信息论与编码课程设计报告

合集下载

信息论与编码课程报告

信息论与编码课程报告

信息论与编码课程报告
信息论与编码是一门重要的课程,在计算机科学与技术,通信工程,信号处理
等专业中发挥着重要的作用。

信息论涉及到信息的量化、源编码、信息隐藏,噪声抑制以及信息协议的分析等诸多方面。

而编码中的许多领域如信号处理、视频编码、图像处理等又建立在信息论的基础之上。

在这门课程中,学生可以学习如何把信息量化,以及不同的编码方法和算法,明白信息和音频的处理,还可以学习复杂格式的音频、视频编码。

此外,学习中还会涉及到模拟和数字信号,熵、信道容量与噪讲,数字信号处理,数字信号编码等多种多样的知识点,其中还包括噪讲模型、噪讲容量等多种不同概念。

整个信息论和编码领域有着丰富的应用,为听力、视觉等智能分析技术的实现
提供了理论支撑。

基于信息论的研究发明了压缩编码技术,它可以用来压缩数据,提高传输速率和储存空间,同时编码技术可以使数据免于传输过程中的损耗,有效地实现了音频、视频等多种数据的传输。

此外,信息论和编码在模式识别与多媒体通信、卫星通信、生物医学等多个领域都有着重要的应用。

综上所述,信息论与编码课程是个重要的学科,在计算机科学与技术,通信工程,算法,信号处理,多媒体通信,生物医学等领域中有着广泛的应用。

该课程主要是以学习源编码,熵、信道容量,噪讲,数字信号处理,数字信号编码,噪讲模型,压缩编码等多种专业概念为基础,因此有深入研习的必要,以获得多方面的知识和理解,为日后的技能应用打实基础。

信息论与编码课程设计

信息论与编码课程设计

建筑大学电气与电子信息工程学院信息理论与编码课程设计报告设计题目:哈夫曼编码的分析与实现专业班级:电子信息工程101学生: _____________________________学号: ________________________________ 扌指导教师:吕卅王超________________ 设计时间:2013.11.18 —2013.11.29、设计的作用、目的《信息论与编码》是一门理论与实践密切结合的课程, 课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。

其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。

通过完成具体编码算法的程序设计和调试工作,提高编程能力,深刻理解信源编码、信道编译码的基本思想和目的,掌握编码的基本原理与编码过程,增强逻辑思维能力,培养和提高自学能力以及综合运用所学理论知识去分析解决实际问题的能力,逐步熟悉开展科学实践的程序和方法二、设计任务及要求通过课程设计各环节的实践,应使学生达到如下要求:1. 理解无失真信源编码的理论基础,掌握无失真信源编码的基本方法;2. 掌握哈夫曼编码/ 费诺编码方法的基本步骤及优缺点;3. 深刻理解信道编码的基本思想与目的,理解线性分组码的基本原理与编码过程;4. 能够使用MATLA或其他语言进行编程,编写的函数要有通用性。

三、设计容一个有8个符号的信源X,各个符号出现的概率为:X x1, x2, x3, x4, x5, x6 x7 x8P(X) 0.4 0.18 0.1 0.1 0.07 0.06 0.05 0.04 编码方法:先将信源符号按其出现的概率大小依次排列,并取概率最小的字母分别配以0和1两个码元(先0后1或者先1后0,以后赋值固定),再将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。

并不断重复这一过程,直到最后两个符号配以0和1为止。

信息论与编码课程设计报告书

信息论与编码课程设计报告书

信息论与编码课程设计报告设计题目:判断唯一可译码、香农编码专业班级电信12-03学号7学生琳指导教师成凌飞教师评分2015年3月21日目录一、设计任务与要求 (2)二、设计思路 (2)三、设计流程图 (3)四、程序运行及结果 (4)五、心得体会 (6)参考文献 (7)附录:源程序 (8)一、设计任务与要求通过本次课程设计的练习,使学生进一步巩固信源熵、信源编码的基本原理,掌握具体的编码方法,熟悉编程软件的使用,培养学生自主设计、编程调试的开发能力,同时提高学生的实践创新能力。

1、判断唯一可译码利用尾随后缀法判断任意输入的码是否为唯一可译码,即设计一个程序实现判断输入码组是否为唯一可译码这一功能。

2、香农编码熟悉运用香农编码,并能通过C语言进行编程,对任意输入消息概率,利用香农编码方法进行编码,并计算信源熵和编码效率。

二、设计思路1、判断唯一可译码在我们学习使用了克劳夫特不等式之后,知道唯一可译码必须满足克劳夫特不等式。

但是克劳夫特不等式仅仅是存在性的判定定理,即该定理不能作为判断一种码是否为唯一可译码的依据。

也就是说当码字长度和码符号数满足克劳夫特不等式时,则必可以构造出唯一可译码,否则不能构造出唯一可译码。

因此我们必须找到一种能够判断一种码是否为唯一可译码的方法,尾随后缀法。

尾随后缀法算法描述:设C为码字集合,按以下步骤构造此码的尾随后缀集合F:(1) 考查C中所有的码字,若Wi是Wj的前缀,则将相应的后缀作为一个尾随后缀放入集合F0中;(2) 考查C和Fi两个集合,若Wj∈C是Wi∈Fi的前缀或Wi∈Fi 是Wj∈C的前缀,则将相应的后缀作为尾随后缀码放入集合Fi+1中;(3)F包含于Fi即为码C的尾随后缀集合;(4) 若F中出现了C中的元素,则算法终止,返回假(C不是唯一可译码);否则若F中没有出现新的元素,则返回真。

在我们设计的算法中,需要注意的是我们需要的是先输出所有尾随后缀的集合,然后再判断该码是否是唯一可译码,即如F中出现了C中的元素,则C不是唯一可译码,否则若F中没有出现新的元素,则C为唯一可译码。

