2019届高三联考(全国I卷)数学(文)试题(解析版)
2019年3月2019届高三第一次全国大联考(新课标Ⅰ卷)-文科数学(参考答案)
19.(本小题满分 12 分)
【解析】(1)由频率分布直方图,可知所求平均年龄为
(27.5 0.01 32.5 0.04 37.5 0.07 42.5 0.06 47.5 0.02) 5 38.5 (岁).(3 分)
1 2 3 4 5 6
1113 16 15 20 21
0
0
0
0
由于点Q(x0 , y0 ) 在直线l : x 2 y 4 0 上,所以 x0 2 y0 4 0 , 把此式代入①式并化简得: 7a2 4 y x2 0 ②,(10 分)
00
同理由QN bNP 可得7b2 4 y x2 0 ③,学*科网 00
故所求回归直线方程为 y 2x 9 .(12 分)
20.(本小题满分 12 分)
(2)设点Q(x0 , y0 ) , M (x1, y1 ) , N (x2 , y2 ) ,
则QM (x1 x0 , y1 y0 ) , MP (1 x1, 2 y1 ) ,
因为QM aMP ,所以(x1 x0 , y1 y0 ) a(1 x1, 2 y1 ) ,
文科数学 第 4页(共 5页)
23.(本小题满分 10 分)选修 4-5:不等式选讲
【解析】(1)依题意, | x 3 | 2 | x | 5 .(1 分)
2
2
当 x 0 时, 3 x 2x 5 ,即 x ,故 x 0 ;(2 分)
3
3
当 0 x 3 时, 3 x 2x 5 ,即 x 2 ,故0 x 2 ;(3 分)
因此 x x a(1 x ) , y y a(2 y ) ,即 x x0 a , y y0 2a ,(6 分)
完整)2019年高考文科数学全国1卷(附答案)
完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。
3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。
设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。
5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。
注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。
已删除明显有问题的段落。
6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。
如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。
要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。
【全国Ⅰ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sincos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅰ文数高考试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅰ文数高考真题及答案解析(word精编)
如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅰ文数高考试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅰ文数高考真题文档版(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)(可编辑修改word版)
A. a b c
B. a c b
C. c a b
D. b c a
第 1 页(共 12 页)
【解析】由对数函数的单调性可得 a log2 0.2 log21 0 ,
由指数函数的单调性可得 b 20.2 20 1, 0 c 0.20.3 0.20 1 ,所以 a c b .故选 B.
比例,且腿长为105cm ,头顶至脖子下端的长度为 26cm ,则其身高可能是( )
A.165cm
B.175cm
C.185cm
D.190cm
【解析】设某人身高为 m cm,脖子下端至肚脐的长度为 n cm,
则由腿长为 105 cm,可得 m 105 5 1 0.618 ,解得 m 169.890 .
所以 |
AB
|
3 2
|
AF2
|
,所以 |
AF1
|
3 |
AF2
|
4a
.
又因为 | AF1 | | AF2 | 2a ,所以 | AF2 | a . 所以 A 为椭圆的短轴端点.
第 5 页(共 12 页)
如图,不妨设 A(0,b) ,
又
F2
(1,
0),AF2来自2F2 B,所以
B
3 2
,
b 2
.
【答案】A
12.(2019 全国卷Ⅰ·文)已知椭圆 C 的焦点为 F1 1, 0, F2 1, 0,过 F2 的直线与 C 交于 A , B 两
点.若 | AF2 | 2 | F2B | , | AB || BF1 | ,则 C 的方程为( )
A. x2 y2 1 2
B. x2 y2 1 32
105
2
由头顶至脖子下端的长度为 26 cm,可得 26 5 1 0.618 ,解得 n 42.071 . n2
2019年全国卷Ⅰ文数高考试题(含答案),推荐文档
1
5 1 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 2 .若某人满足上述两
个黄金分割比例,且腿长为 105cm,头顶至脖子下端的长度为 26cm,则其身高可能是
A.165 cm
B.175 cm
C.185 cm
sin x x 5. 函数 f(x)= cos x x2 在[—π,π]的图像大致为
1
x2 2y 1 A. 2
x2 y2 1 B. 3 2
x2 y2 1 C. 4 3
x2 y2 1 D. 5 4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13. 曲线 y 3(x2 x)ex 在点 (0, 0) 处的切线方程为
.
