 作BG 的垂线,垂足为H ,由垂线段最短,知12BE +CE =CE +EH ≥CH ;因为易得BC =22,又∠GBC =60°就容易求得CH 就是12BE +CE 的最小值.【详解】解:如下图以AC 为边向外作正三角形ACF ,以BF 为边,B 为顶点向∠MBC 的外侧作∠FBG ,使∠FBG =30°,过E 作BG 的垂线,垂足为H ,过点C 作BG 的垂线,垂足为H由∠FBG =30°,HE ⊥BG 知HE =12BE ∴12BE +CE =CE +EH ≥CH 下面计算CH∵AB =AC =2且AB ⊥AC∴BC =22;∵M 为△ABC 内一点,当MA +MB +MC 最短时∴M 为△ABC 的费马点由费马点的特点知BM 与BF 为同一条直线∵正三角形ACF∴∠CAF =60°又AB ⊥AC∴∠BAF =150°又AB =AC =AF∴∠ABF =15°又∠ABC =45°∴∠FBC =30°∴∠GBC =60°在RT △BCH 中CH =BC sin ∠GBC =BC sin60°=22⋅32=6∴12BE +CE 的最小值为6.故选:D .【点睛】此题是几何最值问题--费马点和胡不归的综合.确定最短长度时,要据30°角所对直角边是斜边的一半把问题转化为“垂线段最短”来解决;计算最短值时要熟悉费马点的性质.8(2023秋·福建厦门·八年级统考期末)如图,在四边形ABCD 中,∠C =α°,∠B =∠D =90°,E ,F 分别是BC ,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()A.αB.2αC.180-αD.180-2α【答案】D【分析】要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD 的对称点A ,A″,即可得出∠AA E+∠A″=α,即可得出答案.【详解】解:作A关于BC和CD的对称点A ,A″,连接A A″,交BC于E,交CD于F,∴AF=A″F,AE=A E,∴∠EA A=∠EAA ,∠FAD=∠A″,则A A″即为△AEF的周长最小值,∵∠C=α,∠ABC=∠ADC=90°∴∠DAB=180°-α,∴∠AA E+∠A″=180°-180°-α=α,∵∠EA A=∠EAA ,∠FAD=∠A″,∴∠EAA +∠A″AF=α,∴∠EAF=180°-α-α=180°-2α,故选:D.【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.9(2023秋·八年级单元测试)如图,点A,B在直线l的同侧,若要用尺规在直线l上确定一点P,使得AP+BP最短,则下列作图正确的是()A. B.C. D.【答案】C【详解】解:要得到满足题意的点,首先要作A点(或B点)关于直线l的对称点,然后将此对称点与B(A)点连接,所得连线与直线l的交点即为所求点,观察选项,只有C符合.故选:C.10(2023·福建·九年级专题练习)如图,在等腰三角形ABC中,AB=AC,BC=4,tan∠ABC=4,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【答案】C 【分析】连接AD ,根据等腰三角形三线合一的性质,得到AD ⊥BC ,利用正切的定义解得AD BD=4,再由垂直平分线的性质得到点C 关于直线EF 的对称点为点A ,根据轴对称-最短路线解题即可.【详解】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∵BC =4,∴BD =2,∴tan ∠ABC =AD BD =4,解得AD =8,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=10.故选:C .【点睛】本题考查轴对称-最短路线问题、等腰三角形三线合一的性质、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11(2023春·福建福州·九年级统考期中)在平面直角坐标系xOy 中,点B ,P ,Q 的坐标分别为5,0 ,a ,2 ,a +2,2 ,则△BPQ 周长的最小值为.【答案】25+2【分析】由题意,PB =(a -5)2+22,PQ =2,BQ =(a -3)2+22,推出当PB +BQ =(a -5)2+22+(a -3)2+22最小时,△BPQ 的周长最小,欲求PB +BQ 的最小值,相当于在x 轴上找一点E a ,0 ,使得点E 到F 5,2 ,G 3,2 的距离和最小.【详解】解:∵B 5,0 ,P a ,2 ,Q a +2,2 ,∴PB =(a -5)2+22,PQ =2,BQ =(a -3)2+22,∴当PB +BQ =(a -5)2+22+(a -3)2+22最小时,△BPQ 的周长最小,欲求PB +BQ 的最小值,相当于在x 轴上找一点E a ,0 ,使得点E 到F 5,2 ,G 3,2 的距离和最小,如图,作点G 关于x 轴的对称点L ,连接FL 交x 轴于点E ,此时EG +FE 的值最小,∵L 3,-2 ,EG +EF 的最小值=FL =22+42=25,∴△BPQ 的周长的最小值为25+2.故答案为:25+2.【点睛】本题考查轴对称最短问题,勾股定理,坐标与图形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.12(2023秋·福建南平·八年级统考期末)如图,∠AOB =22°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OA ,OB 上的动点,记∠MQP =α,∠OPN =β,当MQ +QP +PN 最小时,则α与β的数量关系为.