信息论与编码课程设计

信息论与编码课程设计

信息论与编码课程设计报告设计题目:统计信源熵、香农编码与费诺编码专业班级:XXXXXXXXXXXX姓名:XXXXXXXXXXXX学号:XXXXXXXXXXXX指导老师:XXXXXXXXXXXX成绩:时间:2015年3月31日目录一、设计任务与要求 (2)二、设计思路 (2)三、设计流程图 (5)四、程序及结果 (7)五、心得体会 (11)六、参考文献 (12)附录 (13)一、 设计任务与要求1. 统计信源熵要求:统计任意文本文件中各字符(不区分大小写)数量,计算字符概率,并计算信源熵。

2. 香农编码要求:任意输入消息概率,利用香农编码方法进行编码,并计算信源熵和编码效率。

3. 费诺编码要求:任意输入消息概率,利用费诺编码方法进行编码,并计算信源熵和编码效率。

二、 设计思路1、统计信源熵:统计信源熵就是对一篇英文文章中的i 种字符(包括标点符号及空格,英文字母不区分大小写)统计其出现的次数count i (),然后计算其出现的概率()p i ,最后由信源熵计算公式:1()()log ()ni i n H x p x p x ==-∑算出信源熵()H x 。

所以整体步骤就是先统计出文章中总的字符数,然后统计每种字符的数目,直到算出所有种类的字符的个数,进而算出每种字符的概率,再由信源熵计算公式计算出信源熵。

在这里我选择用Matlab 来计算信源熵,因为Matlab 中系统自带了许多文件操作和字符串操作函数,其计算功能强大,所以计算信源熵很是简单。

2、香农编码信源编码模型:信源编码就是从信源符号到码符号的一种映射f ,它把信源输出的符号i a 变换成码元序列i x 。

1,2,...,,i i N f a i q x =→:1:{,...,}q S s a a ∈ 信源 12{,...,}li i i i i X x x x = 码元1{,...,}1,2,...,i q S a a i N ∈=1,2,...,N i q =1:{,...,}r X x x x ∈ 码符号N 次扩展信源无失真编码器凡是能载荷一定的信息量,且码字的平均长度最短,可分离的变长码的码字集合都可以称为最佳码。

信息与编码论课程设计

信息与编码论课程设计

信息与编码论课程设计一、课程目标知识目标:1. 学生能理解信息与编码的基本概念,掌握不同编码方式的特点及应用场景。

2. 学生能掌握二进制、十进制等数制转换方法,并运用这些方法进行编码和解码。

3. 学生了解信息安全的基本原理,认识到保护信息的重要性。

技能目标:1. 学生具备运用二进制进行简单计算和信息编码的能力。

2. 学生能够运用所学知识,分析并解决实际问题,例如:设计一个简单的加密和解密程序。

3. 学生能够通过合作与交流,共同探讨信息与编码的应用,提高团队协作能力。

情感态度价值观目标:1. 学生培养对信息科学的兴趣,激发探究精神,树立创新意识。

2. 学生认识到信息与编码在科技发展和社会生活中的重要作用,增强社会责任感。

3. 学生在合作交流中,学会尊重他人,培养良好的沟通能力和团队协作精神。

课程性质:本课程为理论与实践相结合的课程,旨在帮助学生掌握信息与编码的基本知识,提高实际操作能力。

学生特点:六年级学生具有一定的逻辑思维能力和自主学习能力,对新鲜事物充满好奇,喜欢探索和挑战。

教学要求:注重启发式教学,引导学生主动参与,培养实践操作能力;关注学生个体差异,因材施教,提高教学质量。

通过分解课程目标为具体学习成果,使学生在课程学习中获得全面、均衡的发展。

二、教学内容1. 信息与编码基本概念:介绍信息的定义、特性及编码的必要性;讲解不同编码方式(如:文字编码、图像编码、声音编码等)及其应用场景。

教材章节:第一章 信息与编码基本概念2. 数制转换:重点讲解二进制与十进制的转换方法,拓展至其他进制转换;通过实例分析,使学生掌握数制转换在实际应用中的运用。

教材章节:第二章 数制转换及其应用3. 编码与解码:以二进制编码为例,讲解编码和解码的基本原理;引导学生运用所学知识进行简单的编码与解码实践。

教材章节:第三章 编码与解码技术4. 信息安全:介绍信息安全的基本原理,如加密、解密、数字签名等;通过案例分析,使学生了解信息安全在现实生活中的重要性。

信息论与编码理论课程实验报告

信息论与编码理论课程实验报告
2、建立待压缩的数据(如文本、图像等)的信源模型。进行相关统计,确定该数据的信源符号集,以及相应的概率集合,从而确定该信源的概率空间。该部分实验涉及数据读入(文档读写、图像读写)、信源符号出现概率统计等等
二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)
设备:PC机
软件:matlab 2007
0.0055 0.0115 0.0061 0.0176 0
构建信源模型如下:
h i j k l m n
0.0267 0.0672 0.0042 0.0030 0.0521 0.0212 0.0733
o p q r s t u
0.0842 0.0254 0.0048 0.0648 0.0933 0.0739 0.0327
9.实验报告独立完成,无抄袭现象,并按时提交,格式规范。
综合评定:
附录(程序源代码)
1.编写MATLAB程序
clc
clear all
%随机输入一组数据
string='abdddssdsssdabaabaddkkidkidkdiakdjjaidjaid';
%将上述中所有英文字母化为小写
string=lower(string);
自评/互评成绩:100(评阅者签名:熊萌萌)
2、教师评价
评价标准
评语等级



及格
不合格
1.实验态度认真,实验目的明确
2.实验方案或流程图思路清晰、合理
3.实验程序设计合理,能运行
4.实验步骤记录详细,具备可读性
5.实验数据合理
6.实验结论正确
7.实验总结分析合理、透彻
8.实验报告完整、文字叙述流畅,逻辑性强

信息论与编码课程设计.docx

信息论与编码课程设计.docx

信息论与编码课程设计报告设计题目:统计信源熵与香农编码专业班级:学号:学生姓名:指导老师:教师评分:2015年3月24日目录一、设计任务与要求 (3)二、设计思路 (3)三、设计流程图 (4)四、程序运行及结果 (5)五、心得体会 (6)参考文献 (7)附录:源程序 (7)一、设计任务与要求1、统计信源熵要求:统计任意文本文件中各字符(不区分大小写)数量 ,计算字符概率 ,并计算信源熵。