a 1,S 3
1
14. 记 Sn 为等比数列{an}的前 n 项和.若
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
z
1.设
3i 1 2i
,
z
则=
A.2
B. 3
C. 2
D.1
2.已知集合U 1, 2,3, 4,5, 6, 7,, 2,3, 4,5 B 2,3, 6, 7,则 B ðU A
1
K2
n(ad bc)2
附:
(a b)(c d )(a c)(b d ) .
P(K2≥k )
0.050
0.010
0.001
k
3.841 6.635 10.828
18.(12 分)
记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1) 若 a3=4,求{an}的通项公式; (2) 若 a1>0,求使得 Sn≥an 的 n 的取值范围.
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)(可编辑修改word版)
所以其身高可能为 175 cm.故选 B.
【答案】B
5.(2019 全国卷Ⅰ·文)函数
f (x)
sinx x cosx x2
在[π, π] 的图象大致为(
)
第 2 页(共 12 页)
A.
B.
C.
D.
【解析】因为 f (x) sin( x) x sinx x f (x) ,所以 f (x) 为奇函数,排除选项 A. cos( x) ( x)2 cosx x2
比例,且腿长为105cm ,头顶至脖子下端的长度为 26cm ,则其身高可能是( )
A.165cm
B.175cm
C.185cm
D.190cm
【解析】设某人身高为 m cm,脖子下端至肚脐的长度为 n cm,
则由腿长为 105 cm,可得 m 105 5 1 0.618 ,解得 m 169.890 .
绝密★启用前
6 月 7 日 15:00-17:00
2019 年普通高等学校招生全国统一考试(全国卷Ⅰ)
数学(文史类)
总分:150 分 考试时间:120 分钟
★祝考试顺利★
注意事项:
1、本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考生务必将自己的姓名、 准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。用 2B 铅笔将答题卡 上试卷类型 A 后的方框涂黑。
学生中被抽到的是( )
A. 8 号学生
B. 200 号学生 C. 616 号学生 D. 815 号学生
【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为 1000 10 . 100
因为 46 除以 10 余 6,所以抽到的号码都是除以 10 余 6 的整数,结合选项知正确号码为 616.故选 C.
2019年3月2019届高三第一次全国大联考(新课标Ⅰ卷)-文科数学试卷及答案解析(考试版)-精品
19. (本小题满分 12 分) 将某产品投入甲、乙、丙、丁四个商场进行销售,六天后,统计了购买该产品的所有顾客的年龄情况 以及甲商场这六天的销售情况如下所示: 购买该产品的所有顾客的年龄情况
(1)求 | MP | | MF | 的最小值; (2)若 QM aMP, QN bNP ,求 a b 的值. 21. (本小题满分 12 分) 已知函数 f ( x ) e mx . (1)判断函数 f ( x ) 的单调性; (2)当 f ( x ) 在 [1, 2] 上的最小值是 1 时,求 m 的值. 请考生在第 22、23 两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目 计分. 22. (本小题满分 10 分)选修 4-4:坐标系与参数方程 在平面直角坐标系 xOy 中,直线 l 的参数方程为 4 15 5 20 6 21
参考公式:相关系数 r
( x x)( y y)
i 1 i i
n
( x x) ( y y )
i 1 i 2 i 1 i n i 1 i i
n
n
,
2
23. (本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x) | x 3 | m | x | . (1)若 m 2 ,求不等式 f ( x) 5 的解集;
7 5
B.
5 7
C.
1 2
D.