【答案】β-α=44°【分析】作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于P ,交OB 于Q ,则MQ +QP +PN 最小,易知∠OQM =∠OQM =∠NQP ,∠OPQ =∠APN =∠APN ,根据三角形的外角的性质和平角的定义即可得到结论.【详解】解:如图,作M 关于OB 的对称点M ,N 关于OA 的对称点N ,连接M N 交OA 于P ,交OB 于Q ,则MQ +QP +PN 最小,∴∠OQM =∠OQM =∠NQP ,∠OPQ =∠APN =∠APN ,∴∠PQN =12180°-α =∠AOB +∠MPQ =22°+12180°-β ,∴β-α=44°,故答案为:β-α=44°.【点睛】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.13(2023秋·福建莆田·八年级统考期中)如图,在锐角△ABC 中,∠ACB =50°,边AB 上有一定点P ,M ,N 分别是AC 和BC 边上的动点,当△PMN 的周长最小时,∠MPN 的度数是.【答案】80°【分析】根据对称的性质,易求得∠C +∠EPF =180°,由∠ACB =50°,易求得∠D +∠G =50°,继而求得答案;【详解】∵PD ⊥AC ,PG ⊥BC ,∴∠PEC =∠PFC =90°,∴∠C +∠EPF =180°,∵∠C =50°,∵∠D +∠G +∠EPF =180°,∴∠D +∠G =50°,由对称可知:∠G =∠GPN ,∠D =∠DPM ,L∴∠GPN +∠DPM =50°,∴∠MPN =130°-50°=80°,故答案为:80°.【点睛】此题考查了最短路径问题以及线段垂直平分线的性质,关键是注意掌握数形结合思想的应用.14(2023秋·福建厦门·八年级统考期末)如图,在△ABC 中,AB =BC ,AC =2cm ,S △ABC =3cm 2,边BC 的垂直平分线为l ,点D 是边AC 的中点,点P 是l 上的动点,则△PCD 的周长的最小值是.【答案】4【分析】连接BD ,由于AB =BC ,点D 是AC 边的中点,故BD ⊥AC ,再根据三角形的面积公式求出BD 的长,再根据直线l 是线段BC 的垂直平分线可知,点C 关于直线l 的对称点为点B ,故BD 的长为CP +PD 的最小值,由此即可得出结论.【详解】解:连接BD ,∵AB =BC ,点D 是BC 边的中点,∴BD ⊥AC ,∴S △ABC =12AC •BD =12×2×BD =3,解得BD =3,∵直线l 是线段BC 的垂直平分线,∴点C 关于直线l 的对称点为点B ,∴AB的长为CP+PD的最小值,AC=3+1=4.∴△CDP的周长最短=(CP+PD)+CD=BD+12故答案为:4.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.15(2023秋·八年级课时练习)如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.【答案】9.【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD≅△ACE(ASA),所以BD=EC,EC=9.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.16(2023秋·福建三明·八年级统考期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,点C在直线MN上,∠BCN=30°,点P为MN上一动点,连接AP,BP.当AP+BP的值最小时,∠CBP的度数为度.【答案】15【分析】如图,作B关于MN的对称点D,连接AD,BD,CD,AP+BP的值最小,则MN交AD于P,由轴对称易证∠CBP=∠CDP,结合∠BCN=30°证得△BCD是等边三角形,可得AC=CD,结合已知根据等腰三角形性质可求出∠CDP,即可解决问题.【详解】如图,作B关于MN的对称点D,连接AD,BD,CD,∵AP+BP的值最小,则MN交AD于P,由轴对称可知:CB=CD,PB=PD,∴∠CBD=∠CDB,∠PBD=∠PDB,∴∠CBP=∠CDP,∵∠BCN=30°,∴∠BCD=2∠BCN=60°,∴△BCD是等边三角形,∵AC=BC,∴AC=CD,∴∠CAD=∠CDA,∵∠ACB=90°,∠BCD=60°,∴∠CAD=∠CDA=12180°-∠ACB-∠BCD=15°,∴∠CBP=∠CDP=15°,故答案为:15.【点睛】本题考查等边三角形判定和性质、轴对称的性质、最短路径问题、等腰三角形的性质;熟练掌握相关性质的联系与运用,会利用最短路径解决最值问题是解答的关键.三、解答题17(2023秋·福建南平·八年级福建省南平第一中学校考期中)△ABC在平面直角坐标系中的位置如下图所示,点A(1,1),点B(4,2),点C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标.(2)y轴上是否存在一点P,使得PA+PB的和最小.若存在,请你找出点P的位置.(保留作图痕迹)(3)求出△A1B1C1的面积.【答案】(1)画图见解析,A1-1,1,B1-4,2,C1-3,4(2)见解析(3)72【分析】(1)根据轴对称的性质即可在图中画出△ABC关于x轴的对称图形△A1B1C1,进而得点A1、B1、C1的坐标;(2)连接AB1或A1B,与y轴交点即为点P;(3)根据网格利用割补法计算即可.