水文地球化学基础知识

合集下载

水文地球化学

水文地球化学

1.总溶解固体(TDS):指水中溶解组分的总量,包括了水中的离子、分子及络合物,但不包括悬浮物和气体。

2.生化需氧量(BOD):至水中的微生物在降解水中有机物的过程中所消耗的氧的量。

3.化学需氧量(COD):指采用化学氧化剂氧化水中的有机物和还原性无机物所需要消耗的氧的量。

4.离子交替吸附作用:当溶液中的一种离子被吸附到固体表面上时,固体表面上的另一种同性离子发生解析并释放出其所占据的表面空间。

5.阳离子交换容量:每100g干吸附剂可吸附阳离子的毫克当量数。

6.水动力弥散:示踪剂在注入地下水后,它就在流场中逐渐传播扩展,占据的区域越来越大,超出了按宏观平均流动所预期的范围。

7.弥散通量:由于弥散作用所引起的单位时间通过单位溶液面积的溶质质量。

8.同位素分馏:同位素以不同比例分配于两种物质或物相中的现象。

9.同位素交换反应:在同一体系中,物质的化学成分不发生改变(化学反应处于平衡状态),仅在不同的化合物之间、不同的物相之间或单个分子之间发生同位素置换或重新分配的现象。

10.等温吸附方程:在一定温度下达到吸附平衡是,溶质在液相中的浓度与其在固相中的含量之间的关系。

11.地下水污染:凡是在人类活动影响下,水质变化朝着恶化方向发展的现象。

12.水文地球化学:是研究地下水中化学组分的形成、分布、迁移和富集规律及其在生产实际中应用的一门科学。

13.同位素比值:样品中某元素的重同位素与常见轻同位素含量或丰度之比。

14.同位素丰度:某元素的各种同位素在给定的范畴,如宇宙、大气圈、水圈、岩石圈、生物圈中的相对含量称为~15.千分偏差值:样品的同位素比值相对于标准样品同位素比值的千分偏差。

16.碳酸盐硬度:由碳酸盐和重碳酸盐所引起的碱度称为~(又叫暂时硬度)。

17.非碳酸盐硬度:总硬度与碳酸盐硬度之差被称为~(又叫永久硬度)。

18.总有机碳TOC:~是水中各种形式有机碳的总量,以mg/L表示。

19.试说明影响大气降水氢、氧稳定同位素组成的主要因素有哪些,他们是怎么影响大气降水的同位素成分的?答:主要受两种因素的控制,其一为入渗雨水及地表水的同位素组成特征,其二是渗入地下室后的同位素组成所发生的变化。

第1章水文地球化学基础

第1章水文地球化学基础

第1章⽔⽂地球化学基础第⼀篇基础篇1第⼀章⽔⽂地球化学基础第⼀节应⽤⽔⽂地球化学的某些基本概念虽然我们已对⽔⽂地球化学有⼀定的了解,但是为了更好地转⼊应⽤⽔⽂地球化学,对⽔⽂地球化学中的某些基本概念进⾏复习和深化了解是很有必要的。

⽔岩作⽤(WRI)⽔岩作⽤是⼀种学术观点,它主张将地壳看成是⼀个⽔岩体系,许多地质和⽔⽂地质现象都与天然⽔和岩⽯之间的相互作⽤有关。

应⽤⽔岩作⽤的观点来研究地学中的问题能更科学、更有效地解决问题。

⽔⽂地球化学与单纯的⽔化学不同。

⽔⽂地球化学中的⽔是指与地球有关的⽔,凡是天然⽔体,它总是与地球物质发⽣着关系。

地下⽔总是赋存于地质体内,或者说,地质体、岩⽯内总是多少包含有⼀定的⽔分。

因此,⽔⽂地球化学将⽔和岩⽯看成⼀个互相联系的体系,称它为⽔岩体系。

⽔⽂地球化学作⽤除了⽔溶液作⽤以外,更主要的是⽔与岩⽯之间的作⽤。

既然在地球表⾯上和地球内部⽔是那样普遍,因此在研究地学时我们应该将⽔和岩⽯联系起来看问题。

许多⼈认为,地学、地球化学中的问题,特别是低温地球化学(温度⼩于200℃)问题,在⼤多数情况下都是发⽣在⽔岩体系中的⽔岩作⽤(water-rock interaction)问题。

凡是孤⽴地单⼀从⽔或岩⽯来研究地球化学问题是不全⾯的,因⽽也是不科学的。

世界上许多科学家都持有与此相同的观点,因此于1974年在前苏联⽔⽂地质学家的倡议下,志同道合的科学家汇聚在捷克的布拉格,举⾏了第⼀届国际⽔岩作⽤学术⼤会。

此后在国际地球化学宇宙化学协会下设了⽔岩作⽤委员会,在它的组织下,每三年举⾏⼀次学术活动。

第⼆次,于1977年在法国的斯特拉斯堡;第三次,于1980年于加拿⼤的埃特蒙顿;第四次,于1983年在⽇本的鸟取县三朝町;第五次,于1986年在冰岛的雷克雅维克;第六次,于1989年在英国的⽑尔芬;第七次,于1992年在美国的花园城;第⼋次,于1995年在俄罗斯的海参威;第九次于1998年在新西兰的TAUPO举⾏;第⼗次于2001年在意⼤利举⾏。