2 5 7
8.如图所示为某三棱锥的三视图,若该三棱锥的体积为
5.如图, ABCDEF 是正六边形,其中大圆是正六边形的外接圆,小圆是中间正六边形的内切圆,则往大
文科数学试题 第 1页(共 6页)
8 ,则图中 x 的值为 3
…
【精编】2019年3月2019届高三第一次全国大联考(新课标Ⅰ卷)-文科数学试卷及答案解析(考试版)
甲商场六天的销售情况
销售第 x 天
1
2
3
4
5
6
第 x 天的销量 y
11
13
16
15
20
21
(1)试计算购买该产品的顾客的平均年龄;
(2)根据甲商场这六天的销售情况:
(i)计算 x 与 y 的相关系数 r,并说明两者之间是否具有很强的相关性; (ii)求 x 与 y 的回归直线方程 y bx a .
………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
学 校 : ______________姓 名 : _____________班 级 : _______________考 号 : ______________________
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考 证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
2.已知
i
是虚数单位,
z
4 (1 i)4
3i
,则 |
z
|
A.3
B. 10
C. 11
D. 5
3.若 tan(2x π) 1 ,则 sin 2x 3cos2 x 47
A.5 或 1 5
B. 1 或 16 55
C.3 或 1 3
D. 1 或 16 33
2019年3月2019届高三第一次全国大联考(新课标Ⅰ卷)-文科数学(全解全析)
因为 c 12 , S△ABC 36 ,所以
2 2
(2)由(1)知, b a c 2ac cos B 6 2 , 故△ABC 为等腰直角三角形, 在△ACM 中, CM 则 cosACM
AC2 AM 2 2AC AM cosBAC 2 10 , 5 , (10 分) 5 25 , 5
故所求回归直线方程为 y 2x 9 . (12 分) 20. (本小题满分 12 分)
(2)设点Q(x0 , y0 ) , M (x1, y1 ) , N (x2 , y2 ) , 则QM (x1 x0 , y1 y0 ) , MP (1 x1, 2 y1 ) , 因为QM aMP ,所以(x1 x0 , y1 y0 ) a(1 x1, 2 y1 ) , 因此 x x a(1 x ) , y y a (2 y ) ,即 x
1
10.C 【解析】依题意,正方体 ABCD A1B1C1D1 的棱长为
3 ,只需考虑圆柱的底面与正方体的表面相
切的情况, 由图形的对称性可知, 圆柱的一个底面必与过 A 点的三个面相切, 且切点分别在
AB1, AC , AD1 上, 设线段 AB1 上的切点为 E , 该圆柱的底面中心为 O1 , 半径 O1E r , 由 △AO1E∽△AB1C1 , 得 AO1 2r , 则 圆 柱 的 高 为 3 2AO1 3 2 2r
max
V (
2 2
)
π 2
.故选 C.
1 2(n 1) 2n 3 ,即 an (2n 3)(2n 6) 4n2 18n 18 , 2n 6 3 * 令 a 0 ,得 n 3 ,又 n N , n 2, 3 , n 2
2019年全国Ⅰ卷高考文科数学真题及解析(Word版,精校解析版)
2019年普通高等学校招生全国统一考试(全国 I 卷)文科数学1. 设312iz i-=+,则z =( ) A.2 B.3 C.2 D.1 答案:C 解析: 因为3(3)(12)1712(12)(12)5i i i iz i i i ----===++- 所以z =2217()()55+-2= 2. 已知集合}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,7}63{2,,,=B ,则=A C B U ( ) A. }6,1{ B.}7,1{ C.}7,6{ D. }7,6,1{ 答案:C解析:}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U ,又 7}63{2,,,=B ,则7}{6,=A C B U ,故选C.3.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a << 答案:B 解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 190答案:B解析: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DFAD,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B.5. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A. B.C. D.答案:D 解答:∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A.又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D. 6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ).A.8号学生B.200号学生C.616号学生D.815号学生 答案:C 解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.7. tan 255︒=( )A.2-B.2-2D.2+ 答案:D 解析:因为tan 255tan(18075)tan 75︒=︒+︒=︒tan 45tan 30tan(4530)1tan 45tan 30︒+︒=︒+︒=-︒⋅︒化简可得tan 2552︒=8. 