【详解】(1)解:如图,△A1B1C1即为所求;A1-1,1,B1-4,2,C1-3,4;(2)如图,点P 即为所求;(3)S △A 1B 1C 1=3×3-12×1×3-12×1×2-12×2×3=72.【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.18(2023春·福建泉州·七年级福建省泉州第一中学校考期末)如图,在正方形网格上有一个△ABC (三个顶点均在格点上).(1)作△ABC 关于直线HG 的轴对称图形△A 1B 1C 1(不写作法);(2)画出△ABC 中BC 边上的高AD ;(3)在HG 上画出点P ,使PB +PC 最小.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【分析】(1)根据轴对称的性质作图即可;(2)根据三角形的高的概念过点A 作AD 垂直于线段CB 的延长线,垂足为D 即可;(3)连接CB 1,交HG 于点P ,点P 即为所求.【详解】(1)解:如图1,△A 1B 1C 1为所求作的三角形;(2)解:如图2,过点A作AD垂直于线段CB的延长线,垂足为D,则线段AD就是△ABC中BC边上的高;(3)解:如图3,根据两点之间,线段最短,连接CB1,交HG于点P,点P即为所求.【点睛】本题考查作轴对称图形,作高、以及最短路线问题,熟练掌握轴对称的性质是解答本题的关键.19(2023春·福建泉州·七年级福建省永春第一中学校考期末)(1)如图1,在△ABC中∠A=60º,BD、CE均为△ABC的角平分线且相交于点O.①填空:∠BOC=度;②求证:BC=BE+CD.(写出求证过程)(2)如图2,在△ABC中,AB=AC=m,BC=n,CE平分∠ACB.①若△ABC的面积为S,在线段CE上找一点M,在线段AC上找一点N,使得AM+MN的值最小,则AM+MN的最小值是.(直接写出答案); ②若∠A=20°,则△BCE的周长等于.(直接写出答案).【答案】(1)①120;②证明见解析;(2)①2sn(或m2-n24);②m【详解】试题分析:(1)①根据三角形内角和定理得到∠BOC=180°-∠OBC-∠OCB,则2∠BOC=360°-2∠OBC-2∠OCB,再根据角平分线的定义得∠ABC=2∠OBC,∠ACB=2∠OCB,则2∠BOC=360°-∠ABC-∠ACB,易得∠BOC=90°+12∠A,由∠A=60º即可得∠BOC的值;②采用截长法在BC上截取BF=BE,连接OF,由边角边证得△EBO≌△FBO,再由角边角证得△DCO ≌△FCO,即可得证;(2)①当AM⊥BC时,AM+MN的值最小;②在CA上截取CD=CB,以E为圆心EC为半径画弧,与AC交于点F,通过构造全等三角形,利用等腰三角形的判定和性质即可求解.试题解析:(1)①在△OBC中,∠BOC=180°-∠OBC-∠OCB,∴2∠BOC=360°-2∠OBC-2∠OCB,∵BD、CE均为△ABC的角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴2∠BOC=360°-∠ABC-∠ACB,∴∠BOC=90°+12∠A,∵∠A=60º,∴∠BOC=90°+12×60º=120°;故答案为120°;②证明:由(1)①∠BOC=120°,∴∠BOE=∠COD=180°-120°=60°,在BC上截取BF=BE,连接OF,∵BD平分∠ABC,∴∠EBO=∠FBO,又∵BO=BO(公共边相等)∴△EBO≌△FBO(SAS)∴∠BOF=∠BOE=60°,∴∠COF=∠BOC-∠BOF=120°-60°=60°=∠COD,∵CE平分∠ACB,∴∠DCO=∠FCO,又∵CO=CO(公共边相等)∴△DCO ≌△FCO (ASA )∴CD =CF ,∴BC =BF +CF =BE +CD ;(2)①如图:当AM ⊥BC 时,与BC 交于点D ,过M 作MN ⊥AC 交AC 与点D ,∵CE 平分∠ACB ,∴DM =DN ,∴AD =AM +MD =AM +MN ,此时,AM +MN 的值最小,由S △ABC =12BC ·AD ,BC =n ,△ABC 的面积为S ,得AD =2s n,或∵AB =AC , AD ⊥BC , AB =AC =m ,BC =n ,∴BD =CD =n 2,在Rt △ACD 中,由勾股定理得AD =m 2-n 24;故答案为2s n(或m 2-n 24);②如图:在CA 上截取CD =CB ,以E 为圆心EC 为半径画弧,与AC 交于点F ,∵AB =AC =m ,∠A =20°,∴∠B =∠C =80°,∵CE 平分∠ACB ,∴∠BCE =∠DCE =40°,∵CE =CE ,∴△BCE ≌△DCE ,∴∠CDE =∠B =80°,∠DEC =∠BEC =60°,BE =DE ,∴∠CDE =40°,∵EC =EF ,∴∠EFC =∠ECF =40°,∴∠DEF =∠CDE -∠DFE =40°,∴DE =DF ,∠AEF =∠DFE -∠A =40°-20°=20°,∴EF =AF ,∴BE =DF ,CE =AF ,∴△BCE 的周长=BC +CE +BE =CD +AF +DF =AC =m .点睛:此题考查了角平分线的定义和性质,三角形内角和定理,等腰三角形的性质,最短路径问题等知识.解题的关键是添加正确的辅助线构造出全等三角形,对线段进行转化.20(2023秋·福建福州·八年级福建省福州第一中学校考期中)如图,△ABC 三个顶点的坐标分别为A 1,1 ,B 4,2 ,C 3,4 .(1)请画出△ABC关于y轴对称的△A1B1C1;(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并简要说明理由.