初一下册数学计算练习题.doc
七年级下册数学计算题30道
七年级下册数学计算题30道一、计算题30道(其中20道带解析)1. 计算:(-2)+3 - (-5)- 解析:- 首先去括号,根据去括号法则,-(-5)=5。
- 则原式变为-2 + 3+5。
- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:4 - 5×(-(1)/(2))^3- 解析:- 先计算指数运算,(-(1)/(2))^3=-(1)/(8)。
- 再计算乘法运算,5×(-(1)/(8))=-(5)/(8)。
- 最后计算减法运算,4-(-(5)/(8)) = 4+(5)/(8)=(32 + 5)/(8)=(37)/(8)=4(5)/(8)。
3. 计算:(-3)×(-4)÷(-6)- 解析:- 先计算乘法,(-3)×(-4)=12。
- 再计算除法,12÷(-6)= - 2。
4. 计算:((1)/(2)-(2)/(3)+(5)/(6))×(-18)- 解析:- 根据乘法分配律a(b + c+d)=ab+ac + ad,这里a=-18,b=(1)/(2),c =-(2)/(3),d=(5)/(6)。
- 则(1)/(2)×(-18)=-9,-(2)/(3)×(-18)=12,(5)/(6)×(-18)=-15。
- 所以原式=-9 + 12-15=-12。
5. 计算:-2^2-(-3)^3÷(-1)^2n + 1(n为整数)- 解析:- 先计算指数运算,-2^2=-4,(-3)^3=-27,(-1)^2n + 1=-1(因为2n+1是奇数)。
- 则原式=-4-(-27)÷(-1)=-4 - 27=-31。
6. 计算:(2x - 3y)+(5x + 4y)- 解析:- 去括号得2x-3y + 5x+4y。
- 合并同类项,(2x + 5x)+(-3y+4y)=7x + y。
初一数学专项练习题
初一数学专项练习题一、有理数及其运算1. 计算下列各题:(3) + 7 24 (5) + 63 × 5 ÷ (2)8 ÷ (4) × (2)2. 简化下列各题:5 3 + 2 42 × (3) ÷ 67 ÷ (7) × (7)二、整式及其运算1. 计算下列各题:(3x 5) + (2x + 7)(4x + 6) (5x 2)2(x 3) + 3(2x + 1)5(2x 3) 2(3x + 4)2. 化简下列各题:3x^2 2x^2 + 5x 4x4a^2b 3ab^2 + 2a^2b 5ab^2(x + 3)(x 2) (x 1)(x + 4)三、一元一次方程1. 解下列方程:3x 7 = 2x + 55(x 2) = 3(2x + 1)4 2(x + 3) = 3x 12. 解决实际问题:某数的3倍减去5等于这个数的2倍加7,求这个数。
四、平面几何1. 计算下列图形的周长和面积:一个长为8cm,宽为6cm的长方形。
一个边长为5cm的正方形。
一个半径为4cm的圆。
2. 判断下列说法是否正确:对角线互相垂直的四边形是矩形。
有一组对边平行的四边形是平行四边形。
三个角都是直角的三角形是等边三角形。
五、数据初步认识1. 下列数据中,哪个是众数?哪个是中位数?2, 3, 3, 4, 5, 5, 5, 6, 72. 计算下列各题的平均数:8, 10, 12, 14, 1615, 18, 21, 24, 27六、二元一次方程组1. 解下列方程组:\(\begin{cases} 2x + 3y = 8 \\ x y = 1 \end{cases}\)\(\begin{cases} 4x 5y = 12 \\ 3x + 2y = 9\end{cases}\)\(\begin{cases} 7x + y = 21 \\ 2x 3y = 6\end{cases}\)七、不等式与不等式组1. 解下列不等式:\(3x 5 > 2x + 1\)\(4 2(x 1) \geq 3x 3\)\(5(x 2) < 2(x + 4)\)2. 解下列不等式组:\(\begin{cases} x + 2y > 6 \\ 2x y \leq 4\end{cases}\)\(\begin{cases} 3x y < 3 \\ x + 4y \geq 8\end{cases}\)八、分式及其运算1. 计算下列各题:\(\frac{3}{4} + \frac{1}{6} \frac{2}{3}\)\(\frac{5}{8} \times \frac{2}{3} \div \frac{1}{4}\) \(\frac{2}{5} \frac{1}{3} + \frac{3}{10}\)2. 化简下列各题:\(\frac{4x}{6} \frac{2x}{3}\)\(\frac{3a}{5} + \frac{2a}{3} \frac{a}{15}\)九、图形的性质1. 判断下列图形是否为轴对称图形:一个等边三角形一个矩形一个任意四边形2. 下列图形中,哪个是中心对称图形?一个正方形一个等腰三角形一个圆十、概率初步1. 计算下列事件的概率:从一副去掉大小王的普通扑克牌中随机抽取一张牌,抽到红桃的概率。