水文地球化学基础知识要点

水文地球化学基础知识要点

水文地球化学基础知识要点1.水的起源:地球上的水主要来自于地球形成过程中的原始水以及后来的陨石和彗星碰撞。

水可以存在于固态、液态和气态,并在地球不同的储存库中循环。

2.水文循环:水循环是指水在地球上不断循环的过程,包括蒸发、降水、融化、冷凝和蒸发等过程。

在循环过程中,水通过地表和大气之间的相互作用,影响了气候和地质过程。

3.地球化学现象:地球化学是研究地球物质的组成、性质、分布和演化过程的学科。

地球化学现象包括水体中溶解的矿物元素、元素的转化和富集、岩石的风化和溶解等。

4.溶解质和溶液:在水中,溶解质是指溶解在水中的物质,可以是离子、分子或大分子物质。

溶液是指溶解质完全溶解在水中形成的混合物。

溶解质的溶解和溶液的浓度会受到温度、溶剂性质和溶质性质的影响。

5.pH和酸碱性:pH是衡量溶液酸碱性的指标,它表示溶液中氢离子的浓度。

pH值介于0到14之间,pH低于7表示酸性,pH值高于7表示碱性,pH等于7表示中性。

6.水体的化学组成:水体的化学组成受到地形、岩石成分、人类活动等多种因素影响。

不同类型的水体中含有不同的溶解质和悬浮物,如河水中的溶解氧、湖水中的盐度和海洋中的盐度等。

7.水质污染:水质污染是指水体中出现的可疑、异常或有害物质的现象。

水质污染可以来自农业、工业、城市污水、生活废水等多种源头。

常见的污染物包括有机物、无机物和微生物等。

8.水文地球化学模型:水文地球化学模型是用来模拟和预测水体中的化学组成和变化的工具。

这些模型可以帮助研究人员理解水体中的物质转化过程,并评估环境变化对水体的影响。

9.水文地球化学的应用:水文地球化学的研究成果可以应用于环境监测、水资源管理、生态保护、地质勘探等领域。

它们对于了解和保护地球的水资源的可持续利用至关重要。

总结起来,水文地球化学是一门综合性学科,涉及了水文过程和地球化学现象之间的相互作用。

通过研究水的起源、循环、质量变化以及与地球化学过程之间的关系,可以帮助我们更好地理解和管理地球上的水资源。

水文地球化学总复习

水文地球化学总复习


地下水:

水文循环: 地质循环:
贮存于地下岩土空隙中的水;地球内部各种相态水的总称。 地壳中水的地球化学循环含义:在沉积-变质过程(作用)有次序、有方向的发展
中,在岩石、有机物、气体经历的地球化学改造中,导致水的直接参与,产生水的分 解和合成等作用与现象的总和。
地下水圈的水文物理分带:
固体水带、 液体水带、 具有聚群态结构的实流体带 单分子带、 离解分子带。
水的结构
良好的溶解性能
天然水 组成复杂的溶液

第一组指标 体现水的质量 总溶解固体、含盐量、 硬度 第二组指标 水体环境状态 COD、BOD、TOC、Eh 第三组指标 表征水酸碱平衡 碱度(碳酸盐碱度)、 酸度(离子酸度)


水质分析结果的可靠性检验
库尔洛夫式
1.阴阳离子平衡的检验: 2. 分析结果中一些计算值的检验 总溶解固体、总硬度、25 3.根据碳酸平衡关系的检验 pH=8.34
水强烈交替带(上部带)、水缓慢交替带(中部带)、水消极交替带(下部带)
承压水盆地三个水文地质动力分带:
承压水盆地的水化学成分的分带
水平分带:同一含水层中水化学成分分带规律。
垂直分带:垂向上不同含水层水化学成分分布规律。 按矿化度:1.淡水带 2. 盐水带 3. 卤水带 水化学成分:正垂直分带:反垂直分带、复杂垂直分带
地下水的成分、 环境的热力学条件 溶滤作用 水-岩地球化学作用 离子交换作用
氧化还原作用
重碳酸型水
氯化物型水--硫酸盐型水—重碳酸型 水---含硅酸、Fe3+较高的重碳酸型水
9
海水
海相淤泥沉积物
陆源的泥砂堆积、海水沉淀产 生的化学沉积物和生物堆积

水文地球化学基础

水文地球化学基础

水文地球化学基础水文地球化学基础,又称为水文水化学,是研究地表运动和地下运动中水电解质、元素和化学物质的组成、分布、交换、变化和与水体特性、水质、气候环境等间的相互作用,从基本物理、化学定律出发得出的理论基础。

它是水文学与地球化学科学等相结合的一门新学科,旨在研究并揭示水电解质、元素和微量污染物的变化对地球流动水体、水环境及气候环境的影响及机理,为当今流域水资源管理和保护提供基础理论支持。

水文地球化学基础主要有以下几个方面的研究内容:首先,研究不同水体水电解质、元素组成的变化,尤其是流域水质的季节性差异及背景水体的形成。

对于复杂的河流系统,一旦水电解质的变化穿透到上游,就可以在流域范围内形成一定的结构特征,例如:上游的水体有更高的pH值、盐度和总碱度;中游的水体碱度下降,同时水温也有较大变化;下游的水体则比中、上游更加净化,其中有效氮已大大减少,水温变化较小。

其次,探讨水文地球化学中存在的元素循环,及其与水系、土壤及植被的相互作用。

研究表明,水文循环会传导元素、化合物,例如硝酸根、氨氮以及重金属,在水系中的运行和分布,以及土壤中的积累、迁移、形成以及贮存。

另外,还需要研究这些元素对水体的影响,即污染物的溶解和迁移及其生物代谢等,以及植物的生理生态效应。

根据污染元素的收集、运移、形成和排除的模式,可以构建水文地球化学模型,从而可以模拟污染物在水体、土壤和植被中的转化特征,以及与水体结构、水质及气候环境之间的相互制约作用,为河流水资源的调控、保护及管理提供依据。

接下来,研究微量物质的污染特性及其对水环境的影响。

污染物的有效性微量污染物,例如有机物和重金属,都会具有特定的污染机制例如,有机物用于生产某些物种,可能对某些物种利益具有潜在的危害;重金属会污染水体,可能会影响水体中微生物和植物的数量,从而使某些水生物成为污染物的积累者;而其他有害物质如氰化物和氟离子,通常是不可见的,但是却可能对水的生物安全及人类健康构成威胁。

水文地球化学

水文地球化学


当 pH <9时,上式中的 (H+)、 (OH-) 和(CO32-)的浓度比 (Ca2+)和 (HCO3-) 相对小得多,因此,可忽略不计,则方程可变为:

2(Ca2+) = (HCO-3) ,或 (Ca2+) = (HCO3-)/2

以上为描述碳酸平衡系统的最基本的方程
5、地下水系统中的碳酸平衡
碳酸平衡
在稀溶液中,挥发性溶质的分压以巴为单位,等于溶 质的摩尔数(亨利定律),适用于难溶气体
CO 2 ( g ) H 2O H 2CO 3 (aq)
K CO 2
H 2CO 3
PCO 2

