最新七年级下学期数学期中考试卷

合集下载

2024年秋季期中考试七年级数学试题

2024年秋季期中考试七年级数学试题

2024年秋初中生期中素养综合作业七 年 级 数 学(本试卷共4页,满分120分)★祝考试顺利★注意事项:1、答卷前,考生务必将自己的学校,班级,姓名,考试号填写在试题卷和答题卡上.2、选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3、非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效.4、考试结束后,请将本试题卷和答题卡一并上交.一.选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置.)1.小明同学把1000元压岁钱存入银行记作+1000 元,开学买学习用品,需向银行取出300元,取出300元可以记作(▲)A .+1000元B .-1000元C .-300元D .+300元2.如图,数轴上的两个点分别表示数a 和-3,则a 的值可以是(▲)A. 1B. 0C. -2D. -43.如果小红家冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为(▲)A .-26℃B .-22℃C .-18℃D .-16℃4.在,(-1)2024,,,,中,负数的个数有(▲)A. 2个B. 3个C. 4个D. 5个5.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为(▲) A .11⨯104B .1.1⨯105C.1.1⨯104D .0.11⨯1066.下列判断中错误的是(▲)A. 二次三项式 B. 是单项式C.是多项式 D.中,系数是7.将(1011001)2转换为十进制数是(▲)A.89B.88C.177D. 33是8-()23-01--25-1a ab --22a b c -2a b+234r π348. 下列运算正确的是(▲)A .B .C .D .9. 已知x ,y 互为相反数,m ,n 互为倒数,则2mn -x -y 的值为(▲)A. 2B.-2C. 1D. -110. 下面选项中的两个量成反比例关系的是(▲)A .汽车从甲地到乙地行驶的速度与行驶的时间B .正方体的棱长与表面积C .车间每小时加工零件100个,该车间加工零件个数与加工时间D .购买笔记本和中性笔的总费用一定,笔记本的费用与中性笔的费用二.填空题:(本大题共5个小题,每小题3分,共15分.把答案填在答题卡的对应位置的横线上.)11.大于的负整数是 ▲ .12.用四舍五入法取近似数,2.825精确到0.01的值为 ▲ .13.如果x 3y m 与-2x n y 是同类项,那么m -n 2=▲ .14.第1个图案中“●”的个数是3,第2个图案中“●”的个数是6,第3个图案中▲.15.结合生活实际,写出代数式3a +2b 三.解答题(本大题共9个小题,共75分.解答应写出文字说明,演算步骤,并且写在答题卡上每题对应的答题区域内.)16.计算:(每小题5分,共15分)(1)(2)(3)∙∙∙第3个第2个第1个第4个431a a -=325a a a +=67ab ab+=32ab ba ab-=5.1-)852()431(833)216(431---++-+)2161(12548-⨯-÷])3(2[31)5.01(122024--⨯⨯---17.计算:(每小题4分,共8分)(1)-a 2b -2ab 2+2ba 2+b 2a (2)2a -3b +[4a -(3b +2a )]19.(6分)用代数式表示:(1)甲乙两地相距s km .小明原计划骑车从甲地到乙地,需用时t h ;后因天气原因,改乘公交车前往,结果提前1 h 到达乙地.公交车的速度是多少?(2)一商店将进价为m 元的商品加价n 元后又打九折出售,该商品的售价是多少元?(3)去年某镇居民人均可支配收入为a 元,比前年增长10%,前年该镇居民人均可支配收入为多少元?20.(6分)求的值,其中x ,y 满足=0.21.(6分)有理数a ,b 在数轴上的位置如图所示.(1)用“> 、= 或 <”填空:a ▲ b ; -a ▲ -b ; ▲ ;(2)将a ,b ,-a ,-b 用“<”连接: ▲ ,= ▲ ,若a =-3,点P 与表示数a 的点距离为5,则点P 表示的数为 ▲ .1)1(3)21(22222----+xy y x xy y x 2)2(2-++y x a b b a -22. (7分)如图,正方形ABCD 的边长为b .(1)根据图中数据,用含a ,b 的代数式表示阴影部分的面积S ; (2)当a =4,b =10时,求阴影部分的面积.23.(10分)已知代数式A =2x 2+xy +2y ,B =3x 2-xy +3x .(1)求3A -2B ;(2)当x =-2,y =4时,求3A -2B 的值;(3)若3A -2B 的值与x 的取值无关,求3A -2B 的值.24.(12分)某工艺厂计划每天生产工艺品500个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(每天超过500的个数记为正数、不足的个数记为负数):星期一二三四五六日增减(单位:个)+5-2-5+15-10+16-9(1)该厂星期一生产工艺品的数量为 ▲ ;本周产量最多的一天比最少的一天多生产 ▲ 工艺品(2)请求出该工艺厂在本周实际生产工艺品的数量;(3)已知该厂实行每日计件工资制,每生产一个工艺品可得a 元,若超额完成任务,则超过部分每个另奖b 元,少生产一个扣c 元.试求该工艺厂在这一周应付出的工资总额.(用a ,b ,c 表示)(4)若a =60,b =50,c =80,求该工艺厂在这一周应付出的工资总额.。

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试卷一、单选题1的值等于()A .32B .32-C .32±D .81162.在平面直角坐标系中,点P 在第二象限,点P 到x 轴的距离为4,到y 轴的距离为3,则点P 的坐标为()A .()3,4-B .()4,3-C .()3,4-D .()4,3-3.如图,三条直线相交于点O .若CO ⊥AB ,∠1=56°,则∠2等于()A .30°B .34°C .45°D .56°4.若将点(),A a b 向左平移2个单位,再向上平移3个单位得到点B ,则点B 的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b +-5.8-的立方根为()A .2-B .2±C .2D .46.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=()A .10︒B .15︒C .20︒D .25︒7.如图,CD AB ⊥于点D ,90ACB ∠=︒,则下列说法错误的是()A .点C 到AB 的距离等于CD 的长B .点A 到BC 的距离等于AC 的长C .点B 到CD 到的距离等于BD 的长D .点D 到AC 的距离等于AD 的长8.将不大于实数a 的最大整数记为[]a ,则3⎤=⎦()A .3-B .2-C .1-D .09.如图,正方形的一条边的端点恰好是数轴上0和1的对应点,以0的对应点为圆心,以正方形的对角线为半径,逆时针画弧,交数轴于点P ,则点P 对应的数是()A 1B .C .1D . 1.414-10.在数轴上,点A 对应的数是2-,点B 对应的数是1,点P 数轴上动点,则PA PB +的最小值为()A .0B .1C .2D .3二、填空题11“>”,“=”,或“<”).12.在测定跳远成绩时,从落地点拉向起跳线的皮尺应当与起跳线_______.13.如图,//AB l ,//AC l ,则A ,B ,C 三点共线,理由是:__________________________________________.14.把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是_____.15.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A 出发,沿着A B C D A →→→→→B →…路径循环爬行,当爬行路径长为2019个单位长时,蚂蚁所在格点坐标为_______.三、解答题16.计算:(1;(2.17.求下列各式中的x 的值:(1)()2110x +-=;(2)()3291034x ++=.18.定义:两条线段所在直线相交形成四个角,我们称不大于直角的角叫做两条线段的夹角.如图,小明在一张白纸上画了两条相交线段,用一张小纸片盖住了相交部分,同桌的你如何知道这两条线段的夹角呢?只有一把直尺、一个量角器和一支铅笔供你使用,请你画出一个与夹角相等的角(不能延长),标出该角并测量度数.19.保留画图痕迹,并回答问题:如图,点P 在MON ∠的内部.(1)过点P 画//PA ON ,交OM 于点A ;.(2)过点P 画PB ON ⊥,交ON 于点B ;(3)填空:若70MON ∠=︒,则PAM ∠=_______,BPA ∠=_______.20.完成下列证明.如图,点D ,E ,F 分别在线段BC ,AB ,AC 上,12∠=∠,23180∠+∠=︒.求证:180A B C ∠+∠+∠=︒.证明: ∠l=∠2,∴//AB DF (_________________________________________________________).∴4∠=∠B (__________________________________________________________). 23180∠+∠=︒,∴//DE AC (_________________________________________________________).∴1A ∠=∠(___________________________________________________________),24180C ∠+∠+∠=︒(_____________________________________________________________),∴180A B C ∠+∠+∠=︒.21.如图,四边形ABCD 中,//AD BC ,100A ∠=︒,BD 平分ABC ∠,BD CD ⊥,求C ∠的度数.22.如图,网格的每个小正方形的边长都是1个单位长度,三角形ABC 的顶点都在网格的格点上.(1)建立适当的平面直角坐标系,写出三角形ABC 顶点的坐标;(2)在(1)的平面直角坐标系下,将三角形ABC 向右平移1个单位长度,然后再向上平移2个单位长,得到三角形A B C ''',画出平移后的图形,并指出其各点的坐标.23.如图,在平面直角坐标系中,已知点(),0A a ,()0,B b ,将线段AB 沿着x 轴向右平移至CD ,使点C 与点A 对应,点D 与点B 对应,连接BD .(1)若a ,b 满足40a ++.①填空:a =_______,b =_______;②若面积关系:1:3AOB OCDB S S ∆=四边形成立,则点D 的坐标为_______;(2)BE 平分ABO ∠,DE 平分BDC ∠,BE ,DE 相交于点E ,判断BED ∠的大小,并说明理由.参考答案1.A【详解】分析:根据平方与开平方互为逆运算,可得答案.32,点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.2.A【分析】根据“点P在第二象限”可知,点P的横坐标为负,纵坐标为正,根据“点P到x轴的距离为4,到y轴的距离为3”可分别得出点P横坐标与纵坐标的绝对值,即可得出坐标【详解】解:∵点P在第二象限∴点P的横坐标小于0,纵坐标大于0∵点P到x轴的距离为4,到y轴的距离为3∴点P的坐标是(-3,4)故选:A【点睛】本题考查坐标平面内点的坐标的特点与点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.B【详解】试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.考点:垂线.4.A【分析】根据坐标平移的规律:横坐标左减右加,纵坐标上加下减,即可得出答案解:原来的横坐标是a ,向左平移2个单位得到点B 横坐标a -2,原来纵坐标是b ,向上平移3个单位得到点B 纵坐标b+3.故答案是A【点睛】本题考查坐标平移的规律,关键是要熟练掌握左右移动改变点的横坐标,上下移动改变点的纵坐标.5.A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵3(2)=8--∴8-的立方根是2-故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.6.B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果是()A. B. C. D.2.将一把直尺与一块三角板如图放置,若,则的度数是()A. B. C. D.3.在长方形ABCD中,放入5个形状大小相同的小长方形空白部分,其中,求阴影部分图形的总面积()A. B. C. D.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加B.外角和增加C.对角线增加一条D.内角和增加5.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,,当为度时,AM与CB平行.()A.16B.60C.66D.1146.如图,直线,点E在CD上,点O、点F在AB上,的角平分线OG交CD于点G,过点F作于点H,已知,则的度数为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。

