内力组合,配筋
框架结构课程设计(1)
M bl
r Mb
Mu c
l ib M bl l r ( M cu M cl ) ib ib r ib r M b l r ( M cu M cl ) ib ib
水平荷载作用下的D值法 六、梁剪力、柱轴力等 同用分层法进行竖向荷载下内力计算,即:
取各梁为隔离体,由平衡关系 求得梁端剪力。
15.81kN 27.39kN 31.77kN 22.33kN
A2
15.81kN
B2
59.16kN
C2
22.33kN
29.01kN 20.89kN
72.36kN 33.11kN 38.67kN
35.53kN 28.83kN
A1
49.9kN
B1
144.14kN
C1
64.36kN
竖向荷载作用下的分层法
框架在竖向荷载作用下的计算简图:
双 向 板
双向板
单
向
板
用分层法进行竖向荷载作用下框架的内力计算。
框架在水平荷载(风载)作用下的计算简图:
视为均匀分布,风压高度变 化系数按框架顶部标高确定。
进一步将均布荷载简化为作 用在梁柱节点上的水平集中力。
框架在水平荷载(风载)作用下的计算简图:
用反弯点法或D值法进行水平荷载作用下框架的内力计算。
梁端截面: M max、 M max、Vmax
跨中截面: M max
M max 及相应的N和V
Nmax及相应的M和V
N min及相应的M和V
六、框架结构的结构构件设计
1、排架柱的计算长度l0(见教材表13-2) 2、框架节点的构造要求
A2 15.81
B2 59.16
C2 22.33
钢筋混凝土练习题考试题题库及答案全
钢筋混凝土练习题考试题题库及答案全1、混凝土的弹性模量是指变形模量。
2、属于有明显屈服点的钢筋有冷拉钢筋和热处理钢筋。
3、对于高度、截面尺寸、配筋完全相同的柱,以支承条件为两端嵌固时,其轴心受压承载力最大。
4、Ⅰa状态作为受弯构件抗裂计算的依据。
5、对于无腹筋梁,当λ<1时,常发生弯曲破坏。
6、判别大偏心受压破坏的本质条件是:ξ<ξb,说明是小偏心受拉破坏。
7、对于钢筋混凝土偏心受拉构件,下面说法错误的是如果ξ>0.8,说明是大偏心受拉破坏。
8、钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比0.6<ζ<1.7说明,当构件破坏时,纵筋和箍筋都能达到屈服。
9、钢筋混凝土构件变形和裂缝验算中关于荷载、材料强度取值说法正确的是荷载、材料强度都取标准值。
10、预应力混凝土先张法构件中,混凝土预压前第一批预应力损失σl1应为σl1+σl2+σl3+σl4.11、下列表述中混凝土结构使用寿命的判别基础是大面积内出现纵向裂缝为不正确。
12、混凝土若处于三向应力作用下,当三个主应力相等时,混凝土破坏。
1.横向受拉,纵向受压可提高抗压强度,而横向受压,纵向受拉则可提高抗拉强度。
2.三向受压会降低抗压强度,而三向受拉则会提高抗拉强度。
3.高碳钢筋采用条件屈服强度,以σ0.2表示,即取残余应变为0.002时的应力。
4.对适筋梁,受拉钢筋屈服时接近最大承载力。
5.第一类T形梁验算最小配筋率时应满足M≤α1fc'b'fh'(h-0.5h'f)(ρ≥ρmin),而验算第二类T形梁最大配筋率时应满足ρ≤ρmax=ξα1fc/fy。
6.在设计双筋梁时,当As。
As'满足M>α1fc'b'fh'(h-0.5h'f)时,补充条件是取ξ=ξb。
7.采用双筋矩形截面受压构件是因为截面尺寸已定,ξ>ξb。
8.无腹筋的钢筋混凝土梁沿斜截面的受剪承载力在一定范围内随剪跨比的增加而降低。
面板内力计算及配筋参考
Mmax(kN·m)
727.88
534.15
Mmin(kN·m)
-964.11
-716.46
剪力
Qmax(kN)
594.01
437.04
Qmin(kN)
-593.30
-436.76
四、纵梁配筋计算
1)抗弯承载力计算
结构系数 ,Ⅱ级钢筋抗拉强度设计值
混凝土轴心抗压强度设计值 ,弹性模量
使用期:
(1)支座:
Ⅰ、按承载能力极限状态计算配筋:
截面有效高度 ,截面宽度:
计算跨度:弯矩计算
剪力计算
承载能力极限状态纵梁弯矩设计值:
,按一般受弯构件计算。
式中: -弯矩设计值( );
-截面抵抗矩系数;
-相对受压区计算高度;
-截面的有效高度( )。
计算结果如下:
选配钢筋 , 。
Ⅱ、按海水港正常使用极限状态效核裂缝宽度:按0.25mm控制
(5)面板底层纵向钢筋配筋计算
按承载力进行配筋
按单筋截面进行计算。
M =15.5(kN·m)
(不用加大截面或提高 )
=0.0106
,受拉筋抗拉强度可充分发挥。
配筋率:
,
选配钢筋5ф12@200,实际 ,横向分布筋选ф12@200mm。
裂缝宽度计算:
Ml=8.2(kN·m)〖绝对值〗
=1.5
c+d=60(mm)
备注
跨中
支座
持久
状况
承载力
极限状态
持久组合
(1.2×5.7+1.4×5.7)
×1.3=19.3
(-1.2×4.9-1.4×4.9)
×1.3=-16.6
混凝土和砌体结构考试简答题汇总
1。
单向板与双向板的定义:按受力特点,混凝土楼盖中的周边支撑板可分为单向板和双向板两类。
只在一个方向弯曲或者主要在一个方向弯曲的板,称为单向板;在两个方向完全,且不能忽略人一个方向弯曲的板称为双向板。
2. 现浇单向板肋梁楼盖的设计步骤:1、结构平面布置并初步拟定板厚和主、次梁的截面尺寸;2、确定梁、板得计算简图;3、梁、板得内力分析;4、截面配筋及构造措施;5、绘制施工图.3. 简化假定:1、支座可以自由转动,但没有竖向位移;2、不考虑薄膜相应对板内力的影响;3、在确定板传给次梁的荷载一级次梁传给主梁的荷载时,分别忽略板、次梁的连续性;4、跨熟超过五跨的连续梁、板,当各跨荷载相同,且跨度相差不超过10%时,可按五跨的等跨连续梁、板计算。
4. 假定支座处没有竖向位移,实际上忽略了次梁、主梁、柱的竖向变形对板、次梁、主梁的影响。
柱子的竖向位移主要由轴向变形引起,在通常的内力分析中都是可以忽略的。
忽略主梁变形,将导致次梁跨中弯矩偏小、主梁跨中弯矩偏大。
当主梁的线刚度比次梁的线刚度大得多时,主梁变形对次梁内力的影响才比较小。
次梁变形对板内力的影响也是这样,如果考虑这种影响,内力分析就相当复杂。
5。
计算单元:为减少计算工作量,结构内力分析时,常常不是对整个结构进行分析,而是从实际结构中选取有代表性的某一部分作为计算的对象,成为计算单元.6. 塑性内力重分布的过程,假定支座截面和跨内截面的截面尺寸和配筋相同.梁的手里全过程大致可以分为三个阶段:1、弹性内力阶段;2、截面间弯曲刚度比值改变阶段;3、塑性铰阶段。
7。
考虑塑性内力重分布是以形成塑性铰为前提的,因此下列情况不宜采用:1、在使用阶段不允许出现裂缝或对裂缝开展有校验过限制的结构,如水池池壁,自防水屋面,一级处于侵蚀性环境中的结构;2、直接承受动力和重复荷载的结构;3、预应力结构和二次受力叠合结构;4、要求有较高安全储备的结构。