【答案】(1)图见解析(2)图见解析【分析】(1)先根据轴对称性质找到A、B、C的对应点A1、B1、C1,再顺次连接即可画出图形;(2)作点B关于x轴对称的点B ,连接AB 交x轴于点P,连接AP,BP,即可得到结论;【详解】(1)解:如图,△A1B1C1即为所求;(2)解:作点B关于x轴对称的点B ,连接AB 交x轴于点P,连接AP,BP,则AP+BP=AP+B P=AB ,根据两点之间,线段最短,此时△PAB的周长最小,△PAB如图所示.【点睛】本题考查坐标与图形变换-轴对称、最短路径问题,能根据对称性质正确作出对称图形是解答的关键.21(2023春·福建三明·七年级统考期末)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找出点P,使得△PBC周长最小,在图中标出点P的位置;(3)已知点D在格点上,且△BCD和△BCA全等,请画出所有满足条件的△BCD(点D与点A不重合).【答案】(1)见解析(2)见解析(3)见解析【分析】(1)找到△ABC关于直线l对称的点,再依次连接即可;(2)连接B1C,与直线l交于点P即可;(3)根据全等三角形的判定画图即可.【详解】(1)解:如图,△A1B1C1即为所求;(2)如图,点P即为所求;(3)如图,△BCD即为所求,共有3个.【点睛】此题主要考查了作图-轴对称变换,全等三角形的判定,最短路径,解题的关键是掌握相应的画图方法.22(2023秋·福建福州·八年级统考期中)如图,在平面直角坐标系中有一个△ABC.(1)写出△ABC各顶点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)在y轴上作出点P,使得AP+BP的值最小.【答案】(1)A(-4,5),B(-3,1),C(-1,3)(2)见解析(3)见解析【分析】(1)按要求写出横纵坐标即可;(2)关于y轴对称的时候,x值变成相反数,其余不变;(3)连接B和A的对称点A1,该直线与y轴的交点就是AP+BP值的最小【详解】(1)A(-4,5),B(-3,1),C(-1,3);(2)如图△A1B1C1就是所求的图形;(3)如图所作的点P即为所求.【点睛】本题考查图形的对称,平面直角坐标系,熟练掌握轴对称求最短距离的方法是解题的关键.23(2023春·福建泉州·七年级统考期末)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移4个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得△ACP的周长最小.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据平移的性质分别作出点A、B、C平移后的对应点A1、B1、C1,再顺次连接即可得△A1B1C1;(2)根据轴对称的性质分别作出点A、B、C关于直线m的对称点A2、B2、C2,再顺次连接即可得△A2B2C2;(3)连接A2C交直线m于点P即可.(1)解:如图,△A1B1C1即为所求.(2)解:如图,△A2B2C2即为所求.(3)解:如图,点P即为所求.由(2)作图可知,点A与点A2是关于直线m的对称点,∴PA=PA2,∴PC+PA=PC+PA2=A2C,∴PC+PA最小,∵△ACP的周长=AC+PC+PA,∴△ACP的周长最小.【点睛】本题考查平移作图,作轴对称图形,利用轴对称求最小值,熟练掌握平移性质、轴对称的性质是解题的关键.24(2023秋·福建福州·七年级福建省福州第十九中学校考期末)如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)画直线AB和射线CB;(2)连接AC,过点C画直线AB的垂线,垂足为E;(3)在直线AB上找一点P,连接PC、PD,使PC+PD的和最短.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据直线和射线的定义,即可求解;(2)根据垂线的定义,即可求解;(3)根据题意可得:PC+PD≥CD,从而得到当P、C、D三点共线时,PC+PD的和最短,即可求解.(1)解:直线AB和射线CB即为所求,如图所示;(2)如图,直线CE即为所求;(3)连接CD交AB于点P,如图所示,点P即为所求根据题意得:PC+PD≥CD,∴当P、C、D三点共线时,PC+PD的和最短.【点睛】本题主要考查了直线、射线、线段、垂线的定义,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足是解题的关键.25(2023秋·福建南平·八年级统考期中)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;写出△A1B1C1各顶点坐标A1;B1;C1(2)在y轴上找一点P,使PA+PB1最短,画出P点,并写出P点的坐标.(3)若网格中的最小正方形边长为1,则△A1B1C1的面积等于 .【答案】(1)见详解,A1(-2,-3);B1(-3,-2);C1(-1,-1);(2)见详解,P(0,1);(3)1.5.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案;(3)根据格点求出三角形的面积.【详解】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).(3)S△ABC=2×2-12×1×2-12×1×2-12×1×1=1.5【点睛】【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.。
