第十六章 二次根式单元测试题

合集下载

(word完整版)第十六章 二次根式单元测试题

(word完整版)第十六章 二次根式单元测试题

姓名: 班级: 学号: 成绩:一.选择题:(每小题3分,共15分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.以下运算错误的是( )A =B =C .2=D 2=3.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 4.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x 。

A .2个 B .3个 C .4个 D .5个5、若A =)A 、23a +B 、22(3)a +C 、22(9)a +D 、29a +二、填空题:(每空2分,共22分)6。

当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义;7。

已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322 ; 9。

比较大小:23-______32-;10。

若x x x x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,()=-25334 ;12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝; 三.解答题: 13. 3222233--+ 14。

222333---15.⋅-121).2218( 16。

(4(3-16.已知:32-=x ,32+=y ,求代数式22y x +的值;17.有这样一类题目:如果你能找到两个数m 、n,使22m n a +=并且mn =则将a ±变成()2222m n mn m n +±=±(22232212111+=++=++=+==+ 仿照上例化简下列各式:(1)347+ (2)42213-18。

19。

.883x 252的值式或为相反数,求二次根与已知y x y y x -----20。

人教版八年级下册数学第十六章《二次根式》测试卷有答案

人教版八年级下册数学第十六章《二次根式》测试卷有答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1的值是一个整数,则正整数a 的最小值是()A .1B .2C .3D .52有意义的x 的取值范围是()A .x≠1B .x >1C .x≤1D .x≥13在实数范围内有意义,则x 的取值范围是()A .x≥1B .0<x≤1C .x >0D .0≤x≤14.在数轴上实数a ,b 的位置如图所示,化简的结果是()A .﹣2a ﹣bB .﹣2a+bC .﹣2bD .﹣2a5.当x <0时,化简|x|的结果是()A .-1B .1C .1-2xD .2x -16.下列根式中不是最简二次根式的是()AB C D .7()A .B .12a 2bC .aD .8=()A .x≥1B .x≥﹣1C .﹣1≤x≤1D .x≥1或x≤﹣1评卷人得分二、填空题9.若一个长方体的长为cm cm ,则它的体积为_____cm 3.10.当x=_____有最小值,其最小值是_____.11的整数部分为a,小数部分为b,则22ba b+的值等于________.12.如果整数x>﹣3,那么使函数y=有意义的x的值是(只填一个)13cm cm,则这个直角三角形的面积为______cm2.14.写出一个与_______.15.当a________0时,|a|=-2a.16____________.评卷人得分三、解答题17.已知:a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c−a)2+(c−b−a)2. 18.计算:(2)(1+(1+2.19.计算:)-.2021.先阅读,后回答问题:x有意义?有意义需(1)x x-≥0,由乘法法则得:10xx⎧≥⎪⎨-≥⎪⎩或10xx⎧≤⎪⎨-≤⎪⎩,解之得:x≥1或x≤0,即当x≥1或x≤0时,有意义。

体会解题思想后,解答,x为何值是有意义?参考答案1.B【解析】【分析】根据二次根式的乘法法则计算得到a的最小值即可.【详解】∴正整数a是最小值是2.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.2.D【解析】【分析】根据被开方式大于且等于零列式求解即可.【详解】由题意得x-1≥0,∴x≥1.故选D.【点睛】)0a≥的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.3.B【解析】【分析】根据二次根式有意义的条件,可得结果.【详解】在实数范围内有意义,∴1-x≥0,x>0,∴0<x≤1,故选B.【点睛】本题考查了二次根式有意义的条件,注意x≠0是解题的关键.4.D观察数轴可知:000a b a b a b a b <∴+<-<,,,,∴=-(a+b )+(b-a)=-2a ,故选D.【点睛】本题考查了数轴以及绝对值、二次根式的化简等,正确地观察数轴得到a 、b 间的关系是解题的关键.5.C 【解析】【分析】解题.【详解】原式=|x|+=|x|+|x-1|∵x <0∴原式=-x+1-x =1-2x .故选C .【点睛】,再根据x 的范围去绝对值.6.C 【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或,故不是最简二次根式.故选C 7.D 【解析】【分析】原式利用二次根式乘法法则计算即可得到结果.【详解】原式,故选:D.【点睛】本题考查了二次根式的乘除法,熟练掌握二次根式乘法法则是解题的关键.8.A【解析】=成立,∴1010xx+≥⎧⎨-≥⎩,解得1x≥故选A.=成立的条件是:0a≥且0b≥. 9.12.【解析】解:由题意得:=12.故答案为12.10.-540【解析】【分析】根据二次根式的有意义的条件即可求出答案.【详解】=0,∴4x+5=0,∴x=-5 4.故答案为:-54,0.【点睛】本题考查了二次根式,解题的关键是正确理解二次根式有意义的条件.11.-12【解析】【分析】由于3<4,由此即可确定a 值,然后就可以确定b ,代入所求代数式即可求出结果.【详解】∵3<4,∴a=3,-3,∴22ba b +=2=.【点睛】本题考查了确定无理数的整数部分和小数部分,然后把确定的值代入分式计算即可解决问题12.0(答案不唯一)【解析】试题分析:根据题意可以求得使得二次根式有意义的x 满足的条件为π﹣2x≥0,即x≤,,又因为整数x >﹣3,从而可以写出一个符和要求的x 值即可.考点:二次根式有意义的条件.13 2.【解析】分析:分两边长都为直角边和cm cm 的边长为直角边两种情况求解即可.详解:(1)当两边长都为直角边时,该三角形面积为:12=2;(2cm cm 的边长为直角边时,根据勾股定理求得该三角形另一条直角边为cm ,所以该三角形的面积为122=cm 2.故答案为2cm 2cm 2.点睛:本题主要考查了勾股定理的应用,解决问题时运用分类讨论的数学思想. 14.(答案不唯一)【解析】【分析】与的积为有理数的无理数,则被开方数中含有因数3即可.如【详解】被开方数中含有因数3即可.如2(答案不唯一).【点睛】本题考查了实数的运算,掌握无理数的定义是解题的关键.15.≤【解析】【分析】根据二次根式的性质得出|a-(-a)|,绝对值的意义去绝对值符号即可求出答案.【详解】∵a≤0,∴|a|=|a-(-a)|=|2a|=-2a,故答案为≤.【点睛】本题考查了对绝对值,二次根式的性质等知识点的理解和掌握,能正确去绝对值符号是解题的关键.16【解析】【分析】直接利用二次根式乘法运算法则化简得出答案.【详解】.【点睛】此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键. 17.3a+b﹣c.【解析】试题分析:根据二次根式的性质可得:(++p2−+−2+−−2=|+ +U﹣|+﹣U+|﹣﹣U,根据三角形三边关系可得:a+b-c>0,b+c-a>0,c-b-a<0,然后化简绝对值.试题解析:∵a,b,c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|,=a+b+c﹣(b+c﹣a)+(b+a﹣c),=a+b+c﹣b﹣c+a+b+a﹣c,=3a+b﹣c.18.(1);(2)2+.【解析】【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.【详解】(1)原式=-=-+=;(2)原式=1-5+1+5=2+【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.+【解析】【分析】先化简,然后去括号合并同类二次根式即可.【详解】原式=(-(-=+【点睛】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再去括号合并同类二次根式即可.20.33-22.【解析】【分析】首先进行分母有理化和二次根式的化简运算,然后进行合并运算.【详解】22-233+=33-22.【点睛】本题考查了二次根式的加减运算,要注意运算的技巧和先后顺序.21.2x ≥或12x <-.【解析】试题分析:根据题目信息,列出不等式组求解即可得到x 的取值范围.试题解析:要使有意义需2021x x -≥+,由乘法法则得⎩⎨⎧>+≥-01202x x 或⎩⎨⎧<+≤-01202x x ,解之得:第11页2x ≥或12x <-,即当2x ≥或12x <-时,有意义.考点:1.二次根式有意义的条件;2.阅读型.。

八年级数学下册《第十六章 二次根式》单元测试题含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试题含答案(人教版)

八年级数学下册《第十六章二次根式》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二次根式的是()A.√2B.√n C.√−16D.√2732.下列x的取值中,可以使√7−x有意义的是()A.0 B.16 C.20 D.20233.在下列二次根式中,是最简二次根式的是()A.√4B.√0.8C.√2D.√154.若√(b−3)2=3−b,则()A.b>3B.b<3C.b≥3D.b≤35.下列计算正确的是()A.3√5−√5=3B.√2×√3=√6C.√2+√3=√5D.√12÷√3=4 6.√50·√a的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.57.下列计算正确的是()A.√(−1)2=±1B.√27÷√3=9C.√14√6=√213D.13√18−3√89=√28.如图,从一个大正方形中裁去两个小正方形,则留下部分的面积为()A.11cm2B.4√6cm2C.2√6cm2D.√11cm2二、填空题9.计算√84÷√21的结果是.10.若式子√2−x在实数范围内有意义,则x的取值范围是.11.√3+√27=.12.已知xy<0,化简二次根式x√−yx2的正确结果为.13.已知√a−3+√2−b=0,则√a √6√b=.三、解答题14.计算:(1)√27+3√13−√24×√2(2)(√5−2)(2+√5)−(√3−1)215.已知a=2+√5,b=2-√5,求a2+b2+ab的值.16.若矩形的面积是(6+2√6)cm²,一边长是√6cm,求它的周长.17.在解决问题“已知a=√2−1,求3a2﹣6a﹣1的值”时,小明是这样解答的:∵a=√2−1=√2+1(√2+1)(√2−1)=√2+1∴a﹣1=√2∴(a﹣1)2=2,即a2﹣2a+1=2∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.请你根据小明的解答过程,解决下面的问题:若a=3−√7,求2a2﹣12a+1的值.18.已知二次根式√x+2.(1)求使得该二次根式有意义的x的取值范围;(2)已知√x+2是最简二次根式,且与√52可以合并.①求x的值;②求√x+2与√52的乘积.参考答案1.A2.A3.D4.D5.B6.B7.C8.B9.210.x≤211.4√312.√−y13.4√3314.(1)解:原式=3√3+√3−2√6×√2=4√3−4√3=0(2)解:原式=(√5)2−22−4+2√3=−3+2√3 15.解:∵a=2+√5,b=2-√5∴a-b=2+√5-2+√5=2√5ab=(2+√5)×(2-√5)=22-(√5)2=-1∴a2+b2+ab=(a-b)2+3ab=(2√5)2+3×(-1)=17.16.解:∵矩形的面积是(6+2√6)cm2,一边长是√6cm ∴另一边长为:(6+2√6)÷√6=(√6+2)cm∴矩形的周长为:2×(√6+2)+2√6=(4√6+4)cm.=3+√717.解:a=3−√7∴a−3=√7∴ 2a2﹣12a+1=2(a-3)2-17=2×(√7)2-17=14-17=-3.18.(1)解:∵二次根式√x+2有意义∴x+2≥0解得x≥−2;(2)解:①√52=√102∵√x+2与√102能合并,并且√x+2是最简二次根式∴x+2=10解得x=8;②由①可得√x+2×√52=√10×√102=5.。