H 2CO3 H HCO

3
K1
H HCO
HCO H CO
3、温度和压力

温度和压力对某些矿物,如石英、玉髓、非晶质 SiO2的溶解度有显著影响。

在结晶岩地区的热泉口,由于温度和压力降低,SiO2 的溶解度也降低,形成硅华;

碳酸盐矿物的溶解度取决于CO2分压,pH值,温度等,
一般而言, CO2分压越高、温度越低,气体在水中的
溶解度越大,如CO2分压降低则发生脱碳酸作用,形

2、pH值

pH值是决定天然水中许多元素溶解性的重要因素

Na、Ca、NO3和Cl等少数几种离子可存在于各种pH条
件下的天然水中;

多数金属元素在酸性条件下以阳离子形式存在,而当
pH值增高时,即以氢氧化物或偏碱性的盐类形式从水
中沉淀出来(如Fe3+);

一些金属元素(如Cu、Zn等)发生沉淀的pH略高一 些(Cu为5.3, Zn为7)

水文地球化学及其应用

水文地球化学及其应用

水文地球化学及其应用水文地球化学是地球化学的一个分支学科,其研究对象是水与地球物质的相互作用、反应和转化过程。

水文地球化学地位重要,尤其是在环境保护和自然资源管理方面具有很大的应用潜力。

本文将着重探讨水文地球化学的基本理论、应用现状和未来发展趋势。

一、水文地球化学的基本理论1、水文循环水文循环是地球上水分子在不同地方以不同形态的运动。

水分子在不同状态下所体现的物理、化学性质也不同。

水循环包括蒸发、降水和地下水的形成,它是水文地球化学的基础。

2、岩石和土壤岩石和土壤是水文地球化学的重要研究对象。

岩石化学和土壤化学是水文循环的重要环节。

岩石和土壤可以分解成不同的化学组分,并对水的特性产生深远的影响,因此,研究它们的化学特征和变化过程对于水文地球化学研究至关重要。

3、水文地球化学过程水文地球化学过程是指地球上水的循环、沉积、蒸发、降水等过程中与水相互作用、反应和转化的物质。

包括水分子与矿物、溶解气体、有机物和微生物的相互作用。

水文地球化学的过程是广泛且多样的,对其进行分析研究可以形成修正以及完善生态环境政策。

二、水文地球化学的应用现状1、水资源管理水资源是人类生存和发展的基础资源之一,对于保障人类健康和经济发展大有裨益。

水文地球化学对于水资源管理有着重要的作用。

科学有效的管理水资源是现代社会永续发展的必要条件,水文地球化学则可以提供一系列的分析方法和数据供管理层面参考,使得水资源的合理开发和保护得以实现。

2、水污染治理随着城市化的加剧和经济发展的快速发展,水污染已成为了一个不可避免的问题。

水文地球化学为水污染治理提供了一种全新的思路。

在处理水体中的化学物质时,可以运用水文地球化学的更准确的能力寻找有效的污染治理方法及杀菌程序,有效保障水生态的平衡和协调。

3、环境保护水文地球化学在环境保护领域有广泛应用。

例如,可以用化学和物理方法来检测大气、水、土壤污染程度以及其它人为污染物质的存在。

有越来越多的证据表明,环境的水文地球化学变化是关于地球气候科学和环境科学的。

水文地球化学基础知识点整理

水文地球化学基础知识点整理

水文地球化学基础知识点整理水文地球化学基础知识点整理1.标准状态:指温度为298K(25℃)、压力为一巴(100000Pa)的状态。

(热力学常用词)2.“反应的标准焓变化”用△Hr表示。

“标准生成焓”用△Hf表示。

△Hr为正值,属吸热反应。

△Hr为负值,属放热反应。

△Hr=∑△Hf(生成物)-∑△Hf(反应物)3.“标准自由能”以△Gf表示。

“反应的标准自由能变化”以△Gr 表示。

△Gr=∑△Gf(生成物)-△Gf(反应物)△G值为负值,反应在恒温恒压下可自发地进行;△G值为正值,反应在恒温恒压下不能自发的进行,但逆反应可自发进行,△G=0,反应处于平衡状态。

4.迪拜-休克尔方程:lgr??AZ2II1?Ba(r为活度系数,Z为离子电荷数,I为离子强度(mol/L),A、B为取决于水的介电常数、密度和温度的常数;a是与离子水化半径有关的常数。

) 当I<0.1时,方程具有很好的精确性。

离子强度I的计算公式:I?1Z?22imi(Zi为i离子的电荷数;mi 为i离子的浓度(mol/L);淡地下水的I值一般都小于0.1mol/L,多用迪拜休克尔方程计算活度系数。

5.戴维斯方程:lgr??AZ2II1?Ba+bI(a值与迪拜休克尔方程中a值不同。

b为校正参数,规定次要离子的b值为零,该方程的应用范围是I<0.5mol/L.) 。

盖式用于TDS高的咸地下水。

6.全等溶解:矿物与水接触产生溶解反应时,其产物都是溶解祖分,这即是全等溶解。

7.非全等溶解:矿物与水接触产生溶解反应时,其反应产物除溶解组分外,还有新生成的一种或多种矿物或非晶质固体组分,这即是非全等溶解。

8.溶度积(Ksp):当难容电解质溶于水而成饱和溶液时,溶液中同时存在溶解离子和未溶解离的固体。

Ksp值越大,代表越易溶解。

9.溶解度:在给定温度和压力下,达溶解平衡时,溶液中溶解物质的总量(mg/L)。

用溶度积粗略计算溶解度总体偏小。

水文地球化学-第三讲

水文地球化学-第三讲

复杂络合物(离子对):有机,无机
无机组分i 的总浓度 C i =∑C(游离离子)+ ∑C(无机络合物) ∑C(有机络合物) 上式中的游离子包括单 离子及络阴离子 上式中的游离子包括单一离子及络阴离子。
地下水中的络合物
由一中心离子(一般是金属阳离子)和其周围的配位体 由 中 离 般 金 离 其 的 位体 (一般阴离子或中性成分)以配位键的方式结合在一起 的复杂缔合物称为地下水络合物 有时也称为离子对 的复杂缔合物称为地下水络合物,有时也称为离子对。 复杂络合物(离子对):可能是带电的,也可能是中性 的。
Ca
2
CaOH K1 a 2 a 2OH Ca
a
(1)
HCO CaHCO
3
3
K2
a a
CaHCO 3
2
C Ca
a
HCO3
(2)
Ca 2 CO3 CaCO30
Ca
2
K3
aCaCO3 aCa 2 aCO 2
3
(3)
SO
2 4
CaSO
第 部分 水化学基础 第一部分:水化学基础 —地下水中的络合物 地下水中的络合物
地下水中溶解组分形式
组分分布(speciation )
在地下水中,溶解组分以各种形式存在,不同的组分存在形 式可以具有不同的特性。三种溶解组分的存在形式:
• • • 单一离子形式: Ca2+, Mg2+, Na+, K+, Cl-, F2 , CO 2 -, NO 2 - 络阴离子形式 HCO3-, SO42- 络阴离子形式: 3 3
Ca 2+
SO 2 4
(注意:m Ca2+ C 2 游离离子浓度)