(精品)七年级数学计算题大全
七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?八、应用题1. 求解问题:小华有 3 个苹果,小明有 5 个苹果,他们一共有多少个苹果?2. 面积问题:一个长方形的长是 8 厘米,宽是 5 厘米,求这个长方形的面积。
七年级下册计算题
七年级下册计算题一、有理数运算类1. 计算:公式解析:去括号法则为:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前是“-”,把括号和它前面的“-”去掉后,原括号里各项的符号都要改变。
所以公式。
则原式公式。
按照从左到右的顺序计算,公式,公式。
2. 计算:公式解析:先计算指数运算。
根据幂运算法则,公式(这里要注意指数运算优先级高于负号),公式。
则原式公式。
接着进行乘除运算,公式,公式。
最后进行加减运算,公式。
二、整式运算类1. 化简:公式解析:合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于公式的同类项有公式和公式,合并得公式。
对于公式的同类项有公式和公式,合并得公式。
所以化简结果为公式。
2. 先化简,再求值:公式,其中公式解析:先去括号:原式公式。
再合并同类项:对于公式的同类项有公式和公式,合并得公式。
对于公式的同类项有公式和公式,合并得公式。
而公式和公式相互抵消,化简结果为公式。
当公式时,代入化简后的式子:把公式代入公式得:公式。
三、一元一次方程类1. 解方程:公式解析:移项,把含有公式的项移到等号左边,常数项移到等号右边,移项要变号。
得到公式。
合并同类项得公式。
2. 解方程:公式解析:先去分母,方程两边同时乘以分母的最小公倍数公式,得到公式。
化简得公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)
人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
初一下册数学练习题及答案
初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是3,那么这个数是______。
答案:27三、计算题1. 计算下列各题,并写出计算过程。
(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。
证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。
2. 一个水池的长是15米,宽是10米,求水池的面积。
答案:水池的面积为长×宽=15×10=150平方米。
通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。
希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。
七年级下册北师大版数学计算题
七年级下册北师大版数学计算题一、有理数混合运算(1 - 5题)1. 计算:( - 2)+3 - ( - 5)- 解析:- 首先去括号,根据去括号法则,-(-5)=5。
- 则原式变为-2 + 3+5。
- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:- 3×( - 4)+( - 28)÷7- 解析:- 先计算乘除运算。
- 根据乘法法则,-3×(-4)=12;根据除法法则,-28÷7=-4。
- 再计算加法,12+( - 4)=12 - 4 = 8。
3. 计算:( - 2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算。
- (-2)^3=-8,(-4)^2 = 16。
- 则原式变为-8+( - 3)×(16 - 2)。
- 先算括号里的16-2 = 14。
- 再计算乘法-3×14=-42。
- 最后计算加法-8+( - 42)=-8-42=-50。
4. 计算:(1)/(2)×( - 4)+( - (2)/(3))×( - 6)- 解析:- 先计算乘法运算。
- (1)/(2)×(-4)=-2,(-(2)/(3))×(-6)=4。
- 再计算加法-2 + 4=2。
5. 计算:0 - 2^3÷( - 4)^3-(1)/(8)- 解析:- 先计算指数运算,2^3 = 8,( - 4)^3=-64。
- 则原式变为0-8÷(-64)-(1)/(8)。
- 计算除法8÷(-64)=-(1)/(8)。
- 再计算0-(-(1)/(8))-(1)/(8)=0+(1)/(8)-(1)/(8)=0。
二、整式的加减(6 - 10题)6. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b=b。