7.若有意义,则m取值范围是___.8.如图所示,的外角等于,,则的度数是______.9.如图,直角三角形ABC的周长为2022,在其内部有5个小直角三角形,则这5个小直角三角形周长的和是_____.10.中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为______.11.比较大小:_12.已知的乘积项中不含和x项,则_____.13.将沿着平行于BC的直线折叠,点A落到点,若,,则的度数为_____.14.在一个数学九宫格中,当处于同一横行,同一竖行,同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x的值为_____.15.定义运算,下面给出了关于这种运算的四个结论:①;②;③若,则;④若,则其中正确结论的序号是__________填写你认为所有正确的结论的序号16.已知关于x,y的方程组的解为,则关于m、n的方程组的解为_____;三、计算题:本大题共3小题,共18分。

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

重庆市第八中学校2023-2024学年七年级下学期期中考试数学试题 (解析版)

重庆市第八中学校2023-2024学年七年级下学期期中考试数学试题 (解析版)

重庆八中2023-2024学年度(下)半期考试初一年级数学试题A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号除黑.1.的倒数是( )A. B. C. 2 D. 【答案】C【解析】【分析】本题主要考查了倒数,根据倒数得定义求解即可.【详解】解:的倒数是2,故选:C .2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了单项式乘以单项式,同底数幂的乘法,根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选:C .3. 已知球的表面积与它的半径之间的关系式是,其中随的变化而变化,则在这个公式中变量是( )A. , B. , C. D. ,,【答案】B【解析】121212-2-12325a b ab-⋅=428a a a ⋅=224326b b b ⋅=222222a b ab a b ⋅=326a b ab -⋅=426a a a ⋅=224326b b b ⋅=322322a b ab a b ⋅=()2cm S ()cm R 24S Rπ=S R πR S R S S πR【分析】此题主要考查了常量和变量,关键是掌握定义.根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可直接得到答案.【详解】解:中,常量是4,,变量是、,故选:B .4. 已知一个三角形的两边长分别为4cm ,7cm ,则它的第三边的长可能是( )A. 3cmB. 8cmC. 11cmD. 12cm【答案】B【解析】【分析】本题考查三角形的三边关系,熟练掌握三角形两边之和大于第三边,角形的两边差小于第三边是解题的关键.根据三角形两边之和大于第三边,角形的两边差小于第三边,结合选项求解即可.【详解】解:设三角形的第三条边为,,三角形的第三条边长可能是,故选:B .5. 如图是雨伞在开合过程中某时刻的截面图,伞骨,点D ,E 分别是,的中点,,是连接弹簧和伞骨的支架,且,已知弹簧M 在向上滑动的过程中,总有,其判定依据是( )A.B. C. D. 【答案】C【解析】【分析】根据全等三角形判定的“”定理即可证得.【详解】解:∵,点D ,E 分别是,的中点,∴,在和中,24S R π=πS R cm x 311x << ∴8cm AB AC =AB AC DM EM =DM EM ADM AEM △△≌ASA AAS SSS SASSSS ADM AEM △△≌AB AC =AB AC AD AE =ADM △AEM △,∴,故选:C .【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键.6. 如图是将一个小长方体铁块固定一个大长方体容器的底部的截面图,现均匀地向这个容器中注水,最后把容器注满,在注水的过程中大长方体水面的高度随时间变化的函数图像大致是( )A. B.C. D.【答案】B【解析】【分析】本题考查了函数的图像,解题的关键数形结合,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平.【详解】解:在注水过程中,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平,故选:B .7. 若关于的二次三项式是一个完全平方式,那么的值是( )A. B. C. D. 或【答案】D AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()SSS ADM AEM ≌ h t x ()2216x k x +-+k 6-66±106-【解析】【分析】本题主要考查了完全平方公式,熟练掌握完全平方式是解题的关键.根据和都是一个完全平方式解答即可.【详解】解:和它们都是完全平方式,或,解得:或,故选:D .8. 某校社团课28名学生制作长方体礼品盒,每人每小时可做60个侧面或90个底面,一个礼品盒要一个侧面和两个底面组成,为了使每小时制作的成品刚好配套,应该分配多少名学生做侧面,多少名学生做底面设分配x 名学生做侧面,则可列方程为( )A. B. C.D. 【答案】D【解析】【分析】本题考查了一元一次方程的应用,设分配x 名学生做侧面,根据配套问题, 一个礼品盒要一个侧面和两个底面组成,列出方程,即可求解.【详解】解:设分配x 名学生做侧面,则可列方程为故选:D .9. 如果关于x 的多项式的结果不含项,则m 的值为( )A. 0B. 4C.D. 1【答案】C【解析】【分析】本题主要考查了多项式乘法中的无关型问题,根据多项式乘以多项式的计算法则求出的结果,再根据不含项,即含项的系数为0进行求解即可.【详解】解:2816x x ++2816x x -+ ()224816x x x +=++()226481x x x =-+-∴k -=2828k -=-10k =6k=-()6029028x x =⨯-()609028x x =-()906028x x =-()2609028x x ⨯=-()2609028x x ⨯=-()()2144x x mx +-+2x 14()()2144x x mx +-+2x 2x ()()2144x x mx +-+3224444x mx x x mx =-++-+,∵关于x 的多项式的结果不含项,∴,∴,故选:C .10. 如图,在和中,再添两个条件不能使和全等的是( )A. ,B. ,C. ,D. ,【答案】B【解析】【分析】本题考查了三角形全等的判定方法,根据全等三角形的判定方法分别进行判定即可.【详解】解:A 、∵,∴,又∵,∴,故A 选项不符合题意;B 、 ∵,,,不能根据判定两三角形全等,故B 选项符合题意;C 、∵,,又,∴,故C 选项不符合题意;D 、 ∵,∴,又∵,,∴,故D 选项不符合题意;故选:B .()()3241444x m x m x =--+-+()()2144x x mx +-+2x ()410m --=14m =ABC BDE ABC BDE AB BD =AE DC=AB BD =DE AC =BE BC =E C∠=∠EAF CDF ∠=∠DE AC=AB BD =AE DC=BE BC =B B ∠=∠ABC DBE ≌△△()SAS AB BD =DE AC =B B ∠=∠SSA BE BC =E C ∠=∠B B ∠=∠ABC DBE ≌△△()ASA EAF CDF ∠=∠BAC BDE ∠=∠DE AC =B B ∠=∠()AAS ABC DBE ≌二、填空题(本大题共4小题,每小题4分,共16分)请将每小题的答案直接填写在答题卡中对应的横线上.11. 国家统计局最新数据显示,2024年一季度我国国内生产总值(GDP )为亿元.数用科学记数法可以表示为______.【答案】【解析】【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于时,是正整数,当原数绝对值小于时是负整数;由此进行求解即可得到答案.【详解】解:,故答案为:.12. 已知,,则______.【答案】【解析】【分析】本题考查同底数幂除法,同底数幂的除法法则:底数不变,指数相减.根据同底数幂的除法法则求解.【详解】解:∵,,∴.故答案为:.13. 如图所示的网格是正方形网格,点,,,均落在格点上,则的度数为______.【答案】【解析】的28499728499752.8499710⨯10n a ⨯110a ≤<n n a n 10n 1n =⨯52.824994997810752.8499710⨯56m =53n =5m n -=256m =53n =5632m n -=÷=2A B C D DCB ACB ∠+∠90︒【分析】本题网格型问题,考查了三角形全等的性质和判定,本题构建全等三角形是关键.证明,得,根据同角的余角相等可得结论.【详解】解:,,,,,,故答案为:.14. 已知一个长方形的周长为,长与宽的平方和为,则该长方形的面积为______.【答案】####【解析】【分析】本题考查了完全平方公式的应用,解题的关键是熟练掌握完全平方公式.设长方形的长、宽分别为、,则,,根据完全平方公式即可求解.【详解】解:设长方形的长、宽分别为、,则,,,,即,解得;,该长方形的面积为,故答案为:.三、解答题(15题共16分每小题4分,16题8分,17题10分,18题10分,共44分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.15. 计算:()SAS DCE ACB ≌DCE ACB ∠=∠ 3AB DE ==5BC EC ==90E ABC ∠=∠=︒∴()SAS DCE ACB ≌∴DCE ACB ∠=∠∴90DCB ACB DCB DCE BCE ∠+∠=∠+∠=∠=︒90︒12251121525.5a b 2225a b +=()212a b +=a b 2225a b +=()212a b +=∴6a b +=∴()a b a b ab +=++=222226ab +=25236112ab =∴112112(1)(2)(3) (4)【答案】(1)(2)(3)(4)【解析】【分析】本题考查了有理数的混合运算,整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.(1)根据有理数的混合运算法则计算即可;(2)根据平方差公式简算即可;(3)根据整式的乘法法则计算即可;(4)根据积的乘方,平方差和完全平方公式即可求解.