2、香农编码要求:任意输入消息概率 ,利用香农编码方法进行编码 ,并计算信源熵和编码效率。

二、设计思路1、统计信源熵在VC++环境中进行编程:(1)打开一篇文章 ,将26个英文字母作为信源。

(2)计算每个字母出现的次数(不区分大小写) ,再通过计算信源总大小来计算在本篇文章中每个字母出现的频率。

(3)通过信源熵计算公式来计算信源熵。

2、香农编码设计思路香农编码主要是通过一系列步骤支出平均码长与信源之间的关系 ,同时是平均码长达到极限值 ,即选择的每个码字的长度k 满足下式: I (x )≤k <I(x)+1 具体步骤如下:a 、将信源消息符号按其出现的概率大小依次排列为:p1≥p2≥…≥pnb 、确定满足下列不等式的整数码长k 为:-lb(pi) ≤k ≤-lb(pi)+1c 、为了编成唯一可译码 ,计算第i 个消息的累加概率:pi =∑p (ak )i−1k=1d 、将累加概率Pi 变换成二进制。

e 、取Pi 二进制数的小数点后Ki 位即为该消息符号的二进制码字。

在香农编码中对于求解编码效率主要是依靠这个公式:R=H(X)/K,其中k =∑p (ai )ki n i=1对于求解信源熵主要依靠公式:H (X )=−∑p (xi )logp(xi)ni=1三、设计流程图1、统计信源熵:↓↓↓↓2、香农编码:↓↓↓↓↓↓↓四、程序运行及结果1、统计信源熵:2、香农编码:五、心得体会通过本次课程设计的练习,进一步巩固了信源熵、信源编码的基本原理,基本上掌握了编码方法,对编程软件的使用得到了很大的熟悉,有效增强了自主设计、编程调试的开发能力,同时也大大提高了本身的实践创新能力。

信息论与编码-课程设计报告

信息论与编码-课程设计报告

目录一:实验原理----------------------------1二:程序源代码--------------------------1三:实验分析-----------------------------6四:实验结论---------------------------7赫夫曼编码一:实验原理哈夫曼编码的具体步骤归纳如下:① 概率统计(如对一幅图像,或m幅同种类型图像作灰度信号统计),得到n个不同概率的信息符号。

② 将n个信源信息符号的n个概率,按概率大小排序。

③ 将n个概率中,最后两个小概率相加,这时概率个数减为n-1个。

④ 将n-1个概率,按大小重新排序。

⑤ 重复③,将新排序后的最后两个小概率再相加,相加和与其余概率再排序。

⑥ 如此反复重复n-2次,得到只剩两个概率序列。

⑦ 以二进制码元(0.1)赋值,构成哈夫曼码字。

编码结束。

哈夫曼码字长度和信息符号出现概率大小次序正好相反,即大概信息符号分配码字长度短,小概率信息符号分配码字长度长。

C、哈夫曼编码的特点(1)哈夫曼编码的构造顺序明确,但码不是唯一的(因以大赋1还是小的赋1而异;(2)哈夫曼编码的字长参差不齐,硬件实现不方便;(3)只有在概率分布很不均匀时,哈夫曼编码才有显著的效果,而在信源分布均匀时,一般不使用哈夫曼编码。

二:程序源代码:#define MAXVALUE 10000#define MAXLEAF 30#define MAXNODE 59#define MAXBIT 10#define LENTH 30#include "stdio.h"#include<iostream>typedef struct{float gailv;int flag;int parent;int lchild;int rchild;char ch;int t;}HNodeType;typedef struct{int bit[MAXBIT];int start;}HCodeType;typedef struct{float gailv;char letter;}mytype; /*it's the type of data save in file*/typedef struct filehuff{int count;mytype mydata[MAXLEAF];filehuff(){count=0; };};filehuff filedata;char code[MAXVALUE];HNodeType HuffNode[MAXNODE];void savetofile(){FILE *fp;if((fp=fopen("datafile.txt","wb"))==NULL){printf("打开失败 ....");return;}if(fwrite(&filedata,sizeof(filedata),1,fp)!=1) printf("写入文件失败 ....");fclose(fp);}void openfile(){ FILE *fp;if((fp=fopen("datafile.txt","rb"))==NULL){return;}fread(&filedata,sizeof(filedata),1,fp);}void translate(){char c;int i,j,k=0,m,n=0;printf("请输入你想要译码的二进制序列 ");printf("\n");getchar();scanf("%c",&c);for(i=0;(i<MAXVALUE)&&(c=='1'||c=='0');i++){ code[i]=c;scanf("%c",&c);}printf("对应的信源符号为:");for(j=0;j<=MAXVALUE&&HuffNode[j].parent!=-1;j++) m=j+1;for(j=0,k=m;j<=i;j++){if(code[j]=='0'){n=HuffNode[k].lchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}else{n=HuffNode[k].rchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}}}void Huffman(){HCodeType HuffCode[MAXLEAF],cd;int i,j,m1,m2,x1,x2,c,p,m;if(filedata.count==0){ printf("\n输入信源符号总数 : ");scanf("%d",&m);filedata.count=m;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch='a';}for(i=0;i<m;i++){ printf("请输入 (概率,信源符号):");scanf("%f %c",&HuffNode[i].gailv,&HuffNode[i].ch); filedata.mydata[i].gailv=HuffNode[i].gailv; filedata.mydata[i].letter=HuffNode[i].ch;savetofile();}}else{ m=filedata.count;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch=3;}for(i=0;i<m;i++){ HuffNode[i].gailv=filedata.mydata[i].gailv;HuffNode[i].ch=filedata.mydata[i].letter;}}for(i=0;i<m-1;i++){ m1=m2=MAXVALUE;x1=x2=0;for(j=0;j<m+i;j++){ if(HuffNode[j].gailv<m1&&HuffNode[j].flag==0){ m2=m1;x2=x1;m1=HuffNode[j].gailv;x1=j;}else if(HuffNode[j].gailv<m2&&HuffNode[j].flag==0){ m2=HuffNode[j].gailv;x2=j;}}HuffNode[x1].parent=m+i;HuffNode[x2].parent=m+i;HuffNode[x1].flag=1;HuffNode[x2].flag=1;HuffNode[m+i].gailv=HuffNode[x1].gailv+HuffNode[x2].gailv;HuffNode[m+i].lchild=x1;HuffNode[m+i].rchild=x2;}for(i=0;i<m;i++){ cd.start=m-1;c=i;p=HuffNode[c].parent;while(p!=-1){ if(HuffNode[p].lchild==c)cd.bit[cd.start]=0;else cd.bit[cd.start]=1;cd.start--;c=p;p=HuffNode[c].parent;}for(j=cd.start+1;j<m;j++)HuffCode[i].bit[j]=cd.bit[j]; HuffCode[i].start=cd.start;}printf("对应的赫夫曼编码如下:");printf("\n信源符号概率编码\n");for(i=0;i<m;i++){printf("%c %f ",HuffNode[i].ch,HuffNode[i].gailv); for(j=HuffCode[i].start+1;j<m;j++)printf("%d",HuffCode[i].bit[j]);printf("\n");}printf("按任意键继续......\n");}main(){char yn;printf("\n");printf("\n");printf(" 信息论与编码实验 \n");openfile();Huffman();for(;;){printf("\n是否想要把序列译码为信源符号 ?: (输入 y or n) "); scanf("%c",&yn);if(yn=='y'||yn=='Y')translate();elsebreak;}return 0;system("pause");}三:实验分析编码实例如下:由图中可以看出,符合基本的赫夫曼编码的原理,概率大的用短码,概率小的用长码。