2021-2022学年冀教版七年级数学下册《8-4整式的乘法》同步练习题(附答案)
2021-2022学年冀教版七年级数学下册《8-4整式的乘法》同步练习题(附答案)一.选择题1.若□×2xy=16x3y2,则□内应填的单项式是()A.4x2y B.8x3y2C.4x2y2D.8x2y2.计算2x2•(﹣3x)的结果是()A.﹣6x2B.5x3C.6x3D.﹣6x33.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.14.若P=(x﹣2)(x﹣3),Q=(x﹣1)(x﹣4),则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.由x的取值而定5.若x+m与x﹣4的乘积化简后的结果中不含x的一次项,则m的值为()A.4B.﹣4C.8D.﹣86.下列运算,正确的是()A.a+a2=a3B.a•a=2a C.2a3﹣a2=a D.a•3a2=3a3 7.下列各式中,正确的是()A.a2+a7=a9B.(b3)5=b8C.c n•2c n=c2n D.d8÷d2=d6 8.如图,甲、乙、丙、丁四位同学给出了四种表示最大长方形面积的方法:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的个数有()A.1个B.2个C.3个D.4个9.若M=(2x﹣1)(x﹣3),N=(x+1)(x﹣8),则M与N的关系为()A.M=N B.M>NC.M<N D.M与N的大小由x的取值而定10.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2B.3C.4D.5二.填空题11.计算:3x(x﹣2x2)=.12.化简﹣m(3﹣m)+2(3﹣2m)=.13.若a﹣b=3,3a+2b=5,则3a(a﹣b)+2b(a﹣b)=.14.如图所示,四边形均为长方形,根据图形,写出一个正确的等式:.15.已知a2n=4,b2n=9,则a n•b n的值为.16.计算:2a(a﹣3a2)=.17.计算:(3x2y﹣2x+1)(﹣2xy)=.18.已知(x+my)(x+ny)=x2+2xy﹣8y2,则m2n+mn2的值为.三.解答题19.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.20.若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2019q2020的值.21.计算:(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).22.计算:23.计算(1)(a2•b3)2(2)(﹣3x2)(4x﹣3)24.阅读:若x满足(60﹣x)(x﹣40)=30,求(60﹣x)2+(x﹣40)2的值.解:设(60﹣x)=a,(x﹣40)=b,则(60﹣x)(x﹣40)=ab=,a+b=(60﹣x)+(x﹣40)=,所以(60﹣x)2+(x﹣40)2=a2+b2=(a+b)2﹣2ab=.请仿照上例解决下面的问题:(1)补全题目中横线处;(2)已知(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值;(3)若x满足(2023﹣x)2+(2022﹣x)2=2021,求(2023﹣x)(x﹣2022)的值;(4)如图,正方形ABCD的边长为x,AE=10,CG=25,长方形EFGD的面积是400,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体数值).参考答案一.选择题1.解:∵□×2xy=16x3y2,∴□=16x3y2÷2xy=8x2y.故选:D.2.解:原式=2•(﹣3)x2•x=﹣6x3,故选:D.3.解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.4.解:P﹣Q=(x﹣2)(x﹣3)﹣(x﹣1)(x﹣4)=(x2﹣5x+6)﹣(x2﹣5x+4)=x2﹣5x+6﹣x2+5x﹣4=2,∵2>0,∴P﹣Q>0,∴P>Q.故选:A.5.解:∵(x+m)(x﹣4)=x2﹣4x+mx﹣4m=x2+(m﹣4)x﹣4m,且结果中不含x的一次项,∴m﹣4=0,∴m=4,故选:A.6.解:A:不能合并同类项,∴不合题意;B:原式=a2,∴不合题意;C:不能合并同类项,∴不合题意;D:原式=3a3,合题意.故选:D.7.解:A、a2与a7不是同类项,不能合并,本选项计算错误,不符合题意;B、(b3)5=b3×5=b15,本选项计算错误,不符合题意;C、c n•2c n=2c2n,本选项计算错误,不符合题意;D、d8÷d2=d6,本选项计算正确,符合题意;故选:D.8.解:最大长方形面积为(2a+b)(m+n)=2a(m+n)+b(m+n)=m(2a+b)+n(2a+b)=2am+2an+bm+bn.故选:D.9.