已知非零向量a ,b 满足||2||b a =,且b b a⊥-)(,则a 与b 的夹角为( )A.6π B.3π C.32π D.65π 答案:B 解答:||2||b a =,且b b a ⊥-)(,∴0)(=⋅-b b a ,有0||2=-⋅b b a ,设a 与b 的夹角为θ,则有0||cos ||||2=-⋅b b a θ,即0||cos ||222=-b b θ,0)1cos 2(||2=-θb , 0||≠b ,∴21cos =θ,3πθ=,故a 与b的夹角为3π,选B .9. 右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A=+ C.112A A =+ D.112A A=+答案:A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件.10.双曲线)0,0(12222>>=-b a by a x C :的一条渐近线的倾斜角为︒130,则C 的离心率为( )A.︒40sin 2B.︒40cos 2C.︒50sin 1D.︒50cos 1答案:D解答: 根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 11. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D. 3答案:A 解答:由正弦定理可得到:222sin sin 4sin 4a A b B c C a b c -=⇒-=,即2224a c b =+,又由余弦定理可得到:2221cos 24b c a A bc +-==-,于是可得到6b c =12. 已知椭圆C 的焦点坐标为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y +=D.22154x y +=答案:B 解答:由222AF F B =,1AB BF =,设2F B x =,则22AF x =,13BF x =,根据椭圆的定义21212F B BF AF AF a +=+=,所以12AF x =,因此点A 即为椭圆的下顶点,因为222AF F B =,1c =所以点B 坐标为3(,)22b,将坐标代入椭圆方程得291144a +=,解得 223,2ab ==,故答案选B.13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 答案:3y x = 解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线在点(0,0)处的切线方程的斜率3k =, ∴切线方程为3y x =.14. 记n S 为等比数列{}n a 的前n 项和,若11a =,334S =,则4S = . 答案:58解析:11a =,312334S a a a =++=设等比数列公比为q ∴211134a a q a q ++=∴12q =- 所以4S =5815.函数3()sin(2)3cos 2f x x x π=+-的最小值为___________. 答案:4- 解答:23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+, 因为cos [1,1]x ∈-,知当cos 1x =时()f x 取最小值, 则3()sin(2)3cos 2f x x x π=+-的最小值为4-. 16.已知90ACB ∠=︒,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距离均为3,那么P 到平面ABC 的距离为 . 答案:2解答:如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ∆中,由2,3PC PF ==,可得出1CF =,同理在Rt PCE ∆中可得出1CE =,结合90ACB ∠=︒,,OE CB OF CA⊥⊥可得出1OE OF ==,2OC =,222PO PC OC =-=17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满 意不 满 意男 顾 客 40 10女 顾 客30 20(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++2()P k κ≥0.0500.0100.001k3.841 6.63510.828解答:(1) 男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.18.记n S 为等差数列{}n a 的前n 项和,已知59a S -=; (1)若43=a ,求{}n a 的通项公式;(2)若01>a ,求使得n n a S ≥的n 的取值范围. 解答:(1)由59a S -=结合591992)(9a a a S =+=可得05=a ,联立43=a 得2-=d ,所以102)3(3+-=-+=n d n a a n(2)由59a S -=可得d a 41-=,故d n a n )5(-=,2)9(dn n S n -=. 由01>a 知0<d ,故n n a S ≥等价于010112≤+-n n ,解得101≤≤n ,所以n 的取值范围是{}N n n n ∈≤≤,101 19. 如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 解答:(1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG .,,E M N 分别是11,,BC BB A D 的中点.于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由MN ⊂平面NGHM ,于是得到//MN 平面1C DE(2)E 为BC 中点,ABCD 为菱形且60BAD ∠=DE BC ∴⊥,又1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又12,4AB AA ==,1DE C E ∴==,设点C 到平面1C DE 的距离为h由11C C DE C DCE V V --=得1111143232h ⨯=⨯⨯解得h =所以点C 到平面1C DE 20. 