信息论与编码课程实验报告

信息论与编码课程实验报告

福建农林大学计算机与信息学院信息工程类信息论与编码课程实验报告实验项目列表实验名称1:信源建模一、实验目的和要求(1)进一步熟悉信源建模;(2)掌握MATLAB程序设计和调试过程中数值的进制转换、数值与字符串之间的转换等技术。

二、实验内容(1)假设在一个通信过程中主要传递的对象以数字文本的方式呈现。

(2)我们用统计的方式,发现这八个消息分别是由N1,N2,…,N8个符号组成的。

在这些消息是中出现了以下符号(符号1,符号2,…,符号M)每个符号总共现了(次数1,次数2,…,次数M)我们认为,传递对象的信源模型可表示为:X为随机变量(即每次一个字符);取值空间为:(符号1,符号2,…,符号M);其概率分布列为:(次数1/(N1+…+N8),…,次数M/( N1+…+N8))三、实验环境硬件:计算机软件:MATLAB四、实验原理图像和语声是最常用的两类主要信源。

要充分描述一幅活动的立体彩色图像,须用一个四元的随机矢量场X(x,y,z,t),其中x,y,z为空间坐标;t 为时间坐标;而X是六维矢量,即表示左、右眼的亮度、色度和饱和度。

然而通常的黑白电视信号是对平面图像经过线性扫描而形成。

这样,上述四元随机矢量场可简化为一个随机过程X(t)。

图像信源的最主要客观统计特性是信源的幅度概率分布、自相关函数或功率谱。

关于图像信源的幅度概率分布,虽然人们已经作了大量的统计和分析,但尚未得出比较一致的结论。

至于图像的自相关函数,实验证明它大体上遵从负指数型分布。

其指数的衰减速度完全取决于图像类型与图像的细节结构。

实际上,由于信源的信号处理往往是在频域上进行,这时可以通过傅里叶变换将信源的自相关函数转换为功率谱密度。

功率谱密度也可以直接测试。

语声信号一般也可以用一个随机过程X(t)来表示。

语声信源的统计特性主要有语声的幅度概率分布、自相关函数、语声平均功率谱以及语声共振峰频率分布等。

实验结果表明语声的幅度概率分布可用伽玛(γ)分布或拉普拉斯分布来近似。

信息论与编码课程设计报告

信息论与编码课程设计报告

输入符号概率 将信源符号概率 求前J个的累加和 求码长Ki 十进制小数转 输出函数Leabharlann 结束香农编码的流程图及运行结果
• 1.2 程序运行结果
• 测试数据:4 3 2 05 05
课程设计的心得体会
• •
课程设计是培养学生综合运用所学知识,发现,提出,分析和解决 实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训 练和考察过程。在这个过程中,不仅锻炼了我们缜密的思维和坚持不 解的毅力,更磨练了一个队伍的团结互助的精神,只有通过大家一起 努力才能将课程设计的所有环节都顺利的完成,另外程序设计中我们 遇到问题并解决问题的过程,使得我们独自探索并解决问题的能力了 有了一个提高,这有利于我们以后的学习。
信息论与编码课程设计报告
判断唯一可译码和香农编码
成员:
黄晨 曹琳
PPT制作:黄晨
and
马高运 石昊
目录
课程设计的目的及意义 课程设计的题目及要求
课程设计的流程图和运行结果
课程设计的心得体会
课程设计的目的及意义
• 目的: • 通过本次课程设计的练习,使学生进一步巩固信源熵、
信源编码的基本原理,掌握具体的编码方法,熟悉编程软 件的使用,培养学生自主设计、编程调试的开发能力,同 时提高学生的实践创新能力。
The end
thank you!
• 意义: • 将所学的只是进一步的巩固理解,加深对知识的运用,
真正的将老师所讲的东西融会贯通,学会运用MATLAB软件, 对实际的问题进行仿真,为以后的学习打下坚实的基础。
课程设计的题目及要求
• 提供的题目:1.统计信源熵 • 2.判断唯一可译码

3.
最佳变长编码

信息与编码论课程设计

信息与编码论课程设计

信息与编码论课程设计一、课程目标知识目标:1. 理解信息与编码的基本概念,掌握不同编码方式的原理及特点;2. 学会运用二进制、十进制等数制进行信息转换,并掌握其相互转换的方法;3. 了解信息安全的基本知识,提高信息保护意识。

技能目标:1. 能够运用所学知识对信息进行编码和解码操作;2. 培养学生的逻辑思维能力和问题解决能力,通过案例分析和课堂讨论,提高学生的信息处理能力;3. 能够运用所学知识对简单的信息安全问题进行识别和防范。