解:M=(2x﹣1)(x﹣3)=2x2﹣6x﹣x+3=2x2﹣7x+3,N=(x+1)(x﹣8)=x2﹣8x+x﹣8=x2﹣7x﹣8,M﹣N=(2x2﹣7x+3)﹣(x2﹣7x﹣8)=x2+11≥11,则M>N.故选:B.10.解:大长方形面积=(a+2b)•(2a+b)=2a2+5ab+2b2所以大长方形是由2个A类正方形、5个C类长方形、2个B类正方形组成,故选:D.二.填空题11.解:原式=3x2﹣6x3.故答案为:3x2﹣6x3.12.解:﹣m(3﹣m)+2(3﹣2m)=﹣3m+m2+6﹣4m=m2﹣7m+6,故答案为:m2﹣7m+6.13.解:∵a﹣b=3,3a+2b=5,∴3a(a﹣b)+2b(a﹣b)=(a﹣b)(3a+2b)=3×5=15.故答案为:15.14.解:由题意得:m(m+a)=m2+ma,故答案为:m(m+a)=m2+ma(答案不唯一).15.解:∵a2n=4,b2n=9,∴(a n)2=4,(b n)2=9,∴a n=±2,b n=±3,∴a n•b n的值为6或﹣6.故答案为:6或﹣6.16.解:2a(a﹣3a2)=2a2﹣6a3.故答案为:2a2﹣6a3.17.解:(3x2y﹣2x+1)(﹣2xy)=3x2y•(﹣2xy)﹣2x•(﹣2xy)+1•(﹣2xy)=﹣6x3y2+4x2y﹣2xy.故答案为:﹣6x3y2+4x2y﹣2xy.18.解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16.故答案为:﹣16.三.解答题19.解:(1)甲错把b看成了6,(2x+a)(x+6)=2x2+12x+ax+6a=2x2+(12+a)x+6a=2x2+8x﹣24,∴12+a=8,解得:a=﹣4;乙错把a看成了﹣a,(2x﹣a)(x+b)=2x2+2bx﹣ax﹣ab=2x2+(﹣a+2b)x﹣ab=2x2+14x+20,∴2b﹣a=14,把a=﹣4代入,得b=5;(2)当a=﹣4,b=5时,(2x+a)(x+b)=(2x﹣4)(x+5)=2x2+10x﹣4x﹣20=2x2+6x﹣20.20.解:(1)(x+3p)(x2﹣x+q)=x3﹣x2+qx+3px2﹣3px+pq=x3+(3p﹣1)x2+(q﹣3p)x+pq,∵不含x项与x2项,∴3p﹣1=0,q﹣3p=0,∴p=,q=3;(2)当p=,q=3时,原式=()2019×32020=()2019×32019×3=(×3)2019×3=12019×3=1×3=3.21.解:(1)原式=﹣6x3+12x2y+2x3﹣2x2y =﹣4x3+10x2y;(2)原式=6x2﹣9xy+4xy﹣6y2﹣9x2+6xy=﹣3x2+xy﹣6y2.22.解:原式=a2b2(﹣a2b﹣12ab+b2)=a2b2•(﹣a2b)﹣a2b2•12ab+a2b2•b2=﹣8a4b3﹣a3b3+a2b4.23.解:(1)(a2•b3)2=a4b6;(2)(﹣3x2)(4x﹣3)=(﹣3x2)•4x﹣(﹣3x2)•3=﹣12x3+9x2.24.解:(1)设(60﹣x)=a,(x﹣40)=b,则(60﹣x)(x﹣40)=ab=30,a+b=(60﹣x)+(x﹣40)=20,所以(60﹣x)2+(x﹣40)2=a2+b2=(a+b)2﹣2ab=400﹣60=340;故答案为:30,20,340;(2)设30﹣x=a,x﹣20=b,则ab=﹣10,a+b=10,∴(30﹣x)2+(x﹣20)2=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣10)=120;(3)设2023﹣x=m,2022﹣x=n,则m2+n2=2021,m﹣n=1,∵(m﹣n)2=m2﹣2mn+n2,∴1=2021﹣2mn,∴mn=1010,即(2023﹣x)(x﹣2022)=﹣1010;(4)由题意得:DE=x﹣10,DG=x﹣25,则(x﹣10)(x﹣25)=400,设a=x﹣10,b=x﹣25,则a﹣b=15,ab=400,∴S阴=(a+b)2=(a﹣b)2+4ab=152+4×400=1825.。
七年级下册计算题100道
1、 2x 1 2 x
2、
5
3(
y
1) 3
2
3、7y+6=-6y; 5、 x - 5 =4;
33
7、2x+3=11-6x;
4、2a-1=5a+7; 6、(x+1)-2(x-1)=1-3x
8、2x-1=5x-7;
9、5(x+8)-5=6(2x-7);
10、2(3y-4)+7(4-y)=4y;
11、4x-3(20-x)=6x-7(9-x);
3
5
18、2x- x 1 = 2 (x+3)
23
3/5
文档供参考,可复制、编制,期待您的好评与关注!
19、 4(2x 1) 1 3(2x 1) ;
3
4
20、
1 2
1 3
x
1
6
1.
21、1 y y 1 ;
2
3
23、 2 8x 3 1 x
3
2
25、 5 3x 3 5x ;
2
3
27、x 2 2x 3 1;
2/5
文档供参考,可复制、编制,期待您的好评与关注!