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

《第十六章二次根式》单元测试题一、选择题(本大题共10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.要使代数式x +1x -1有意义,则x 的取值范围是( ) A .x ≥-1且x ≠1 B .x ≠1C .x >-1且x ≠1 D .x ≥-1 2.下列各等式成立的是( )A .(-3)2=-3 B.2-2=-2C .(5 3)2=15 D.(-3)2=33.下列运算正确的是( )A.2+3=6B.3×2=6C.()3-12=3-1 D.52-32=5-3 4.计算412+3 13-8的结果是( ) A.3+2B.3C.33D.3- 2 5.若a =2 2+3,b =2 2-3,则下列等式成立的是( ) A .ab =1 B .ab =-1C .a =b D .a =-b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.实数a ,b 在数轴上对应点的位置如图1所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )图1A .2a +bB .-2a +bC .2a -bD .b 8.若y =x -2+2-x3-3,则(x +y )x 的值为( )A .2B .-3C .7-4 3D .7+4 39.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定10.按图2所示的程序计算,若开始输入的x 值为2,则最后输出的结果是( )图2A .14B .16C .8+5 2D .14+ 2二、填空题(本大题共7小题,每小题3分,共21分)11.若最简二次根式a 与-32a -5能够合并,则a =________. 12.若整数x 满足|x |≤3,则使7-x 为整数的x 的值为________. 13.计算:8-2(3-2)0+⎝⎛⎭⎫12-1=_________.14.当a =15时,代数式2a -3-5a +7a +3的值为________. 15.计算:(54-1496)÷27=________.16.已知x =3+1,y =3-1,则x 2+2xy +y 2=________. 17.若a =2+1,则a 3-5a +2019=________. 三、解答题(本大题共5小题,共49分) 18.(9分)计算: (1)20+55-13×12; (2)512÷1550×1532;(3)(3 2-1)(1+3 2)-(3 2-1)2.19.(8分)已知a =2-2,b =2+2,求a 3b +a 2b 2a 2+2ab +b 2÷a 2-aba 2-b 2的值.20.(10分)已知x =7+4 3,y =-7+4 3,求下列各式的值. (1)1x +1y ;(2)x y +y x .21.(10分)若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.22.(12分)一个三角形三边的长分别为a ,b ,c ,设p =12(a +b +c ),根据海伦公式S =p (p -a )(p -b )(p -c )可以求出这个三角形的面积.若a =2,b =3,c =2 2,求: (1)三角形的面积S ; (2)长为c 的边上的高h .详解详析1.[解析] A 要使代数式有意义,应满足⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1且x ≠1.2.[解析] D 选项A 的被开方数为负数,无意义;2-2=122=⎝⎛⎭⎫122=12;()5 32=52×()32=25×3=75;()-32=|-3|=3.3.[解析] B A 项,2+3已是最简形式,不能再合并,故错误; B 项,3×2=6,故正确;C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误; D 项,52-32=16=42=4,故错误.故选B. 4.[解析] B 412+3 13-8=4×22+3×33-2 2= 3. 5.[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B. 6.[解析] D135=k 15=15×9=3 15,所以k =3;450=15m =15×15×2=15 2,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .7.[答案] D8.[解析] C 由二次根式有意义的条件,得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,解得x =2.于是y =- 3.所以(x+y )x =(2-3)2=7-4 3.故选C.9.[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,5 3=75,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.10.[解析] C 将2代入x (x +1)运算:2(2+1)=2+ 2.∵2+2<15,∴将2+2再次代入x (x +1)运算:(2+2)(2+2+1)=(2+2)(3+2)=8+5 2.∵8+5 2>15,∴将8+5 2输出.故选C.11.[答案] 5[解析] 由题意,知a 与-3 2a -5的被开方数相同,所以a =2a -5,解得a =5.12.[答案] -2或3[解析] 当x 取-2或3时,原式的值为整数,分别等于3或2. 13.[答案] 2+2[解析] 先把零指数幂和负整数指数幂按公式a 0=1(a ≠0),a -p =1a p (a ≠0)化简,8-2(3-2)0+⎝⎛⎭⎫12-1=2 2-2+2=2+2.14.[答案] 4 3[解析] 将a =15代入代数式得27-75+108,化简结果为4 3. 15.[答案]2 23[解析] 原式=(3 6-14×4 6)÷3 3=2 6÷3 3=2 23.16.[答案] 12[解析] 由x =3+1,y =3-1,得x +y =2 3,∴x 2+2xy +y 2=(x +y )2=(2 3)2=4×3=12.17.[答案] 2021[解析] ∵a 2=(2+1)2=3+2 2,∴原式=a (a 2-5)+2019=(2+1)(3+2 2-5)+2019=2(2+1)(2-1)+2019=2+2019=2021.18.解:(1)原式=2 5+55-33×2 3=3-2 =1.(2)原式=⎝⎛⎭⎫5×5×1512×150×32=5 36100=3.(3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12] =(3 2)2-1-(3 2)2+6 2-1 =6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)] =(3 2-1)×2 =6 2-2.19.解:a 3b +a 2b 2a 2+2ab +b 2÷a 2-ab a 2-b 2=a 2b (a +b )(a +b )2·(a +b )(a -b )a (a -b )=ab ,当a =2-2,b =2+2时, 原式=(2-2)(2+2)=2.20.解:∵x =7+4 3,y =-7+4 3, ∴x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3, xy =(7+4 3)(-7+4 3) =(4 3)2-72=48-49=-1. (1)1x +1y =x +y xy =8 3-1=-8 3. (2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.21.[解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:∵6<47<7, ∴47的整数部分为6, 即x =6,则47的小数部分y =47-6,∴(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11. 22.解:(1)p =12(2+3+2 2)=32(2+1),p -a =3+22,p -b =32(2-1),p -c =3-22,S =p (p -a )(p -b )(p -c )=32(2+1)×3+22×32(2-1)×3-22=347.(2)∵S =12ch ,∴h =2S c =327÷2 2=3814.。