8. 截面弯矩的调整幅度用弯矩调幅系数β来表示:β=(Me—Ma)/Me,式中Me安弹性理论算得的弯矩值;Ma 调幅后的弯矩值。
内力组合及内力调整
7 内力组合及内力调整7.1内力组合各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。
当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。
分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。
由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。
1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。
当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。
计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。
2max182M M M ql +≈-右左 且满足2max 116M ql = (7-1) 式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;l ——梁的计算跨度。
2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。
图7-1 框架梁内力组合图图7-2 调幅前后剪力值变化图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩C R 、D R ——竖向荷载与地震荷载共同作用下梁端支座反力。
左端梁支座反力:()C 1=2GD GC EC ED ql R M M M M l--++;由0M ddx=,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。
XXX大桥桩基(桩顶反力及配筋)受力计算完全
4#墩桩基计算
1、桩顶力及桩长计算
由桥梁博士“内力\组合内力\持久或短暂状况内力”查得在标准值组合作用下承台底面轴力和弯矩分别如下:
根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)公式8.5.1得
2,桩基布置示意图如右,则桩基坐标如下:x1=0x2=0x3=0x4=0x5=0x6=0y1= 2.1y2= 2.1y3=0y4=
0y5=0y6=0
故最大弯矩时单桩竖向力
4#墩处:
Nmax=
8899
kN
桩顶反力取
嵌岩桩(钻孔桩):
c1=0.4c2=
0.032
d=
1.6m
4#墩:ZK9嵌岩深度
h=
3.2m
Ra=15MPa 单桩轴向受压容许承载力[P]=19784.494kN kN
桩长满足
单桩轴向受压应力=
4.426
Mpa
2、桩基截面配筋
承载能力极限状态下4#墩承台底内力基本组合如下:
经计算得桩基配筋结果为:
构造配筋
已知桩基根数n=
下承台底面
交角90度
4)公式8.5.1得
基坐标如下:
8900
桩底高程为:。
内力组合计算书
内力组合《抗震规范》第条规定如下。
截面抗震验算结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算:G GE Eh Ehk Ev Evk w w wkS S S S S γγγψγ=+++ ()式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值;γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用;s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ;ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。
注:本规范一般略去表示水平方向的下标。
表 地震作用分项系数结构构件的截面抗震验算,应采用下列设计表达式:RE RS γ=式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用;R ——结构构件承载力设计值。
表 承载力抗震调整系数当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。
本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表结构安全等级设为二级,故结构重要性系数为0 1.0γ=根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。
其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+⨯ 活荷载控制下:Gk Qk S 1.2S 1.4S =+有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+±对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。
重庆大学版《地下结构设计》1-10章习题答案
第一章1.简述地下结构的概念和特点。
概念: 地下结构是指在保留上部地层(山体或土层)的前提下, 在开挖出能提供某种用途的地下空间内修筑的建筑结构。
特点:(1)地下空间内建筑结构替代了原来的地层, 结构承受了原本由地层承受的荷载。
在设计和施工中, 要最大限度发挥地层自承能力, 以便控制地下结构的变形, 降低工程造价。
(2)在受载状态下构建地下空间结构物, 地层荷载随着施工进程发生变化, 因此, 设计时要考虑最不利的荷载工况。
(3)作用在地下结构上的地层荷载, 应视地层介质的地质情况合理概化确定。
(4)地下水状态对地下结构的设计和施工影响较大, 设计前必须弄清地下水的分布和变化情况。
(5)地下结构设计要考虑结构物从开始构建到正常使用以及长期运营过程的受力工况, 注意合理利用结构反力作用, 节省造价。
(6)在设计阶段获得的地质资料, 有可能与实际施工揭露的地质情况不一样。
因此, 地下结构施工中应根据施工的实时工况动态修改设计。
(7)地下结构的围岩既是荷载的来源, 在某些情况下又与地下结构共同构成承载体系。
(8)当地下结构的埋置深度足够大时, 由于地层的成拱效应, 结构所承受的围岩垂直压力总是小于其上覆地层的自重压力。
2.简述地下结构的分类与形式。