情感态度价值观目标:1. 培养学生对信息科学的兴趣,激发他们探索未知领域的热情;2. 增强学生的团队合作意识,培养他们在合作中互相学习、共同进步的精神;3. 提高学生的信息安全意识,培养他们尊重知识产权、遵守网络道德的观念。

本课程旨在通过系统的理论讲解和丰富的实践操作,帮助学生掌握信息与编码的基本知识,提高他们的信息素养。

针对学生的年龄特点和认知水平,课程设计注重理论与实践相结合,以激发学生的学习兴趣和探究欲望。

在教学过程中,注重培养学生的逻辑思维能力和问题解决能力,为我国信息技术领域培养具有创新精神和实践能力的后备人才。

二、教学内容1. 信息与编码基本概念:信息的定义、编码的原理、不同编码方式的特点;教材章节:第一章 信息与编码概述2. 数制及其转换:二进制、十进制、八进制、十六进制等数制的概念及相互转换方法;教材章节:第二章 数制及其转换3. 编码算法:ASCII编码、Unicode编码、Base64编码等编码算法的原理与应用;教材章节:第三章 编码算法4. 信息安全:加密算法、数字签名、安全协议等基本概念及其应用;教材章节:第四章 信息安全5. 实践操作:开展信息编码与解码、信息安全防护等实验,巩固理论知识;教材章节:第五章 实践操作教学内容安排和进度:第一周:信息与编码基本概念、数制及其转换;第二周:编码算法、信息安全;第三周:实践操作。

教学内容注重科学性和系统性,结合教材章节进行合理组织,旨在帮助学生全面掌握信息与编码的相关知识。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告一、实验目的信息论与编码是一门涉及信息的度量、传输和处理的学科,通过实验,旨在深入理解信息论的基本概念和编码原理,掌握常见的编码方法及其性能评估,提高对信息处理和通信系统的分析与设计能力。

二、实验原理(一)信息论基础信息熵是信息论中用于度量信息量的重要概念。

对于一个离散随机变量 X,其概率分布为 P(X) ={p(x1), p(x2),, p(xn)},则信息熵H(X) 的定义为:H(X) =∑p(xi)log2(p(xi))。

(二)编码原理1、无失真信源编码:通过去除信源中的冗余信息,实现用尽可能少的比特数来表示信源符号,常见的方法有香农编码、哈夫曼编码等。

2、有噪信道编码:为了提高信息在有噪声信道中传输的可靠性,通过添加冗余信息进行纠错编码,如线性分组码、卷积码等。

三、实验内容及步骤(一)信息熵的计算1、生成一个离散信源,例如信源符号集为{A, B, C, D},对应的概率分布为{02, 03, 01, 04}。

2、根据信息熵的定义,使用编程语言计算该信源的信息熵。

(二)香农编码1、按照香农编码的步骤,首先计算信源符号的概率,并根据概率计算每个符号的编码长度。

2、确定编码值,生成香农编码表。

(三)哈夫曼编码1、构建哈夫曼树,根据信源符号的概率确定树的结构。

2、为每个信源符号分配编码,生成哈夫曼编码表。

(四)线性分组码1、选择一种线性分组码,如(7, 4)汉明码。

2、生成编码矩阵,对输入信息进行编码。

3、在接收端进行纠错译码。

四、实验结果与分析(一)信息熵计算结果对于上述生成的离散信源,计算得到的信息熵约为 184 比特/符号。

这表明该信源存在一定的不确定性,需要一定的信息量来准确描述。

(二)香农编码结果香农编码表如下:|信源符号|概率|编码长度|编码值|||||||A|02|232|00||B|03|174|10||C|01|332|110||D|04|132|111|香农编码的平均码长较长,编码效率相对较低。

信息论与编码课程设计

信息论与编码课程设计
printf("\n");
n=0;
}
}
for(i=0;i<=25;i++)
{
if(p[i]!=0)
H=H-p[i]*((log(p[i]))/(log(2)));
}
printf("\n");
printf("信源熵=%f\n",H);
printf("字符长度:%d\n",sum);
//printf("\n");
课程设计是培养学生综合运用所学知识,发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。在这个过程中不仅锻炼了我们坚持不懈的毅力,更磨练了一个队伍的团结互助的精神,只有大家一起努力才能将课程设计圆满的完成,设计中遇到和解决问题的过程对我们的探索解决问题能力有了一个提高,对我们以后的学习有很大的好处。
#include<math.h>
void main()
{
int i,sum=0,n=0,ch[50]={0};
double p[50]={0},H=0;
char c,zm;
printf("输入文字:\n");
while((c=getchar())!='\n')
{
sum++;
for (i=97;i<=122;i++)
在香农编码中对于求解编码效率主要是依靠这个公式:R=H(X)/K,其中
对于求解信源熵主要依靠公式:H(X)=
三、设计流程图
1、统计信源熵:
开始

先输入一段英文文章

《信息论与编码》课程实验报告

《信息论与编码》课程实验报告

本科生实验报告实验课程信息论与编码学院名称管理科学学院专业名称信息与计算科学学生姓名章乾学生学号201207020114指导教师范安东实验地点6C402实验成绩二〇一四年十月二〇一四年十一月实验一离散信源信息量的计算(一)1 实验内容(1)熟悉利用srand()函数产生随机离散信源概率空间的方法;(2)计算随机离散信源的各种信息量:H(X)、H(XY)、H(Y);2 数据结构与算法描述3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据随机生成数据2)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)实验二离散信源信息量的计算(二)1 实验内容(1)熟悉利用srand()函数产生随机离散信源概率空间的方法;(2)计算随机离散信源的各种信息量:H(X|Y)、H(Y|X)、I(X;Y);2 数据结构与算法描述1)变量及函数的定义3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据随机生成数据2)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)实验三典型信道容量的计算1 实验内容(1)熟悉利用srand()函数产生随机离散信道概率空间的方法;(2)计算随机离散信道的信道容量;2 数据结构与算法描述1)变量及函数的定义3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据0.6 0.2 0.20.5 0.3 0.22)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)实验四香农编码1 实验内容(1)熟悉理解香农编码的过程(2)将给定的数据进行香农编码2 数据结构与算法描述3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据0.25 0.25 0.2 0.15 0.1 0.052)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)实验五 Huffman编码1 实验内容(1)熟悉理解Huffman编码的过程(2)将给定的数据进行Huffman编码2 数据结构与算法描述1)变量及函数的定义3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据0.2 0.1 0.3 0.1 0.1 0.22)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)实验六 循环冗余校验码1 实验内容(1)理解循环冗余校验的基本程序; (2)对给出的数据进行循环冗余校验;2 数据结构与算法描述1)变量及函数的定义3 实验数据与实验结果(可用文字描述或贴图的方式进行说明)1)测试数据信息码:321x x x +++ 生成码:431x x x +++2)实验结果4 程序代码清单(可直接将可运行源代码粘贴在下面的方框中)语。