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)总分150分时间120分钟一、选择题(本大题共10小题每小题3分共30分)1.下列的式子一定是二次根式的是()A.√−x−2B.√x C.√x2+2D.√x2−2思路引领:根据二次根式的被开方数是非负数对每个选项做判断即可.解:A、当x=0时﹣x﹣2<0 √−x−2无意义故本选项错误;B、当x=﹣1时√x无意义;故本选项错误;C、∵x2+2≥2 ∴√x2+2符合二次根式的定义;故本选项正确;D、当x=±1时x2﹣2=﹣1<0 √x2−2无意义;故本选项错误;故选:C.总结提升:本题考查了二次根式的定义.一般形如√a(a≥0)的代数式叫做二次根式.当a≥0时√a表示a的算术平方根.2.若√48n是正整数最小的正整数n是()A.6B.3C.48D.2思路引领:先将所给二次根式化为最简二次根式然后再判断n的最小正整数值.解:√48n=4√3n由于√48n是正整数所以n的最小正整数值是3故选:B.总结提升:此题考查二次根式的定义解答此题的关键是能够正确的对二次根式进行化简.3.如果√x(x−6)=√x⋅√x−6那么()A.x≥0B.x≥6C.0≤x≤6D.x为一切实数思路引领:根据二次根式的性质√ab=√a×√b(a≥0 b≥0)得出x≥0且x﹣6≥0 求出组成的不等式组的解集即可.解:∵√x(x−6)=√x⋅√x−6∴x≥0且x﹣6≥0∴x≥6故选:B.总结提升:本题考查了二次根式的乘除法的应用注意:要使√ab=√a×√b成立必须a≥0 b≥0.4.若式子√m+1|m−3|有意义 则实数m 的取值范围是( ) A .m ≥﹣1 B .m >﹣1 C .m >﹣1且m ≠3 D .m ≥﹣1且m ≠3思路引领:根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案.解:依题意得:{m +1≥0m −3≠0. 解得 m ≥﹣1且m ≠3.故选:D .总结提升:本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.5.若x ﹣y =√2−1 xy =√2 则代数式(x ﹣1)(y +1)的值等于( )A .2√2+2B .2√2−2C .2√2D .2思路引领:将所求代数式展开 然后将(x ﹣y )和xy 的值整体代入求解.解:原式=(x ﹣1)(y +1)=xy +x ﹣y ﹣1=√2+√2−1﹣1=2√2−2;故选:B .总结提升:此题主要考查了整体代入在代数求值中的应用.6.实数a 、b 在数轴上的位置如图所示 且|a |>|b | 则化简√a 2−|a +b|的结果为( )A .2a +bB .﹣2a +bC .bD .2a ﹣b思路引领:现根据数轴可知a <0 b >0 而|a |>|b | 那么可知a +b <0 再结合二次根式的性质、绝对值的计算进行化简计算即可.解:根据数轴可知 a <0 b >0:|a |>|b |则a +b <0原式=﹣a ﹣[﹣(a +b )]=﹣a +a +b =b .故选:C .总结提升:本题考查了二次根式的化简和性质、实数与数轴 解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.7.下列各数中与2+√3的积是有理数的是( )A .2+√3B .2C .√3D .2−√3思路引领:利用平方差公式可知与2+√3的积是有理数的为2−√3.解:(2+√3)(2−√3)=4﹣3=1;故选:D.总结提升:本题考查二次根式的混合运算;熟练掌握运算规律是解题的关键.8.如图正方形ABCD被分成两个小正方形和两个长方形如果两小正方形的面积分别是2和5 那么两个长方形的面积和为()A.√7B.2√10C.7D.√10思路引领:先根据两个小正方形的面积求出两个小正方形的边长从而可求大正方形的边长可得大正方形的面积再用大正方形的面积减去两个小正方形的面积即可得出两个长方形的面积和.解:∵两小正方形的面积分别是2和5∴两小正方形的边长分别是√2和√5∴大正方形的边长为(√2+√5)则大正方形的面积为(√2+√5)2=2+2√10+5=7+2√10∴两个长方形的面积和为7+2√10−2﹣5=2√10.故选:B.总结提升:本题考查完全平方公式以及二次根式解题时注意运用数形结合的思想.9.下列各式是最简二次根式的是()A.√13B.√12C.√a3(a≥0)D.√5 3思路引领:根据最简二次根式的定义判断即可.解:A、√13是最简二次根式故A符合题意;B、√12=2√3不是最简二次根式故B不符合题意;C、√a3=a√a(a≥0)不是最简二次根式故C不符合题意;D、√53=√153不是最简二次根式故D不符合题意;故选:A.总结提升:本题考查了最简二次根式熟练掌握最简二次根式的定义是解题的关键.10.若等腰三角形的两边长分别为√32和√50则这个三角形的周长为()A.9√2B.8√2或10√2C.13√2或14√2D.14√2思路引领:分腰长为√32和√50两种情况可求得三角形的三边再利用三角形的三边关系进行验证可求得其周长.解:当腰长为√32时则三角形的三边长分别为√32√32√50满足三角形的三边关系此时周长为13√2;当腰长为√50时则三角形的三边长分别为√32√50√50满足三角形的三边关系此时周长为14√2.综上可知三角形的周长为13√2或14√2.故选:C.总结提升:本题主要考查等腰三角形的性质掌握等腰三角形的两腰相等是解题的关键注意利用三角形的三边关系进行验证.二、填空题(本大题共8小题第11~12题每题3分第13~18题每题4分共30分.)11.比较大小:3√2>√17.(选填“>”、“=”或“<”)思路引领:求出3√2=√18再比较即可.解:3√2=√18>√17故答案为:>.总结提升:本题考查了实数的大小比较能选择适当的方法比较两个数的大小是解此题的关键.12.化简√(π−3)2=.思路引领:根据二次根式的性质解答.解:∵π>3∴π﹣3>0;∴√(π−3)2=π﹣3.总结提升:解答此题要弄清性质:√a2=|a| 去绝对值的法则.13.按如图所示的程序计算若开始输入的n值为√2则最后输出的结果是.思路引领:将n=√2代入n(n+1)比较>15还是≤15 若>15输出结果;若≤15 再输入直到结果大于15是输出结果即可.解:将n =√2代入n (n +1)得√2(√2+1)=2+√2<15∴将n =2+√2代入n (n +1)得(2+√2)(3+√2)=6+5√2+2=8+5√2>15故答案为8+5√2.总结提升:本题考查了实数的运算 找出运算的公式是解题的关键.14.已知a 、b 满足√(2−a)2=a +3,且√a −b +1=a ﹣b +1 则ab 的值为 .思路引领:直接利用二次根式性质进而分析得出a b 的值 进而得出答案.解:∵√(2−a)2=a +3若a ≥2 则a ﹣2=a +3 不成立故a <2∴2﹣a =a +3∴a =−12∵√a −b +1=a ﹣b +1∴a ﹣b +1=1或0∴b =−12或12 ∴ab =±14. 故答案为:±14. 总结提升:此题主要考查了二次根式的性质与化简 正确得出a 的值是解题关键.15.若x =√5−3 则√x 2+6x +5的值为 .思路引领:先将被开方数分解因式 再把x 代入二次根式 运用平方差公式进行计算.解:∵x =√5−3∴√x 2+6x +5=√(x +1)(x +5)=√(√5−2)(√5+2)=√1=1.总结提升:主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数 因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.16.若√11−x +√6−x =7 则√11−x −√6−x 的值是 .思路引领:先变形得到√6−x =7−√11−x 两边平方后得到√11−x =277 则√6−x =227 然后计算√11−x −√6−x .解:∵√11−x +√6−x =7∴√6−x =7−√11−x两边平方得6﹣x =49﹣14√11−x +11﹣x∴√11−x =277∴√6−x =7−277=227∴√11−x −√6−x =277−227=57.故答案为:57. 总结提升:本题考查了二次根式的化简求值 利用整体的数学思想解决问题.17.对于实数p q 我们用符号min {p q }表示p q 两数中较小的数.例如:min {1 2}=1.因此 min {−√2,−√3}= −√3 ;若min {(x ﹣1)2 x 2}=1 则x = ﹣1或2 .思路引领:通过比较−√2与−√3的大小填空;通过先比较(x ﹣1)2与x 2的大小 然后根据新定义运算法则得到方程并解答.解:∵−√3<−√2∴min {−√2 −√3}=−√3;∵min {(x ﹣1)2 x 2}=1∵(x ﹣1)2﹣x 2=x 2﹣2x +1﹣x 2=1﹣2x∴当x <12时 则x 2=1∴x =﹣1或1(舍)当x >12时 则(x ﹣1)2=1解得:x =2或0(舍)综上所述:x 的值为﹣1或2.故答案为:−√3;﹣1或2.总结提升:此题主要考查了实数的比较大小新定义关键是正确理解题意和分情况讨论.18.小明做数学题时发现√1−12=√12;√2−25=2√25;√3−310=3√310;√4−417=4√417;…;按此规律若√a−8b=a√8b(a b为正整数)则a+b=73.思路引领:找出一系列等式的规律为√n−nn2+1=n√nn2+1(n≥1的正整数)令n=8求出a与b的值即可确定出a+b的值.解:根据题中的规律得:a=8 b=82+1=65则a+b=8+65=73.故答案为:73.总结提升:此题考查了二次根式的性质及化简找出题中的规律是解本题的关键.三、解答题(本大题共8小题共90分请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)19.(20分)计算:(1)2√8+13√18−34√32;(2)(−12)﹣1−√12+(1−√2)0﹣|√3−2|;(3)√48÷√3−√12×√12+√24;(4)(3+√5)(3−√5)﹣(√3−1)2.思路引领:(1)先把二次根式化为最简二次根式然后合并即可;(2)利用负整数指数幂、零指数幂和绝对值的意义计算;(3)利用二次根式的乘除法则运算;(4)利用平方差公式和完全平方公式计算.解:(1)原式=4√2+13×3√2−34×4√2=4√2+√2−3√2=2√2;(2)原式=﹣2﹣2√3+1﹣(2−√3)=﹣2﹣2√3+1﹣2+√3=﹣3−√3;(3)原式=√16−√6+2√6=4−√6+2√6=4+√6;(4)原式=32﹣(√5)2﹣(3﹣2√3+1)=9﹣5﹣(4﹣2√3)=4﹣4+2√3=2√3.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.20.(10分)(1)已知y=√2x−1−√1−2x+8x求√4x+5y−6的平方根;(2)当﹣4<x<1时化简√x2+8x+16−2√x2−2x+1.思路引领:(1)根据二次根式有意义的条件求出x的值进而得到y的值代入代数式求出代数式的值最后求平方根即可;(2)根据完全平方公式对原式进行变形根据二次根式的性质化简即可.解:(1)∵2x﹣1≥0 1﹣2x≥0∴2x﹣1=0解得x=1 2∴y=4∴原式=√4×12+5×4−6=4∴4的平方根是±2;故原式的平方根是±2;(2)∵﹣4<x<1∴原式=√(x+4)2−2√(x−1)2=|x+4|﹣2|x﹣1|=x+4+2(x﹣1)=x+4+2x﹣2=3x+2.总结提升:本题考查了二次根式有意义的条件平方根掌握二次根式有意义的条件:被开方数是非负数是解题的关键.21.(10分)已知x=1√5−2y=1√5+2.(1)求x2+xy+y2.(2)若x的小数部分为a y的整数部分为b求ax+by的平方根.思路引领:(1)先分母有理化求出x、y的值再求出x+y和xy的值最后根据完全平方公式进行变形代入求出即可;(2)先求出x、y的范围再求出a、b的值最后代入求出即可.解:(1)x=√5−2=√5+2)(√5−2)×(√5+2)=√5+2 y=√5+2=√5−2x+y=(√5+2)+(√5−2)=2√5xy=(√5+2)×(√5−2)=5﹣4=1x2+xy+y2=(x+y)2﹣xy=(2√5)2﹣1=19;(2)∵2<√5<3∴4<√5+2<5 0<√5−2<1∴a=√5+2﹣4=√5−2 b=0∴ax+by=(√5−2)(√5+2)+(√5−2)×0=5﹣4=1∴ax+by的平方根是±√1=±1.总结提升:本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点能求出x+y和xy的值是解(1)的关键能估算出x、y的范围是解(2)的关键.22.(12分)观察、思考、解答:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2反之3﹣2√2=2﹣2√2+1=(√2−1)2∴3﹣2√2=(√2−1)2∴√3−2√2=√2−1(1)仿上例化简:√6−2√5;(2)若√a+2√b=√m+√n则m、n与a、b的关系是什么?并说明理由;(3)已知x=√4−√12求(1x−2+1x+2)•x2−42(x−1)的值(结果保留根号)思路引领:(1)根据题目中的例题可以解答本题;(2)根据题目中的例题可以将√a+2√b=√m+√n变形从而可以得到m、n、a、b的关系;(3)先化简x然后再化简所求的式子再将x的值代入即可解答本题.解:(1)√6−2√5=√5−2√5+1=√(√5−1)2=√5−1;(2)a=m+n b=mn理由:∵√a+2√b=√m+√n∴a+2√b=m+2√mn+n∴a=m+n b=mn;(3)∵x=√4−√12=√3−2√3+1=√(√3−1)2=√3−1∴(1x−2+1x+2)•x2−42(x−1)=x+2+x−2 (x−2)(x+2)⋅(x−2)(x+2)2(x−1)=2x(x−2)(x+2)⋅(x−2)(x+2)2(x−1)=x x−1=√3−1√3−1−1=√3−1√3−2=(√3−1)(√3+2)(√3−2)(√3+2)=﹣1−√3.总结提升:本题考查二次根式的化简求值、分式的混合运算解答本题的关键是明确题意利用题目中的例题解答问题.23.(8分)小莉在如图所示的矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片请你帮她求出图中空白部分的面积.思路引领:根据正方形的面积求出两个正方形的边长 从而求出AB 、BC 再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm 2和12cm 2∴它们的边长分别为√16=4cm √12=2√3cm∴AB =4cm BC =(2√3+4)cm∴空白部分的面积=(2√3+4)×4﹣12﹣16=8√3+16﹣12﹣16=(﹣12+8√3)cm 2.总结提升:本题考查了二次根式的应用 解题的关键在于根据正方形的面积求出两个正方形的边长.24.(10分)一个三角形的三边长分别为5√x 5 12√20x 54x √45x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值 使它的周长为整数 并求出此时三角形周长的值.思路引领:(1)根据题目中的数据可以求得该三角形的周长;(2)根据(1)中的结果 选择一个符合题意的x 的值即可解答本题.解:(1)∵一个三角形的三边长分别为5√x 512√20x 54x √45x ∴这个三角形的周长是:5√x 5+12√20x +54x √45x=√5x +√5x +√5x 2=5√5x 2; (2)当x =20时 这个三角形的周长是:5√5x 2=5×√5×202=25. 总结提升:本题考查二次根式的性质与化简 解答本题的关键是明确二次根式的意义.25.(10分)阅读理解题:学习了二次根式后你会发现一些含有根号的式子可以写成另一个式子的平方如3+2√2=(1+√2)2我们来进行以下的探索:设a+b√2=(m+n√2)2(其中a b m n都是正整数)则有a+b√2=m2+2n2+2mn√2∴a=m+2n2b=2mn 这样就得出了把类似a+b√2的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a b m n都为正整数时若a﹣b√5=(m﹣n√5)2用含m n的式子分别表示a b得a=b =;(2)利用上述方法找一组正整数a b m n填空:﹣√5=(﹣√5)2(3)a﹣4√5=(m﹣n√5)2且a m n都为正整数求a的值.思路引领:(1)利用完全平方公式把(m﹣n√5)2展开即可得到用含m n的式子分别表示出a b;(2)利用(1)中的表达式令m=2 n=1 则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4 则mn=2 再利用m n都为正整数得到m=2 n=1或m=1 n=2 然后计算对应的a的值即可.解:(1)∵a﹣b√5=(m﹣n√5)2∴a﹣b√5=m2﹣2√5mn+5n2∴a=m2+5n2b=2mn;(2)取m=2 n=1则a=4+5=9 b=4;(3)∵2mn=4∴mn=2而m n都为正整数∴m=2 n=1或m=1 n=2当m=2 n=1时a=9;当m=1 n=2时a=21.即a的值为9或21.故答案为m2+5n2 2mn;9 4 2 1.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后进行二次根式的乘除运算再合并即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.26.(10分)阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程请直接写出下列各式的结果.①√7+√6=√7−√6;②√n+√n−1=√n−√n−1;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=﹣1.思路引领:(1)①直接利用找出分母有理化因式进而化简求出答案;②直接利用找出分母有理化因式进而化简求出答案;(2)直接利用找出分母有理化因式进而化简求出答案;(3)直接利用找出分母有理化因式进而化简求出答案.解:(1)①√7+√6=√7−√6)(√7+√6)(√7−√6)=√7−√6;②√n+√n−1=√n−√n−1)(√n+√n−1)(√n−√n−1)=√n−√n−1;故答案为:√7−√6;√n−√n−1;(2)√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9=√2−1+√3−√2+√4−√3+⋯+√10−√9 =√10−1;(3)√3−1−√5−√3+√7−√5−√9−√7=√3+1 (√3−1)(√3+1)√5+√3(√5−√3)(√5+√3)√7+√5(√7−√5)(√7+√5)√9+√7(√9−√7)(√9+√7)=√3+12−√5+√32+√7+√52−√9+√72=√3+1−√5−√3+√7+√5−√9−√72=﹣1.故答案为:﹣1.总结提升:此题主要考查了分母有理化正确找出分母有理化因式是解题关键.。