按断面形式分类: 1)矩形2)圆形3)拱形4)其他形式按使用功能分类: 可分为生活设施、城市设施、生产设施、储藏设施、输送设施和防灾设施等按结构形式及施工方法分类: (1)喷锚结构(2)复合衬砌结构(3)盾构结构(4)沉管结构(5)沉井结构(6)地下连续墙结构(7)其他结构按与地面结构联系情况分类(1)附建式结构(2)单建式结构按埋置深度分类1)浅埋地下结构2)深埋地下结构3.简述地下结构计算理论的发展阶段和代表理论1.刚性结构阶段: 压力线理论该理论认为地下结构是由一些刚性块组成的拱形结构, 所受的主动荷载是地层压力, 当地下结构处于极限平衡状态时, 它是由绝对刚体组成的三铰拱静定体系, 铰的位置分别假设在墙底和拱顶, 其内力可按静力学原理进行计算。
毕业设计-框架内力组合(柱)
根据实验数据,分析框架内力组合(柱)在不同工况 下的受力性能,探究其受力规律和破坏机理。
结论总结
总结实验结果,得出框架内力组合(柱)的受力性能 和适用范围,为工程实践提供理论依据。
04
框架内力组合(柱)的数值模
拟研究
数值模拟方法介绍
有限元法
01
将结构离散化为有限个小的单元,通过求解这些单元的力学平
01
02
03
试件制作
根据实验要求,制作不同 尺寸和材料的框架内力组 合(柱)试件。
加载装置
设计合理的加载装置,模 拟实际工程中的受力情况, 对试件进行加载。
数据采集
在实验过程中,使用测量 仪器实时采集试件的应变、 位移等数据,记录实验过 程中的重要信息。
实验结果分析
数据处理
对采集的数据进行整理、分析和处理,提取有用 的信息。
工程特点
建筑高度高,抗震设防烈度高,对结构安全 性要求高
框架内力组合(柱)在工程中的应用分析
内力组合柱的设计
根据建筑需求和结构要求,进行内力 组合柱的截面尺寸、配筋等设计。
内力组合柱的承载能力分析
通过有限元分析等方法,对内力组合 柱的承载能力进行计算和评估。
内力组合柱的稳定性分析
考虑轴压比、长细比等因素,对内力 组合柱的稳定性进行分析。
内力组合柱的优化设计
根据分析结果,对内力组合柱的设计 进行优化,以提高结构的安全性和经 济性。
框架内力组合(柱)在工程中的优化建议
合理选择材料
优化截面尺寸
选用高强度钢材或混凝土,以提高内力组 合柱的承载能力和抗震性能。
根据计算和分析结果,合理调整内力组合 柱的截面尺寸,以实现经济、合理的结构 设计。
广厦CAD软件计算教程
第4章广厦楼板、次梁和砖混计算教程1进入楼板、次梁和砖混计算菜单位置:广厦建筑结构CAD主菜单−楼板、次梁和砖混计算计算楼板、次梁、砖混前必须在录入系统中生成结构计算数据,若有警告,需处理严重的警告,完成导荷,然后再选择此菜单。
如果录入系统已生成结构计算数据并已导荷,进入楼板、次梁和砖混计算系统时自动形成楼板、次梁和砖混计算数据,并自动计算所有标准层楼板和次梁的内力及配筋,砖混部分进行抗震验算、受压验算和高厚比验算;如果又回到录入系统里修改后,重新生成结构计算数据,则会重新进行此计算,若没有修改或没有生成计算数据则会自动调上一次的楼板次梁砖混计算数据。
若不干预或不查看计算结果,可直接退出楼板次梁砖混计算模块即可。
砖混计算简图请在此系统中生成DWG文件打印。
2抗震验算菜单位置:主菜单−砖混计算−抗震验算给出抗震验算的结果:抗力和荷载效应比,蓝色数据为各大片墙体(包括门窗洞口在内)的验算结果,而黑色数据为各门窗间墙段的结果。
当没有门、窗、洞时两结果相同。
当大于等于1时,满足抗震强度要求,当小于1时,此时整片墙抗震验算结果后显示按计算得到的该墙体层间竖向截面中所需水平钢筋的总截面面积(单位为cm2),供用户作配筋时使用。
图形下面标出的内容是:G--该层的重力荷载代表值(kN);F--该层的水平地震作用标准值(kN);V--该层的水平地震剪力(kN);LD--地震烈度;GD--楼面刚度类别;M--本层砂浆强度等级;MU--本层砌块强度等级;Dx2/Dx1--X向侧移刚度比;Dy2/Dy1--Y向侧移刚度比。
3受压验算菜单位置:主菜单−砖混计算−受压验算给出受压验算的结果:抗力和荷载效应比,已考虑受压构件承载力的影响系数,蓝色数据为各大片墙体(包括门窗洞口在内)的验算结果,而黑色数据为各门窗间墙段的结果。
4砖墙轴力设计值和标准值菜单位置:主菜单−砖混计算−砖墙轴力/标准轴力“砖墙轴力”按钮显示轴力设计值,轴力设计值为1.2恒+1.4活和1.35恒+0.98活两组取大值,用于验算砖墙受压验算,“标准轴力”按钮显示轴力标准值,轴力标准值为1.0恒+1.0活,用于计算砖墙下条基础的宽度,单位kN/m,蓝色数据为各大片墙体(包括门窗洞口在内)每延米轴力值,而黑色数据为各门窗间墙段的结果。
内力组合表及梁柱配筋
s M 1 f c b h0 2
( s M 1 f c bh 0 )
2
4 1 1 2 s
A s 1 f c b f h 0 f y A s 1 f c bh 0 f y
选配钢筋 实配钢筋截面面积 M γREM
2*25+2*20 2*16+1*14 1*14+2*25 1610.00 556.00 1135.00 218.69 -67.80 -156.82 164.02 -50.85 -117.62 0.208 0.235 1318.42 0.009 0.009 362.31 0.149 0.162 907.70
253.87 190.40 0.241 0.280 1570.58
-100.08 -75.06 0.014 0.014 536.00
-185.23 -138.92 0.176 0.195 1091.65
120.64 90.48 0.016 0.017 647.04 1*18+2*16 656.00 117.00 87.75 0.016 0.016 627.36 1*18+2*16 656.00 107.56 80.67 0.015 0.015 576.36 1*18+2*16 656.00 91.62 68.72 0.012 0.013 490.41 1*18+2*16 656.00
s M 1 f c b h0 2
( s M 1 f c bh 0 )
2
3 1 1 2 s
A s 1 f c b f h 0 f y A s 1 f c bh 0 f y
选配钢筋 2*20+1*16 实配钢筋截面面积 829.10
框架结构梁柱内力组合计算表(精选)
荷载种类
活载
风载
左风
右风
4
2.17 0.95 -1.75 0.95 -1.19 -3.16 -5.39 2.17 -5.39 1.61 0.82 1.91 -1.70 1.91 -0.76 -3.16 -10.86 1.81 -10.86 1.35 0.42 2.72 -1.79 2.72 -0.67 -2.46 -17.46 0.79 -17.46 0.99 -0.55 3.21 -0.80
-49.44 47.96 40.50 -53.64 -52.05 -24.71 12.14 -15.88 -31.52 -7.67 -54.84 40.67 25.70 -44.23 -36.95 -16.99 16.39 -3.04 -17.05 0.55 -59.55 46.40 11.63 -35.65 -36.76 -24.49 0.68 -4.19 -24.47 -0.68 -59.03 45.16 8.81 -49.63 -36.92 -19.98 32.63 -7.61