信息论和编码课程设计

信息论和编码课程设计

信息论和编码课程设计一、课程目标知识目标:1. 理解信息论的基本概念,包括信息量、熵、信道等;2. 掌握常见编码方法(如:哈夫曼编码、算术编码)的基本原理及特点;3. 了解数字通信系统中误码的产生原因及其纠正方法。

技能目标:1. 能够运用信息论的基本原理分析简单通信系统;2. 能够运用编码方法对信息进行压缩和还原;3. 能够运用所学知识解决实际通信过程中的问题。

情感态度价值观目标:1. 培养学生严谨的科学态度和良好的学习习惯;2. 增强学生的团队协作意识和沟通能力;3. 激发学生对信息科学和通信技术的兴趣,培养创新精神。

分析课程性质、学生特点和教学要求,本课程旨在帮助学生掌握信息论和编码的基本知识,培养解决实际通信问题的能力。

课程目标具体、可衡量,便于教学设计和评估。

通过本课程的学习,使学生能够运用所学知识分析、解决实际问题,并为后续相关课程打下坚实基础。

二、教学内容1. 信息论基本概念:信息量、熵、信道容量、互信息等;教材章节:第一章 信息论基础2. 编码方法:- 哈夫曼编码:原理、构造方法及应用;- 算术编码:原理、算法流程及应用;教材章节:第二章 编码方法3. 误码纠正:- 误码产生原因及纠正方法;- 简单误码纠正码:奇偶校验、海明码等;教材章节:第三章 误码纠正4. 信息论与编码在实际通信系统中的应用案例分析。

教学内容安排和进度:1. 第1周:信息论基本概念;2. 第2-3周:编码方法(哈夫曼编码、算术编码);3. 第4周:误码纠正;4. 第5周:应用案例分析及讨论。

教学内容确保科学性和系统性,与课程目标紧密关联,涵盖信息论和编码的主要知识点。

通过以上教学安排,使学生全面掌握信息论和编码的基本知识,提高解决实际通信问题的能力。

三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:通过系统的讲解,使学生掌握信息论和编码的基本概念、原理和方法。

在教学过程中,注重启发式教学,引导学生主动思考问题,提高课堂互动效果。

信息论与编码实验报告(DOC)

信息论与编码实验报告(DOC)

计算机与信息学院信息论与编码实验报告专业班级学生姓名及学号周伟康20112910 课程教学班号任课教师苏兆品实验指导教师实验地点2013 ~ 2014 学年第一学期信息论与编码课程设计目录一.课程设计目的 (2)二.课程设计要求 (2)三.课程设计描述 (2)四.程序结构 (2)五.算法及部分源码 (3)六.用例测试 (9)七.总结 (20)一.课程设计目的通过编程实现,在理解掌握的基础上进一步扩展课授的几种无失真信源编码算法。

以实践检验理论。

二.课程设计要求1.对一灰度图像进行游程编码的设计实现(将Huffman与游程结合)。

2.试对任意的数字序列(如学号、电话号码)进行自适应算术编码。

3.围绕设计题目查阅资料,掌握编码的基本原理。

4.按设计要求和编码原理进行算法的设计,算法的设计应满足正确性、可读性、健壮性、高效率等要求。

5.在此基础上,可以进行扩展三.课程设计描述本次设计实现内容:1.对任意的信源符号序列进行N元Huffman编码/译码。

2.对任意的信源符号序列进行N元Fano 编码/译码。

3.对任意的信源符号序列进行N元Elias 编码/译码。

4.对像素矩阵进行游程与上述编码方式结合的编码/译码。

5.数字串的自适应算数编码/译码。

6.对任意给定译码规则的译码和判断其是否为即时码。

输入数据从键盘或磁盘文件读入,运算结果显示到屏幕或保存到文件。

编写可视化图形交互界面。

本次设计程序用Java实现,由本人独立完成。

四.程序结构本次设计采用MVC设计模式:控制包下为文件读写线程执行包下是执行主类模式包分编码译码两部分Item:封装每个码元符号信息和操作AnlysisModel:信源序列统计分析模型其他如右图顾名思义视图包也分编码译码两部分MainFrame:主框架界面编码下:算数编码面板分组码编码面板译码下:算数译码面板分组码译码面板五. 算法及部分源码a) N 元Huffman 编码:算法:1) 将每个信源符号加入优先队列Heap 。

信息论与编码课程设计报告(语音编码与测试)

信息论与编码课程设计报告(语音编码与测试)

语音编码及测试一、摘要利用手机录制18份小语音样本共3分钟,利用Matlab读取语音音频,并使用其统计函数对音频进行数据种类,个数及概率统计,利用统计得到的数据种类和概率进行概率密度函数拟合,拟合得到两段概率密度函数。

同时使用Lloyds分类算法对统计好的数据进行分类,共分为nR2个类别,即512类,得到其相应区间及质心。

对概率密度函数进行对应区间的积分得到区间对应的概率,然后使用Huffman编码进行二元编码,得到512个码字与质心对应。

测试阶段利用码字库,对随机录制的一段小语音进行编码得到音频对应的码字。

关键字:概率密度函数、Lloyds分类算法、Huffman编码、码字二、问题重述2.1语音编码录制一份语音,使用相应的工具对其音频进行提取,对提取到的音频进行概2个类率统计拟合出概率密度函数。