(完整版)第十六章二次根式测试题

(完整版)第十六章二次根式测试题

…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。

第十六章 二次根式 单元 测 试 题(含答案)

第十六章   二次根式  单元 测 试 题(含答案)

第16 章单元测试卷班级:姓名:得分:一.选择题(共10小题,每题4分,共40分)1.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.2.下列等式正确的是()A.()2=3 B. =﹣3 C. =3 D.(﹣)2=﹣33.下列运算正确的是()A.a2+a=2a3 B. =a C.(a+1)2=a2+1 D.(a3)2=a6 4. 下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C. D.5.下列二次根式中能与2合并的是()A.B.C. D.6.已知x+y=3+22,x-y=3-22,则x2-y2的值为( ) A.4 2 B.6 C.1 D.3-2 2 7.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x的取值范围是( )A.x≤10 B.x≥10 C.x<10 D.x>10 8.甲、乙两人计算a+1-2a+a2的值,当a=5时得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对 B.甲、乙都错C.甲对,乙错 D.甲错,乙对9.若a3+3a2=-a a+3,则a的取值范围是( )A.-3≤a≤0 B.a≤0C.a<0 D.a≥-310.已知一个等腰三角形的两条边长a,b满足|a-23|+b-52=0,则这个三角形的周长为( )A.43+5 2 B.23+5 2C.23+10 2 D.43+52或23+10 2二.填空题(共3小题,每题5分,共20分)11.等式=成立的x的取值范围为12.如图,数轴上点A表示的数为a,化简:a+= .13.与最简二次根式5是同类二次根式,则a= .14. 计算6﹣10的结果是三.解答题(共1小题)15.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,求△ABC的面积。

16章二次根式全章测试题

16章二次根式全章测试题

第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。

≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。

, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。

;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。

初中数学人教八年级下册(2023年新编)第十六章 二次根式二次根式单元检测题

初中数学人教八年级下册(2023年新编)第十六章 二次根式二次根式单元检测题

第十六章二次根式单元测试题(满分100分,考试时间90分钟)学校____________ 班级_________ 姓名___________一、选择题(每题3分,共30分)1、下列各式中,不一定是二次根式的是( )A.2B.2b 1+C.2xD.x2、已知式子1x -有意义,则x 的取值范围是( )A. x=1B.x ≥1C.x ≤1D.x >13、若a 是二次根式,则( )A 、a >0 B.a <0 C.a ≥0 D.a ≤04、若式子ab 1a +-有意义,则点P (a ,b )在( )A.第一象限B.第二象限C.第三象限D.第四象限5、下列计算正确的是( )A 、6)6(2-=-- B.9)3(2=- C.1616-2±=)(D.3)3(2=-- 6、下列各式中是最简二次根式的是( ) A.x 12 B.9x - C.b aD.y x 37、已知m =1+ 3 ,n =1- 3 ,则代数式m 2+n 2-4mn 的值为( )A .16B .±4C .4D .58、两个正方形的面积分别为2cm2,8cm2,则这两个正方形的边长的和为()A .B .C .10cm D9、已知a <0,则化简b a 3-的结果是( )A.ab a --B.ab a -C.ab a -D.ab a10、若a+|a|=0,则22a 1a +-)(=( )A.2a -1B.1-2aC.-1D.1二、填空题(每题3分,共18分)11、要使式子1x 2+有意义,则x 的取值范围是___________12、已知|a -2|+b -3 =0,则a b =____.13、在实数范围内分解因式:x 3-5x =___________________14.已知x=17-,则x 2+2x+2=___________ 15、观察下列各式的规律:①322322+=;②833833+=;③15441544+=……若a 88a 88+=,则a=_________ 16、实数a ,b 在数轴上的对应点如图所示,化简=-++222)b a (b a _________三、解答题(共52分)17、计算(8分)(1)2712- (2)212818-+18、(8分)已知正方形的边长为a ,面积为S 。