【小问1详解】解:小问2详解】【小问3详解】【()2031220263π-⎛⎫++- ⎪⎝⎭2202620252027-⨯()2223a b a b-()()22m n m n -+0132362a b a b -42242m m n n -+()2031220263π-⎛⎫++- ⎪⎝⎭819=+-0=2202620252027-⨯()()220262026120261=--⨯+()22202620261=--1=()2223a b a b -【小问4详解】16. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了整式的化简,代数式求值,绝对值的非负性.解题的关键在于对知识的熟练掌握与正确的运算.先利用平方差公式和完全平方公式计算,然后合并同类项,然后计算除法,利用非负数的性质求得a 、b 的值,最后代入数值求解即可.【详解】解:原式∵,且,∴,∴,∴,将,代入上式得222232a b a a b b =⋅-⋅32362a b a b =-()()22m n m n -+()()2m n m n ⎡⎤=-+⎣⎦()222m n =-42242m m n n -=+()()()()223363a b a b a b b ⎡⎤+--+÷-⎣⎦()2120a b +++=533a b +233-()()()()223363a b a b a b b ⎡⎤=+--+÷-⎣⎦()()()2222673623a ab b a ab b b ⎡⎤=+--++÷-⎣⎦()()2593ab b b =--÷-533a b =+()2120a b +++=10a +≥()220b +≥10a +=()220b +=10a +=20b +=1a =-2b =-1a =-2b =-原式.17. 如图,在中,,,过点C 作,连接.(1)基本尺规作图:作,交线段于点F (保留作图痕迹);(2)求证:.解:∵∴___①___(___②___)∵∴在和中∴∴(___④___)【答案】(1)见解析 (2)①;②两直线平行,同帝内角互补;③;④全等三角形的对应边相等【解析】【分析】(1)根据运用作相等角的作图方法画图即可;(2)根据平行线的性质可推出①及②,再根据全等三角形的判定定理和性质可得③④.【小问1详解】()()51323=⨯-+⨯-563=--233=-ABC AB AC =90BAC ∠=︒CE AB ∥AE ABF EAC ∠=∠AC BF AE =CE AB∥90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △()______BA ACBAF ACE ⎧⎪=⎨⎪∠=∠⎩③()ASA BAF ACE ≌BF AE =180BAC ACE ∠+∠=︒ABF EAC ∠=∠解:如图:即为所求【小问2详解】解:∵∴(两直线平行,同帝内角互补)∵∴在和中∴∴(全等三角形的对应边相等)18. 在中,D 是的中点,;(1)证明:;(2)若,平分,求的度数.【答案】(1)证明见解析(2)【解析】【分析】本题考查了全等三角形的性质与判定,平行线的性质,角平分线的定义,(1)根据平行线的性质可得,,结合,证明,根据全等三角形的性质,即可得证;BAF ∠CE AB∥180BAC ACE ∠+∠=︒90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △ABF EACBA ACBAF ACE∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BAF ACE ≌BF AE =ABC BC AC BF ∥DE DF ==110BAC ∠︒DB ABF ∠C ∠35︒C FBD ∠=∠F CED ∠=∠CD BD =()AAS CDE BDF ≌(2)根据平行线的性质得出,进而根据平分,即可求解.【小问1详解】证明:∵∴,∵D 是中点∴在和中∴∴【小问2详解】解:∵∴,∵∴∵平分∴B 卷(50分)四、选择题(本大题共2小题,每小题4分,共8分)请将每小题的答案填涂在答题卡中对应的位置.19. 定义新运算:,例如:,若,,,则,的大小关系为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了整式的混合运算,解答的关键是熟练掌握相应的运算法则.先根据新定义的运算求出的值,再比较即可.【详解】解:18070ABF BAC ∠=-∠=︒︒DB ABF ∠AC BF∥C FBD ∠=∠F CED∠=∠BC CD BD=CDE BDF V CED F C FBDCD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CDE BDF ≌DE DF=AC BF∥C FBD ∠=∠180BAC ABF ∠+∠=︒=110BAC ∠︒18070ABF BAC ∠=-∠=︒︒DB ABF ∠1352C FBD ABF ∠=∠=∠=︒()*a b a a b =+()1*21122=⨯+=1n >*A m mn =*B mn m =A B A B>A B <A B ≤A B ≥A B -()22*A m mn m m mn m m n ==+=+,故选:C .20. (多选)如图,的两条角平分线、相交于点D ,且,过点A 作交的延长线于点M .则下列结论中正确的有( )A. 若,则B.C.D. 【答案】ACD【解析】【分析】本题考查了角平分线的定义,三角形内角和定理,三角形的外角性质.根据角平分线的定义,三角形内角和定理,三角形的外角性质即可求解.【详解】解:A.∵∴∵是的平分线,是的平分线,∴∴又∴()222*B mn m mn mn m m n m n==+=+∴()222221A B m m n m n -=-=- 1n >∴210n -< 20m ≥∴()2210A B m n -=-≤∴A B ≤ABC CF AE 90BAC ∠=︒AM AE ⊥CF =60B ∠︒BFD AEC∠=∠AC AF EC =+2180ADC B ∠-∠=︒12M B ∠=∠90,60BAC B ∠=︒∠=︒30ACB ∠=︒CF ACB ∠AE BAC ∠1115,4522BCF ACB BAE BAC ∠=∠=︒∠=∠=︒6045105AEC B BAE ∠=∠+∠=︒+︒=︒180B BFC BCF ∠+∠+∠=︒1801801560105BFC BCF B ∠=︒-∠-∠=︒-︒-︒=︒∴故选项A 正确;B.无法找出三者关系,故选项B 错误;C.∵是的平分线,是的平分线,∴∴∴∴,故选项C 正确;D.∵∴∵∴,故D 正确;故选:ACD五、填空题(本大题共3小题,每小题4分,共12分)请将每小题的答案直接填写在答题卡中对应的横线上.21. 关于的一元一次方程的解为整数,则所有整数的和为______.【答案】【解析】【分析】此题考查了一元一次方程的解,方程去分母,去括号,移项合并,把的系数化为1,表示出方程的解,由方程的解为整数,确定出整数的值即可.【详解】解:BFC AEC ∠=∠AC AF EC 、、CF ACB ∠AE BAC ∠11,22DAC BAC DCA BCA ∠=∠∠=∠()111222DAC DCA BAC BCA BAC BCA ∠+∠=∠+∠=∠+∠()()11801802ADC DAC DCA BAC BCA ∠=︒-∠+∠=︒-∠+∠()11801802B =︒-︒-∠1902B =︒+∠2180ADC B ∠-∠=︒AM AE⊥90ADC M∠=︒+∠1902ADC B ∠=︒+∠12M B ∠=∠x 132kx x -+=k 8x k 132kx x -+=kx x-+=162kx x -=-25()k x -=-25x k =--52解为整数,或或或,则所有整数的和为,故答案为:.22. 若,,则______.【答案】3【解析】【分析】本题主要考查了完全平方公式的应用、非负数的性质、乘方等知识点,根据题意推出,求得a 、c 的值成为解题的关键.由可得,再代入可得,根据非负数的性质可得,最后代入即可解答.【详解】解:∵,∴,∴,∴,即,∴.故答案为3.23. 在中,于E ,于D ,交于F ,平分交延长线于M ,连接,.若,,,则______.∴3k =7k =3k =-1k =k ++-=3713886a b -=22100ab c c +-+=c a =()()22310a c -+-=6a b -=6b a =-22100ab c c +-+=()()22310a c -+-=3,1a c ==c a 6a b -=6b a =-()262100a a c c -+-+=2262100a a c c -+-+=2269210a a c c -++-+=()()22310a c -+-=3010a c -=-=,31a c ==,133c a ==ABC CE AB ⊥AD BC ⊥CE AD EM BEC ∠AD BM CM 180DFC ABM ∠+∠=︒52BE AE =5AEF S =△EMC S =【答案】【解析】【分析】本题考查了全等三角形的判定和性质,根据题意证明,,,得出,.进而根据得出,,根据得出,根据,即可求解.【详解】解:∵,∴,∵平分∴,又∵∴,∴∵于E ,于D ,∴,,∴又∵∴∵,,∴,.∵,253BEM EFM △≌△AEF CEB ≌BE EF =AE EC =5AEF S =△5AE =103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△EMC EFM FMC S S S =+△△△180DFC ABM ∠+∠=︒180DFC DFE ∠+∠=︒MFE MBE ∠=∠EM BEC∠BME FME ∠=∠ME ME=BEM EFM △≌△()SAS EB EF=CE AB ⊥AD BC ⊥EAF ABC ECB ABC ∠+∠=∠+∠90AEF CEB ∠=∠=︒EAF ECB∠=∠EB EF=()AAS AEF CEB ≌BEM EFM △≌△AEF CEB ≌BE EF =AE EC =52BE AE =∴.∴.∴.∴,.∴.∵,∴.∵,∴,∴.故答案为:.六、解答题(24题10分,25题10分,26题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.24. 已知甲、乙两地相距10千米,小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.小诚从乙地出发10分钟后,小勤从甲地出发至乙地,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,最后两人同时到达乙地.