中学考试压轴题突破几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r ≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
专题训练:胡不归问题解题策略
专题:动点问题——将军饮马、胡不归考点一:将军饮马问题三种构图法:A 、B 为定点, P 为 l 上一动点,P 为何处时,PA + PB最小?A、B 为定点, P 、Q 为 l 上动点,且PQ = aP 为何处时,四边形PQBA周长最小?A、B 为平面直角坐标轴上的定点, P 为 y 轴动点, Q 为 x 轴上动点。
P 、Q 在何处时,四边形PQBA周长最小?【例 1】如图,在平面直角坐标系中,抛物线y = ax2 + bx + c 与x 轴相交于点 A ( -3,0) 和点 B (1,0),与y 轴相交于点 C(0, -3),抛物线的顶点为点 D,连接 AC 、BC.(1)求这条抛物线的表达式及顶点 D 的坐标。
1考点二:胡不归问题胡不归的由来:情景:从工作地点会老家,有一条驿道,驿道上可以坐马车,速度为 v ,驿道与老家中间是荒地,荒地上只能走路,速度较慢 v 2 ,如何才能最快回家? 方案一:两点之间,线段最短,直接走荒地方案二:在驿道中存在一个点,先从 A 坐马车到 D 点,在走荒地到老家方案三: BE 」驿道 ,先坐马车到 E,再沿 BE 走回老家经过古代数学家们的努力,发现方案二所用时间最短,但是你能找到这个 D 点吗?AD DB 1 ( v ) v v将军饮马与胡不归的异同点1、都是动点问题,一般都是两定一动2、动点的轨迹都为直线3、都是求线段和的最小值4、所用定理: 折线段 之 线段 之 垂线段1、胡不归问题的线段带有系数,而且 0 < 系数< 1, 例如 PA+ 1PB22、将军饮马利用两点之间线段最短,胡不归利用点到直线垂线段最短相同点1t =+ , t = | 2 AD + BD | ,所以:当 2 AD + BD 最小时,时间最少,此时 0 < 2 < 1, 这就 v 1 v 2 v 2 ( v 1 ) v 1 v 1是胡不归问题胡不归问题的构图法:1P 在何处时PB + PA 最小22P 在何处时PB + PA 最小23P 在何处时PB +PA 最小23P 在何处时PB + PA 最小5核心思想: PB + kPA ( 0 k 1 ),即利用 AP 构造一条射线 AC ,夹角 sina = k ,便将 kPA 转换为 另一条线段,再利用点到直线垂线段最短来完成。
2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总
2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。
题型二:两定一动,将军饮马。
例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
“PA+k·PB”型的最值问题(将军饮马、造桥选址、胡不归、阿氏圆、费马点)
“PA+k·PB”型的最值问题 当k 值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”模型来处理,即可以转化为轴对称问题来处理。
当k 取任意不为1的正数时,通常以动点P 所在图像的不同来分类,一般分为2类研究。
其中 点P 在直线上运动的类型称之为“胡不归”问题;点P 在圆周上运动的类型称之为“阿氏圆”问题。
一、“将军饮马”模型“将军饮马”:把河岸看作直线L ,先取A (或B )关于直线L 的对称点A′(或B′),连接A′B (或B′A ),并与直线交于一点P ,则点P 就是将军饮马的地点,即PA+PB 即为最短路线。
例1. 如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。
例2. 如图,在矩形ABCD 中,AB =10,AD =6,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A ,B 两点距离之和PA+PB 的最小值为 .例3. 如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,△PMN 的周长最小值为 ;当△PMN 的周长取最小值时,四边形PMON 的面积为 。
变式:“造桥选址”模型例4. 如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=302.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 的值为 。
例5. 如图,CD 是直线y=x 上的一条定长的动线段,且CD=2,点A(4,0),连接AC 、AD ,设C 点横坐标为m ,求m 为何值时,△ACD的周长最小,并求出这个最小值。
二、“胡不归”模型有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。
初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键
初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键 -初二数学轴对称这一章节中,课题研究中的最短路径问题,是中考的热门考点,在初二的考试中也是经常会出现。