第十六章《二次根式》单元检测题

第十六章《二次根式》单元检测题

第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12. 2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14. 231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

人教版八年级下册数学第十六章《二次根式》测试题含答案

人教版八年级下册数学第十六章《二次根式》测试题含答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1x 的取值范围是()A .2x >B .x ≥2C .2x <D .x ≤22有意义,则满足条件的a 的个数为()A .1B .2C .3D .43.下列计算正确的是()A =-3B .2=2C =D .+=4.下列计算正确的是()A =B =C .3-=D .8182+=5.估计8×3的运算结果应在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间6.下列式子中,最简二次根式的是()A B C D .7中,最简二次根式是()A .①②B .③④C .①③D .①④8.若式子2−1−1−2+1有意义,则x 的取值范围是()A .x≥0.5B .x≤0.5C .x=0.5D .以上答案都不对9.算式⨯之值为何?()A .B .C .D .10.把()A .B C .D .-111.下列计算正确的是().A =B .÷==C .()(222557-=-=-D .(((226+=-=-12.设++ S 的最大整数[S]等于()A .98B .99C .100D .101评卷人得分二、填空题13x 的取值范围是__.14.计算:+=_________.15.如果最简二次根式3−3和7−2是同类二次根式,那么a 的值是_____________16-(填“>”、“<”或“=”)17.已知x ,y ﹣2)2=0,则x ﹣y=__________.18.若x=2,则x 2﹣4x+8=_____.评卷人得分三、解答题1920÷.21.计算:1324+-+22.计算:212+23.已知:1x =-,1y =2222x y xy x y +--+的值.24.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.25.若a 、b 都是实数,且12++的值.26.已知:,的值.27.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:255;1==+等运算都是分母有理化.根据上述材料,(1(2++(3++ 参考答案1.B【解析】【分析】根据二次根式中的被开方数必须是非负数,即可求解.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.2.A【解析】试题分析:根据二次根式有意义的条件和偶次方的非负性,可以得,﹣(1﹣a)2≥0,则(1﹣a)2≤0,又(1﹣a)2≥0,可得(1﹣a)2=0,解得,a=1,故选A.考点:二次根式有意义的条件3.B【解析】【分析】将选项中的各式子计算出正确的结果,然后对照即可解答本题.【详解】解:A.∵3=,故A错误;B.22=,故B正确;C.+=,故C错误;不能合并故错误.D.,,D故选B【点睛】本题考查二次根式的性质、混合运算,解题关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据二次根式加减法则即可判定.【详解】A、不是同类项不能合并,故选项错误;B、+=,故选项正确;C、不是同类项不能合并,故选项错误;D、8182+=22+3252=22,故选项错误.故选B.【点睛】此题主要考查二次根式的加减运算,注意只有同类二次根式才能合并.同类二次根式:①根指数是2,②被开方数相同.二次根式的加减运算,只有同类二次根式才能合并.5.C【解析】【分析】先计算出原式=2+3,再进行估算即可.【详解】8×3=22+3=2+3,3的数值在1-2之间,所以2+3的数值在3-4之间.故选C.6.B【解析】试题解析:3=,故该选项错误;是最简二次根式,故该选项正确;=,故该选项错误;3=,故该选项错误.故选B.考点:最简二次根式.7.C【解析】【分析】直接根据最简二次根式的定义求解即可.【详解】不能化简,是最简二次根式;=55,不是最简二次根式;不能化简,是最简二次根式;,不是最简二次根式,故选C.【点睛】本题考查了最简二次根式:满足①被开方数不含分母;②被开方数中不含开得尽方的因数或因式的二次根式叫最简二次根式.8.C【解析】试题解析:要使二次根式有意义,则2−1≥01−2≥0,解得x=12,故选C.考点:二次根式有意义的条件.9.D【解析】【分析】先算括号内乘法,再合并同类二次根式,最后算括号外乘法即可.【详解】原式=),故选D.【点睛】本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.10.A【解析】【分析】直接利用二次根式的性质得出a的符号进而化简求出答案.【详解】由题意可知a<0,∴故选A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.D【解析】【分析】根据二次根式的运算法则计算各个选项,再判断.【详解】A、被开方数不同,不能相加,错误;B、原式==,错误;C、应利用完全平方公式计算,错误;D、符合平方差公式,正确.故选D.【点睛】本题考查了二次根式的混合运算.12.B【解析】【分析】1111n n=+-+,代入数值,求出=99+1-1100,由此能求出不大于S的最大整数为99.【详解】=()211n nn n++=+=111+1n n-+,∴S==1111111+11122399100-++-+++-=199+1100-=100-1100,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道1111nn=+-+是解答本题的基础.13.【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,同时结合分式的分母不能为0,即可求x的取值范围.由题意得,解得,故x的取值范围是.考点:本题主要考查了二次根式的意义和性质点评:解答本题的关键是掌握二次根式中的被开方数必须是非负数,分式的分母不能为0,否则二次根式、分式无意义14.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】=2-)2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.15.2【解析】【分析】根据最简二次根式及同类二次根式的定义列方求解.【详解】解:∵最简二次根式3−3与7−2是同类二次根式,∴3−3=7−2,解得:=2.故答案是:2.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.16.<【解析】【分析】根据二次根式的加减,可化简二次根式,根据被开方数越大,算术平方根越大,可得答案.【详解】=,故答案为<.【点睛】本题考查了实数比较大小,先化简,再比较大小.17.-3【解析】【分析】根据非负数的性质得到3020x y y -+⎧⎨-⎩==,再利用代入消元法解方程组得到x 和y 的值,然后计算x-y 的值.【详解】根据题意得3020x y y -+⎧⎨-⎩==,解得12x y -⎧⎨⎩==,所以x-y=-1-2=-3.故答案为-3.【点睛】本题考查了解二元一次方程组:利用加减消元法或代入消元法解二元一次方程组.也考查了非负数的性质.18.14.【解析】根据配方法,原式变形为2x 4x 8-+=(x-2)2+4,代入可得(-2)2+4=10+4=14.故答案为14.19.7【解析】【分析】先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】7==.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式,再进行二次根式的乘除运算.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.7【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】,,=7.【点睛】在进行二次根式相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.21.27344--【解析】【分析】先把括号内的各二次根式化为最简二次根式,再去括号,合并同类二次根式即可得解.【详解】1324+-,=1324+-+=233293+2244--,=-44-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,再进行去括号,然后进行二次根式的加减运算.22.2【解析】原式=43+23-3=63-43=2323.【解析】试题分析:根据x 、y 的值可以求得x-y 的值和xy 的值,从而可以解答本题.试题解析:∵x =1,y =1+,∴x -y =(1)-(1)=-,xy =(1-)(1)=-1,∴x 2+y 2-xy -2x +2y=(x -y)2-2(x -y)+xy=(-)2-2×(-)+(-1)=7+.24.24-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把x 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()()()x 2x 2x 2x 2x 312x 3x 32x 3x 2x 22x 2-+----÷=⋅=-----+-+.当x 2=时,原式=4==-.25【解析】【分析】先由二次根式的非负性可知,1﹣4a=0,求解出a 值后再代入求解b 值,最后将a 和b 的值代入原式进行求解.【详解】解:∵1﹣4a≥0且4a ﹣1≥0,∴1﹣4a=0,解得a=14,则b=12,所以原式22=-=【点睛】本题考查了利用二次根式的非负性求解参数并进行二次根式运算.26.【解析】【分析】先化简a ,b ,最后代值计算.【详解】∵=(2)2=7﹣)2,∴a+b=14,ab=1,∴a 2+4ab+b 2=(a+b)2+2ab=142+2×1=198,.【点睛】=a(a≥0)27.(1;(2﹣1;(3﹣1.【解析】【分析】(1+,即可得出答案;(2)根据分母有理化,可得实数的减法,根据实数的减法运算,可得答案.【详解】(1)==+;(2+1...++1=(3+⋯1...+-+﹣1【点睛】运用了二次根式的分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相等.找出分母的有理化因式是解本题的关键.。