在运动过程中,小诚和小勤距甲地的距离y (千米)与小勤出发的时间x (小时)的关系如图所示,请结合图象信息解答下列问题:(1)小勤出发时,小诚骑行路程为______千米,小勤出发______小时后步行至甲、乙中点,小诚从乙地25BE AE EF ==1125225AEF S AE EF AE AE =⋅=⋅=△5AE =2BE EF ==5AE EC ==523FC EC EF =-=-=52AEM AEF FFM BEM BEM S AE S S S BE S +===△△△△△103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△1025533EMC EFM FMC S S S =+=+=△△△25345到甲地的骑行速度为______千米/小时,小勤的步行速度为______千米/小时;(2)写出小勤距甲地的距离y (千米)和x (小时)的关系式;(3)小勤出发多少小时后,两人在小勤未到达甲、乙中点前相距500米.【答案】(1);1;;(2) (3)或【解析】【分析】本题考查了根据函数图象获取信息,一元一次方程的应用;(1)根据函数图象小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,可得小诚的速度,小勤1小时步行千米,可得小勤的步行速度,即可求解;(2)根据(1)的分析,根据路程等于速度乘以时间,分段写出关系式,即可求解;(3)设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.分量种情况讨论,结合题意列出一元一次方程,即可求解.【小问1详解】解:小勤出发时,小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,根据函数图象可得,小勤出发小时后步行至甲、乙中点,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,千米/小时,小勤1小时步行千米,则千米/小时;∴小诚从乙地到甲地的骑行速度为千米/小时,小勤的步行速度为千米/小时;故答案为:;1;;.【小问2详解】解:小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.由(1)可得返回的速度为千米/小时,2.5155()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩720252.55500107.5 2.5-= 2.51107.5151060-=5551=1552.515545415125⨯=则所用时间为/小时,∵两人同时到达乙地.∴所用时间为∴当时,;当时,小勤的速度为:千米/小时,∴∴【小问3详解】设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.或解得:或答:小诚出发或小时后,两人在小勤未到达甲、乙中点前相距米.25. 我国南宋时期有一位杰出的数学家杨辉,如图所示的图表是他在《详解九章算术》中记载的“杨辉三角”.第一行第二行 各项系数和为第三行 各项系数和为第四行 各项系数和为……………………此图揭示了(n 为非负整数)的展开式的项数及各项系数的有关规律,请根据上述规律,解决以下问题:(1)多项式展开式共有______项,第二项的系数为______,各项系数和为______;105126=511166+=01x ≤≤5y x =1116x <≤510266÷÷=()56161y x x =+-=-()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩5002.5150.5510t t +++= 2.5150.5510t t +-+=720t =25t =720255001()01a b +=11()1a b a b +=+112+=121()2222a b a ab b +=++1214++=1331()3322333a b a a b ab b +=+++13318+++=()n a b +()7a b +(2)如图,在“杨辉三角”中,选取部分数1,3,6,……,记,,……请完成下列问题:①计算;②计算;③请直接写出的值.【答案】(1)8,7,128(2)①357;②;③4051【解析】【分析】本题考查数字变化类,多项式的乘法;(1)根据“杨辉三角”中第三行中的数据,将展开后,各项的系数和所呈现的规律进行计算即可.(2)①根据规律得出,进而将代入进行计算即可求解;②将已知式子裂项为,即可求解;③根据进行计算即可求解.【小问1详解】根据“杨辉三角”可知,第2行,展开后,各项系数和为,第3行,展开后,各项的系数和为,第4行,展开后,各项的系数和为,的11a =23a =36a =326a a +1250111a a a ++⋅⋅⋅+20262024a a -10051()n a b +()12n n n a +=3,26n =125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦1()a b +122()a b +212142++==3()a b +3133182+++==第5行,展开后,各项系数和为,第6行,展开后,各项的系数和为,第7行,展开后,各项的系数依次为、、、、、、,各项的系数和为第8行, 展开后,各项的系数依次为、、、、、、、各项的系数和为展开后,各项的系数和为,∴多项式展开式共有项,第二项的系数为,各项系数和为128;故答案为:8,7,128.【小问2详解】①由题意得:、、∴∴②由题意得:、、∴∴的4()a b +414641162++++==5()a b +515101051322+++++==6()a b +161520156161615201561642++++++==()7a b +17213535217171721353521711282+++++++==()n a b +2n ()7a b +8711a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=()()32633126261635135722a a ⨯+⨯++=+=+=11a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯111212235051⎛⎫=++⋅⋅⋅+ ⎪⨯⨯⨯⎝⎭111111212235051⎛⎫=-+-+⋅⋅⋅+- ⎪⎝⎭12151⎛⎫=- ⎪⎝⎭③26. 已知,,.(1)如图1,求证:;(2)如图2,若,点,分别在,上,连接,过点作于点,过点作交的延长线于点,连接,求证:;(3)如图3,若,延长和相交于点,过点作于点,若,,求的长.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)根据题意证明,根据全等三角形性质即可解答;(2)过点作于点,延长交于点,证明,得到,,再证明得到,即可求解;(3)过点作于点,证明得到,,,推出,再证明,得到,,推出的50251=⨯10051=()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦()22120262026202420242=+--()120262024222=+⨯+⎡⎤⎣⎦4051=AB AC =AD AE =BAC DAE ∠=∠BD CE =90BAC ∠=︒D E AB AC BE D DH BE ⊥H A AF BC ∥HD F BF BF DF BE +=90BAC ∠=︒BD EC F A AQ BD ⊥Q 2.4FC =7.6BF =BQ 2.6BQ =BAD CAE ≌△△A AM DE ⊥M AM BE N AEN ADF ≌ EN DF =AN AF =BAN BAF ≌ BN BF =A AG EF ⊥G ABD ACE △△≌BD CE =ABD ACE ∠=∠ABD ACE S S = AQ AG =AQB AGC ≌ BQ CG =BAQ CAG ∠=∠,可证明四边形为正方形,得到,设,则,根据列方程,即可求解.【小问1详解】证明:,,,,,,;【小问2详解】如图2,过点作于点,延长交于点,,,,,,,,,,,,,,∵,即,在和中,90QAG ∠=︒AGFQ FG FQ =BQ CG x ==2.4FQ FG CF CG x ==+=+BF BQ FQ =+ BAC DAE ∠=∠∴BAD DAC CAE DAC ∠+∠=∠+∠∴BAD CAE ∠=∠ AB AC =AD AE =∴()SAS BAD CAE ≌∴BD CE =A AM DE ⊥M AM BE N 90BAC ∠=︒AB AC =∴45ABC ACB ∠=∠=︒ 90BAC DAE ∠=∠=︒AD AE =AM DE ⊥∴45DAN EAN ∠=∠=︒ AF BC ∥∴45DAF ABC ∠=∠=︒∴45EAN DAF ∠=∠=︒ 90DHB BAE ∠=∠=︒DBH EBA ∠=∠∴BDH BEA ∠=∠BDH ADF∠=∠∴ADF BEA ∠=∠ADF AEN ∠=∠AEN △ADF △,,,,在和中,,,,,,,,即;【小问3详解】如图3,过点作于点,,,,在和中,,,,,,,EAN DAF AE ADAEN ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AEN ADF ≌∴EN DF =AN AF =BAN BAF △45AN AF BAN BAF AB AB =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BAN BAF ≌∴BN BF = BE BN EN =+BN BF =EN DF =∴BE BF DF =+BF DF BE +=A AG EF ⊥G 90BAD DAC ∠+∠=︒90CAE DAC ∠+∠=︒∴BAD EAC ∠=∠ABD △ACE △AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD ACE ≌∴BD CE =ABD ACE ∠=∠ABD ACE S S = ∴1122BD AQ CE AG =,在和中,,,,,,,即,,,四边形为矩形,,四边形为正方形,,设,则,,,,.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,正方形的判定与性质,平行线的性质,解题的关键是灵活运用这些知识.∴AQ AG =AQB AGC AQ AG AB AC =⎧⎨=⎩∴()HL AQB AGC ≌∴BQ CG =BAQ CAG ∠=∠ 90BAQ QAC ∠+∠=︒∴90CAG QAC ∠+∠=︒90QAG ∠=︒ AQ BF ⊥AG EF ⊥∴AGFQ AQ AG =∴AGFQ ∴FG FQ =BQ CG x == 2.4FQ FG CF CG x ==+=+ BF BQ FQ =+∴7.6 2.4x x =++∴ 2.6x =∴ 2.6BQ =。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