-2.00
2.09 -0.57 0.47 0.81 -0.45 2.00 -1.90 0.00 6.79 -1.29 4.00 1.29 1.09 2.79 -1.29 6.35 -6.05 0.00 6.35 -6.05 8.45 -2.20 1.84 4.77 -2.20 10.85 -5.17 0.00 10.85 -5.17 11.94 -2.86 3.36 5.23 -2.86 5.23 -11.31 0.00
0.97 -3.31 3.83 6.10 -8.65 13.77 -13.11 0.00 13.77 -19.07 31.67 -7.99 15.44 16.23 -7.99 36.78 -35.03 0.00 36.78 -35.03 46.34 -13.31 11.51 23.22 -13.31 52.65 -50.14 0.00 52.65 -50.14 58.97 -7.76 14.40 30.17 -7.76 68.40 -65.14 0.00
内力组合与塑性调幅
★★★内力组合与xx弯矩调幅一、控制截面1.柱:上、下端截面2.xx:左、中、右截面3.截面配筋设计时,应取梁端内力,而不是计算简图中的轴线处内力!P67图4-18: M’=M-V*b/2V’=V-(g+p)*b/2g、p:xxxx分布的恒载和活载。
当计算水平荷载或竖向集中荷载产生的内力时,则V’=V。
二、荷载效应组合——按第三章第二节要求(七种可能,实际多余七种计算)P36-39三、最不利内力组合1.xx截面:+Mmax—配置底筋-Mmax—配置支座面筋Vmax—配置箍筋2.跨中截面:+Mmax—配置底筋3.柱端截面:(1)|M|max及相应的N,V(2) Nmax及相应的M,V(3) Vmax及相应的M,N四、竖向最不利位置按P70第四种方法:不考虑活荷载的最不利布置,按均布处理,对梁跨中弯矩M乘扩大系数1.1-1.2***JGJ3-2010第5.1.8条/p455.1.8高层建筑结构内力计算中,当楼面活荷载大于4kN/m2时,应考虑楼面活荷载不利布置引起的结构内力的增大;当整体计算中未考虑楼面活荷载不利布置时,应适当增大楼面梁的计算弯矩。
对应条文说明:5.1.8目前国内钢筋混凝土结构高层建筑由恒载和活载引起的单位面积重力,框架与框架-剪力墙结构约为12kN/m2~14kN/m2,剪力墙和筒体结构约为13kN/m2~16kN/m2,而其中活荷载部分约为2kN/m2~3kN/m2,只占全部重力的15%~20%,活载不利分布的影响较小。
另一方面,高层建筑结构层数很多,每层的房间也很多,活载在各层间的分布情况极其繁多,难以一一计算。
如果活荷载较大,其不利分布对梁弯矩的影响会比较明显,计算时应予考虑。
除进行活荷载不利分布的详细计算分析外,也可将未考虑活荷载不利分布计算的框架梁弯矩乘以放大系数予以近似考虑,该放大系数通常可取为1.1~1.3,活载大时可选用较大数值。
近似考虑活荷载不利分布影响时,梁正、负弯矩应同时予以放大。
结构计算书
摘要摘要本工程为某办公楼设计。
毕业设计目的是熟悉多层建筑结构设计的步骤,方法,掌握建筑设计和结构设计的全过程,以及设计过程中需要注意的问题。
主要内容包括:设计资料、确定建筑方案、结构平面布置及计算简图确定、荷载计算、内力计算、内力组合、次梁截面设计和配筋计算、框架柱截面设计和配筋计算、主梁截面设计配筋计算、楼板设计、楼梯设计、基础设计、简单概预算等。
其中附有纵向和横向地震荷载作用下的框架弯矩、剪力和轴力图;恒荷载和活荷载作用下的框架弯矩、剪力和轴力图以及梁柱的内力组合表。
柱按偏压构件计算,为保证延性框架要“强剪弱弯,强柱弱梁,强节点弱构件强锚固”的设计原则,且满足构造要求。
关键词框架结构设计内力组合配筋AbstractThis engineering is a office Building of many layers. The purpose of the designs is to make me farniliar with procedure and method of high-floor architectural designs, to master the whole process-from outline design, sophisticated design, to structural one. Main contents include: design, structural layout and schematic calculation of identification, load, stress, the combination of internal forces, meeting beam reinforcement design and calculation, frame-section design and reinforcement, main beam reinforcement design, floor design, stair design, infrastructure design. Enclosing vertical and horizontal seismic loads under the framework of the moment, shear and axial bid; Constant load and live load under the framework moment, shear and axial trying to internal forces and the combination of beam-column table. we adhere to the design principle is “stranger column and weaker beam, stranger shear force and weaker bending, stranger joint stronger anchorage”. And the cross-section must to meet the demand of construction.Keywords Frames Structural design Internal force make up Joint目录摘要 (I)Abstract (2)第一章设计资料 (6)1.1工程概况 (6)1.2建筑设计说明书 (6)1.2.2 方案说明 (6)1.2.3等级说明 (7)1.2.4建筑设计说明及构造做法 (7)1.3结构说明书 (8)1.3.1工程概况 (8)1.3.2设计楼面活荷载 (8)1.3.3材料 (8)1.3.4楼板 (8)1.3.5梁、柱 (9)1.3.6墙体 (9)1.3.7构造柱 (9)1.3.8其他 (9)第二章结构的选型和布置 (10)2.1 结构选型 (10)2.2 结构布置 (10)2.3 初估梁柱截面尺寸 (11)2.3.1 按大跨度进行计算 (11)2.3.2 柱的截面尺寸 (11)第三章框架计算简图及梁柱线刚度 (13)3.1确定框架计算简图 (13)3.2框架梁柱的线刚度计算 (13)第四章荷载计算 (15)4.1 恒载标准值的计算 (15)4.1.1 屋面 (15)4.1.2 各层楼面 (15)4.1.3梁自重 (15)4.1.4柱自重 (16)4.1.5外纵墙自重 (17)4.1.6内纵墙自重 (17)4.1.7内隔墙自重 (17)4.2活荷载标准值计算 (18)4.2.1 屋面和楼面荷载标准值 (18)4.2.2 雪荷载 (18)4.3 竖向荷载下框架受荷总图 (18)4.3.1在A - B 及C -- D轴内: (18)4.3.2在A -B 轴间框架梁 (18)4.3.3在B- C轴间框架梁 (19)4.3.4 C- D轴间框架梁同A- B 轴间框架梁 (20)4.3.5 A- B ,C- D轴间联系梁: (20)4.3.6 A轴柱纵向集中荷载的计算 (20)4.3.7 B轴柱纵向集中荷载的计算 (21)4.3.8 C轴柱纵向集中荷载的计算与B轴柱的相同 (21)4. 3. 9 D轴柱纵向集中荷载的计算与A轴柱的相同 (21)4.4风荷载计算 (22)4.5 水平地震作用 (23)4.5.1重力荷载代表值的计算: (23)4.5.2 框架柱抗侧移刚度和结构基本自震周期计算: (25)第五章内力计算 (28)5.1 恒载作用下的框架的内力 (28)5.2活载作用下的框架的内力 (32)5.3风载作用下的框架的内力 (35)5.4框架地震内力计算框架柱剪力和柱端弯矩计算采用D值法 (38)第六章内力组合 (43)6.1 恒荷载作用下内力条幅 (43)6.1.1 梁端柱边剪力计算 (43)6.1.2 梁端柱边剪力梁端柱边弯矩计算 (43)6.1.3 弯矩调幅 (43)6.2 活荷载作用下内力调幅 (44)6.2.1梁端柱边剪力梁端柱边弯矩计算见表6-3 (44)6.2.2 弯矩调幅 (44)6.3风荷载作用下的内力调幅 (44)6.4水平地震作用下的内力调幅 (45)6.5 屋面有雪荷载的活荷载作用下内力调幅 (45)6.5.1梁端柱边剪力梁端柱边弯矩计算见表6-7 (45)6.5.2 弯矩调幅 (46)第七章配筋计算 (47)7.1框架梁截面设计 (47)7.1.1框架梁正截面承载力,计算见表7-1 (47)7.1.2 框架梁斜截面配筋计算 (48)7.1.3 框架梁抗裂缝宽度验算 (50)7.2 截面设计 (53)7.2.1正截面受弯承载力计算: (53)7.2.2 斜截面承载力计算 (57)7.3 连系梁计算 (58)7.3.1 荷载计算 (58)7.3.2 内力计算 (58)7.3.3 截面承载计算 (58)第八章屋面板及楼面板的设计 (60)8.1 屋面设计: (60)8.1.1 荷载计算: (60)8.1.2 判断板的计算类型: (60)8.1.3 按弹性理论进行计算: (60)8.2楼面板设计: (62)8.2.1荷载计算: (62)8.2.2内力计算 (62)第九章楼梯设计 (65)9.1 踏步板TB- 1计算 (65)9.1.1荷载计算: (65)9.1.2内力计算: (65)9.1.3截面承载力计算: (66)9.2楼梯斜梁计算: (67)9.2.1 荷载计算: (67)9.2.2 内力计算: (67)9.2.3承载力计算: (67)9.3 平台板的设计: (68)9.3.1 判断平台板的计算类型: (68)9.3.2荷载计算: (68)9.3.3 内力计算: (69)9.4 平台梁的计算: (70)9.4.1 荷载计算: (70)9.4.2 内力计算: (70)9.4.3承载力计算: (71)第十章基础设计 (72)10.1基础底面尺寸计算 (72)10.2条形基础梁承载力计算: (73)10.2.1正截面强度计算: (73)10.2.2梁翼板部分计算 (75)参考文献: (76)第一章设计资料1.1工程概况(1)建设地点:嘉兴市市区(2)工程名称:嘉兴市智慧园区多层行政办公楼(3)工程概况:建筑总高为15.3m。
某隧道主体结构内力计算及配筋设计
交通与土木工程河南科技Henan Science and Technology总第872期第1期2024年1月某隧道主体结构内力计算及配筋设计孙建波1 李登寿1 史金录1 刘 渊2 徐大桥2(1.中信建设有限责任公司,北京 100027;2.中国市政工程中南设计研究总院有限公司,湖北 武汉 430000)摘 要:【目的】为完成隧道衬砌结构设计,需要对隧道围岩压力和隧道主体结构内力进行计算。
根据隧道受力特点进行合理的计算假定。
【方法】基于国道321线,采用SAP84软件对最不利断面的不同工况进行设计计算和模型分析并进行验证。
【结果】结果表明,此隧道主体结构在三种最不利断面的工况下,配筋内力计算结果和验证情况均符合规范要求。
【结论】该项目配筋设计时在正常使用状态下的计算结果,结合承载能力极限状态下的计算结果进行验证,能够快速有效地确定最终配筋结果,为配筋提供了理论依据,为今后隧道衬砌结构设计提供参考。
关键词:隧道结构设计;结构内力计算;SAP84;配筋设计中图分类号:U455.43 文献标志码:A 文章编号:1003-5168(2024)01-0061-06DOI :10.19968/ki.hnkj.1003-5168.2024.01.012Structural Internal Force Calculation and Reinforcement Design of theMain Structure of a TunnelSUN Jianbo 1 LI Dengshou 1 SHI Jinlu 1 LIU Yuan 2 XU Daqiao 2(1. CITIC Construction Co., Ltd., Beijing 100027,China;2. China Central and South Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430000,China )Abstract: [Purposes ] To complete the design of tunnel lining structure, it is necessary to calculate thepressure of tunnel surrounding rock and the internal force of the main structure of the tunnel. Reasonablecalculation assumptions should be made based on the stress characteristics of the tunnel. [Methods ] Based on the national highway 321, this paper used SAP84 software to conduct design calculation, model analysis, and results verification in three different working conditions of the most unfavorable section.