人教版八年级下册数学第十六章《二次根式》测试题及答案

人教版八年级下册数学第十六章《二次根式》测试题及答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1.下列各式中,不属于二次根式的是()A B C D .2x 的取值范围是()A .x >15B .x≥15C .x≤15D .x≤53a 的取值范围是()A .﹣3≤a≤0B .a≤0C .a <0D .a≥﹣34.下列二次根式中,是最简二次根式的是()AB C D .5.下列运算结果正确的是()A =﹣9B .2(=2C 3=D .5=±6.若a、b ,则a 和b 互为()A .倒数B .相反数C .负倒数D .有理化因式7是同类二次根式的是()A B C D .8.下列计算正确的是()AB C =6D .=49.下列计算正确的是()A B .C .D .10.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.(2cm2C.cm2D.cm2评卷人得分二、填空题11中,x的取值范围是____________.12.若a、b为实数,且b=117a++4,则a+b=_____.13.计算:232⎛⎫⎪⎪⎝⎭=_____.14.观察下列等式:=1+11﹣111+=112,1+12﹣121+=116,1+13﹣131+=1112,…请你根据以上规律,写出第n个等式_____.15.若a<11=________;16.计算(5﹣2)2018(5+2)2019=_____.17.计算:)2=_____.18.不等式x﹣2x的解集是_____.评卷人得分三、解答题19.化简:(1(2+(10+|﹣2|﹣(1 2)﹣120.已知x、y是实数,且x+1,求9x﹣2y的值.21.已知实数a、b、c.22解:设x222x=++2334x=+-,x2=10∴x=.+0.+的值.23.(1)计算9(2)解不等式组()1318312x xx x ⎧--<-⎪⎨-≥+⎪⎩24.(1+(2)如图,数轴上点A 和点B 表示的数分别是1和.若点A 是BC 的中点.求点C 所表示的数.25.在解决问题“已知a =,求2281a a -+的值”时,小明是这样分析与解答的:∵2a ===∴2a -=∴()223a -=,即2443a a -+=∴241a a -=-∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据小明的分析过程,解决如下问题:(1);(2)若a =,求2361a a --的值.参考答案1.B 【解析】【分析】根据二次根式的定义(当a ≥0叫二次根式)进行判断即可.【详解】解:当a ≥0叫二次根式.A 、它属于二次根式,故本选项错误;B 、﹣2<0,不属于二次根式,故本选项正确;C 、它属于二次根式,故本选项错误;D 、x 2+1>0,属于二次根式,故本选项错误;故选B .【点睛】本题主要考查了二次根式的定义,当a≥0握二次根式的定义.2.B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x﹣1≥0,解得,x≥1 5,故选B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.A【解析】【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】==﹣∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.4.B【解析】【分析】根据最简二次根式概念即可解题.【详解】解:A.=22,错误,B.是最简二次根式,正确,C.错误,D.错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.5.B【解析】=9,所以A错误,因为(22=,所以B正确,=所以C错误,5=,所以D错误,故选B.6.D【解析】【分析】根据二次根式的运算法则即可求出答案【详解】a+b≠0,ab≠±1∴a与b不是互为相反数,倒数,负倒数故选D【点睛】本题考查二次根式,解题的关键是正确理解相反数,倒数,负倒数的概念.7.A【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A是同类二次根式,故本选项正确;B=不是同类二次根式,故本选项错误;C 、=不是同类二次根式,故本选项错误;D=与不是同类二次根式,故本选项错误;故选A .【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数8.B 【解析】【分析】根据同类二次根式才能合并可对A 进行判断;根据二次根式的乘法对B 进行判断;先把化为最简二次根式,然后进行合并,即可对C 进行判断;根据二次根式的除法对D 进行判断.【详解】解:A 与不能合并,所以A 选项不正确;B 、=2B 选项正确;C 、×,所以C 选项不正确;D÷=2,所以D 选项不正确.故选B .【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.9.D 【解析】【分析】根据二次根式加减运算法则,判断是否是同类二次根式即可求解.【详解】解:A.,不是同类根式无法进行加减,B.2+已经是最简形式,不是同类根式无法进行加减,C.已经是最简形式,不是同类根式无法进行加减,D.=正确.故选D.【点睛】本题考查了根式的加减,属于简单题,熟悉同类根式的概念,根式加减法则是解题关键. 10.D【解析】【分析】首先根据题意求出大正方形的边长,然后求出面积,用大正方形的面积减去两个小正方形的面积,即可求得.【详解】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是留下部分(即阴影部分)的面积是:2-30-48=cm2故选D.【点睛】本题主要考查的是二次根式的加减法运算,属于基础题目.解决本题的关键是:首先求出大正方形的边长,然后求出面积,再减去两个小正方形的面积,即可求得.11.x≥-1.【解析】【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】由题意得:x+1≥0,解得:x≥−1,故答案为x≥−1.【点睛】考查二次根式有意义的条件,被开方数大于等于0.12.5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩,解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.34【解析】【分析】直接利用二次根式的乘法运算法则求出即可.【详解】解:(2)2=34.故答案是:34.【点睛】主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.14()()211111n n n n n n ++=+=++【解析】【分析】根据已知算式得出规律,根据规律求出即可.【详解】解:∵观察下列等式:111111112=+-=+111112216=++=+1111133112=+-=+…∴第n 1n -11n +=1+()11n n +.=1+1n -11n +=1+()11n n +.【点睛】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.15.-a【解析】分析:根据二次根式的性质:a 2=|a |,再根据负数的绝对值等于它的相反数,非负数的绝对值等于它本身,进行化简即可.详解::∵a <1,∴10a -<,1-=11a --,11a =--,=a--.故答案为 a点睛:本题考查了二次根式的性质与化简.解题的关键是注意被开方数与开方的结果都是一个非负数.16.5+2【解析】【分析】把(5−2)2018(5+2)2019变形为(5−2)2018(5+2)2018(5+2),逆用积的乘方运算即可.【详解】(5−2)2018(5+2)2019=(5−2)2018(5+2)2018(5+2)=[(5−2)(5+2)]2018(5+2)=(5−4)2018(5+2)=5+2.故答案为:5+2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.171+【解析】【分析】利用多项式乘法展开,然后合并即可.【详解】解:原式=﹣6+7﹣+1.+1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.2x>-【解析】【分析】不等式移项合并,把x系数化为1,即可求出解集.【详解】x-2x,-1)x>-2,x>,x>-2.故答案为x>-2.【点睛】此题考查了解一元一次不等式和分母有理化,熟练掌握运算法则是解本题的关键.19.(1),(2)4.【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和零指数幂的意义计算.【详解】解:(1)原式=﹣;++-(2122=3+1=4.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.-1.【解析】【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,y﹣5≥0,5﹣y≥0∴y=5x=1∴9x﹣2y=9×1﹣2×5=﹣1∴9x﹣2y的值为﹣1【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.21.2a+b−2c【解析】【分析】根据数轴上点的位置判断出绝对值和根号里边式子的正负,利用绝对值和二次根式的代数意义化简,去括号合并即可得到结果.【详解】由数轴可知:a>0,a+b=0,c−a<0,b−c>0∴原式=a−0−(c−a)+b−c=a−c+a+b−c=2a+b−2c【点睛】本题考查的是实数与数轴,熟练掌握绝对值和二次根式的概念是解题的关键.22【解析】【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=()2+2,即x 2+4,x 2=14∴x.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.(1),(2)原不等式组无解.【解析】【分析】(1)按二次根式的乘除法法则,从左往右依次算起;(2)分别解组中的两个方程,再得到不等式组的解集.【详解】解:(1)原式=÷=5273⨯⨯=(2)()1318312x x x x ⎧--<-⎪⎨-+⎪⎩①② ,解①,得x >﹣2,解②,得x ≤﹣5∴原不等式组无解.【点睛】本题考查了二次根式的乘除运算和一元一次不等式组的解法.掌握二次根式的乘除法法则和不等式组的解法是解决本题的关键.24.(1(2)【解析】【分析】(1)根据二次根式的乘除法法则和平方差公式计算.(2)设点C所表示的数是x,根据AC=AB列出方程,解方程即可.【详解】+-,(1)原式253.(2)设点C所表示的数是x,∵点A是线段BC的中点,∴AC=AB,∴,∴即点C所表示的数是.故答案为【点睛】本题考查了实数与数轴,用到的知识点为:数轴上两点间的距离公式,线段中点的定义.掌握公式与定义是解题的关键.同时也考查了二次根式的混合运算.25.(1(2)2.【解析】【分析】(1)根据分母有理化的方法可以解答本题;(2)根据题目中的例子可以灵活变形解答本题.【详解】解:(12+=2,2==+(2)∵1.a ===+∴1a -=∴2212a a -+=,∴221a a -=∴2363,a a -=∴23612a a --=.【点睛】二次根式的化简求值,熟练掌握分母有理化的方法是解题的关键.。

人教版八年级下册第16章二次根式单元测试含答案

人教版八年级下册第16章二次根式单元测试含答案

第十六章 《二次根式》单元测试题一、选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子必然是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++mm 的值是( )A. 23B. 32C.22D. 03. 若13-m 成心义,则m 能取的最小整数值是( ) A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 25. 下列二次根式中属于最简二次根式的是( )A.14B.48C.baD.44+a6. 若是)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。

做错的题是( ) A. ① B. ② C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=aC. 1=aD. 1-=a10. 若n 75是整数,则正整数n 的最小值是( ) A. 2B. 3C. 4D. 5二、填空题(本大11. 若b =-32)(12. 2)52(-=13. 若m < 0,则m 14.231-与15. 若35-=x ,16. 若一个长方体的17. 若3+-=x y 18. 若3的整数部19. 已知a ,b ,c 为三20. 观看下列各式:的式子写出你猜三、解答题(本大21. 计算(本题共(1))224(-(3))(632(+22. (5分)已知:23. (10分)已知32-=x ,32+=y ,求下列代数式的值: (1)222y xy x ++;(2)22y x -24. (7分)海伦—秦九韶公式:若是一个三角形三边长别离为a ,b ,c ,设2cb a p ++=,则三角形的面积为))()((c p b p a p p S ---=,用公式计算下图三角形的面积。

第十六章 二次根式单元检测卷(含解析)

第十六章 二次根式单元检测卷(含解析)