江苏省苏州市2023-2024学年七年级下学期期中数学试题(解析版)

江苏省苏州市2023-2024学年七年级下学期期中数学试题(解析版)

2023~2024学年第二学期期中模拟试卷初一数学满分100分,考试时间120分钟.一、选择题(每题2分,共16分)1. 等于( ).A. 0.5B. C. D. 2【答案】D【解析】【分析】根据负指数的运算规则计算,可得答案.【详解】解:,故选:D【点睛】本题考查了负指数,掌握负指数的运算规则是解题关键.2. 2019新型冠状光病毒的直径是0.00012mm ,将0.00012用科学记数法表示是( )A. B. C. D. 【答案】C【解析】【分析】根据科学记数法的表示方法表示即可.【详解】0.00012=.故选C .【点睛】本题考查科学记数法的表示,关键在于牢记表示方法.3. 如果4x 2+2kx +25是一个完全平方式,那么k 的值是( )A. 10B. ±10C. 20D. ±20【答案】B【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:∵是一个完全平方式,∴,故选:B .10.5-0.5-2-10.52-=612010-⨯51210-⨯41.210-⨯51.210-⨯41.210-⨯2224225(2)25x kx x kx ++=±+10k =±【点睛】此题考查了完全平方式的逆用,即,熟练掌握完全平方公式是解本题的关键.4. 下列等式从左往右因式分解正确的是( )A.B. C. D. 【答案】D【解析】【分析】将多项式写出几个整式的积的形式叫作因式分解,根据定义判断即可.【详解】解:A 、等式右边是多项式,不符合定义,故不符合题意;B 、,计算错误,故不符合题意;C 、是整式乘法,不符合定义,故不符合题意;D 、符合定义,计算正确,故符合题意;故选:D .【点睛】此题考查了因式分解的定义,熟记定义及正确掌握因式分解的方法是解题的关键.5. 如图,,,,则的度数为( )A. B. C. D. 【答案】C【解析】【分析】根据平行线的性质得出,然后根据三角形内角和定理即可求解.【详解】解:如图:∵,,,,,222)2(a ab b a b ±+=±()ab ac b a b c b ++=++()()2414141x x x -=+-()222121m n m mn n +-=++-()()23212x x x x -+=--()()2412121x x x -=+-12l l ∥139∠=︒246∠=︒3∠46︒89︒95︒134︒1439∠∠==︒12l l ∥139∠=︒1439∠∠∴==︒246∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形内角度定理,掌握以上知识是解题的关键.6. 如图,为的中线,为的中线.若的面积为12,,则中边上的高为( )A. 1B. 4C. 3D. 2【答案】D【解析】【分析】根据三角形中线平分三角形的面积得到的面积是3,设中边上的高h ,列得,求出h 即可.【详解】解:∵为的中线,的面积为12,∴的面积为6,∵为的中线,∴的面积是3,设中边上的高h ,∵,∴,∴,故选:D .【点睛】此题考查了三角形中线的性质:三角形的中线平分三角形的面积,熟记该性质是解题的关键.7. 如图,已知,和分别平分和,若,,则的度数为( )A. B. C. D. 31802495∠∠∠∴=︒--=︒AD ABC BE ABD △ABC 3BD =BDE △BD BDE △BDE △BD 113322BD h h ⋅⋅=⨯=AD ABC ABC ABD △BE ABD △BDE △BDE △BD 3BD =113322BD h h ⋅⋅=⨯=2h =AB DF ∥DE AC CDF ∠BAE ∠46DEA ∠=︒56AC D ∠=︒CDF ∠22︒33︒44︒55︒【分析】过点作,过点作,易证与、,与、间关系.再由角平分线的性质及角的和差关系计算得结论.【详解】解:过点作,过点作,,,,,,,,.,.又和分别平分和,,①,②.①②,得,③.①③,得..故选:C .【点睛】本题考查了角平分线的性质、平行线的性质及角的和差关系.根据平行线的性质得到,是解决本题的关键.8. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号.如记,已知,则m 的值是( )A. -40B. 20C. -24D. -20C CN AB ∥E EM AB ∥DEA ∠FDE ∠EAB ∠ACD ∠BAC ∠FDC ∠C CN AB ∥E EM AB ∥FD AB ∥ CN AB ∥EM AB ∥AB CN EM FD ∴∥∥∥BAC NCA ∴∠=∠NCD FDC ∠=∠FDE DEM ∠=∠MEA EAB ∠=∠DEA FDE EAB ∴∠=∠+∠ACD BAC FDC ∠=∠+∠DE AC CDF ∠BAE ∠22FDC FDE EDC ∴∠=∠=∠22BAE BAC EAC∠=∠=∠562BAC FDE ∴︒=∠+∠462FDE BAC ︒=∠+∠+3()102BAC FDE ∠+∠=︒34BAC FDE ∴∠+∠=︒-22FDE ∠=︒244CDF FDE ∴∠=∠=︒DEA FDE EAB ∠=∠+∠ACD BAC FDC ∠=∠+∠∑1123...(1),n k k n n ==++++-+∑3()(3)(4)...()n k x k x x x n =+=++++++∑22[()(1)]33n k x k x k xx m =+-+=+-∑【分析】根据二次项的系数为3,可得n =4,然后列出算式进行计算,再根据常数项相等解答即可.【详解】解:∵二次项的系数为3,∴n =4,∴==又∵,∴m =20.故选:B .【点睛】本题考查了有理数的乘方、数学常识、整式的混合运算,解决本题的关键是理解题目中所给已知等式的意义.二、填空题(每题2分,共16分)9. ______.【答案】1【解析】【分析】根据零指数幂的运算法则计算.【详解】解:∵,∴,故答案为:1.【点睛】本题考查了零指数幂,熟练掌握零指数幂的运算法则是解题的关键.10. 因式分解:______.【答案】y (2x +3)(2x -3)【解析】【分析】先提取公因式,然后按平方差公式继续分解即可.【详解】解:4x 2y −9y 2[()(1)]nk x k x k =+-+∑(2)(1)(3)(2)(4)(3)x x x x x x +-++-++-23320x x +-22[()(1)]33n k x k x k xx m =+-+=+-∑()01π+=10π+≠()011π+=249x y y -==y (2x +3)(2x -3).故答案为:y (2x +3)(2x -3).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11. 已知,,则______.【答案】3【解析】【分析】运用同底数幂的除法法则和幂的乘方法则求解即可.【详解】解:∵,,∴.故答案为:3.【点睛】本题考查了同底数幂的除法、幂的乘方法则的逆用等知识点,掌握运算过程中指数的变化规律是解答本题的关键.12. 已知则=____.【答案】16【解析】【分析】先利用平方差公式进行因式分解,再代入题目给出的s +t =4,再提取公因式得到4(s +t ),最后得出答案.【详解】原式=(s +t )(s -t )+8t=4(s -t )+8t=4s -4t +8t=4(s +t )=4×4=16;故答案为:16【点睛】本题考查由给定式子值求另一个式子值,考查了平方差公式和提取公因式的运用,掌握求解的方法是解题关键.3m a =9n a =3m n a -=3m a =9n a =()3333327399m mm n n n a a a a a -=====4s t +=228s t t -+13. 已知方程组,则的值为____.【答案】【解析】【分析】方程组中的两个方程相减,即可得出答案.【详解】解:,得:,解得:,故答案为:.【点睛】本题主要考查了解二元一次方程组,能选择适当的方法求出结果是解此题的关键.14. 因式分解时,甲看错了a 的值,分解的结果是,乙看错了b 的值,分解的结果为,那么分解因式正确的结果为____.【答案】【解析】【分析】分别将甲乙两人的分解结果利用多项式乘法公式进行计算,然后取两人没看错的系数进行组合,重新分解因式.【详解】解:甲错了a 的值,,,乙看错了b 值,,,分解因式正确的结果:.故答案为:.【点睛】本题考查了因式分解,根据两人的分解结果得到原本的多项式是解题的关键.15. 如图,点C 是线段上的一点,以、为边在的两侧作正方形,设,两个正方形的面积和,则图中阴影部分面积为____.的5458x y x y +=⎧⎨+=⎩x y -1-5458x y x y +=⎧⎨+=⎩①②①-②444x y -=-1x y -=-1-2x ax b ++()()61x x +-()()21x x -+2x ax b ++(3)(2)x x -+2(6)(1)56x x x x +-=+-6b ∴=-()()2212x x x x -+=--1a ∴=-2∴++x ax b 26(3)(2)x x x x --=-+(3)(2)x x -+AB AC BC AB 6AB =1220S S +=【答案】4【解析】【分析】设,,可得,,根据完全平方公式求出即可.【详解】解:设,,∵,∴,又∵,∴,由完全平方公式可得,,∴,∴,∴,即:阴影部分的面积为4.故答案是:4.【点睛】本题考查了完全平方公式的变形求值,掌握完全平方公式的结构特征是正确应用的前提.16. 如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD =2BD ,BE =CE .设△ADF 的面积为S 1,△CEF 的面积为S 2,若S △ABC =6,则S 1﹣S 2=___.【答案】1AC m =CF n =6m n +=2220m n +=12mn AC m =CF n =6AB =6m n +=1220S S +=2220m n +=()2222m n m mn n +=++26202mn =+8mn =412S mn ==阴影部分【解析】【分析】S △ADF ﹣S △CEF =S △ABE ﹣S △BCD ,所以求出三角形ABE 的面积和三角形BCD 的面积即可.【详解】解:∵BE =CE ,∴BE =BC ,∵S △ABC =6,∴S △ABE =S △ABC =×6=3.∵AD =2BD ,S △ABC =6,∴S △BCD =S △ABC =×6=2,∵S △ABE ﹣S △BCD =(S △ADF +S 四边形BEFD )﹣(S △CEF +S 四边形BEFD )=S △ADF ﹣S △CEF ,即S △ADF ﹣S △CEF =S △ABE ﹣S △BCD =3﹣2=1.故答案为:1【点睛】本题考查三角形面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.三、解答题 (共68分)17. 计算:(1);(2);(3).【答案】(1);(2);(3).【解析】【分析】(1)首先计算同底数幂相乘,幂的乘方和积的乘方,然后合并即可.(2)首先计算单项式乘多项式和完全平方公式,然后合并即可.(3)首先根据平方差化解,然后根据完全平方公式求解即可.【小问1详解】的1212121313()()4235243a a a a ⋅++-()()22y x y x y +--()()22x y x y +-++811a 223x xy y -++2244x x y ++-()()4235243a a a a ⋅++-;【小问2详解】;【小问3详解】.【点睛】本题考查了有理数的乘方,整式的乘法运算,平方差公式和完全平方公式,解题的关键是熟练掌握以上运算法则.18. 因式分解:(1);(2).【答案】(1); (2).【解析】【分析】(1)直接提取公因式即可解答;(2)先运用平方差公式分解,再运用完全平方公式分解即可.【小问1详解】解:;【小问2详解】8889a a a ++=811a =()()22y x y x y +--()22222xy y x xy y =+--+22222xy y x xy y =+-+-223x xy y =-++()()22x y x y +-++()222x y =+-2244x x y =++-22369a b ab ab -+()22214a a +-()323ab a b -+()()2211a a -+3ab 22369a b ab ab -+()323ab a b =-+()22214a a +-.【点睛】本题主要考查了因式分解,掌握运用提取公因式法和公式法因式分解是解答本题的关键.19. 先化简,再求值:(m -2n )(m +2n )-(m -2n )2+4n 2,其中m =-2,n=.【答案】-4n 2+4mn ,-5【解析】【分析】先按照平方差公式与完全平方公式进行整式的乘法运算,再合并同类项,再把代入求值即可.