最短路径问题中,初中阶段主要涉及三方面的内容,“将军饮马”、“造桥选址”和“费马点”,涉及到的知识点主要有“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”等,需要同学们根据题目给定的条件,做出最短路径问题,而这类题目的解题思路就是找对称点实现“折”转“直”,这是最为关键的,从而找到最短路径的点,解决出最短路径的问题,我们先来学习一个比较简单的“将军饮马”类型,最短路径的求解,通过四种题型,详解解释作图方法。
希望同学们能够认真总结,将这类题目掌握。
以“将军饮马”为原型常见的四种类型的题目分别是:(1)、A,B两点位于L的同侧,求出直线上一点P,使得PA+PB最小;(2)、A,B两点位于L的两侧,求出直线上一点P,使得PA+PB最小;(3)、在两条相交直线L1,L2内一点P,在两条直线上分别求出M,N,使△PMN的周长最小;(4)、在直线L1、L2上分别求点M、N,使四边形PQMN的周长最小。
例1:作图题.如图,小河边有两个村庄A、B,要在河边建一自来水厂P,向A村B村供水.(1)若要使厂部到A、B两村的距离相等,则厂部P应选在哪里?在图①中画出;(2)若要使厂部到A、B两村的输水管长度之和最小,则厂部P应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)本题关键是掌握在直线L上的同侧有两个点A、B,在直线L 上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.例2:尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.本题不仅考察了最短路径的作图方法,还要求根据题意明确点P还在角COD的角平分线上。
从将军饮马到胡不归-2020-2021学年浙江中考数学专题突破
从将军饮马到胡不归——“PA+k•PB”型的最值问题探究一.学习重难点1、能够题目中找到基本模型,并能正确添加辅助线;2、能利用胡不归模型解答一般问题。
二.知识点梳理“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。
即点P在直线上运动和点P在圆上运动。
(1)其中点P在直线上运动的类型称之为“胡不归”问题;(2)点P在圆周上运动的类型称之为“阿氏圆”问题。
今天我们就要学习“胡不归”问题的解题技巧和策略。
知识点梳理一、模型认识在前面的“将军饮马”问题中,我们见识了“kPA+PB”最值问题,当遇到“kPA+PB”最值问题时,我们要根据其中P点轨迹来运用不同的解题方法加以解决,如果是P点轨迹直线,就是我们所说的“胡不归”问题。
从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家。
由于着急只考虑到了"两点之间线段最短",虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题。
知识点梳理二、模型建立【模型讲解】将这个问题数学化,我们不妨设总时间为,则,由可得,提取一个最小,如图,过定点A在驿道下方作射线AE,夹角为,且,作DG⊥AE于点G,将DG+DB,再过点B作BH⊥AE于点H,则就是我们要找的点,此时DG+DB的最小值为BH,,综上,所需时间的最小值为,点之后,再沿着B路线回家,或许还能见到父亲的最后一面.知识点梳理三、技巧总结——“胡不归”构造某角正弦值等于小于1的系数起点构造所需角(k=sin∠CAE)——过终点作所构角边的垂线——利用垂线段最短解决问题解决此类问题的一般方法:第一步:将所求的线段和改写成的形式;第二步:构造一个角,使得;第三步:过目的地作所构造的角的一边的垂线,该垂线段的长度就是所求的最小值;第四步:计算.思考:当k值大于1的时候,“PA+k•PB”线段求和问题该如何转化呢?提取系数k即可。
初中数学 “最值系列之胡不归问题” 精讲+例题精练(附答案)
最值系列之“胡不归”问题在前面的最值问题中往往都是求某个线段最值或者形如PA +PB 最值,除此之外我们还可能会遇上形如“PA +kPB ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.本文简单介绍“胡不归”模型.【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V 的值最小.【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.【问题解决】构造射线AD 使得sin∠DAN =k ,CH /AC =k ,CH =kAC.将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC最小.【模型总结】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.【2019长沙中考】如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则5CD +的最小值是_______.【分析】本题关键在于处理“5BD ”,考虑tan A =2,△ABE 三边之比为1:2sin 5ABE ∠,故作DH ⊥AB 交AB 于H 点,则DH =.问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此时CD DH CH BE +===.【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.【2019南通中考】如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD上的一动点,则2PB PD +的最小值等于________.