水文地球化学基础沈照理

水文地球化学基础沈照理

水文地球化学基础沈照理标题:水文地球化学基础 - 探寻沈照理的研究与理论引言:在水文地球化学领域,沈照理是一位备受瞩目的学者,他的研究和理论为我们深入了解地球上的水循环与化学过程提供了重要的指导。

本文将针对沈照理在水文地球化学基础方面的贡献展开讨论,并结合他的研究成果,探讨水文地球化学的深度与广度。

一、水文地球化学的基本概念水文地球化学是研究地下水的成因、分布、运移规律以及地球化学过程对水质的影响的学科。

它关注水循环的各个环节,包括降水、入渗、地下水形成、地下水运移、水库沉积物等。

沈照理是我国在这一领域做出重要贡献的学者之一。

二、沈照理的研究成果沈照理教授主要的研究方向包括地下水的碳酸酐化作用、地下水与岩石之间的相互作用以及地下水中的微生物过程。

他的研究成果丰富多样,既包括理论方面的创新,也包括实践方面的应用。

1. 碳酸酐化作用的研究沈照理教授的关键贡献之一是在碳酸酐化作用研究方面。

他通过实地观测和实验室模拟,揭示了地下水对岩石的碳酸酐化作用。

碳酸酐化对岩石的溶解作用会产生溶液中的溶解性离子,并对地下水的成分和性质产生显著影响。

沈照理的研究结果为我们理解地下水的形成和运移提供了重要依据。

2. 地下水与岩石的相互作用另一个重要方向是沈照理教授对地下水与岩石相互作用的研究。

他关注于地下水中各种离子的溶解和沉积过程,以及这些过程对地下水质和矿物形成的影响。

他的研究结果在预测地下水质量和岩石溶解程度方面具有重要的应用价值。

3. 地下水微生物过程的研究沈照理教授还致力于研究地下水中的微生物过程,并提出了一套兼具实证与模型的方法,用于了解微生物对地下水环境的影响。

他的研究成果不仅为地下水的生态安全提供了科学依据,还为地下水资源保护和利用提供了技术支持。

三、水文地球化学的深度和广度1. 深度上的探索在水文地球化学的深度上,我们可以从不同尺度和时间尺度上观察研究对象。

可以研究地下水底下的地下河流、矿物形成的微观机制等。

水文地球化学精品课程

水文地球化学精品课程

水文地球化学精品课程1. 引言水文地球化学是一个综合性的学科领域,研究水体中各种物质的来源、转化过程以及对环境和生态系统的影响。

通过深入了解水文地球化学,我们可以更好地理解和解决与水资源相关的问题,促进可持续发展。

2. 水文地球化学基础知识2.1 水的特性•水分子结构与性质•水的溶解性和极性•水的相变和密度2.2 地球化学基本概念•元素和同位素•化学反应和平衡•地球化学循环2.3 溶液化学基础•酸碱理论与pH值•电离平衡与溶液中离子浓度计算3. 水文地球化学研究方法3.1 取样与分析技术•取样技术及其注意事项•常用分析方法介绍3.2 实验设计与数据处理•实验设计原则与方法选择•数据收集、整理与处理4. 水文地球化学过程与环境影响4.1 溶解质的来源与转化•大气降水中的溶解物质•地表水和地下水中的溶解物质来源•溶解物质的迁移与转化过程4.2 水体污染与治理•水体污染的类型与来源•污染物的迁移与转化过程•水体治理技术与方法5. 地球化学循环与生态系统影响5.1 元素循环过程•碳循环、氮循环、磷循环等基本概念及关键过程介绍5.2 地球化学循环对生态系统的影响•土壤养分供应与生态系统结构•元素限制对生态系统功能的影响6. 应用案例分析6.1 地下水资源评价与管理案例分析•地下水资源调查方法及评价指标体系介绍•地下水管理策略研究案例分享6.2 河流污染控制案例研究•河流污染特点及监测方法•河流污染控制技术与策略案例分享7. 结语水文地球化学是一个重要的学科领域,对于水资源管理和环境保护具有重要意义。

通过本课程的学习,希望能够提高同学们对水文地球化学的认识和理解,培养同学们的研究能力和解决实际问题的能力,为可持续发展做出贡献。

以上是关于水文地球化学精品课程的内容大纲,希望本课程能够帮助同学们深入了解水文地球化学的基础知识、研究方法和应用案例,从而提升对水资源管理和环境保护相关问题的认识和解决能力。