【详解】解:原式=m 2-4n 2 -(m 2-4mn +4n 2)+4n 2=m 2-4n 2 -m 2+4mn -4n 2+4n 2=-4n 2+4mn把代入上式,原式==-1-4=-5【点睛】本题考查的是整式的化简求值,考查平方差公式与完全平方公式,掌握利用乘法公式进行简便运算是解题的关键.20. 画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点C 的对应点C ′.(1)请画出平移后的△A ′B ′C ′;()()221212a a a a =+-++()()2211a a =-+1212,2m n =-=12,2m n =-=()21144222⎛⎫-⨯+⨯-⨯ ⎪⎝⎭(2)若连接AA′,BB′,则这两条线段之间的关系是 ;(3)利用网格画出△ABC中AC边上的中线BD;(4)在平移过程中,线段AB扫过的面积为 .【答案】(1)见解析(2)平行且相等(3)见解析(4)20【解析】【分析】(1)利用点C和C′的位置确定平移的方向与距离,然后利用此平移规律画出A、B的对应点A′,B′即可;(2)根据平移的性质进行判断即可;(3)利用网格特点和三角形的中线的定义作图即可;(4)根据平行四边形的面积公式计算即可求得.【小问1详解】解:由图中点C与对应点C′的位置可知:把点C,先向右平移4个单位长度,再向上平移5个单位长度(或先向上平移5个单位长度,再向右平移4个单位长度),得到点C′故△ABC按此规律平移可得△A′B′C′画图如下:【小问2详解】解:如图:根据平移的性质可知:且故答案为:平行且相等【小问3详解】解:如图:BD 即为AC 边上的中线【小问4详解】解:在平移过程中,四边形为平行四边形,向右平移的距离为4故线段AB 扫过的面积为:故答案为:20【点睛】本题考查了作图−−平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21. 如图,F 是上一点,于点是上一点,于点,求证:.AA BB ''∥AA BB '='ABB A ''=5AB 45=20⨯BC FG AC ^,G H AB HE AC ⊥12E ∠=∠,//DE BC【答案】见解析【解析】【分析】根据垂直的性质得到,利用平行线的性质得到,即可求证.【详解】证明:∵∴∵∴∴∴∴又∵∴,即∴【点睛】此题考查了垂直、平行线判定与性质,熟练掌握相关基本性质是解题的关键.22. 如图,CD 是△ABC 的角平分线,点E 是AC 边上的一点,.(1)求证:;(2),,求∠DEC 的度数.【答案】(1)证明见解析;(2)110°.【解析】【分析】(1)根据角平分线的定义可得,从而求出,再利用内错角相等,的//HE FG DEF EFC ∠=∠FG AC^90FGC ∠=︒HE AC⊥90HEC ∠=︒FGC HEC∠=∠//HE FG 3=4∠∠12∠=∠3142∠+∠=∠+∠DEF EFC ∠=∠//DE BCECD EDC ∠=∠//ED BC 30A ︒∠=65BDC ︒∠=ACD BCD ∠=∠BCD EDC ∠=∠两直线平行证明即可;(2)根据三角形的外角性质得,可求出,再利用三角形的内角和等于180°列式计算即可得解.【详解】(1)∵CD 是△ABC 的角平分线,∴∵∴∴(内错角相等,两直线平行);(2)∵∠BDC 是△ADC 的外角∴∴∴∴.故答案为(1)证明见解析;(2)110°.【点睛】本题考查三角形的内角和定理,平行线的判定与性质,三角形的外角性质,准确识别图形是解题的关键.23. 我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线换成中巴车,该公司计划购买10台中巴车,现有甲、乙两种型号,已知购买一台甲型车比购买一台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元.(1)问购买一台甲型车和一台乙型车分别需要多少万元?(2)经了解,每台甲型车每年节省2.5万元,每台乙型车每年节省2.1万元,若要使购买的这批中巴车每年至少能节省21.8万,则购买甲型车至少多少台?【答案】(1)购买一台甲型车和一台乙型车分别需要50万元、60万元(2)购买甲型车至少2台【解析】【分析】(1)设购买一台甲型车和一台乙型车分别需要万元、万元,根据购买一台甲型车比购买一台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元,列出方程组进行求解即可;(2)购买甲型车台,则乙型车购买台,根据要使购买的这批中巴车每年至少能节省21.8万,列出不等式进行求解即可.+BDC A ACD ∠=∠∠ECD EDC 35︒∠=∠=ACD BCD ∠=∠ECD EDC∠=∠BCD EDC ∠=∠//ED BC +BDC A ACD∠=∠∠653035ACD BDC A ︒︒︒∠=∠-∠=-=ECD EDC 35︒∠=∠=1803535110DEC ︒︒︒︒∠=--=a b x ()10x -【小问1详解】设购买一台甲型车和一台乙型车分别需要万元、万元,由题意,得:,解得,答:购买一台甲型车和一台乙型车分别需要50万元、60万元;小问2详解】设购买甲型车台,则乙型车购买台,由题意,得:,解得:;答:购买甲型车至少2台.【点睛】本题考查二元一次方程组和一元一次不等式实际应用,找准等量关系,正确的列出方程组和不等式,是解题的关键.24. 甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为,.(1)填空:___________(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.设该正方形的面积为,试探究:与的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由.(3)若另一个正方形的边长为正整数n ,并且满足条件的n 有且只有4个,求m 的值.【答案】(1)(2)是常数,19(3)3【解析】【分析】(1)利用长方形的面积公式求出,再进行减法运算即可;(2)先求出正方形的周长,进而求出正方形的边长和面积,再进行求解即可得出结论;(3)根据满足条件的n 有且只有4个,进行求解即可.【小问1详解】【的a b 103230a b a b =-⎧⎨=+⎩5060a b =⎧⎨=⎩x ()10x -()2.5 2.11021.8x x +-≥2x ≥1S 2S 12S S -=3S 3S ()122S S +121n S S ≤<-21m -12,S S 121n S S ≤<-解:由题意,得:;故答案为:;【小问2详解】是常数;∵正方形的周长,∴正方形的边长为,∴,∵,∴;【小问3详解】∵,∴,∵满足条件的n 有且只有4个,∴,∴,∵为正整数,∴.【点睛】本题考查多项式乘多项式与几何图形的面积,整式加减的实际应用,根据一元一次不等式组的解集的情况,求参数.解题的关键是熟练掌握长方形的面积公式,以及相关运算法则.25. 阅读并解决问题.对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:.像这样,先添一个适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”,请用“配方()()()()127142S S m m m m -=++-++228768m m m m =++---21m =-21m -()27142828m m m m m =+++++++=+27m +()2232742849S m m m =+=++()()2122287684283022m m m m m S m S ++++++==++()()222314284942830219S S m m m m S -=+++-++=1221S S m -=-121n S S ≤<-121n m ≤<-121n S S ≤<-4215m <-≤532m <≤m 3m =222x ax a ++()2x a +2223x ax a +-2223x ax a +-2a 22x ax +2a ()()()()()22222222232323x ax a x ax a a a x a a x a x a +-=++--=+-=+-法”解决以下问题.(1)利用“配方法”分解因式:;(2)19世纪的法国数学家苏菲热门解决了“把分解因式”这个问题:,请你把因式分解;(3)若,求m 和n 的值.【答案】(1)(2)(3)【解析】【分析】(1)将多项式加4再减去4,利用完全平方公式和平方差公式分解即可;(2)将多项式加再减去,利用完全平方公式和平方差公式分解即可;(3)已知等式变形后,利用完全平方公式分解因式即可.【小问1详解】【小问2详解】【小问3详解】∵,∴∴,∵,2412a a --44x +()()()()()222442222222444424222222x x x x x x x x x x x x +=++-=+-=+-=++-+4464x y +222438160m mn n n +--+=()()26a a +-()()22228484x y xyx y xy +++-4,4m n ==2216x y 2216x y ()()()2224124442112626a a a a a a a -----=+-=-=+-4464x y +224422641616x x y x y y =-++()22222816x y y x =+-()()22228448xy xy x y x y =+++-222438160m mn n n +--+=2222428160m mn n n n -+-+=+()()22204m n n +--=()()2200,24m n n ≥--≥∴,∴.【点睛】此题考查了因式分解的应用,完全平方公式,平方差公式,偶次方,分组分解法,熟练掌握因式分解的方法是解题的关键.26. 直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有两个角度数的比是3:2,请直接写出∠ABO 的度数 .【答案】(1)不变,135° (2)不变,67.5° (3)60°或72°【解析】【分析】(1)根据三角形内角和定理和角平分线的意义求解;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD=∠BAP ,∠ABC =∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知∠CDE +∠DCE =112.5°,进而得出结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO =∠BAO ,∠EOQ =∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF =90°,在△AEF 中,由两个角度数的比是3:2分四种情况进行分类讨论.【小问1详解】∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,0,40m n n -=-=4m n ==12121212∴∠AOB =90°,∴∠OAB +∠OBA =90°,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴∠BAE=∠OAB ,∠ABE =∠ABO ,∴∠BAE +∠ABE = (∠OAB +∠ABO )=45°,∴∠AEB =135°;【小问2详解】∠CED 的大小不变.如图,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∴∠PAB +∠MBA =270°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴∠BAD =∠BAP ,∠ABC =∠ABM ,∴∠BAD +∠ABC = (∠PAB +∠ABM )=135°,∴∠F =45°,∴∠FDC +∠FCD =135°,∴∠CDA +∠DCB =225°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴∠CDE +∠DCE =112.5°,∴∠CED =67.5°;【小问3详解】∵∠BAO 与∠BOQ 的角平分线相交于E ,121212121212∴∠EAO=∠BAO ,∠EOQ =∠BOQ ,∴∠E =∠EOQ −∠EAO = (∠BOQ −∠BAO )= ∠ABO ,∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAF =90°.在△AEF 中,∵有两个角度数的比是3:2,故有:∠EAF :∠E =3:2,∠E =60°,∠ABO =120°(舍去);∠EAF :∠F =3:2,∠E =30°,∠ABO =60°;∠F :∠E =3:2,∠E =36°,∠ABO =72°;∠E :∠F =3:2,∠E =54°,∠ABO =108°(舍去).