已知函数()2sin cos f x x x x x =--,()f x '是()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0,]x π∈时,()f x ax ≥,求a 的取值范围. 解答:(1)由题意得()2cos [cos (sin )]1f x x x x x '=-+--cos sin 1x x x =+- 令()cos sin 1g x x x x =+-,∴()cos g x x x '= 当(0,]2x π∈时,()0g x '>,()g x 单调递增,当(,)2x ππ∈时,()0g x '<,()g x 单调递减,∴()g x 的最大值为()122g ππ=-,又()2g π=-,(0)0g =∴()()02g g ππ⋅<,即()()02f f ππ''⋅<,∴()f x '在区间(0,)π存在唯一零点.(2)令()()F x f x ax =-2sin cos x x x x ax =---, ∴()F x 'cos sin 1x x x =+-a -,由(1)知()f x '在(0,)π上先增后减,存在(,)2m ππ∈,使得()0f m '=,且(0)0f '=,()=1022f ππ'->,()2f π'=-, ∴()F x '在(0,)π上先增后减,(0)F a '=-,()122F a ππ'=--,()2F a π'=--,当()02F π'≤时,()F x '在(0,)π上小于0,()F x 单调递减,又(0)0F =,则()(0)0F x F ≤=不合题意,当()02F π'>时,即102a π-->,12a π<-时,若(0)0F '≥,()0F π'≤,()F x 在(0,)m 上单调递增,在(,)m π上单调递减,则(0)0()0F F π≥⎧⎨≥⎩解得0a ≤,而(0)0()20F a F a π'=-≥⎧⎨'=--≤⎩解得20a -≤≤,故20a -≤≤,若(0)0F '≥,()0F π'≥,()F x 在(0,)π上单调递增,且(0)0F =, 故只需(0)0()20F a F a π'=-≥⎧⎨'=--≥⎩解得2a ≤-;若(0)0F '≤,()0F π'≤,()F x 在(0,)2π上单调递增,且(0)0F =,故存在(0,)2x π∈时,()(0)0F x F ≤=,不合题意,综上所述,a 的取值范围为(],0-∞.21. 已知点,A B 关于坐标原点O 对称,4AB =,M 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由. 解答: (1)∵M 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上,设圆的方程为222()()x a y a r -+-=,又4AB =,根据222AO MO r +=得2242a r +=;∵M 与直线20x +=相切,∴2a r +=,联解方程得0,2a r ==或4,6a r ==.(2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+即22242x y x ++=+ 化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线,所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=.22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值. 解答:(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=而直线l :将cos ,sin x y ρθρθ==代入即可得到23110x y ++=(2)将曲线C 化成参数方程形式为则4sin()112cos 23sin 11677d πθθθ++++==所以当362ππθ+=723.已知a ,b ,c 为正数,且满足1=abc ,证明:(1)222111c b a cb a ++≤++;(2)24)()()(333≥+++++a c c b b a .解析:(1) ab b a 222≥+,bc c b 222≥+,ac a c 222≥+,∴ac bc ab c b a 222222222++≥++,即ac bc ab c b a ++≥++222,当且仅当c b a ==时取等号. 1=abc 且a ,b ,c 都为正数,∴c ab 1=,a bc 1=,bac 1=,故222111c b a cb a ++≤++. (2) 3333333)()()(3)()()(ac c b b a a c c b b a +++≥+++++,当且仅当333)()()(a c c b b a +=+=+时等号成立,即c b a ==时等号成立.又- 11 - ))()((3)()()(33333a c c b b a a c c b b a +++=+++ac bc ab 2223⋅⋅⨯≥abc 42=, 当且仅当c b a ==时等号成立, 1=abc ,故2424)()()(33333=≥+++abc a c c b b a ,即得24)()()(333≥+++++a c c b b a .。
(精校版)2019年全国卷Ⅰ文数高考试题文档版(含答案)
(2) (a b)3 (b c)3 (c a)3 24 .
5
2019年普通高等学校招生全国统一考试
文科数学·参考答案
一、选择题
1.C
2.C
7.D
8.B
二、填空题
13.y=3x
14. 5 8
三、解答题
3. 7
C.6, 7
D. 1, 6, 7
3.已知 a log2 0.2, b 20.2 , c 0.20.3 ,则
A. a b c
B. a c b
C. c a b
D. b c a
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 5 1( 5 1 ≈0.618,
因为 |MA||MP|=r|MP|=x+2 (x+1)=1 ,所以存在满足条件的定点P.