《水文地球化学基础》课件

《水文地球化学基础》课件
讨论地下水资源管理的策略和技术,确保有效利用和保护。
结尾
1 总结和展望
总结本课程的核心观点,并展望水文地球化学研究的未来发展方向。
2 参考文献
列出本课程涉及的主要参考文献,供学生们进一步学习和探索。
第三章 - 水文地球化学研究方法
1 野外观测和实验室分析
介绍野外观测方法和实验室分析技术,以获取水体化学信息。
2 样品收集和处理技术
探讨水样的收集与处理策略,确保数据的准确性和可靠性。
第四章 - 水文地球化学的应用
1 水质评估和污染控制
介绍水质评估方法和污染控制措施,维护健康的水环境。
2 地下水资源管理
了解元素和化学反应的基本原理,掌握溶 解度和离子平衡等关键概念。
3 熟练掌握水文地球化学研究方法
4 应用水文地球化学研究于实际问题
学习野外观测和实验室分析技术,了解样 品收集和处理技术的应用。
了解水质评估和污染控制、地下水资源管 理等水文地球化学的应用领域。
第一章 - 水文地球化学基础概述
1 地球化学和水文学的关系
探讨地球化学和水文学的基本概念,以及它们之间如何相互关联。
2 水文地球化学的重要性
说明水文地球化学在环境保护、水资源管理等方面的重要作用。
第二章 - 地球化学基础知识
1 元素和化学反应
2 溶解度和离子平衡
介绍元素在地球环境中的分布和重要性, 以及水体中发生的化学反应。
解释溶解度和离子平衡对水体化学特性的 影响。
《水文地球化学基础》 PPT课件
这是《水文地球化学基础》课程的PPT课件,旨在介绍水文地球化学的基本 概念、关键知识和应用。掌握这些知识,有助于理解地球上水体的化学成分、 反应过程以及其对环境的影响。

关于水文地球化学

关于水文地球化学

关于水文地球化学水文地球化学是地球化学的一个重要分支,主要研究地下水、地表水以及与水体有关的各种化学过程和现象。

它涉及到水圈、岩石圈和生物圈之间的相互作用,以及各种物理、化学和生物过程对水体化学成分的影响。

一、水文地球化学的概念水文地球化学是研究地球上水的分布、运动、循环及与其它物质相互作用的科学。

它以地球上水的化学性质为基础,研究水中溶解物质的含量、种类、分布规律及其与周围环境的关系,并探索这些化学过程如何影响地球上的自然环境和人类活动。

二、水文地球化学的研究内容1.水文地球化学循环:研究水中各种元素和化合物的来源、迁移和转化过程,以及这些过程对水圈的影响。

2.地下水化学:研究地下水的形成、储存和运动,以及地下水中的化学过程和反应。

3.地表水化学:研究河流、湖泊、水库等地表水体的化学性质和水质变化,以及这些变化对人类活动的影响。

生物地球化学循环:研究水中生物过程对地球化学循环的影响,以及水中生物过程与环境因素的关系。

4.水质评价与保护:研究水质的评价方法和标准,以及如何保护水资源免受污染和环境破坏。

三、水文地球化学的研究方法1.野外调查:通过野外调查可以获取水体的分布、水量和水质等信息,为后续研究提供基础数据。

2.实验室分析:通过实验室分析可以获取水样中的各种化学成分和微生物等信息,进一步了解水体的化学性质和水质状况。

3.数值模拟:通过数值模拟可以模拟水文地球化学过程和反应,进一步了解水体的运动和变化规律。

4.同位素分析:通过同位素分析可以了解水中物质的来源和年龄,进一步了解水体的形成和演变过程。

四、水文地球化学的意义1.资源保护:水文地球化学研究有助于了解水资源的分布、储量和质量状况,为保护水资源提供科学依据。

2.环境监测:水文地球化学研究可以监测水体是否受到污染,以及污染物的来源和扩散方向,为环境监测和治理提供支持。

3.生态保护:水文地球化学研究可以了解水中生物过程对生态平衡的影响,为生态保护提供科学依据。

水文地球化学期末重点资料

水文地球化学期末重点资料

一、 水文地球化学定义及其基本含义水文地球化学是研究地下水中化学组分的形成、分布、迁移和富集规律及其在生产实际中应用的一门学科。

基本含义可概况为:(1水文地球化学是水文地质学的一部分;(2它是在水文地质学及地球化学基础上发展起来的;(3)它的主要研究对象是地下水化学成分的形成和演化以及各组分在其中的迁移规律; (4它是探索地球壳层各带地下水地球化学作用的新兴学科。

二、 热力学重点1. 质量作用定律(也叫化学平衡定律)一个化学反应的驱动力与反应物及生成物的浓度有关。

即在一定的温度和压力下,当反应达到平衡状态时,生成物活度以其系数为指数的乘积与反应物活度以其系数为指数的乘积之比值是一个常数,称为平衡常数(K),这个规律称之为质量作用定律,有的书上也称之为化学平衡定律。

对于特定的反应来说,在给定的温度和压力下,K 值是一个常数,如果温压改变,K 值也改变。

2. 能量降低原理能量降低原理:若0r G ∆<,表示生成物的自由能小于反应物的自由能,反应进行时能作出有用功,故反应能自发进行。

反应自发进行的方向就是体系自由能减小的方向。

r G ∆ 负值越大,表明反应进行的推动力越大,反应完成的程度也越高;若0r G ∆>,表示生成物的自由能大于反应物的自由能,体系不能作出有用功,故反应不能自发进行;若=0r G ∆,说明体系已失去了做功的能力,反应处于平衡状态。

1) 体系三类热力学体系:(1)隔离体系或孤立体系,它与环境无物质和能量的交换;(2)封闭体系,它与环境无物质交换但有能量交换;(3)开放体系,它与环境有能量和物质的交换。

状态及状态参数状态:热力学状态分为平衡状态和非平衡状态当体系没有外界影响时,各状态参数若能保持长久不变,此体系称为“热力学平衡状态”。

实际上,这种平衡包括机械平衡、热平衡和化学平衡。

状态参数:温度、压力和组成(浓度)这三种状态参数来表述2) 焓3) 自由能3. 自由能、焓与平衡常数的关系式(平衡常数的计算)两个式子4. 活度及活度系数三、 计算 容度积、平衡常数定义平衡常数:即在一定的温度和压力下,当反应达到平衡状态时,生成物活度以其系数为指数的乘积与反应物活度以其系数为指数的乘积之比值是一个常数,称为平衡常数(K)计算:对任何一个可逆反应:[][][][]c d a b aA bB cC dDC D K A B +⇔+=式中,K 为平衡常数,或称热力学平衡常数;方括弧代表活度或称(热力学)有效浓度;a 、b 、c 、d 分别为A 、B 、C 、D 的摩尔数。