人教版2023年八年级下册第16章《二次根式》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式中,是二次根式的是()A.B.C.D.2.下列各式是最简二次根式的是()A.B.C.D.3.若,则x的取值范围是()A.x>3B.x≥3C.x<3D.x≤34.下列各式中,能与合并的是()A.B.C.D.5.下列计算中,正确的是()A.B.C.D.6.若等腰三角形的两边长分别为和,则这个三角形的周长为()A.2+10B.4+5C.4+10D.4+5或2+107.已知实数a在数轴上的位置如图所示,则化简:的结果为()A.2B.﹣2C.2a﹣6D.﹣2a+68.已知是整数,则满足条件的最小正整数m为()A.2B.3C.4D.59.计算式子(﹣2)2021(+2)2020的结果是()A.﹣1B.﹣2C.2﹣D.110.若a=﹣1,b=+1.则代数式a3b﹣ab3的值是()A.4B.3C.﹣3D.﹣4二.填空题(共6小题,满分18分,每小题3分)11.如果二次根式有意义,那么x的取值范围是.12.已知x,y为实数,且,则x y的值是.13.与最简二次根式可以合并,则m=.14.已知xy<0,化简:x=.15.已知m=2+,n=2﹣,则的值为.16.海伦一秦九韶公式;海伦公式又译作希伦公式,海龙公式、希罗公式、海伦一秦九韶公式,它是利用三角形的三条边的边长直接求三角形面积的公式,表达式为:,它的特点是形式漂亮,便于记忆,而公式里的p为半周长(周长的一半)即:;已知三角形最短边是3,最长边是10,第三边是奇数,则该三角形的面积是.三.解答题(共7小题,满分52分)17.(6分)计算:(1);(2).18.(8分)计算:(1);(2).19.(6分)先化简,后求值:,其中.20.(7分)小明在复习二次根式的性质后,在一本数学资料上看到这样一道题及它的解法:问题解法已知a =,b =,试用含a,b 的式子表示.==请根据表中的解法,回答下列问题:(1)这个问题的解法主要用了二次根式的(填“乘除”或“加减”).(2)利用上述解法解答问题:已知a=,b=,试用含a ,b 的式子表示.21.(8分)已知,.求:(1)x﹣y,xy的值;(2)x2+xy+y2的值.22.(8分)著名数学教育家G •波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:====1+.解决问题:(1)在括号内填上适当的数:==③①:,②:,③.(2)根据上述思路,化简并求出+的值.23.(9分)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简:+++…++.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、被开方数n2≥0,故A是二次根式;B、D被开方数小于0,无意义,故B、D不是二次根式;C、是三次根式,故C不是二次根式;故选:A.2.【解答】解:A、是最简二次根式;B、==2,不是最简二次根式;C、=|a|,不是最简二次根式;D、,被开方数的分母中含有字母,不是最简二次根式;故选:A.3.【解答】解:∵,即x﹣3≥0,解得x≥3,故选:B.4.【解答】解:A、化简后不能与合并,不合题意;B、化简后不能与合并,不合题意;C、化简后不能与合并,不合题意;D、化简后能与合并,符合题意;故选:D.5.【解答】解:与不能合并,故A不符合题意;×=3,故B符合题意;与不能合并,故C不符合题意;÷=,故D不符合题意;故选:B.6.【解答】解:当腰长为时,则三角形的三边长分别为,,,不满足三角形的三边关系;当腰长为时,则三角形的三边长分别为,,,满足三角形的三边关系,此时周长为2+10.综上可知,三角形的周长为2+10.故选:A.7.【解答】解:根据实数a在数轴上的位置得知:2<a<4,即:﹣2>0,a﹣4<0,故原式=a﹣2+4﹣a=2.故选:A.8.【解答】解:∵=2是整数,∴最小正整数m的值是:5.故选:D.9.【解答】解:(﹣2)2021(+2)2020=[(﹣2)×(+2)]2020×(﹣2)=(﹣1)2020×(﹣2)=1×(﹣2)=﹣2,故选:B.10.【解答】解:∵a=﹣1,b=+1,∴ab=(﹣1)(+1)=2﹣1=1,a+b=﹣1++1=2,a﹣b=﹣1﹣(+1)=﹣1﹣﹣1=﹣2,∴a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b)=1×2×(﹣2)=﹣4,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵二次根式有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.【解答】解:依题意得:,解得x=3.则y=﹣2,所以x y=3﹣2=.故答案为:.13.【解答】解:=3,由题意得:m﹣1=3,解得:m=4,故答案为:4.14.【解答】解:∵二次根式,∴y<0,∵xy<0,∴x>0,∴=,故答案为:.15.【解答】解:∵m=2+,n=2﹣,∴m+n=(2+)+(2﹣)=4,mn=(2+)×=1,∴===,故答案为:.16.【解答】解:∵三角形最短边是3,最长边是10,第三边是奇数,∴10﹣3<第三边<10+3,故7<第三边<13,则第三边长为:9,11(不合题意舍去),故p==11,∴S==4.故答案为:4.三.解答题(共7小题,满分52分)17.【解答】解:(1)原式=5××=5×=1;(2)原式=﹣=2﹣.18.【解答】解:(1)原式=3﹣(2+2+1)+3﹣1=3﹣3﹣2+3﹣1=﹣1;(2)原式=+6x•﹣x2•=+2x﹣x2•=+2x﹣=3x.19.【解答】解:∵a=+=+,∴(a+)(a﹣)﹣a(a﹣6),=a2﹣3﹣a2+6a,=6a﹣3,=6×(+)﹣3,=3.20.【解答】解:(1)这个问题的解法主要用了二次根式的乘除.故答案为:乘除.(2)===××=ab=.21.【解答】解:(1)∵,,∴,,∴.又∵,,∴;(2)∵,xy=1,∴,∴x2+xy+y2的值为195.22.【解答】解:(1)由题意得,==3+,则①=5,②=,③=3+,故答案为:①5;②;③3+;(2)+===5﹣=7.23.【解答】解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9.。

人教版八年级下册数学第十六章《二次根式》测试题有答案

人教版八年级下册数学第十六章《二次根式》测试题有答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1.已知01x <<,那么在21,x x x中,最大的数是()A .xB .1xC D .2x2.若a ﹥0,则a的值为()A .1B .-1C .±1D .-a3.下列各式属于最简二次根式的有()A B CD .4.下列运算中,错误..的是().A .2×3=6B 2=2C .22+32=52D .(2−3)2=2−35.化简16x ).A .-B .-C .2D .06.下列命题正确的是().A a =B .是最简二次根式C .化成最简二次根式后被开方数相同D 7.如图,在山坡上种树,已知∠A=30°,AC=3m ,则相邻两株树的坡面距离AB=().A .6mB 3C .3mD .2m82a a =-则实数a 在数轴上的对应点一定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧92244123x x x -+-得()A .2B .44x -+C .-2D .44x -10.若a=7+433-7,则a 、b 的关系为()A .互为相反数B .互为倒数C .互为负倒数D .绝对值相等评卷人得分二、填空题11.24的倒数的相反数是_________________.12.已知最简二次根式3b -与3ab a=_________________.13.在二次根式13x x -+中,x 的取值范围是__________________.14225328-=_________021821)(2)-+++-=___________.15.计算:1123xy x -;3463xx ÷=________.16x y+_________________.17.若a b c 、、为△ABC 的三边,化简22()()a b c a b c --+-+.18.若20062007a a a -+-=22006a -=__________.19.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.评卷人得分三、解答题20.已知+1,y=-1,求x 2+xy+y 2的值.21.直角三角形两直角边长分别为1,1b =.求斜边c 的长及直角三角形的面积.22.已知:实数x y 、满足4310280x y x y ++=⎧⎨--=⎩的值.23.已知:210250b b +++=24.已知a =,求2212211a a a a a-+---的值.25.有一道题“先化简,再求值:22241244x x x x x -+÷+--(+x 2-3,其中x =.”小玲做题时把“x =错抄成了“x =,但她的计算结果也是正确的,请你解释这是怎么回事?26.如果记()1xy f x x==+,并且f 表示当x=时,y 的值,即12f ==;f表示当x=时,y的值,即f =f 表示当时,y 的值,即f ==;求f+f+f+f+f+…+f+f 的值.参考答案1.B 【解析】【分析】根据0<x <1,可设x=12,从而得出x ,1x x 2分别为12,2,22,14,再找出最小值即可.【详解】∵0<x <1,∴设x=12,∴x ,1x x 2分别为12,2,22,14,故2的值最大,故选B .【点睛】本题考查了实数的大小比较,解本题的关键是特殊值法.2.B【解析】【分析】化简,然后代入数式计算求值.【详解】a>0,∴a=.a a =aa-=-1.所以B选项正确.【点睛】||a=化简,然后代入数式计算求值是本题解题的关键.3.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A=A选项错误;B是最简二次根式,故B选项正确;C=,故不是最简二次根式,故本选项错误;D=D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.4.D【解析】试题分析:根据2=|U 可得:(2−3)2=|2−3|=3−2.考点:二次根式的计算5.D 【解析】【分析】根据二次根式的加减运算法则进行计算.【详解】原式=216x x -2x 2x=1122=0.所以D 选项正确.【点睛】本题考查的是二次根式的加减法运算法则,化简二次根式是本题解题的关键.6.C 【解析】【分析】根据二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则进行判断.【详解】A 、当a<0时,算式不成立,所以A 选项错误;B 的最简二次根式是22,所以B 选项错误;C 化成最简二次根式后为,所以C 选项正确;D =,所以D 选项错误.【点睛】本题考查的是二次根式的性质、二次根式的化简法则、二次根式的开方法则、二次根式的乘法法则,熟练掌握法则是本题的解题关键.7.C【分析】根据坡度角的余弦值=水平距离:坡面距离即可解答.【详解】cos30°=3 AB,∴AB=2.故选C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是坡度角的余弦值=水平距离:坡面距离.8.C【解析】试题分析:一个数开方后等于它的相反数,说明这个数是负数或者等于零.故非正数在数轴上对应点都在原点或者原点的左侧.选C.考点:实数点评:本题难度较低,主要考查学生对实数和平方根等概念的掌握.9.A【解析】【分析】-2,可得2x-3>0,由于2x-1>2x-3,所以2x-1>0,再进行开方运算即可.【详解】原式-2=2x-1-2x+3=2.故选A.【点睛】本题考查二次根式的性质与化简,熟练掌握性质是解题的关键.【解析】【分析】根据互为负倒数的性质进行计算.【详解】(-7)=48-49=-1ab=7+所以C选项正确.【点睛】本题考查的是互为负倒数的性质,熟练掌握性质是本题的解题关键.11.-【解析】【分析】根据倒数相反数的定义、性质进行运算.【详解】24的倒数为,2.4的倒数的相反数是化简的结果为-.又故答案为-.【点睛】本题考查的是倒数相反数的定义、性质,熟练掌握定义、性质是本题的解题关键. 12.3【解析】【分析】根据最简二次根式的定义以及同类二次根式的性质,列方程求解.【详解】由题意可知与∴3b=ab ,解得a=3.故答案为:3.【点睛】本题考查的知识点是最简二次根式,解题的关键是熟练的掌握最简二次根式.13.1x ≥【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:x-10x+30≥⎧⎨≠⎩,解得:x≥1.故答案为x≥1.【点睛】本题考查的知识点是函数自变量的取值范围,解题的关键是熟练的掌握函数自变量的取值范围.14.45114+【解析】【分析】分别应用平方差公式以及根式和次方即可得到答案.【详解】=)()0212-+-+1+14=114.故答案为45,114.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.15.【解析】【分析】直接进行二次根式的乘除运算即可,然后再化简.【详解】-=÷=.故答案为.【点睛】本题考查的知识点是二次根式乘除法,解题的关键是熟练的掌握二次根式乘除法.16【解析】【分析】将分子x-y化成,再约分即可.【详解】..【点睛】本题考查的知识点是分式的化简,解题的关键是熟练的掌握分式的化简.17.2c【解析】【分析】根据三角形两边之和大于第三边,可得a、b、c的关系,根据二次根式的性质,可得答案.【详解】∵a,b,c是三角形的三边,两边之和大于第三边∴b+c a,a-(b+c)0,即a-b-c0同理a-b+c0=b+c-a+a+c-b=2c.故答案为2c.【点睛】本题考查的知识点是二次根式的性质与化简,解题的关键是熟练的掌握二次根式的性质与化简.18.【解析】【分析】根据被开方数大于等于0可以求出a≥2007,然后去掉绝对值号整理,再两边平方整理即可得解.【详解】根据题意得,a−2007≥0,解得a≥2007,∴原式可化为:,,两边平方得,a−2007=20062,=..故答案为.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.19.(1)a2,a3=2,a4=;(2)a n(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC.同理:AE=2,EH=,…,即a 2,a 3=2,a 4=.(2)a n n 为正整数).20.7【解析】【分析】根据二次根式的加减法法则、平方差公式求出x+y 、xy ,利用完全平方公式把所求的代数式变形,代入计算即可.【详解】∵+1,-1,∴x+y=+1)+-1),xy=+1)-1)=1,∴x 2+xy+y 2=x 2+2xy+2y -xy=2x y ()+-xy=2(-1=7.故答案为:7.【点睛】本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.21.112c S ==【解析】【分析】根据勾股定理即可得到斜边长,直角边相乘即直角三角形的面积.再化简即可.【详解】∵直角三角形两直角边长分别为a=2-1∴斜边=.直角三角形面积为:12ab=121)+1)=12(12-1)=112.【点睛】本题考查的知识点是勾股定理以及有理数的混合运算,解题的关键是熟练的掌握勾股定理以及有理数的混合运算.22.-6【解析】【分析】先将方程组解得x ,y ,再直接带入即可.【详解】∵实数x ,y 满足4310280x y x y ++=⎧⎨--=⎩∴解得23x y =⎧⎨=-⎩-=-6.【点睛】本题考查的知识点是解一元二次方程组,解题的关键是熟练的掌握解一元二次方程组.23.12【解析】【分析】先根据非负数之和求得a ,b ,带入式中即可求得答案.【详解】∵210250b b +++=∴(b+5)2=0∴50210b a +=⎧⎨-=⎩,即a=12,b=-5=12.【点睛】本题考查的知识点是非负数的性质:算术平方根,偶次方,解题的关键是熟练的掌握非负数的性质:算术平方根,偶次方.24.212-【解析】【分析】这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后将a 的值代入求解.【详解】原式=()()211111112a a a a a a a ---=--=---【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.25.7【解析】【分析】先根据分式混合运算的法则把原式进行化简,结果是22x +1,不论x=−,x 2的值均为3,原式的计算结果都是7,所以把”错抄成了”,计算结果也是正确的.【详解】22241244x x x x x -+÷+--(+2x -3=224444x x x x -++-(2x -4)+2x -3=2x +4+2x -3=22x +1.因为化简原式的结果是22x +1,不论x=或,x 2的值均为3,原式的计算结果都是7,所以把错抄成了,计算结果也是正确的.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.26.991 2【解析】【分析】根据f(x)+f(1x)=1xx++111xx+=11xx++=1,原式结合后,计算即可得到结果.【详解】由题意可知:1 f f+=,所以化简,原式= f+99=991 2【点睛】本题考查的知识点是二次根式的化简求值,解题的关键是熟练的掌握二次根式的化简求值.。