22.解:(1)因为
1
1 t2 1 t2
1
,且
x2
y 2
2
1t2
1
t
2
2
4t 2 1 t2
2 1,所以C的直角坐标方程为
x2 y2 1(x 1) . 4
( x)
0
,所以
g
(
x)
在
(0,
π 2
)
单调递增,在
π 2
,
π
单
调递减.
7
又
g
(0)
0,
g
π 2
2019年全国卷Ⅰ文数高考真题及答案解析(word精编)
2019年全国卷Ⅰ文数高考真题及答案解析(word精编)绝密★启用前 xx年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名.考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一.选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则=A.2B.C.D.12.已知集合,则A.C.D.3.已知,则A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A.165 cmB.175 cmC.185 cmD.190 cm5.函数f(x)=在[—π,π]的图像大致为A.B.C.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°=A.-2-B.-2+C.2-D.2+8.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为A.B.C.D.9.如图是求的程序框图,图中空白框中应填入A.A=C.A=D.A=10.双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40°B.2cos40°C.D.11.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA -bsinB=4csinC,cosA=-,则=A.6B.5C.4D.312.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.二.填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅰ文数高考试题文档版(含答案) 【完美】
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c= A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求出样本空间中基本事件的总数 ,其次求出概率事件中含有多少个基本事件 ,然后根据公式
9.△ABC 的内角 A,B,C 所对的边分别为 a,b,c,已知
,则 B=
求得概率.
A.
B.
C.
D.
【答案】D
【解析】
【分析】
由 式可得 【详解】
2
结合余弦定理可得 ,从而可得结果.
,
,再由正弦定理可得 ,
,由辅助角公
13.已知单位向量 的夹角为 60°,则
________.
【答案】 【解析】 【分析】
先利用平面向量的数量积公式求出 量的模为 1,即可得结果.
,再利用数量积的运算,化简
,将 代入,结合单位向
【详解】
,
,故答案为 . 【点睛】平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标 运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公 式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解 决.列出方程组求解未知数.
B 是正确的;
对于选项 C:2 月份业务量同比增长率为 53%,而收入的同比增长率为 30%,所以 C 是正确的;
对于选项 D,1,2,3,4 月收入的同比增长率分别为 55%,30%,60%,42%,并不是逐月增长,D 错误.
本题选择 D 选项.
【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.
2
2
A. 2018 年 1~4 月的业务量,3 月最高,2 月最低,差值接近 2000 万件
B. 2018 年 1~4 月的业务量同比增长率均超过 50%,在 3 月底最高
C. 从两图来看,2018 年 1~4 月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从 1~4 月来看,该省在 2018 年快递业务收入同比增长率逐月增长
11.已知 是奇函数
的导函数,当
时,
,则不等式
A.
B.
【答案】B
【解析】
C.
D.
【分析】
构造函数
,可得
为奇函数且在 上单调递增,根据奇偶性可得
调递增,原不等式化为
【详解】令
,当
,从而可得结果.
时,
,
在 上单调递增,
为奇函数, 也是奇函数,且在 上单调递增,
由
化为
的解集为 在 上单
得
,
,
的解集为
,故选 B.
(3)三看“结构特征”,分析结构特征,找到变形的方向.
15.已知正三棱柱 ABC—A1B1C1 的高为 6,AB=4,点 D 为棱 BB1 的中点,则四棱锥 C—A1ABD 的表面积是 ________.
【答案】
【解析】
【分析】
根据直三棱柱的性质判断
的底面为直角梯形,四个侧面中,有三个直角三角形,一个等腰三角形,
4.设 , 满足约束条件
,则
的取值范围是( )A.Leabharlann B.C.D.
【答案】A
【解析】
【分析】
由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,
把最优解的坐标代入目标函数,利用数形结合得结论.
2
2
【详解】
画出
表示的可行域,
表示可行域内的点 与点
连线的斜率,
由
2
,
即
,
,又
,
,故选 D. 【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果 式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时, 则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
10.在直角坐标系 中, 是椭圆 :
入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及 化趋势,利用排除法,将不合题意的选项一一排除. 6.某几何体的三视图如图所示,其中正视图中的曲线为圆弧,则该几何体的体积为
时函数图象的变
A.