∴∠ABO 为60°或72°.故答案为:60°或72°.【点睛】本题考查三角形内角和与角平分线的综合应用,熟练掌握三角形内角和定理、平角的意义、角平分线的意义和比例的性质是解题关键.12121212。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2B .16的平方根是±4C .25的平方根是±5D .﹣36的算术平方根是62.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.若,则()m a b +的值为10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号) 16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算:(1)232643--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A.4的平方根是±2,故错误,不符合题意;B16的平方根是±2,故错误,不符合题意;C.25的平方根是±5,故正确,符合题意;D.-36没有算术平方根,故错误,不符合题意;故选:C.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论.【详解】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵6<46<7,可得c=6;∴a+2b+c=3;∴a+2b+c的算术平方根为3.【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为5-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.4的算术平方根是()A .2B .4C .2±D .4±2.下列现象属于平移的是()A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点P (-3,0)在( ) A .第二象限 B .第三象限 C .x 轴上D .y 轴上 4.下列四个命题:①5是25的算术平方根;②()24-的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A .0个 B .1个 C .2个 D .3个5.如图,点E 在BA 的延长线上,能证明//BE CD 是( )A .EADB ∠=∠B .BAD ACD ∠=∠C .EAD ACD ∠=∠D .180EAC ACD ∠+∠=︒ 6.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38- 7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,CE '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______. 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.(1)计算:16125- (2)计算: 3223--(3)计算:310.0484+-- (4)计算:16122+-- 18.求下列各式中x 的值:(1)225x =;(2)2810x -=;(3)22536x =.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,在平面直角坐标系中,A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;(2)求△A1B1C1的面积;21.阅读下面的文字,解答问题:大家知道,2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差是小数部分.又例如,因为479<<,所以7的整数部分为2,小数部分为<<,即273-.请解答:72(1)83的整数部分为;小数部分为;(2)如果35的整数部分为a,35的小数部分为b,求2235-+的值.a b22.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm?23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A射出的光束转动的速度是a︒/秒,灯B射出的光束转动的速度是b︒/秒,且a、b满足20-++-=.假定这一带水域两岸河堤是平行的,即//(a b a b)34PQ MN,且∠=︒.BAN45(1)求a、b的值;(2)如图2,两灯同时转动,在灯A射出的光束到达AN之前,若两灯射出的光束交于点C,过C作CD AC∠=︒,求BACBCD⊥交PQ于点D,若20∠的度数;(3)若灯B射线先转动30秒,灯A射出的光束才开始转动,在灯B射出的光束到达BQ 之前,A灯转动几秒,两灯的光束互相平行?【参考答案】一、选择题1.A解析:A【分析】依据算术平方根的定义解答即可.【详解】4的算术平方根是2,故选:A.【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据点的坐标特点判断即可.【详解】解:在平面直角坐标系中,点P (-3,0)在x 轴上,故选C .【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.4.C【分析】根据相关概念逐项分析即可.【详解】①5是25的算术平方根,故原命题是真命题;②()24-的平方根是4±,故原命题是假命题;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题; ④两直线平行,同旁内角互补,故原命题是假命题;故选:C .【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.5.D【分析】由题意根据平行线的判定定理对四个选项进行逐一分析即可.【详解】解:A. EAD B ∠=∠,能证AD ∥BC ,故此选项错误;B. BAD ACD ∠=∠,不能证明//BE CD ,故此选项错误;C. EAD ACD ∠=∠,不能证明//BE CD ,故此选项错误;D. 180EAC ACD ∠+∠=︒,能证明//BE CD ,故此选项正确.故选:D.【点睛】本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角.6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=--故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒, 70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.C【分析】每四次一循环,每个循环,点向x 轴的正方向前进2cm ,由于2021=505×4+1,则可判断点A2021在x 轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x 轴的正方向前进2cm ,由于2021=505×4+1,则可判断点A 2021在x 轴上,且OA 2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,∴OA4n=2n,∵2021=505×4+1,∴点A2021在x轴上,且OA2021=505×2+1=1011,∴△OA2A2021的面积=12×1×1011=10112(cm2).故选:C.【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.解析:-4【分析】根据题意先求出a,即可.【详解】解:∵3±,∴2(3)9=±=,∴81a=,∴4==-,故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a的值.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变a-,则点P的纵坐标为1点P关于x轴的对称点为(,1)-,则点P的横坐标为2点P关于y轴的对称点为(2,)b则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.解析:4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.12.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE 交AB 于F ,∵AB ∥CD ,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键. 13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b故b|+|ab﹣(a ab﹣a a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.-1<a<3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(a-3,a+1)在第二象限,∴,解不等式①得,a<3,解不等式②得,a>解析:-1<a<3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(a-3,a+1)在第二象限,∴3010a a -⎧⎨+⎩<①>②, 解不等式①得,a <3,解不等式②得,a >-1,∴-1<a <3.故答案为:-1<a <3.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】由题意知OA4n =2n ,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n =2n (n 为正整数),图形运动4次一个循环 解析:10092【分析】由题意知OA 4n =2n ,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A 2A 2021,由此即可解决问题.【详解】解:由题意知OA 4n =2n (n 为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A 2021与A 1是对应点,A 2020与A 0是对应点∴OA 2020=505×2=1010,A 1A 2021=1010∴A 2A 2021=1010-1=1009则△OA 2A 2019的面积是12×1×1009=10092, 故答案为:10092. 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1)x =5±;(2)x =9±;(3)x =65± 【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵225x =,∴5x =±;(2)∵2810x -=,∴281x =,∴9x =±;(3)∵22536x =, ∴23625x =, ∴65x =±. 【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A ,B ,C 的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1解析:(1)画图见解析,A 1(1,2),B 1(0,0),C 1(-2,3);(2)72【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1)如图,A 1B 1C 1并写即为所求作,A 1(1,2),B 1(0,0),C 1(-2,3).(2)△A 1B 1C 1的面积=3×3-12×3×2-12×1×2-12×1×3=72. 【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)9,;(2)15【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵,即∴的整数部分为9,小数部分为(2)∵,即∴的整数部解析:(1)9839;(2)15【分析】(183(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵818310098310<< ∴839839(2)∵2535365356<< ∴355355∴5a =,355b =23552(355)23515a b -+=-+=【点睛】此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键.22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.。