(完整版)水文地球化学基础知识

(完整版)水文地球化学基础知识

《水文地球化学基础知识》——(绝对一个字一个字打出来的,正版资料!)名词解释目录第一章水化学基础第一节溶解平衡 (3)第二节碳酸平衡 (4)第三节地下水中络合物的计算 (4)第四节氧化还原反应 (5)第二章地下水的化学成分的组成第一节天然水的组成 (6)第二节天然水的化学特性 (6)第三节元素的水文地球化学特性 (7)第四节天然化学成分的综合指标(三种) (7)第五节地下水化学成分的数据处理 (7)第三章地下水化学成分的形成与特征第一节地下水基本成因类型的概念 (7)第二节渗入成因地下水化学成分的形成与特征 (8)第三节沉积成因地下水化学成分的形成与特征 (8)第四章水的地球化学循环第一节地下水圈的概念 (8)第二节地壳中水的地球化学循环 (9)第三节成矿过程中水的地球化学循环 (9)第五章水文地球化学的应用第六章补充部分 (10)第一章<水化学基础>第一节溶解平衡质量作用定律:一个化学反应的驱动力与反应物及生成物的浓度有关化学平衡与自由能体系:把所研究对象一个物体或一组相互作用的物体称为体系或系统,而体系(或系统)周围的其他物质称为环境。

状态及状态参数:热力学状态分为平衡状态和非平衡状态。

热力学平衡体系特性是由系列参数来表示当体系没有外界影响时,各状态参数若能保持长久不变,此体系称为热力学平衡状态。

焓:它是一种化学反应向环境提供的热量总值。

以符号“H”表示。

在标准状态下,最稳定的单质生成1摩尔纯物质时的焓变化,称为“标准生成焓”。

△H r=△H(生成物)-△H(反应物)△H r为正值,属吸热反应,△H r为负值,属放热反应自由能:在热力学中,自由能的含义是指一个反应在恒温恒压下所能做的最大有用功,以符号“G”表示。

在标准状态下,最稳定的单质生成1摩尔纯物质时的自由能变化,称为“标准生成自由能”,以“△Gf”表示△Gr=△G(生成物)- △G(反应物)△Gr为正值,反应在恒温恒压条件下不能自发进行,△Gr 为负值,反应在恒温恒压条件下可以自发反应;△G=0,反应处于平衡状态。

水文地球化学基础

水文地球化学基础

1.标准状态:指温度为298K (25℃)、压力为一巴(100000Pa )的状态。

(热力学常用词)2.“反应的标准焓变化”用△Hr 表示。

“标准生成焓”用△Hf 表示。

△Hr 为正值,属吸热反应。

△Hr 为负值,属放热反应。

△Hr =∑△Hf(生成物)-∑△Hf (反应物)3.“标准自由能”以△Gf 表示。

“反应的标准自由能变化”以△Gr 表示。

△Gr=∑△Gf(生成物)-△Gf (反应物)△G 值为负值,反应在恒温恒压下可自发地进行;△G 值为正值,反应在恒温恒压下不能自发的进行,但逆反应可自发进行,△G=0,反应处于平衡状态。

4.迪拜-休克尔方程:IBa I AZ r +-=1lg 2(r 为活度系数,Z 为离子电荷数,I 为离子强度(mol/L),A 、B 为取决于水的介电常数、密度和温度的常数;a 是与离子水化半径有关的常数。

) 当I<0.1时,方程具有很好的精确性。

离子强度I 的计算公式:i i m Z I ∑=221(i Z 为i 离子的电荷数;i m 为i 离子的浓度(mol/L );淡地下水的I 值一般都小于0.1mol/L ,多用迪拜休克尔方程计算活度系数。

5.戴维斯方程:IBa I AZ r +-=1lg 2+bI(a 值与迪拜休克尔方程中a 值不同。

b 为校正参数,规定次要离子的b 值为零,该方程的应用范围是I<0.5mol/L.) 。

盖式用于TDS 高的咸地下水。

6.全等溶解:矿物与水接触产生溶解反应时,其产物都是溶解祖分,这即是全等溶解。

7.非全等溶解:矿物与水接触产生溶解反应时,其反应产物除溶解组分外,还有新生成的一种或多种矿物或非晶质固体组分,这即是非全等溶解。

8.溶度积(Ksp ):当难容电解质溶于水而成饱和溶液时,溶液中同时存在溶解离子和未溶解离的固体。

Ksp 值越大,代表越易溶解。

9.溶解度:在给定温度和压力下,达溶解平衡时,溶液中溶解物质的总量(mg/L )。

水文地球化学背诵版

水文地球化学背诵版

水文地球化学背诵版一、名词解释(20,5个)水文地球化学:是研究地下水化学组成的形成、分布、迁移和富集规律及其在生产实际中应用的一门科学质量浓度:(1)以每升水中所含溶质的毫克数(mg/L)或微克数(μg /L)来表示;(2)以每千克溶液中含溶质的毫克数(ppm)或微克数(ppb)来表示。

摩尔浓度:mg/L与mol/L之间的转换关系为:mol=mg/1000/分子量当量浓度:meq/L=mmol/L×化合价地下水污染:在人类活动影响下所产生的地下水水质向恶化方向发展的现象地下水污染物:在人类活动影响下进入地下水系统的溶解物或悬浮物;上述物质使地下水水质向恶化方向发展;无论上述物质的浓度是否达到使水质超过使用标准的程度,都应视为污染物元素迁移:元素由一种存在形式转化为另一种存在形式,并伴随一定的空间位移的运动过程,称之为“元素的迁移”。

标型元素:指其迁移能控制地球化学环境,高克拉克值的强迁移元素,也称标型离子或标型化合物.标型元素的标型程度取决于元素的克拉克值和迁移能力。

弥散:是指多孔介质中两种液体相接触时,某种物质从含量高的液体向含量低的液体迁移,在两种液体分界面处形成一个过渡混合带,混合带不断发展扩大,趋向成为均匀的混合物质,这种现象称为弥散。

形成弥散现象的作用,称为弥散作用。

弥散作用包括分子扩散作用、对流迁移作用和渗透分散作用地球化学障:在元素迁移途中,如果环境的物理化学条件发生了急剧变化,导致介质中原来稳定迁移的元素其迁移能力下降,元素因形成大量化合物而沉淀,则这些引起元素沉淀的条件或因素就称为地球化学障。