人教版八年级下数学《第16章二次根式》单元测试(含答案)

 人教版八年级下数学《第16章二次根式》单元测试(含答案)

人教版八年级下数学《第16章二次根式》单元测试(含答案)一、选择题1.下列式子中,属于最简二次根式的是()A. B. C. D.2.下列各式中3 ,,,,,二次根式有()个.A. 1B. 2C. 3D. 43.下列计算结果正确的是()A. + =B. 3 ﹣=3C. ×=D. =54.=()A. ﹣1B. 1C. ﹣D. ﹣5.说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。

A. 1个B. 2个C. 3个D. 4个6.若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 17.若与化成最简二次根式是可以合并的,则m、n的值为()A. m=0,n=2B. m=1,n=1C. m=0,n=2或m=1,n=1D. m=2,n=08.二次根式中x的取值范围是()A. x>2B. x≥2C. x<2D. x≤29.把m根号外的因式适当变形后移到根号内,得()A. B. - C. - D.10.在实数范围内,有意义,则x的取值范围是()A. x≥0B. x≤0C. x>0D. x<011.如果成立,那么实数a的取值范围是()A. B. C. D.12.一个长方形的长和宽分别是、,则它的面积是()A. B. 2(3 +2 ) C. D.二、填空题13.计算:(2 )2=________.14.计算:-=________15.代数式有意义的条件是________.16.化简 ________.17.当x取________时,的值最小,最小值是________;当x取________时,2-的值最大,最大值是________.18.已知x=+,y=-,则x3y+xy3=________ .19.若x、y都是实数,且y= 则x+y=________20.使式子有意义的x的取值范围是________ .21.填空:﹣1的倒数为________.22.比较大小________.(填“>”,“=”,“<”号)三、解答题23.(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.24.若x、y都是实数,且y=++8,求x+y的值.25.已知y= +9,求代数式的值.参考答案一、选择题B BCD B D C D C A B C二、填空题13.2814.215.x≥﹣316.17.-5;0;5;218.1019.1120.x是实数21.22.>三、解答题23.解:(1)原式=()2﹣2××+()2+(2)2﹣()2 =2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.25.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1。

(完整版)第16章《二次根式》单元测试卷(含答案)(可编辑修改word版)

(完整版)第16章《二次根式》单元测试卷(含答案)(可编辑修改word版)
∴原式=
531
四、应用题
28.解:登ft者看到的原水平线的距离为d18
,现在的水平线的距离为d28,
8n
d152。
d282
五、综合题
29.(1)=;(2)=3;
3 2
(3)=。
14. 计算:
;(34
15. 若一个正方体的长为2
6cm,宽为
3cm,高为
2cm,则它的体积为cm3

16.若y
4,则xy。
17. 若的整数部分是a,小数部分是b,则
3ab。
18.若
,则m的取值范围是。
19.若x
,1
x
2
,则y。
4
20. 已知a,b,c为三角形的三边,则、
=。
三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)
三、解答题
21.解:原式=2(
1)3
4
22
2
232
23;
22.解:原式=(54
23.解:原式=(3
2x)3
4 15)

3
(2
4 15)
24;
24.解:原式=3
4
44
25.解:原式=
14;
26.解:x1,
原式(1)2(1)1421163
1
27.解:18x0,8x10,18x8x10x8,∴y2。
A.a,b均为非负数B.a,b同号
a
C.a≥0,b>0D.0
b
5. 已知a<b,化简二次根式的正确结果是()
A.aB.a
C.aD.a
6. 把m
根号外的因式移到根号内,得()
A.B.C.D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: 班级: 学号: 成绩:
一.选择题:(每小题3分,共15分)
1.若m -3为二次根式,则m 的取值为 ( )
A .m≤3
B .m <3
C .m≥3
D .m >3
2.以下运算错误的是( )
A =
B =
C .2=
D 2=
3.下列二次根式中,最简二次根式是 ( )
A .23a
B .3
1 C .153 D .143 4.下列式子中二次根式的个数有 ( )
⑴3
1;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个
5、若A =
A 、23a +
B 、22(3)a +
C 、22(9)a +
D 、29a +
二、填空题:(每空2分,共22分)
6.当x 时,式子1+x 有意义,当x 时,式子
422--x x 有意义;
7. 已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322
;
9. 比较大小:23-______32-;
10. 若x x x
x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,
()=-25334 ; 12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝;
三.解答题: 13. 3222233--+ 14. 222333-
--
15.⋅-121).
2218(
16. (4(3-
16.已知:32-=x ,32+=y ,求代数式22y x +的值;
17.
m 、n ,使22m n a +=
并且mn =
则将a ±变成()2
222m n mn m n +±=±
(
22232212111+=++=+
+=+== 仿照上例化简下列各式:
(1)347+ (2)42213-
18.
19. .883x 252的值式或为相反数,求二次根与已知y x y y x -----
20.把下列各式化成最简二次根式: ⑴27
12135272
2-; ⑵b a c abc 4322-. .4
124)28(22+-+-x x x 化简:。

相关文档
最新文档