B.
C.
D.
【答案】B
【解析】
【分析】
首先确定空间几何体的结构特征,然后利用体积公式确定其体积即可.
【详解】由题意可知,题中的结合体是一个正方体去掉四分之一圆柱所得的组合体,
①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.
12.已知函数 只有一个 使
, ,则 的最大值为( )
,对任意 恒有
,且在区间 上有且
A.
B.
C.
D.
【答案】C
【解析】
2
2
【分析】 由题意得到 满足的关系式,然后结合题意分类讨论确定 ω 的最大值即可.
【详解】由题意知
其中正方体的棱长为 4,圆柱的底面半径为 2,高为 4,
则组合体的体积:
.
本题选择 B 选项.
【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线
面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常
用等积法、分割法、补形法等方法进行求解.
能力.
2
2
8.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两 个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生 0 到 3 之间取整数 值的随机数,分别用 0,1,2,3 代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的 结果,经随机模拟产生了以下 18 组随机数: 232 321 230 023 123 021 132 220 001 231 130 133 231 031 320 122 103 233 由此可以估计,恰好第三次就停止的概率为
的左焦点, 分别为左、右顶点,过点 作 轴的垂
线交椭圆 于 , 两点,连接 交 轴于点 ,连接 交 于点 ,若 是线段 的中点,则椭圆 的离心率
为( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
由题意结合几何性质找到 a,c 的关系即可确定椭圆的离心率。
【详解】如图,连接 BQ,则由椭圆的对称性易得∠PBF=∠QBF,∠EAB=∠EBA,所以∠EAB=∠QBF,所
,
;
此时 的值不大于 ,应执行:
,
;
此时 的值不大于 ,应执行:
,
;
此时 的值不大于 ,应执行:
,
;
此时 的值不大于 ,应执行:
,
;
此时 的值不大于 ,应执行:
,
;
此时 的值大于 ,应跳出循环,
即 时程序不跳出循环, 时程序跳出循环,
结合选项可知空白的判断框内可以填入的是 .
本题选择 B 选项.
【点睛】本题主要考查流程图的运行过程,补全流程图的方法等知识,意在考查学生的转化能力和计算求解
或 时,
都成立,舍去;
③.当 k=17 时,
当
时,
,此时 可使 ,
当且仅当
时,
综上可得:ω 的最大值为 .
2
都成立,
成立,
2
本题选择 C 选项. 【点睛】本题主要考查三角函数的性质,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解 能力,属于难题.
二、填空题:本大题共 4 小题.将答案填在答题卡中的横线上.
,则
,
其中
,
又 f(x)在( , )上有且只有一个最大值,且要求 最大,
则区间( , )包含的周期应最多,
所以 分类讨论:
,得 0< ≤30,即
,所以 k≤19.5.
①.当 k=19 时,
当
时,
,此时 可使 ,
所以当
或 时,
都成立,舍去;
成立,
②.当 k=18 时,
当
时,
,此时 可使 ,
成立,
所以当
,得
,
由图知, 的范围是
, ,故选 A.
【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步
骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的
最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)
将最优解坐标代入目标函数求出最值.
5.函数
的图象大致为
A.
B.
C.
D.
2
2
【答案】C 【解析】 【分析】
根据奇偶性排除 ;由
,排除 ;由
,排除 ,从而可得结果.
【详解】由
,得 为偶数,图象关于 轴对称,排除 ;
,排除 ;
,排除 ,故选 C. 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命 题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面
以 ME//BQ.
因为△PME∽△PQB,所以
,
因为△PBF∽△EBO,所以
,从而有
,
又因为 M 是线段 PF 的中点,所以
.
本题选择 C 选项.
【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范
2
2
围),常见有两种方法:
①求出 a,c,代入公式 ; ②只需要根据一个条件得到关于 a,b,c 的齐次式,结合 b2=a2-c2 转化为 a,c 的齐次式,然后等式(不等式) 两边分别除以 a 或 a2 转化为关于 e 的方程(不等式),解方程(不等式)即可得 e(e 的取值范围).