渗透分散:把物质随着渗透水流一同迁移时,由于速度不均所产生的弥散现象。

对流迁移:是物质在孔隙和裂隙岩石中,随着运动介质(地下水)一起迁移,由于渗流速度的影响,迁移较远,这是自然界物质迁移的主要方式。

放射性衰变定律:即在一个封闭的系统内,单位时间内放射性母核衰变为子核的原子数与母核原子数成正比同位素效应:由同位素质量差异引起的物理和化学性质的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《水文地球化学基础知识》——(绝对一个字一个字打出来的,正版资料!)名词解释目录第一章水化学基础第一节溶解平衡 (3)第二节碳酸平衡 (4)第三节地下水中络合物的计算 (4)第四节氧化还原反应 (5)第二章地下水的化学成分的组成第一节天然水的组成 (6)第二节天然水的化学特性 (6)第三节元素的水文地球化学特性 (7)第四节天然化学成分的综合指标(三种) (7)第五节地下水化学成分的数据处理 (7)第三章地下水化学成分的形成与特征第一节地下水基本成因类型的概念 (7)第二节渗入成因地下水化学成分的形成与特征 (8)第三节沉积成因地下水化学成分的形成与特征 (8)第四章水的地球化学循环第一节地下水圈的概念 (8)第二节地壳中水的地球化学循环 (9)第三节成矿过程中水的地球化学循环 (9)第五章水文地球化学的应用第六章补充部分 (10)第一章<水化学基础>第一节溶解平衡质量作用定律:一个化学反应的驱动力与反应物及生成物的浓度有关化学平衡与自由能体系:把所研究对象一个物体或一组相互作用的物体称为体系或系统,而体系(或系统)周围的其他物质称为环境。

状态及状态参数:热力学状态分为平衡状态和非平衡状态。

热力学平衡体系特性是由系列参数来表示当体系没有外界影响时,各状态参数若能保持长久不变,此体系称为热力学平衡状态。

焓:它是一种化学反应向环境提供的热量总值。

以符号“H”表示。

在标准状态下,最稳定的单质生成1摩尔纯物质时的焓变化,称为“标准生成焓”。

△H r=△H(生成物)-△H(反应物)△H r为正值,属吸热反应,△H r为负值,属放热反应自由能:在热力学中,自由能的含义是指一个反应在恒温恒压下所能做的最大有用功,以符号“G”表示。

在标准状态下,最稳定的单质生成1摩尔纯物质时的自由能变化,称为“标准生成自由能”,以“△Gf”表示△Gr=△G(生成物)- △G(反应物)△Gr为正值,反应在恒温恒压条件下不能自发进行,△Gr 为负值,反应在恒温恒压条件下可以自发反应;△G=0,反应处于平衡状态。

活度及活度系数为了保证计算的精确程度,就必须对水中组分的实测浓度加以校正,校正后的浓度为校正浓度,也就是活度。

质量作用定律中,浓度是以活度表示的。

活度是真实浓度(实测浓度)的函数,一般情况下,活度小于实测浓度。

活度与实测浓度的函数表示式为:a=rm m为实测浓度(mol/L),r为活度系数。

活度系数随水中溶解固体(矿化度)增加而减小,但一般都小于1理想溶液:从理论上讲,溶液中离子之间或分子之间没有相互作用,这种溶液称为理想溶液。

地下水中的溶解-沉淀全等溶解:矿物与水接触产生溶解反应时,其反应产物都是溶解组分,这种溶解反应称为全等反应;非全等溶解:矿物与水接触产生溶解反应时,其反应产物除溶解组分外,还有新生成的组分,这种反应称为非全等溶解溶度积:当难溶电解质溶于水而成饱和溶液时,溶液中同时存在的溶解离子和未溶解的固体。

按质量作用定律,在给定的温压下,溶液中相应方次的离子的活度乘积是一个常数,称为平衡常数K,对于难溶盐来说,这个常数称为“容积度”,或者“溶度积常数”常用KSP表示。

溶解度:在给定温压下,达到溶解平衡时,溶液中溶解物质的总量。

在水文地球化学研究中,溶解度常用mg/L表示。

同离子效应:一种矿物溶解于水溶液中,若水溶液中有与矿物溶解相同的离子,则这种矿物的溶解度就会降低,这种现象在化学上称为同离子效应。

盐效应:矿物在纯水中的溶解度低于矿物在高含量水中的溶解度,这种含盐量升高使矿物溶解度增大的现象,在化学上称为盐效应。

其主要原因是,水中含盐量升高,离子强度I也升高,而活度系数则降低。

注:就对溶解度的影响而言,同离子效应大于盐效应。

所以,在盐效应和同离子效应同时存在时,盐效应往往可忽略;如无同离子效应时,盐效应是应考虑的。

饱和指数饱和指数是确定水与矿物出于何种状态的参数,以符号“SI”表示。

一般来说,根据饱和指数值判断水与岩石、矿物的反应状态,对于地下淡水来说,还是很有用的。

水质用来描述不同用途的水的物理、化学及生物化学性质的一个术语。

第二节碳酸平衡电中性条件从宏观上讲,电解溶液的一个基本条件是电中性条件,即溶液中的正离子电荷总数等于负离子电荷总数。

水及弱酸的离解纯水或含有其他溶质的水溶液中的水分子都会离解,其反应为:H2O=H++OH-按质量作用定律,达到离解平衡时可表达为:KW=式子中,KW是水的离解常数。

在稀溶液中,水的活度为1。

KW随温度而变化。

地下水中的碳酸平衡地下水中的碳酸组成:游离碳酸H2CO3、重碳酸HCO3-、碳酸CO32-地下水系统中的碳酸平衡闭系统:该系统与大气没有co2交换,水与碳酸盐间的溶解反应所消耗的co2得不到补充,碳酸盐的溶解受到co2的控制,这种系统称为“闭系统”。

其特征是,Ca2+、HCO3-浓度较低,而p H值较高。

开系统:该系统与大气有co2交换,水与碳酸盐间的溶解反应所消耗的co2不断得到补充,碳酸盐的溶解不受到co2的控制,这种系统称为“开系统”。

其特征是,Ca2+、HCO3-浓度较高,而p H值较底。

第三节地下水中络合物的计算地下水中溶解组分的存在形式地下水溶解组分的存在形式有三种:(1)单一离子形式:eg:Ca2+ /Mg2+/ Na+/ K+/ Cl- /F-等;(2)络阴离子形式:eg:SO42-/CO32-/HCO3-/NO-等;(3)复杂络合物:它包括无机络合物和有机络合物主要七大离子:Cl- SO4- HCO3- Na+ K+ Ca2+ Mg2+地下水中的络合物地下水络合物:由一中心离子(一般为金属阳离子)和其周围的配位体(一般为阴离子或中性成分)以配位键的方式集合在一起的复杂缔合物称为地下水络合物。