[Findings ] The results indicate that the calculation results and verification results of the reinforcement internal force of the main structure of this tunnel meet the requirements of the specifications under the three most unfavorable cross-sectional conditions.[Conclusions ] The calculation results of the rein⁃forcement design of the project in the normal use state are verified by the calculation results of the bearing capacity limit state, which can quickly and effectively determine the final reinforcement re⁃sults and provide a theoretical basis for the reinforcement and a reference for the design of tunnel lin⁃ing structure in the future.Keywords: tunnel structure design; structural internal force calculation; SAP84; reinforcement design收稿日期:2023-06-29作者简介:孙建波(1982—),男,硕士,工程师,研究方向:建筑与市政施工技术。
广厦建筑结构CAD培训教程
建筑结构CAD培训教材广厦建筑结构CAD广东省建筑设计研究院深圳市广厦软件有限公司目录第1章广厦建筑结构CAD的基本原理1广厦建筑结构CAD系统的组成部分 1 2三种计算模型比较 2 3广厦多高层空间分析程序SS 3 4广厦多高层建筑三维(墙元)分析程序SSW 4 5广厦砖混结构计算 6 6墙、柱双向偏压验算11 7梁、板的裂缝和挠度验算12 8荷载的输入和传递17 9楼板次梁计算19 第2章广厦建筑结构CAD起步1广厦建筑结构CAD安装步骤24 2广厦建筑结构CAD回收24 3广厦建筑结构CAD升级24 4广厦建筑结构CAD学习版24 5如何学习广厦建筑结构CAD8.524 6答疑联系地址25 7通过Email发送工程数据25 8广厦建筑结构CAD主菜单和设计流程25第3章广厦结构录入教程1输入工程信息1.1进入结构录入271.2总体信息271.3各层信息2建立轴网和辅助线2.1轴网间距的输入原则292.2正交轴网302.3斜交轴网312.4圆弧轴网322.5插入轴网线322.6移动轴网线322.7检查轴网间距输入的正确性322.8任意两点间输入辅助线322.9根据离直线端点距离复制辅助线332.10平行复制辅助线332.11延伸复制辅助线332.12旋转复制辅助线332.13输入一点到某条直线的垂线33 3输入墙柱3.1矩形柱333.2圆柱343.3钢管柱343.4异形柱353.5剪力墙3.6墙柱的偏心373.7同一标准层内墙柱截面可变化373.8剪力墙端柱373.9关于异形柱进入SS、SSW和TBSA结构分析373.10广东异形柱设计规程的一些要求383.11指定墙柱特定的抗震等级38 4输入主梁和次梁4.1区分主梁和次梁384.2沿轴网线建主梁384.3圆弧主梁394.4任意两点间建主梁394.5悬臂梁4.6封口次梁414.7次梁414.8复杂阳台有关的梁424.9井字梁434.10梁上托墙柱—————————————————————————444.11梯梁444.12指定梁特定的抗震等级444.13指定框支梁地震作用放大系数44 5布置现浇板5.1自动布置现浇板445.2封闭区域形不成板的处理455.3修改板厚和标高455.4修改方案后重新布置现浇板465.5电梯间、楼梯间465.6飘板46 6输入荷载6.1板荷载476.2梁荷载486.3剪力墙柱荷载48 7平面对称和平移旋转复制488数据检查48 9层与层之间复制4910输入砖混结构10.1沿轴线建砖墙4910.2砖墙偏心5010.3圈梁5010.4构造柱5010.5选柱材料5010.6砖墙洞5110.7砖墙荷载5110.8纯砖混结构平面中的梁5110.9纯砖混结构平面中的悬臂梁5210.10输入预制板11生成结构计算数据11.1生成砖混数据5411.2生成SS结构计算数据5411.3生成TBSA结构计算数据5511.4生成SSW结构计算数据5511.5生成广厦基础CAD数据55 12寻找某编号的剪力墙柱、梁板和砖墙55 13打印简图13.1控制字符大小5513.2墙柱、梁板编号5513.3剪力墙柱、梁板和砖墙尺寸5613.4板荷载5613.5梁荷载5613.6墙柱荷载5713.7墙柱材料5713.8打印机直接打印5713.9打印总体信息57 14功能键14.1W-切换窗选5714.2C-切换捕捉5714.3U ndo恢复5714.4R edo前进操作5714.5其它热键58 15使用技巧15.1利用距离次梁功能测梁长或墙肢长5815.2删柱后重建柱不需要删梁5815.3利用连梁开洞功能输入小墙肢5815.4A utocad与广厦的接口58第4章广厦楼板次梁砖混计算教程1进入楼板、次梁和砖混计算59 2抗震验算59 3受压验算59 4砖墙轴力设计值59 5砖墙剪力设计值60 6底框计算考虑砖混水平力60 7修改板边界条件60 8指定屋面板60 9计算连续板60 10增大板底筋和次梁支座调幅60第5章广厦结构计算SS教程1计算剪力墙柱和主梁的内力和配筋61 2计算出错原因61 3SS的解题能力62 4外荷载62 5内力组合和配筋62 6SS计算结果总信息63 7每层柱(墙)的组合内力63 8超筋信息63 9出错信息63第6章广厦结构计算SSW教程1计算剪力墙柱和主梁的内力和配筋64 2计算出错原因64 3SSW的解题能力64 4内力组合和配筋65 5SSW计算结果总信息65 6每层柱(墙)的组合内力65 7超筋信息65第7章广厦计算结果显示教程1进入计算结果显示66 