四、将下列科学计数法化成数字(括号里的数为 10 的指数) 1、2.365×10(-3) 2、3.14×10(5) 3、8.25×10(-5) 4、6.005×10(-4) 5、8.2×10(8) 6、2.10154×10(3) 7、3.89370×10(6) 8、5.187×10(-6) 9、6.888×10(-2) 10、9.91×10(10) 五、一元一次方程
382x- x 1 = 2 (x+3)
23
40、 4(2x 1) 1 3(2x 1) ;
七年级下册数学计算题300道
七年级下册数学计算题300道一、整数的加减法1. (-4) + 3 = ?2. (-5) - (-2) = ?3. 7 + (-8) = ?4. (-3) - 6 = ?5. 9 + (-11) = ?6. (-2) + 5 + (-7) = ?7. 8 + (-4) - 3 = ?8. (-6) - (-9) + 2 = ?9. 5 - (-6) + (-2) = ?10. (-8) + 4 - (-3) = ?二、正数的乘除法1. 7 × 9 = ?2. 12 ÷ 6 = ?3. 20 ÷ 4 × 5 = ?4. 36 ÷ 3 - 4 = ?5. 15 ÷ 5 × 3 = ?6. 48 ÷ 6 × 4 = ?7. 10 × 5 - 25 ÷ 5 = ?8. 24 ÷ 8 × 3 = ?9. 16 ÷ 4 + 6 × 2 = ?10. 25 - 15 ÷ 3 × 2 = ?三、分数的加减法1. 1/3 + 2/3 = ?2. 1/4 + 3/4 = ?3. 2/5 - 1/5 = ?4. 3/8 - 1/8 = ?5. 2/3 + 1/6 = ?6. 3/5 + 1/5 = ?7. 5/6 - 2/6 = ?8. 2/3 - 1/3 = ?9. 1/2 + 1/4 + 1/8 = ?10. 3/8 - 1/4 + 1/2 = ?四、分数的乘除法1. 1/4 × 3/5 = ?2. 3/8 ÷ 1/4 = ?3. 2/3 × 3/4 = ?4. 1/2 ÷ 2/3 = ?5. 5/6 × 4/5 ÷ 3/4 = ?6. 3/4 ÷ 6/8 × 2/3 = ?7. 2/5 × 2/7 ÷ 3/10 = ?8. 2/3 × 3/5 + 1/4 = ?9. 5/8 ÷ 1/4 - 2/3 = ?10. 3/5 × 2/3 - 1/4 = ?五、小数运算1. 0.5 + 0.25 = ?2. 0.7 - 0.4 = ?3. 2.5 - 0.75 = ?4. 3.2 + 1.8 - 1.9 = ?5. 1.5 × 2.5 = ?6. 2.4 ÷ 1.2 = ?7. 3.6 + 0.3 × 2.5 = ?8. 4.8 ÷ 0.6 + 2.4 = ?9. 1.5 - 0.7 ÷ 0.5 = ?10. 2.5 × 0.8 - 1.4 ÷ 0.7 = ?六、比例运算1. 若2∶5=4∶m,则m等于多少?2. 若7∶10=9∶m,则m等于多少?3. 若x∶3=6∶9,则x等于多少?4. 若3∶x=15∶30,则x等于多少?5. 若3∶4=x∶6,则x等于多少?6. 若3∶4=x∶12,则x等于多少?7. 若3∶x=16∶24,则x等于多少?8. 若3∶5=x∶15,则x等于多少?9. 若5∶m=8∶10,则m等于多少?10. 若2∶3=x∶20,则x等于多少?七、百分数运算1. 将70%化为小数。
初一数学(下)计算训练50道题(含实数、方程、不等式)原创
初一数学(下)计算训练50道题(含实数、方程、不等式)原创1.计算:|﹣3|﹣×+(﹣2)2.2.计算:|﹣3|﹣×+(﹣2)3.3.计算:﹣+3×+.4.计算:||+|﹣1|﹣|3|5.计算:﹣++.6.计算:|﹣5|+(﹣2)2+﹣﹣1.7.计算:.8.计算:﹣12+(﹣2)3×﹣×|﹣|+2÷()2.9.计算:(﹣2)3×+×()2﹣.10.计算﹣14++﹣[5﹣(﹣3)2];11.计算:(﹣2)2++﹣|﹣|+.12.计算:;13.计算:﹣+3×﹣.14.计算:.15.计算(﹣2)3×+×()2﹣16.计算:(﹣2)3×.17.计算:.18.解方程(2x﹣3)2=49.19.解方程:4(x﹣1)2﹣16=0.20.解方程.21.解方程:(x﹣1)3=16.22.解方程:8(x+1)2﹣50=023.解方程:(5x+3)3+32=0.24.解方程:(x+1)3﹣=1.25.解方程:﹣27(2x﹣1)3=﹣6426.解方程:32(x﹣1)3=27.解方程组.28.按括号内要求解方程组:29.解方程组:.30.解方程组.31.解方程组:.32.解方程组:33.解方程组:.34.解方程组:.35.解不等式:>1﹣.36.解不等式:.37.解不等式:38.解不等式:2x﹣3≤(x+2)39.解不等式:<6﹣.40.解不等式:.41.解不等式.42.解不等式组:.43.解不等式组:.44.解不等式组:.45.解不等式组.46.解不等式组.48.解不等式组:.47.解不等式组:、49.解不等式组:.50.解不等式组.。