这种离子可能带电可能不带电。

地下水中长两组分的主要离子对:CaSO40 /MgSO40/ NaSO4-/ KSO4-/ CaHCO3+/ MgHCO30/ NaHCO30/ CaCO30/ MgCO30/ NaCO3-地下水络合物的计算(具体计算形式详见课本p27)第四节氧化还原反应一、氧化还原反应基本原理半反应式:通常在化学反应式中电子转移和得失过程的反应式称半反应式;eg:O2+4H++4e=2H2O标准电极电位(标准氧化还原电位):在标准状态下,金属与含有该金属离子且活度为1mol的溶液相接触的电位称为该金属的标准电极电位(由于标准电极电位表示物质氧化性及还原性的强弱,所以又称标准氧化还原电位),以符号E0表示,单位为V,每个半反应都有它的E0值。

能斯特方程氧化还原电位(Eh):在实际的系统中,参加氧化还原反应的组分其活度一般都不是1mol,则该反应达平衡是的电位称为氧化还原电位,单位为VEh值与E0值和参加组分的活度有关,表示这种关系的方程为能斯特方程Eh=E0+二、Eh-PH图的绘制Eh-PH图是以Eh为纵坐标,pH为横坐标,表示在一定的Eh值和PH值范围内,各种溶解组分及固体组份稳定场的图解,因此也称为稳定场图注:Eh-PH图在天然地下水系统中,只能预测水溶液在一定的Eh-PH范围内可能出现的溶解组分及固体类型,但不能预计其反应速率。

Eh-PH图的局限性:(1)所有的Eh-PH图仅代表标态下的稳定场范围,而实际情况常常偏离标准状态;(2)野外实测的Eh值并不与某种金属离子严格相关;(3)Eh-PH图的绘制并未考虑离子强度及离子络合的影响。

因此,Eh-PH图只是一种简化的理想模型。

三、地下水中的氧化还原反应地下水中的主要氧化还原元素:铁、氮、硫、锰、铬(Cr)、砷(As)控制地下水系统氧化还原状态的因素:主要取决于通过循环进入该系统的氧量,以及通过细菌分解有机物所消耗的氧量,或氧化低价金属硫化物、含铁硅酸盐和碳酸盐所消耗的氧量。

(进入的氧量>=消耗的氧量,则为氧化状态;反之,则为还原状态)。

影响地下水氧化还原状态的因素:1.包气带的性质及其透水性。

2.含水层中有机物及其它还原剂的含量。

3.地下水循环途径。

地下水系统中,消耗氧的氧化还原反应,多半发生在地下水面以上的包气带里。

只要包气带及含水层里有少量的有机物,水中的溶解氧很快被耗尽。

在此过程中,微生物起到催化作用。

第五节吸附作用吸附:吸附是固体表面反应的一种普遍现象。

在液相与固相接触时,液相和固相表面之间常常产生物质交换,这种现象称为吸附。

一、吸附种类和吸附机理物理吸附:其吸附的键联力为静电引力,键联力较弱,因此已吸附在颗粒表面的离子,在一定条件下,可悲液体中的另一种离子所替代,所以物理吸附也称为“离子交换”。

化学吸附:被吸附的离子进入颗粒的结晶格架,成为晶格的一部分,它不可能再返回溶液,是一种不可逆反应。

这种现象也成为“特殊吸附”。

二、离子交换地层中的吸附剂:凡能吸附液相中溶解离子的固体均称为吸附剂阳离子交换容量:某种岩石、矿物和松散沉积物的吸附能力往往以交换容量,主要是阳离子交换容量来衡量,其含义是每百克干土(岩)所含的全部交换型阳离子的毫克当量数,其单位是meq/100g阴离子吸附:(1)PO42-易于被高岭土吸附;(2)硅质胶体易吸附PO42-、AsO43-,不易吸附SO42-、Cl-和NO3-;(3)阴离子被吸附的顺序为:F->PO42->HPO4->HCO3->H2BO3->SO42->Cl->NO3-阳离子吸附亲和力:H+>Rb+>Ba2+>Sr2+>Ca2+>Mg2+>NH+>K+>Na+>Li+注:吸附亲和力很弱的离子,只要浓度足够大,也可以交换吸附亲和力很强而浓度较小的离子。

第二章<地下水的化学成分的组成>第一节天然水的组成一、水的结构和特性水分子的缔合作用:相邻水分子间由于有氢键联结,使水能以(H2O)n巨型分子存在,但它不会引起水的化学性质的改变,这种现象称为水分子的缔合作用水的缔合程度随温度降低而增强,当温度为4℃时,缔合程度最大,水的密度也最大。

水的特异性质:1.水具有独特的物理性质:(1)水的生成热很高(即热稳定性很高)(2)水具有很高的沸点和达到沸点以前极长的液态阶段2.水具有较大的表面张力;3.水具有较小的粘滞度和较大的流动性;4.水具有较高的介电效应;5.水具有使盐类离子产生水化作用的能力;6.水具有良好的溶解性能二、天然水组成分类天然水组成可按溶质颗粒大小、化合物类型、相对浓度及相态等分类:(一)按颗粒大小溶液胶体悬浮液(二)按化合物类型无机物有机物金属元素络合物及有机络合物(三)按状态固相液相气相(四)按相对浓度宏量元素中量元素微量元素第二节天然水的化学特性一、大气降水的成分特征大气是个五成分三相系统,五成分是氮、氧、惰性气体、二氧化碳及水;三相是水、气、冰二、海水的成分特征(一)无机组分: 1.宏量组分(Cl-、Na+、Mg2+、Ca2+)2.中量组分(Sr、SiO、B、F)3.微量组分(P、I、Ba)(二)有机物碳水化合物、蛋白质、缩氨酸等三、河水的成分特征(一)无机物不同地区的岩石、土壤组成决定着该地区的河水的基本化学成分。

相关文档
最新文档