选取适当的方法将统计好的音频数字分为nR2个区间及区间对应的质心,既码字,概率密度函数进行别,分类后相应得到nRnR2个区间积分,由此得到nR2个码字及其概率对应,最后选取适当的编码方法得到质心对应的码字,都成编码库2.2编码测试录制一段小语音利用上诉的码字及其编码库,最终得到每个音频数对应的码字。

三、问题分析3.1语音编码由于录制的语音是作为实验得到码书的样本,因此语音的录制面要广且量应尽可能的多才能保证实验的合理性。

使用Matlab对语音进行音频读取及相应的概率统计,对统计后的结果利用Matlab中cftool工具箱对数据及其概率进行拟合,得到概率密度函数。

考虑到数据量及其较大的重复性,对于分类阶段采用统计好的音频数据,利用Matlab 中Lloyds 算法函数按nR 2分类,其结果会得到nR 2个区间及区间对应的质心,既码字。

利用密度函数对nR 2个区间进行积分得到nR 2个码字对应的概率,最后利用Matlab 中Huffman 编码程序对其概率进行0、1编码。

得到nR 2个码书构成本次实验的码字库。

信息论与编码实验报告

信息论与编码实验报告

信息论与编码实验报告信息论与编码实验报告一、引言信息论与编码是现代通信领域中的重要理论基础,通过对信息的量化和编码方式的设计,可以提高通信系统的传输效率和可靠性。

本实验旨在通过对信息论与编码的实际应用进行探索,加深对相关理论的理解和掌握。

二、实验目的1. 了解信息论与编码的基本概念和原理;2. 学习使用信息论与编码的工具和方法;3. 进行实际的编码实验,验证理论的有效性。

三、实验内容1. 信息熵的计算信息熵是信息论中的重要概念,用于衡量信息的不确定性。

我们选择一个简单的例子来计算信息熵,假设有一个硬币,正反面出现的概率分别为0.5。

根据信息熵的公式,我们可以计算出该硬币的信息熵为1比特。

2. 信道容量的计算信道容量是指在给定信道带宽和信噪比条件下,信道能够传输的最大数据率。

我们选择一个高斯信道作为实验对象,通过改变信噪比来计算信道容量。

实验结果显示,信噪比越高,信道容量越大。

3. 奇偶校验码的设计与实现奇偶校验码是一种简单的错误检测码,可以用于检测数据传输过程中的错误。

我们设计了一个简单的奇偶校验码方案,并通过编程实现了该方案。

实验结果表明,奇偶校验码能够有效地检测出数据传输中的错误。

4. 哈夫曼编码的设计与实现哈夫曼编码是一种有效的数据压缩算法,通过对出现频率较高的字符进行短编码,可以实现数据的高效传输和存储。

我们选择一段文本作为实验对象,通过统计字符出现频率并设计相应的哈夫曼编码表,成功地对文本进行了压缩。

四、实验结果与分析通过实验,我们成功地计算了信息熵和信道容量,并验证了理论的准确性。

在奇偶校验码的实验中,我们发现该码能够有效地检测出单比特错误,但对于多比特错误的检测能力有限。

在哈夫曼编码的实验中,我们成功地对文本进行了压缩,并获得了较高的压缩比。

五、实验总结通过本次实验,我们深入了解了信息论与编码的基本概念和原理,并通过实际操作加深了对相关理论的理解。

实验结果表明,信息论与编码在通信系统中具有重要的应用价值,能够提高通信效率和可靠性。

信息论与编码课程设计

信息论与编码课程设计

信息论与编码课程设计报告设计题目:统计信源熵、香农编码与费诺编码专业班级:XXXXXXXXXXXX姓名:XXXXXXXXXXXX学号:XXXXXXXXXXXX指导老师:XXXXXXXXXXXX成绩:时间:2015年3月31日目录一、设计任务与要求 (2)二、设计思路 (2)三、设计流程图 (5)四、程序及结果 (7)五、心得体会 (11)六、参考文献 (12)附录 (13)一、设计任务与要求1. 统计信源熵要求:统计任意文本文件中各字符(不区分大小写)数量,计算字符概率,并计算信源熵。

2. 香农编码要求:任意输入消息概率,利用香农编码方法进行编码,并计算信源熵和编码效率。

3. 费诺编码要求:任意输入消息概率,利用费诺编码方法进行编码,并计算信源熵和编码效率。

二、设计思路1、统计信源熵:统计信源熵就是对一篇英文文章中的种字符(包括标点符号及空格,英文字母不区分大小写)统计其出现的次数,然后计算其出现的概率,最后由信源熵计算公式:算出信源熵。

所以整体步骤就是先统计出文章中总的字符数,然后统计每种字符的数目,直到算出所有种类的字符的个数,进而算出每种字符的概率,再由信源熵计算公式计算出信源熵。

在这里我选择用Matlab来计算信源熵,因为Matlab中系统自带了许多文件操作和字符串操作函数,其计算功能强大,所以计算信源熵很是简单。

2、香农编码信源编码模型:信源编码就是从信源符号到码符号的一种映射,它把信源输出的符号变换成码元序列。

信源码元码符号次扩展信源无失真编码器凡是能载荷一定的信息量,且码字的平均长度最短,可分离的变长码的码字集合都可以称为最佳码。

为此必须将概率大的信息符号编以短的码字,概率小的符号编以长的码字,使得平均码字长度最短。

能获得最佳码的编码方法主要有:香农(Shannon)、费诺(Fano)、哈夫曼(Huffman)编码等。

香农第一定理:离散无记忆信源为熵,其次扩展为信源编码器熵为,码符号集为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一:实验原理----------------------------1二:程序源代码--------------------------1三:实验分析-----------------------------6四:实验结论---------------------------7赫夫曼编码一:实验原理哈夫曼编码的具体步骤归纳如下:①概率统计(如对一幅图像,或m幅同种类型图像作灰度信号统计),得到n个不同概率的信息符号。