【分析】考虑如何构造“2PD ”,已知∠A =60°,且sin60°=2,故延长AD ,作PH ⊥AD延长线于H 点,即可得2PH PD =,将问题转化为:求PB +PH 最小值.当B 、P 、H 三点共线时,可得PB +PH 取到最小值,即BH 的长,解直角△ABH 即可得BH 长.【2014成都中考】如图,已知抛物线()()248k y x x =+-(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线3y x b =+与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?【分析】第一小问代点坐标,求解析式即可,此处我们直接写答案:A (-2,0),B (4,0),直线解析式为33y x =-+,D 点坐标为(-,故抛物线解析式为()()249y x x =+-,化简为:2y =--点M 运动的时间为12AF DF ⎛⎫+⎪⎝⎭,即求12AF DF ⎛⎫+ ⎪⎝⎭的最小值.接下来问题便是如何构造2DF ,考虑BD 与x 轴夹角为30°,且DF 方向不变,故过点D 作DM ∥x 轴,过点F 作FH ⊥DM 交DM 于H 点,则任意位置均有FH =2DF .当A 、F 、H 共线时取到最小值,根据A 、D 两点坐标可得结果.【2018重庆中考】抛物线263y x =--+与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O1B1,当12PE EC +的值最大时,求四边形PO1B1C 周长的最小值,并求出对应的点O1的坐标.(为突出问题,删去了两个小问)【分析】根据抛物线解析式得A ()-、B )、C (,直线AC 的解析式为:3y x =+可知AC 与x 轴夹角为30°.根据题意考虑,P 在何处时,PE +2EC 取到最大值.过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC ,问题转化为PE +CH 何时取到最小值.考虑到PE 于CH 并无公共端点,故用代数法计算,设2,P m ⎛-+ ⎝,则E m ⎛+ ⎝,H ⎛ ⎝,26PE m =--,3CH =,22=PE CH m +=--++sin ABE ∠=当P 点坐标为(-时,取到最小值,故确定P 、C 、求四边形面积最小值,运用将军饮马模型解题即可.。
胡不归数学解题思路
胡不归数学解题思路胡不归数学解题思路在学习数学解题的时候,很多人会遇到各种各样的困难,感觉自己很难掌握数学的思考方式,更不要提去解决一些相对较难的问题。
但是,如果你能尝试学习胡不归的数学解题思路,可能会有意外的收获。
下面,本文将介绍胡不归数学解题思路的五个步骤:一、了解问题首先,最基本的就是要仔细理解题目,看看问题是在问什么。
只有真正理解问题,才能够从根本上解决问题。
二、找出准确信息第二步,需要将问题中的重要信息都提取出来,归纳成表格或者变量等形式,确保没有遗漏。
只有准确把握问题中的信息,才不会走偏或者漏掉重要的步骤。
三、建立模型第三步,是要用现有知识和信息建立相应的模型,将问题转化成数学符号和表达式的形式。
通过建立模型,可以把一些比较抽象、难以理解的问题转化成易于计算的数学形式,从而达到简化问题,提高解题效率的目的。
四、求解问题第四步,就是利用已有的数学知识和方法来求解建立的模型,并将计算结果转化成能够解释的语言表述出来。
这一步需要灵活运用各种数学工具和方法,比如代数运算、微积分、统计学等等,需要及时检查计算过程中是否出现错误,保证最终答案的准确性。
五、检查与解释最后一步,就是对解题过程进行检查,看看计算结果是否符合预期,是否存在未考虑到的因素和误差。
同时,还需要对解题过程进行解释和总结,看看模型是否具有普适性和一般性,以及是否可以进一步优化或者推广。
综上,胡不归数学解题思路的五个步骤,可以帮助我们更加系统和科学地解决数学问题,使我们掌握更多的数学思考方式和技巧,提高自己的数学能力和水平。
无论是在学校还是在工作生活中,都可以尝试应用这一思路,让自己成为一个擅长数学解题的人才。
2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总
2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。
题型二:两定一动,将军饮马。
例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。
”化折为直“的数学思想解题模型总结
x
(-1,0)
AO
A’ x
P
P
(0,-5)B
B’(4,-5)
B
例题2:如图,已知∠MON=45°,∠MON内有一点P,OP=2,E、 F分别是∠MON两边OM和ON上的动点,求△PEF的周长最小值。
P1
M
2
E
2
O
45 °
2
F
P
P1P2 2 2
N
P2Байду номын сангаас
例题3:如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点 C落在AD边上的点M处,折痕为PE,此时PD=3。若点G,Q是AB边上的两个 动点,且不与点A,B重合,GQ=2,当四边形MEQG的周长最小时,求最小周 长值.(计算结果保留根号)
G E
则可在AC下方做一条线段DG,使 v2
其中sin v1
再利用两点之间线段最短就可以找到最佳的D
v2
点。
胡不归模型应用:
如图所示,已知sin∠MBN=k,点P为∠MBN其中一边BM上的一个动点,点A在 射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,点P的位置如何确定?