七年级下册数学计算题300道
七年级下册数学计算题300道七年级数学下册复试卷——计算题1、简化并计算:$\frac{(3a^2b)^2}{(-9a^4b^2)\cdot(-2ab^3)}$,$-\frac{2x^2\cdot x^3}{2x^7}$。
2、计算:$(3^3\cdot2^2\cdot5)\div(2^3\cdot5^2)$。
3、计算:$-\left(a+b-(2a-b)\right)\div4$。
4、计算:$\frac{3}{2}-3\left(\frac{1}{x^2}-\frac{2x+1}{3x^2}\right)+\frac{4}{6}$。
5、计算:$(x+2)(y+3)-(x+1)(y-2)$。
6、计算:$x(x-2)-(x+5)(x-5)$。
7、计算:$(3x-2y)(-2y-3x)(4y^2+9x^2)$。
8、计算:$(x+1)^2-(x-1)(x+2)$。
9、计算:$3(x+1)(x-1)-(2x-1)^2$。
10、计算:$2(x-1)-3(x^2-x+2)$。
11、计算:$3(a^3-a^2b+ab^2)-\frac{1}{22}(6a^3+4a^2b+3ab^2)$。
12、计算:$(2x-y)(2x+y)+2y^2$。
13、计算:$(2a+1)^2-2(2a+1)+3$。
14、计算:$(x-3y)(x+3y)-(x-3y)^2$。
15、计算:$(3x+2y)^2-(3x-2y)^2$。
16、计算:$(x+y)^2(x-y)$。
17、计算:$\frac{(3x+y)-y}{x}$。
18、计算:$\frac{}{}$。
19、计算:$54xy-108xy-36xy\div18xy$。
20、计算:$\frac{4}{5}\div\frac{5}{4}-\frac{2}{3}\div\left(-\frac{2}{3}\right)+\frac{1}{2}$。
21、计算:$\frac{4}{5}-\frac{5}{4}\div\frac{2}{5}$。
七年级数学题100道计算题
七年级数学题100道计算题一、七年级数学计算题1 - 20题(人教版)1. 计算:(-3)+5- 解析:- 有理数加法运算,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
- | - 3| = 3,|5| = 5,5>3,所以结果为正。
- 5 - 3 = 2,所以(-3)+5 = 2。
2. 计算:4 - (-2)- 解析:- 减去一个数等于加上这个数的相反数。
- 所以4-(-2)=4 + 2 = 6。
3. 计算:(-2)×3- 解析:- 两数相乘,异号得负,并把绝对值相乘。
- | - 2|×|3|=2×3 = 6,所以(-2)×3=-6。
4. 计算:(-4)÷2- 解析:- 两数相除,异号得负,并把绝对值相除。
- | - 4|÷|2| = 4÷2 = 2,所以(-4)÷2=-2。
5. 计算:(-3)^2- 解析:- 表示两个-3相乘。
- (-3)×(-3)=9。
6. 计算:-2^2- 解析:- 先计算指数运算,这里的指数运算优先于负号。
- 2^2 = 4,所以-2^2=-4。
7. 计算:(2x + 3y)+(x - 2y)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变。
- 所以原式=2x+3y + x - 2y=(2x + x)+(3y - 2y)=3x + y。
8. 计算:(3a - 2b)-(a - b)- 解析:- 去括号法则:括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。
- 所以原式=3a - 2b - a + b=(3a - a)+(-2b + b)=2a - b。
9. 计算:3x×2x- 解析:- 根据单项式乘法法则,系数与系数相乘,同底数幂相乘。
- 3×2× x× x = 6x^1 + 1=6x^2。
初一数学二十五道练习题
初一数学二十五道练习题一、有理数及其运算1. 计算:(3) + 5 22. 计算:(4 7) × (2)3. 计算:3 ÷ 1/24. 计算:|(5) 8|5. 计算:(2)^3二、整式及其运算6. 计算:3x 2y + 4x 5y7. 计算:(2a 3b)(a + 4b)8. 计算:5m^2 ÷ (2m 3)9. 计算:(4n 6) ÷ 210. 计算:2x^2 3x + 4x 2x^2三、一元一次方程11. 解方程:5x 8 = 3x + 212. 解方程:2(3y 5) = 4y + 813. 解方程:3(x 4) + 2x = 714. 解方程:4 2(2a 3) = 5a15. 解方程:1/3(6b 9) = 2b 3四、二元一次方程组16. 解方程组:\[\begin{cases}x y = 1\end{cases}\]17. 