②将n个信源信息符号的n个概率,按概率大小排序。

③将n个概率中,最后两个小概率相加,这时概率个数减为n-1个。

④将n-1个概率,按大小重新排序。

⑤重复③,将新排序后的最后两个小概率再相加,相加和与其余概率再排序。

⑥如此反复重复n-2次,得到只剩两个概率序列。

⑦以二进制码元(0.1)赋值,构成哈夫曼码字。

编码结束。

哈夫曼码字长度和信息符号出现概率大小次序正好相反,即大概信息符号分配码字长度短,小概率信息符号分配码字长度长。

C、哈夫曼编码的特点(1)哈夫曼编码的构造顺序明确,但码不是唯一的(因以大赋1还是小的赋1而异;(2)哈夫曼编码的字长参差不齐,硬件实现不方便;(3)只有在概率分布很不均匀时,哈夫曼编码才有显著的效果,而在信源分布均匀时,一般不使用哈夫曼编码。

二:程序源代码:#define MAXV ALUE 10000#define MAXLEAF 30#define MAXNODE 59#define MAXBIT 10#define LENTH 30#include "stdio.h"#include<iostream>typedef struct{float gailv;int flag;int parent;int lchild;int rchild;char ch;int t;}HNodeType;typedef struct{int bit[MAXBIT];int start;}HCodeType;typedef struct{float gailv;char letter;}mytype; /*it's the type of data save in file*/ typedef struct filehuff{int count;mytype mydata[MAXLEAF];filehuff(){count=0; };};filehuff filedata;char code[MAXV ALUE];HNodeType HuffNode[MAXNODE];void savetofile(){FILE *fp;if((fp=fopen("datafile.txt","wb"))==NULL){printf("打开失败....");return;}if(fwrite(&filedata,sizeof(filedata),1,fp)!=1)printf("写入文件失败....");fclose(fp);}void openfile(){ FILE *fp;if((fp=fopen("datafile.txt","rb"))==NULL){return;}fread(&filedata,sizeof(filedata),1,fp);}void translate(){char c;int i,j,k=0,m,n=0;printf("请输入你想要译码的二进制序列");printf("\n");getchar();scanf("%c",&c);for(i=0;(i<MAXV ALUE)&&(c=='1'||c=='0');i++){ code[i]=c;scanf("%c",&c);}printf("对应的信源符号为:");for(j=0;j<=MAXV ALUE&&HuffNode[j].parent!=-1;j++) m=j+1;for(j=0,k=m;j<=i;j++){if(code[j]=='0'){n=HuffNode[k].lchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}else{n=HuffNode[k].rchild;if(n==-1){printf("%c",HuffNode[k].ch);k=m;j--;continue;}k=n;}}}void Huffman(){HCodeType HuffCode[MAXLEAF],cd;int i,j,m1,m2,x1,x2,c,p,m;if(filedata.count==0){ printf("\n输入信源符号总数: ");scanf("%d",&m);filedata.count=m;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch='a';}for(i=0;i<m;i++){ printf("请输入(概率,信源符号):");scanf("%f %c",&HuffNode[i].gailv,&HuffNode[i].ch);filedata.mydata[i].gailv=HuffNode[i].gailv;filedata.mydata[i].letter=HuffNode[i].ch;savetofile();}}else{ m=filedata.count;for(i=0;i<2*m-1;i++){ HuffNode[i].gailv=0;HuffNode[i].parent=-1;HuffNode[i].flag=0;HuffNode[i].lchild=-1;HuffNode[i].rchild=-1;HuffNode[i].ch=3;}for(i=0;i<m;i++){ HuffNode[i].gailv=filedata.mydata[i].gailv;HuffNode[i].ch=filedata.mydata[i].letter;}}for(i=0;i<m-1;i++){ m1=m2=MAXV ALUE;x1=x2=0;for(j=0;j<m+i;j++){ if(HuffNode[j].gailv<m1&&HuffNode[j].flag==0){ m2=m1;x2=x1;m1=HuffNode[j].gailv;x1=j;}else if(HuffNode[j].gailv<m2&&HuffNode[j].flag==0){ m2=HuffNode[j].gailv;x2=j;}}HuffNode[x1].parent=m+i;HuffNode[x2].parent=m+i;HuffNode[x1].flag=1;HuffNode[x2].flag=1;HuffNode[m+i].gailv=HuffNode[x1].gailv+HuffNode[x2].gailv;HuffNode[m+i].lchild=x1;HuffNode[m+i].rchild=x2;}for(i=0;i<m;i++){ cd.start=m-1;c=i;p=HuffNode[c].parent;while(p!=-1){ if(HuffNode[p].lchild==c)cd.bit[cd.start]=0;else cd.bit[cd.start]=1;cd.start--;c=p;p=HuffNode[c].parent;}for(j=cd.start+1;j<m;j++)HuffCode[i].bit[j]=cd.bit[j];HuffCode[i].start=cd.start;}printf("对应的赫夫曼编码如下:");printf("\n信源符号概率编码\n");for(i=0;i<m;i++){printf("%c %f ",HuffNode[i].ch,HuffNode[i].gailv);for(j=HuffCode[i].start+1;j<m;j++)printf("%d",HuffCode[i].bit[j]);printf("\n");}printf("按任意键继续......\n");}main(){char yn;printf("\n");printf("\n");printf(" 信息论与编码实验\n");openfile();Huffman();for(;;){printf("\n是否想要把序列译码为信源符号?: (输入y or n) ");scanf("%c",&yn);if(yn=='y'||yn=='Y')translate();elsebreak;}return 0;system("pause");}三:实验分析编码实例如下:由图中可以看出,符合基本的赫夫曼编码的原理,概率大的用短码,概率小的用长码。

选择译码:结果如下:四:实验结论哈夫曼的具体实现,在数据结构的相关课程曾做相应的实验,所以无论在理解上或是实现上,都不是很困难,程序上实现哈夫曼的编码与译码,由于哈夫曼自身的特点,编码与译码均不是唯一,但是相同的编译码规则还是能实现正确的译码的。

本实验,除了实现编译码的具体实现,还实现数据的存储与读取,这给实验实现方便,不必每次从命令提示符输入数据。

总的来说,通过本次实验,对哈夫曼的编译码有了一个更好的认识。

相关文档
最新文档