A M
尺规作图:
A P B
E
1.以三角形任意一边(BC)向外做等边三角形
2.找出该等边三角形的外心,并作出外接圆
C
3.连接AF
4.该AF与外接圆交点即为该三角形的费马点
F
结论证明:
如图,F,B,P,C 四点共圆
A
∵∠BFC=60°
∴∠BPC=180°-∠BFC=120°
又∵弧BF所对的圆周角∠BCF=∠BPF=60°
M' 4
最值模型之胡不归模型(学生版)-2024年中考数学常见几何模型
最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。
本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。
在解决胡不归问题主要依据是:点到线的距离垂线段最短。
【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.知识储备:在直角三角形中锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边。
【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.(注意与阿氏圆模型的区分)1)AC V 2+BC V 1=1V 1BC +V 1V 2AC,记k =V 1V 2,即求BC +kAC 的最小值.2)构造射线AD 使得sin ∠DAN =k ,CH AC=k ,CH =kAC ,将问题转化为求BC +CH 最小值.3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。
【最值原理】两点之间线段最短及垂线段最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“化折为直”的数学思想解题方法汇总
古老的数学问题“将军饮马”,“费马点”,“胡不归题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?今天我们就根据问题的不同特点来研究一下相应的应对策略。
知识和方法
知识:
1.两点之间线段最短;
2.三角形的两边之和大于第三边;
3.点到直线之间的距离垂线段最短;两条平行线之间垂线段最短。
方法:
1.通过轴对称变换转化;
2.通过旋转变换转化;
3.通过平移转换转化;
4.通过构造全等三角形转化。
分类探索:
一、不做任何变换
方法策略:
像第1题这样的题目,不用做任何几何变换,可直接用两边之和大于第三边,三点共线时,两条线段和等于第三条线段。
二、先做轴对称变换
方法策略:
以上这些题目,都是常见的将军饮马类问题,采用的解题策略是先做轴对称变换,再用两点之间线段最短,或者是点到直线之间的距离垂线段最短,或者用两边之和大于等于第三边(共线时取等号),此类问题可以总结为:化折为直,化直为垂。
三、先做旋转变换
方法策略:
这两道题目,采用的解题策略和费马点类问题类似,都是先做旋转变换,我们把有公共端点的三条线段称为星型摆放的线段,通过旋转60°产生等边三角形,从而将星型摆放的线段转化成首尾相连的线段,然后再利用两点之间线段最短,此类问题可以总结为:化星为折,化折为直。
如果有动点出现,后面再加上化直为垂。
四、先做平移变换
方法策略:
这两道题目,采用的解题策略先做平移变换,把两条分离的线段首尾相接起来,然后再利用两点之间线段最短,此类问题被称为沿河饮马问题。
五、先通过动点的直线轨迹作轴对称变换
方法策略
这三道题目,采用的解题策略是先找出动点的轨迹,这种题目的轨迹是一条直线,然后再做轴对称变换,将这条直线同侧的两条线段转化到两侧去,最后再利用两点之间线段最短解决问题,此类问题被称为隐形将军饮马问题。
六、先构造全等
方法策略:
这里题目比较少见,是先通过构造全等三角形,将两条线段重新拼接,再利用相似找出新图形之间的线段关系,利用两点之间线段最短解决问题。
解题思想方法;
1.常见的将军饮马类问题,采用的解题策略是先做轴对称变换,再用两点之间线段最短,或者是点到直线之间的距离垂线段最短,或者用两边之和大于等于第三边(共线时取等号),此类问题可以总结为:化折为直,化直为垂。
2.对于星型分布的三条线段,都是先做旋转变换,我们把有公共端点的三条线段称为星型摆放的线段,通过旋转60°产生等边三角形,从而将星型摆放的线段转化成首尾相连的线段,然后再利用两点之间线段最短,此类问题可以总结为:化星为折,化折为直。
如果有动点出现,后面再加上化直为垂。
3.有些题目需要先做平移变换,把两条分离的线段首尾相接起来,然后再利用两点之间线段最短,此类问题被称为沿河饮马问题。
4.有些题目是先找出动点的轨迹,这种题目的轨迹是一条直线,然后再做轴
对称变换,将这条直线同侧的两条线段转化到两侧去,最后再利用两点之间线段最短解决问题,此类问题被称为隐形将军饮马问题。
5.有些题目是先通过构造全等三角形,将两条线段重新拼接,再利用相似找出新图形之间的线段关系,利用两点之间线段最短解决问题。