2020年中考数学二轮核心考点讲解第13讲新定义材料理解问题原卷板

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲新定义材料理解问题

新定义材料理解问题,其特点是:

(1)创设新情境,赋予新内涵;

(2)试题呈现形式活泼新颖;

(3)一般取材于学生熟悉的生活实际,具有时代气息和教育价值.

这种问题一般都是先提供一种情景,或者一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.

对于这类题求解步骤是“阅读→分析→理解→创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.

1. 涉及到定义知识的新情景问题

它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.解此类型题的步骤有三:(1)认真阅读,正确理解新定义的含义;(2)运用新定义解决问题;

(3)得出结论.

2. 涉及到数学理论应用探究问题

学习此类型题目,要解决后面提出的新问题,必须仔细研究前面的问题解法.即前面解决问题过程中用到的知识在后面问题中很可能还会用到,因此在解决新问题时,认真阅读,理解阅读材料中所告知的相关问题和内容,并注意这些新知识运用的方法步骤.

3. 涉及到日常生活中的实际问题

处理此类问题需要结合生活实际将图形转化为数学图形,利用数学知识进行解答。

【例题1】(2019•遂宁)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.

例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;

(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;

(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;

(2+i)2=4+4i+i2=4+4i﹣1=3+4i

根据以上信息,完成下面计算:

(1+2i)(2﹣i)+(2﹣i)2=.

【变式1-1】(2019•湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.

【变式1-2】(2019•娄底)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.

【例题2】(2019•重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”. 定义:对于自然数n ,在通过列竖式进行n +(n +1)+(n +2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.

例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.

(1)请直接写出1949到2019之间的“纯数”; (2)求出不大于100的“纯数”的个数,并说明理由.

【变式2-1】对任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”.

(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;

(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D (m )=33

m

,求满足D (m )是完全平方数的所有m.

【例题3】(2019•安顺)阅读以下材料:

对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.

对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.

我们根据对数的定义可得到对数的一个性质:

log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:

设log a M=m,log a N=n,则M=a m,N=a n,

∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)

又∵m+n=log a M+log a N

∴log a(M•N)=log a M+log a N

根据阅读材料,解决以下问题:

(1)将指数式34=81转化为对数式;

(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)

(3)拓展运用:计算log69+log68﹣log62=.

【变式3-1】阅读下面的材料:

如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;

(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.

例题:证明函数f(x)=(x>0)是减函数.

证明:设0<x1<x2,

f(x1)﹣f(x2)=﹣==.

∵0<x1<x2,∴x2﹣x1>0,x1x2>0.

∴>0.即f(x1)﹣f(x2)>0.

∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.

根据以上材料,解答下面的问题:

已知函数f(x)=+x(x<0),

f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣

(1)计算:f(﹣3)=,f(﹣4)=;

(2)猜想:函数f(x)=+x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.

相关文档
最新文档