2打开楼面图66 3图形的移动和缩放66 4显示楼板配筋67 5显示楼板弯矩676显示柱配筋67 7显示柱内力67 8显示梁配筋68 9显示梁内力68 10显示砖墙计算结果69 11显示构件编号70 12显示荷载70 13字高缩放72 14超限信息72 15寻找某编号的剪力墙柱、梁板和砖墙72 16打开振型图72 17选择各种振型图72 18设置振型图横向比例72 19打开立面图73 20选定立面图显示范围73 21关于打印73 22关于转换为AUTOCAD图形74第8章广厦配筋系统教程1进入配筋系统75 2梁选筋控制75 3板选筋控制76 4柱选筋控制77 5剪力墙选筋控制77 6设置结构层和建筑层号的对应78 7设置第一标准层为地梁层79 8生成结构施工图79 9警告信息79第9章广厦施工图系统教程1进入施工图80 2生成整个工程的DWG80 3调入建筑二层平面80 4打开平面施工图80 5施工图的移动和缩放80 6施工图字高81 7板钢筋和配筋图817.1归并板817.2处理板施工图上字符重叠817.3修改板钢筋818梁柱表8.1归并柱818.2归并梁82 903G101梁柱平法施工图9.1显示梁柱平法施工图829.2柱表和柱截面标注9.2.1柱层间归并信息829.2.2归并柱839.2.3同号柱只显一个截面标注839.2.4隐去或显示截面标注839.2.5放大缩小柱截面标注比例839.3梁钢筋平法表示9.3.1归并梁839.3.2字符重叠839.3.3修改梁钢筋和尺寸839.3.4连续梁钢筋上下贯通简化表示83 10剪力墙施工图84 11打印计算结果11.1板计算结果8411.2剪力墙柱计算结果8411.3梁计算结果85 12修改梁板钢筋后自动重算挠度裂缝85 13梁柱表表头,梁柱平法表头和楼梯表头85 14一、二、三级和冷轧带肋钢筋符号85 15编辑轴线85第10章广厦扩展和桩基础CAD教程1进入扩展和桩基础CAD86 2读取墙柱底内力86 3基础平面施工图的移动和缩放86 4扩展基础4.1总体信息864.2布置和计算扩展基础874.3修改扩展基础长宽比874.4归并扩展基础874.5修改扩展基础874.6扩展基础表头87 5桩基础5.1总体信息875.2桩径和单桩承载力875.3布置和计算桩基础875.4归并桩基础875.5修改桩基础88 6生成基础计算结果文件88 7基础平面图轴线88 8标注基础尺寸88 9地梁表示在基础平面图中88 10基础施工图生成DWG文件88第11章广厦条形和筏板基础CAD教程1.进入条形和筏板基础CAD892.读取墙柱底内力893.条形基础3.1.总体信息893.2.布置地梁903.3.布置梁荷载903.4.计算地梁903.5.输出地梁计算结果903.6.地梁施工图处理914.筏板基础4.1.总体信息914.2.确定边界914.3.划分计算单元914.4.计算筏板914.5.输出筏板计算结果914.6.输出荷载中心和筏板重心924.7.分块平板式筏基的计算924.8.梁式筏基的计算92第12章工程实例的输入要点1.框架结构实例输入要点932.砖混结构实例输入要点983.混合结构实例输入要点1044.剪力墙结构输入要点1075.轴网和辅助线输入练习1086.关于施工图系统108第13章设计教程1纯砖混、底框和混合结构设计1.1砖混总体信息的合理选取1.1.1结构计算总层数1091.1.2绘图窗口X向和Y向最大尺寸1091.1.3结构形式1091.1.4底层框架或混合层数1101.1.5抗震烈度1101.1.6楼面刚度类别1111.1.7墙体自重1111.1.8砌体材料1111.1.9构造柱是否参与工作1111.1.10悬臂梁导荷至旁边砖墙上比例和导荷至构造柱上比例1111.1.11考虑墙梁作用上部荷载折减系数1111.1.12采用水泥砂浆1111.1.13底框计算程序1111.1.14指定钢筋强度1111.1.15查看砖混计算结果总信息1121.2计算模型的合理简化1.2.1砖混平面的标准层划分1121.2.2纯砖混和混合平面的柱1121.2.3纯砖混和混合平面的梁1121.2.4砖混平面悬臂梁的输入1131.2.5砖混基础的处理1131.2.6底框中点按砖墙作为抗震墙1131.2.7砖墙作为承重墙构件还是作为荷载输入1131.2.8L形开间布板1131.2.9底框计算考虑上部砖混水平力1141.3计算结果的正确判断1.3.1抗震验算1141.3.2受压验算1141.3.3纯砖混、底框和混合结构的侧移刚度比1142SS设计2.1SS总体信息的合理选取2.1.1结构计算总层数1142.1.2绘图窗口X向和Y向最大尺寸1152.1.3结构形式1152.1.4X和Y向地震荷载作用1152.1.5连梁刚度折减系数1152.1.6梁刚度增大系数1152.1.7梁弯矩增大系数1152.1.8梁扭矩折减系数2.1.9结构安全等级1152.1.10梁端弯矩调幅系数1162.1.11活载准永久值系数1162.1.12鞭梢小楼层数1162.1.13近远地震标志1162.1.14振型数1162.1.15水平地震影响系数最大值和特征周期1162.1.16框架和剪力墙抗震等级1172.1.17计算地震活载折减系数1172.1.18周期折减系数1172.1.19地震力调整系数1172.1.20计算扭转的地震方向1172.1.21考虑偶然偏心1172.1.22考虑模拟施工1172.1.23框架剪力调整1182.1.24指定钢筋强度1182.2计算模型的合理简化2.2.1次梁在模型简化中的重要性1192.2.2剪力墙的输入1192.2.4转换层结构的处理1192.2.5剪力墙端柱的处理1202.2.6柱墙上下偏心1202.2.7梁柱的偏心连接1232.2.8建筑物顶部小塔楼的处理1232.2.9大底盘多塔结构1232.2.10错层结构1232.2.11挡土墙的处理1232.2.12恒、活载问题1232.2.13井字梁和板柱结构的处理1242.2.14主梁和次梁的区别1242.2.15异形柱的处理1242.3查询SS有关计算结果1243SSW设计3.1SSW总体信息的合理选取1253.1.1结构计算总层数1253.1.2绘图窗口X向和Y向最大尺寸1263.1.3结构形式1263.1.4计算竖向地震1263.1.6梁刚度增大系数1263.1.7梁弯矩增大系数1263.1.8梁扭矩折减系数1263.1.9结构安全等级1263.1.10梁端弯矩调幅系数1273.1.11墙柱基础考虑活载折减1273.1.12活载准永久值系数1273.1.13鞭梢小楼层数1273.1.14近远地震标志1273.1.15地面层对应的结构层号1273.1.16地震力作用方向1283.1.17振型数1283.1.18水平地震影响系数最大值和特征周期1283.1.19框架和剪力墙抗震等级1283.1.20计算地震活载折减系数1283.1.21周期折减系数1283.1.22地震力调整系数1293.1.23计算扭转的地震方向1293.1.24考虑偶然偏心3.1.25结构计算基底相对地面标高1293.1.26考虑模拟施工1293.1.27框架剪力调整1303.1.28指定钢筋强度1303.2计算模型的合理简化3.2.1剪力墙的输入1303.2.2转换层结构的处理1303.2.3大底盘多塔结构和错层结构1303.2.4地下室共同计算1303.3查询SSW有关计算结果131 4SS和SSW计算结果的正确判断4.1自振周期1324.2振型曲线1324.3地震力1334.4水平位移特征1334.5内外力平衡1344.6对称性1344.7渐变性1344.8合理性1355各层信息的合理选取5.1划分标准层1351355.3设置混凝土等级1366选筋原理6.1梁选筋1366.2柱选筋1416.3剪力墙选筋1426.4板选筋145附录A:录入系统数检错误信息表第1章广厦建筑结构CAD基本原理1.