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是实数?A. πB. iC. √2D. 0.33333...2. 以下哪个表达式表示了正确的乘法分配律?A. a(b + c) = ab + acB. a + bc = ab + acC. a(b - c) = ab - acD. a(b + c) = ab - ac3. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是4. 以下哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 圆D. 平行四边形5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 以上都不是6. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 4)(x - 4)C. x^2 - 4 = (x + 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x < 2x + 1C. 3x = 2x + 1D. 3x ≤ 2x + 18. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:89. 以下哪个选项是正确的几何图形的面积公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积 = 长× 宽C. 三角形的面积 = 底× 高÷ 2D. 以上都是10. 以下哪个选项是正确的几何图形的周长公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 圆形的周长= 2 × π × 半径D. 以上都是二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。

七年级数学下册期中试卷及答案【完整版】

七年级数学下册期中试卷及答案【完整版】

七年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.4的算术平方根是()A.-2 B.2 C.2±D.25.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.因式分解:2218x -=______.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5)243x x x ⎡⎤--=+⎢⎥⎣⎦.2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、D6、D7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、55°3、2(x+3)(x﹣3).4、40°5、①③④⑤.6、48三、解答题(本大题共6小题,共72分)1、1x=2、(1)13x=-;(2)6m=或4m=,7m=或3m=3、(1)证明见解析;(2)∠FAE=135°;4、(1)45°;(2)详略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

新人教版七年级数学下册期中测试卷及答案【完整版】

新人教版七年级数学下册期中测试卷及答案【完整版】

新人教版七年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.正五边形的内角和等于______度.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知关于x 的方程9x 3kx 14-=+有整数解,求满足条件的所有整数k 的值.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、C7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、5404、50°5、316、7三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、k=26,10,8,-8.3、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。

人教版初一下册《数学》期中考试卷及答案【可打印】

人教版初一下册《数学》期中考试卷及答案【可打印】

人教版初一下册《数学》期中考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 下列哪个数是平方数?A. 3B. 4C. 6D. 82. 下列哪个图形是圆?A. 三角形B. 长方形C. 正方形D. 圆3. 下列哪个数是立方数?A. 2B. 3C. 4D. 54. 下列哪个数是质数?A. 4B. 6C. 7D. 95. 下列哪个数是合数?A. 2B. 3C. 4D. 5二、判断题(每题1分,共5分)1. 一个等腰三角形的底边长为8厘米,腰长为5厘米,这个三角形是等边三角形。

()2. 两个连续的奇数相加的和是偶数。

()3. 一个数的立方根是这个数的平方根的平方。

()4. 一个正方形的对角线等于它的边长的根号2倍。

()5. 任何两个不同的质数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 9的平方根是______。

2. 一个等腰三角形的底边长为10厘米,腰长为6厘米,这个三角形的周长是______厘米。

3. 2的立方根是______。

4. 一个正方形的边长为5厘米,这个正方形的面积是______平方厘米。

5. 5的平方根是______。

四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。

2. 简述正方形的性质。

3. 简述平方数的定义。

4. 简述立方数的定义。

5. 简述质数的定义。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为10厘米,腰长为6厘米,求这个三角形的周长。

2. 一个正方形的边长为5厘米,求这个正方形的面积。

3. 求2的立方根。

4. 求9的平方根。

5. 一个等腰三角形的底边长为8厘米,腰长为5厘米,求这个三角形的周长。

六、分析题(每题5分,共10分)1. 分析等腰三角形和等边三角形的区别和联系。

2. 分析正方形和长方形的区别和联系。

七、实践操作题(每题5分,共10分)1. 在一张纸上画一个等腰三角形,底边长为10厘米,腰长为6厘米,并标注出各边的长度。

2. 在一张纸上画一个正方形,边长为5厘米,并标注出各边的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题。

(共40分,每题4分)
1.二元一次方程组⎩⎨⎧=+=-243552y x x 的解是( )
A.⎩⎨⎧=-=21y x
B.⎩⎨⎧==21y x
C.⎩⎨⎧==12y x
D.⎩⎨⎧-==12y x
2.下列各式中,能用平方差公式因式分解的是( )
A.x x +2
B.1682++x x
C.42+x
D.12-x
3.化简()()()()111142+--++m m m m
的值是( ) A.22m - B.0 C.-2 D.-1
4.某课外活动小组的学生准备分组外出活动,每组7人,则余下3人;若每组8人,则少5人。

求课外活动小组的人数x 和应分成的组数y ,依题意得方程组为( )
A.⎩⎨⎧=++=y x x y 5837
B.⎩⎨⎧=-=+55837x y x
C.⎩⎨⎧+=-=5837x y x y
D.⎩⎨⎧+=+=5837x y x y
5.有一个两位数,它的十位数字和个位数字的和为6,则这样的两位数有( )个
A.4
B.5
C.6
D.7
6.如果()()262-+=-+x b x ax x ,那么b a -的值为( )
A.2
B.-2
C.3
D.-3
7.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式( )
A.1种
B.2种
C.3种
D.4种
8.以下方程中,是二元一次方程的是( )
A.y y x =-8
B.3=xy
C.z y x 323=+
D.x y 1
=
9.下列各式由左到右变形中,是因式分解的是( )
A.()ay ax y x a +=+
B.()44442+-=+-x x x x
C.()1255102-=-x x x x
D.()()x x x x x 3443162++-=+-
10.用代入法解方程组
()()⎩⎨⎧=-=+2521243y x y x 使得代入后化简比较容易的变形是( )
A.由(1),得342y
x -= B.由(1),得432x
y -=
C.由(2),得25
+=y x D.由(2),得52-=x y
二、填空题(共32分,每小题4分)
11.因式分解=-192x ________.
12.若方程组⎩⎨⎧=++=+k y x k y x 32253的解y x 、的和为0,则k 的值为_________.
13.如m x +与32+x 的乘积中不含x 的一次项,则m 的值为________.
14.计算:()=•-32a a __________.
15.多项式243332693yz x z y x z y x -+-的公因式是______________.
16.计算()()23+-m m 的结果为________.
17.
()()=⨯-20192018125.08___________. 18.因式分解:
=+-22363y xy x __________. 三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)
19.(8分)一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶。

求大盒、小盒每盒各装多少瓶?
20.(8
分)解方程组⎩⎨⎧=-=-6242y x y x
21.(8分)计算:
()()()y x x y y x 4334432+--+
22.(10分)把下列各式因式分解:
(1)4842+-x x (2)
()()y x y y x +-+42
23.(10分)先化简,再求值:()()()2215-+-+x x x ,其中2-=x
24.已知()()812522=-=+y x y x ,,求22y x +和xy 的值。

25.(12分)为了打造区域中心城市,实现跨越式发展,我市新区建设正
按投资计划有序推进.新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方5403m ,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?
26.(12分)一个被墨水污染的方程组如下:⎩⎨⎧=-=+872y x y x □□□,小刚回忆说:这
个方程组的解是⎩⎨⎧-==23y x ,而我求出的解是⎩⎨⎧=-=22y x ,经检査后发现,我的
错误是由于看错了第二个方程中的x的系数所致,请你根据小刚的回忆,把方程组复原出来。

相关文档
最新文档