解方程组:\[\begin{cases}3m 4n = 7 \\2m + n = 6\end{cases}\]18. 解方程组:\[\begin{cases}5a + 2b = 9 \\3a 2b = 1\end{cases}\]五、不等式与不等式组19. 解不等式:3x 7 > 2x + 420. 解不等式:5 2y ≤ 3 4y21. 解不等式组:\[\begin{cases}2x 1 < 5\end{cases}\]六、平面几何22. 计算下列图形的周长和面积:(长为8cm,宽为6cm的长方形)23. 计算下列图形的周长和面积:(半径为5cm的圆)24. 计算下列图形的周长和面积:(底为10cm,高为6cm的三角形)25. 判断下列图形是否为相似形:(两个等边三角形,边长分别为6cm和9cm)七、数据与统计26. 某班有男生30人,女生20人,求男生和女生人数的比例。
27. 小华的成绩分别为:语文80分,数学90分,英语85分,求小华的平均成绩。
七年级下数学计算题
七年级下数学计算题一、整式的运算类1. 计算:(2x + 3y)(3x - 2y)- 解析:- 根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。
- 原式=2x×3x - 2x×2y+3y×3x - 3y×2y- = 6x^2-4xy + 9xy-6y^2- =6x^2+5xy - 6y^2。
2. 计算:(3a - 2b)^2- 解析:- 根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 3a,b = 2b。
- 原式=(3a)^2-2×3a×2b+(2b)^2- = 9a^2-12ab + 4b^2。
3. 化简:3x(2x^2-x + 1)-2x^2(3x - 2)- 解析:- 先分别进行单项式乘多项式运算。
- 原式=3x×2x^2-3x× x+3x×1-(2x^2×3x - 2x^2×2)- = 6x^3-3x^2+3x-(6x^3-4x^2)- 去括号得6x^3-3x^2+3x - 6x^3+4x^2- 合并同类项得x^2+3x。
4. 计算:(x + 2y)(x - 2y)(x^2+4y^2)- 解析:- 先利用平方差公式(a + b)(a - b)=a^2-b^2计算前两个括号。
- 原式=(x^2-4y^2)(x^2+4y^2)- 再利用平方差公式得x^4-16y^4。
5. 化简:(2m + n - 1)(2m - n - 1)- 解析:- 把式子变形为[(2m - 1)+n][(2m - 1)-n]- 利用平方差公式得(2m - 1)^2-n^2- 再根据完全平方公式展开(2m - 1)^2=4m^2-4m + 1- 所以原式=4m^2-4m + 1 - n^2。
二、一元一次方程类6. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得3x - 2x=-1 - 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下册数学计算练习题
一、单项选择 (每小题3分,共30分)
1、一个数的立方等于它本身,这个数是 ( D )
A、0
B、1
C、-1,1
D、-1,1,0
2、下列各式中,不相等的是 ( A )
A、(-3)2和-32
B、(-3)2和32
C、(-2)3和-23
D、|-2|3和|-23|
3、(-1)200+(-1)201=( A )
A、0
B、1
C、2
D、-2
4、有一组数为:-1,1/2,-1/3,1/4,-1/5,1/6,…找规律得到第7个数是( A )
A、-1/7
B、1/7
C、-7
D、7
5、下列说法正确的是( A ) A、有理数的绝对值一定是正数
B、如果两个数的绝对值相等,那么这两个数相等
C、如果一个数是负数,那么这个数的绝对值是它的相反数
D、绝对值越大,这个数就越大
6、比较-1/5与-1/6的大小,结果为 ( B )
A、>
B、<
C、=
D、不确定
7、下列说法中错误的是( C )
A、零除以任何数都是零。
B、-7/9的倒数的绝对值是9/7。
C、相反数等于它的本身的数是零和一切正数。
D、除以一个数,等于乘以它的倒数。
8、(-m)101>0,则一定有( B )
A、m>0
B、m<0
C、m=0
D、以上都不对
9、一个正整数n与它的倒数1/n、相反数-n相比较,正确的是( B )
A、-n≤n≤1/n
B、-n<1/n<n
C、1/n<n<-n
D、-n<1/n≤n
二、填空题每小题3分,共30分)
1、12的相反数与-7的绝对值的和是_-5___________________。
2、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是____-3度______________。
3、在数轴上,-4与-6之间的距离是_2___________________。