广厦CAD系统的组成部分广厦CAD系统主要由以下几部分组成(见下图),中间与多个结构分析软件有接口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴线处内力换算为梁支座边缘处内力值(BF 跨)
截面位置
轴 线 处 内 力
梁支 座边 缘处 内力
调幅 后梁 支座 边缘 处内 力
内力重力荷 载左来自 V中M V右M V
左M V
中M V
内力组合 一、 一般规定
1、两端负弯矩调幅 当考虑结构塑性内力重分布的有利影响,应在内力组合之前对竖
向荷载作用下的内力进行调幅(本设计梁端负弯矩调幅系数取 0.85), 水平荷载作用下的弯矩不能调幅。 2、控制截面
框架梁的控制截面通常是梁端支座截面和跨中截面。在竖向荷载 作用下,支座截面可能长生最大负弯矩和最大剪力;在水平荷载作用 下,支座截面还会出现正弯矩。跨中截面一般产生最大正弯矩,有时 也可能出现负弯矩。框架梁的控制截面最不利内力组合有一下几种:
-81.76 -15.87 28.35 -15.87 -24.32
81.76 15.87 -28.35 15.87 24.32
-77.00 -24.32 28.35 -15.87 -24.32
77.00 24.32 -28.35 15.87 24.32
-77.00 77.00 -15.87 15.87
V
M 右
V
-123.62 155.81 165.59
-91.20 -94.01
-17.48 22.54 18.93
-13.54 -16.73
左风
1.26 -0.78 -1.33
右风
-1.26 0.78 1.33
左风 右风 1.2 +1.4
-168.78 -171.96 -172.82 214.39 216.36 218.53 220.88 224.24 225.21
梁跨中截面:+Mmax 及相应的 V(正截面设计),有时需组合-M。 梁支座截面:-Mmax 及相应的 V(正截面设计),Vmax 及相应的 M(斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在 同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的 N、V; Nmax 及相应的 M、V; Nmin 及相应的 M、V; Vmax 及相应的 M、N; |M|比较大(不是绝对最大),但 N 比较小或 N 比较大(不是绝对 最小或绝对最大)。 3、内力换算
0.9×(活载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为 0):1.2×重力荷载+1.3×水平地震。
(3)荷载效应的标准组合 荷载效应的标准组合:1.0×恒载+1.0×活载。 二、框架梁内力组合
选择第四层 BF 框架梁为例进行内力组合,考虑恒载、活载、重力荷载 代表值、风荷载和水平地震作用五种荷载。 1、内力换算和梁端负弯矩调幅根据式:
: 注 1.表中弯矩单位是 kN.m,剪力单位是 kN。
2、非抗震设计时的基本组合 非抗震设计时的基本组合是考虑恒荷载、活荷载和风荷载三种荷载效
应的组合。组合过程列于下表:
楼截内 层 面力
位 置
荷载类型
恒载
活载
风载
永久荷载控制组 1.2 +1.4×0.9 可变荷载控制 合
组合
(
)
左M V
3中 M
3
3、地震作用效应和其他荷载效应的基本组合
对一般结构,风荷载组合值系数为 0,所以地震作用效应和其他荷载 效应的基本组合只考虑重力荷载代表值和水平地震作用两种荷载效应的 组合。组合过程见下表:
用于承载力计算的框架梁抗震基本组合表(第四层 BF 框架梁)
楼层
截 面内 位力 置
荷载类型
重力荷 地震荷载
载
-107.29 -94.01 -123.62 155.81 165.59
-91.20 -94.01
活载 风载 左风 右风
-27.68 1.49 -1.49 23.73 -0.78 0.78 18.93 -1.33 1.33
-21.31 -17.92 -20.56 22.54 18.93
-4.15 -0.78 1.26 -0.78 -1.33
梁支座边缘处的内力值: =M-V
=V-q 4、 荷载效应组合的种类
(1)非抗震设计时的基本组合 以永久荷载效应控制的组合:1.35×恒载+0.7×1.4×活载=1.35× 恒载+0.98×活载; 以可变荷载效应控制的组合:1.2×恒载+1.4×活载; 考虑恒载、活载和风载组合时,采用简化规则:1.2×恒载+1.4×
4.15 0.78 -1.26 0.78 1.33
-15.93 -16.73 -17.48 22.54 18.93
-3.92 -0.78 1.26 -0.78 -1.33
3.92 0.78 -1.26 0.78 1.33
-13.54 -3.92 3.92 -16.73 -0.78 0.78
地震荷载 左震 右震 33.11 -33.11 -15.87 15.87 -24.32 24.32
右M V
左M V
中M V M
右 V
-203.48 167.09 168.53
-142.91 -98.21 -153.35 162.96 168.53
-113.45 -94.08 -130.86 162.96 168.53
-96.43 -94.08
恒载
-193.24 159.35 165.59
-136.55 -97.55 -145.44 155.81 165.59
左震
右震
左 M -130.86 28.35 V 162.96 -15.87
-28.35 15.87
-3.92 3.92 -0.78 0.78
-131.44 -121.56 -128.40 -134.87 -132.91 -136.23
1.35 +0.98 -184.02 232.43 242.10
-136.39 -143.31
用于承载力计算的框架梁非抗震基本组合表(第四层 BF 框架梁) : 注 1.表中弯矩单位是 kN.m,剪力单位是 kN。