高一数学必修一第一章(中)函数及其表示练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修1)第一章(中)函数及其表示
[基础训练]
一、选择题
1.判断下列各组中的两个函数是同一函数的为( )
⑴3
)
5)(3(1+-+=
x x x y ,52-=x y ;
⑵111-+=x x y ,)1)(1(2-+=x x y ;
⑶x x f =)(,2)(x x g =;
⑷()f x
()F x =
⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵
B .⑵、⑶
C .⑷
D .⑶、⑸
2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2
3.已知集合{}{}
421,2,3,,4,7,,3A k B a a a ==+,且*
,,a N x A y B ∈∈∈
使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5
4.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
,若()3f x =,则x 的值是( )
A .1
B .1或
32 C .1,3
2
或 D
5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,
这个平移是( )
A .沿x 轴向右平移1个单位
B .沿x 轴向右平移1
2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1
2
个单位
6.设⎩⎨
⎧<+≥-=)
10()],6([)
10(,2)(x x f f x x x f 则)5(f 的值为( )
A .10
B .11
C .12
D .13
二、填空题
1.设函数.)().0(1),0(12
1
)(a a f x x
x x x f >⎪⎪⎩⎪⎪⎨
⎧<≥-=若则实数a 的取值范围是 。 2.函数4
2
2--=
x x y 的定义域 。
3.若二次函数2
y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
4
.函数0y =
定义域是_____________________。
5.函数1)(2
-+=x x x f 的最小值是_________________。
三、解答题
1
.求函数()1
f x x =+的定义域。
2.求函数12++=x x y 的值域。
3.12,x x 是关于x 的一元二次方程2
2(1)10x m x m --++=的两个实根,又2212y x x =+,
求()y f m =的解析式及此函数的定义域。
4.已知函数2
()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值。
高一数学(必修1)第一章(中)函数及其表示 [基础训练]答案
一、选择题
1. C (1)定义域不同;(2)定义域不同;(3)对应法则不同;
(4)定义域相同,且对应法则相同;(5)定义域不同;
2. C 有可能是没有交点的,如果有交点,那么对于1x =仅有一个函数值;
3. D 按照对应法则31y x =+,{}{}
424,7,10,314,7,,3B k a a a =+=+ 而*4,10a N a ∈≠,∴24
310,2,3116,5a a a k a k +==+=== 4. D 该分段函数的三段各自的值域为(][)[),1,0,4,4,-∞+∞,而[)30,4∈
∴2
()3,12,f x x x x ===-<<而∴ x =
1. D 平移前的“1
122()2
x x -=--”,平移后的“2x -”,
用“x ”代替了“12x -
”,即1122
x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====。 二、填空题
1. (),1-∞- 当1
0,()1,22a f a a a a ≥=
-><-时,这是矛盾的; 当1
0,(),1a f a a a a
<=><-时;
2. {}|2,2x x x ≠-≠且 2
40x -≠
3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =,
当1x =时,max 99,1y a a =-==-
4. (),0-∞ 10
,00x x x x -≠⎧⎪<⎨
->⎪⎩
5. 54-
2
2155()1()244
f x x x x =+-=+-≥-。 三、解答题
1.解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-
2.解: ∵2
2
1
331(),2
44
x x x ++=++
≥
∴y ≥
,∴值域为)+∞