4、若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是______-11___。
5、若一个数的50%是- 5.85,则这个数是_-11.7________________。
6、一个数的平方等于81,则这个数是9____________________。
7、如果|a|=2.3,则a=_-2.3 +2.3_______________________。
8、计算-|-6/7|=-6/7___________________。
9、绝对值大于2而小于5的所有数是_3 4 5 -3 -4 -5___________________。
10、有一列数,观察规律,并填写后面的数,-5,-2,1,4,_7______,___10_____,_____13___。
三、计算题 (每小题5分,共20分)
1、-15+6÷(-3)×1/2
2、(1/4-1/2+1/6)×24
=-9X(-1/3)X0.5 =-1/12x24
=-2
=1.5
3、|-5/14|×(-3/7)2÷3/14
4、2/3+(-1/5)-1+1/3
=5/14x9/49x14/3 =2/3-1/5-1+1/3
=-1/5
=15/49
四、解答题 (每小题10分,共20分)
1、某地探空气球地气象观测资料表明,高度每增加1千米、气温就大约降低6℃,若该地区地面温度为21℃,高空某处温度为-39℃,求此处的高度为多少千米?
-39-21=-60度
60/1=60千米
60x6=3600千米
答:高度为3600千米。
2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克) 2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5
这10名学生的总体重为多少?平均体重为多少?
(1)52+53+42.5+47+55+42+53.5+54.5+58+48.5=506(千克)
答:这10名学生的总体重是506千克。
(2)506/10=50.6(千克)
答:平均体重为50.6千克
一、耐心填一填(每小题3分,共12分)
1.(1)1.4的相反数是 -1.4 ;(2)的倒数是-2 . .
2.质检员抽查一批零件的合格率。
已知零件的规定尺寸为30±0.5cm。
现抽查了10个零件,检查结果为:30.3,30.0,30.4,29.4,29.9,30.2,29.8,30.6,29.5,30.5(单位:cm),则这批零件的合格率为 80% .
3.某商场在“十.一”长假期间每天营业额是15万元,由此推算10月份的总营业额约为15×31=465(万元),你认为这样的推算是否合理?答:合理
4.已知∠AOB=50°,∠BOC=30°则∠AOC=80度 ..
二、精心选一选,你一定慧眼识金(2分×8=16分)
11.-22与(-2)2 ( B )
A.相等
B.互为相反数 C .互为倒数 D.它们的积为16
13.小明想知道银河系里恒星大约有多少颗,他通过( C )获取有关资料.
A.问卷调查 B.实地考察 C.查阅文献资料 D.实验
14.用四舍五入把0.06097精确到千分位的近似值的有效数字是()
A.0、6、0
B.0、6、1、0
C.6、0、9
D.6、1
15.下列展开图中是左图的展开图的是()
A B C D
16.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是( A )
A.两点之间线段最短;
B.两点确定一条直线;
C.线段可以大小比较;
D.线段有两个端点
17.为了估计湖中有多少条鱼,从湖里捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中,在捕捉第二次鱼200条,有10条做了记号,则估计湖里有鱼(D )
A .400条
B .600条
C .800条
D .1000条
18.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x个零件,则所列方程为()
A.13x=12(x+10)+60
B.12(x+10)=13x+60
C. D.
三、细心解一解,你一定是数学行家!
19.展示你的运算能力(4分×2=8分)
(1)(2)
20.展示你解方程的能力(4分×2=8分)
(1)3(20-y)=6y-4(y-11)
60-3y=6y-4y+44
-5y=-16
Y=3.2
21.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角。
(6分)
解:设这个角度数为X
X+10=3X
X=5
答:这个角度数为5度。
22.相信你一定行!(8分)
已知a与b互为相反数,c、d互为倒数,,y不能作除数,
求的值.
23.如图,∠COD=116°,∠BOD=90°,OA平分∠BOC,求∠AOD 的度数.。