角度、坐标测量计算公式研究细则
工程测量中坐标方位角计算公式
工程测量中如何计算坐标方位角?
工程测量中坐标方位角计算是测量过程中非常重要的一项工作,
它不仅能够精确测算点位之间的距离和方向,还能够在工程项目中起
到指导作用。
那么,在实际操作中,我们应该如何计算坐标方位角呢?
首先,我们需要确定测量点位的基准点和目标点,并使用仪器进
行测量。
在取得测量数据之后,我们可以利用以下公式进行坐标方位
角的计算:
tanθ = (E2 - E1) / (N2 - N1),其中E1和E2为基准点和目标
点的东坐标,N1和N2为基准点和目标点的北坐标。
在进行计算时,需要注意以下几点:
1.计算中的角度应该以北为0度,逆时针旋转为正向。
2.坐标位置的表示需要考虑到坐标系的不同,因此应根据不同的
坐标系进行转换。
3.在测量时,应该尽可能使用高精度的仪器,减小误差的产生。
通过以上几点的注意事项,我们可以更加准确地进行坐标方位角
的计算,为工程项目的实施提供可靠的测量数据和指导意见。
测量方位角与坐标的计算..
17821230 1934400
4317AB12
B 1801336
A
XB=1230.88
YB= 673.45
图表:附合导线坐标计算表
点 号
转折角 (右)
改正后 转折角
方位角
边长 D
坐标 增量(米)
改 正 后 坐标(米) 增量(米)
点 号
(米) X Y X Y X Y
A
43 17 12
例题:
用EXCEL程序进行附合导线计算
选择=结果
汇报结束 谢谢观看! 欢迎提出您的宝贵意见!
y
2 AB
tg AB
y AB x AB
αAB的具体计算方法如下:
(1)计算:xAB xB xA yAB yB yA
X
YAB
XAB AB
DAB
A
0
B
y
(2)计算:
AB锐
arctg
y AB x AB
(3)根据ΔXAB、ΔYAB的正负号判断αAB所在的象限。
(三)闭合导线平差计算步骤
1、绘制计算草图,在图上填写已知数据和观测数据。 2、角度闭合差(angle closing error)的计算与调整。
说明:与闭合导线基本相同,以下是两者的不同点:
1、角度闭合差的分配与调整 方法1:
(1)计算方位角闭合差: f 终计算 终已知
(2)满足精度要求,若观测角为左角,则将fα反符号 平均分配到各观测角上;若观测角为右角,则将fα同符 号平均分配到各观测角上。
方法2(*):
(1)计算角0 540 00 00
理=5400000 = 测理=60 容=405 =89
485.47 +0.09 -0.08 0
测量坐标方位角怎么计算的呢
测量坐标方位角怎么计算的呢引言在测量领域中,坐标方位角是一个非常重要的概念。
它用于描述物体在平面坐标系中相对于参考方向的位置和方向关系。
通过测量坐标方位角,我们可以准确地确定物体的方向,以实现准确导航、定位和测量。
什么是坐标方位角坐标方位角通常是指一个物体相对于一个参考点或参考方向的方向角度。
它是以度数来表示的,从参考方向逆时针旋转到物体位置所需的角度。
在数学上,坐标方位角是通过计算两个点之间的直线与参考方向的夹角来确定的。
参考方向通常是与正北方向成角度关系,可以是正北方向、正东方向、正南方向或正西方向。
坐标方位角的计算方法要计算坐标方位角,需要知道参考方向和两个点的坐标。
假设有两个点A和B,坐标分别为(xA, yA)和(xB, yB)。
计算步骤如下:1.计算两个点之间的水平方向距离dx,即 dx = xB - xA。
2.计算两个点之间的垂直方向距离dy,即 dy = yB - yA。
3.计算坐标方位角θ,即θ = atan(dy/dx)。
4.将θ转换为度数表示,即将θ转换为度数表示,即angle = θ * 180 /π。
其中,atan()表示反正切函数,用于计算两个数之间的角度。
坐标方位角的表示方式坐标方位角可以用不同的表示方式来表示,常见的有角度制和弧度制。
1.角度制:以角度为单位来表示坐标方位角。
一般使用0度到360度之间的角度值,其中0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。
2.弧度制:以弧度为单位来表示坐标方位角。
弧度是角度的一种衡量方式,与角度之间的转换关系为:1度= π/180 弧度。
弧度制可以更方便地进行数学计算,因此在一些科学和工程领域中使用较多。
结论通过以上的介绍,我们了解到计算坐标方位角的基本原理和方法。
通过给定参考方向和两个点的坐标,我们可以使用简单的数学计算来确定物体的方向。
正确计算坐标方位角对于准确的导航、定位和测量至关重要。
角度计算和坐标计算
基本计算1直线定向和坐标推算一、直线定向1、正、反方位角换算对直线AB而言,过始点A的坐标纵轴平行线指北端顺时针至直线的夹角a AB是AB的正方位角,而过端点B的坐标纵轴平行线指北端顺时针至自线的夹角a BA的反方位角,同一条直线的正、反方位角相派180° .,即同一自线的下反方位角a AB=a BA+180上式右端,若a BA< 180°,用“ +”号,若a BA>180°,用“一”m 1-M树一直建的正反方位角2、象限角与方位角的换算一条直线的方向有时一也可用象限角表示,所谓象限角是揣从坐标纵轴的指北端或指南端起始,至直线的锐角,用R表示,取值范围为0° ~90°。
为了说明肖线所在的象限,在R前应加注直线所在象限的名称。
四个象限的名称分别为北东〔NE?南东(5E ),南酉(sw)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
Ji I 象电脂口力说俯*杲“藝址地尺。
方位阳比抉算合式■-.NE}JR第二第限0 Jgo•—左羽二象限(SW)a ,160*十尺■li ■NW^J =36O' _R3、坐标方位角的推算测量工作中一般不直接测定每条边的方向, 而是进行连测,推算出各边的坐标方位角设地而有相邻的A B C三点,连成折线(图1-17),已知AB边的方位角a AB,又测定了AB和BC之间的水平角B,求BC边的方位角气aBC即是相邻边坐标方位角的推算。
水平角B又有左、右之分,a BC=X AB+B 左+180°(1 一14)设三点相关位置如图1-17沪)所不,应有a BC=X AB+B 左+180°=a AB+B -180 °(1 一15)若按折线前进方向将AB视为后边,BC边视为前边,综合上二式即得相邻边坐标方位角推算的通式:a前=口后+B左士180°( 1 —一16)显然,如果测定的是AB和BC方向之间的前进方向右侧水平角B 右,因为有B左=360° - B右。
测量坐标方位角公式
测量坐标方位角公式引言坐标方位角是地理测量中常用的一个概念,用于描述一个点相对于参考方向的角度。
测量坐标方位角是确定一个点相对于某一基准点的相对位置的重要步骤。
本文将介绍测量坐标方位角的公式和计算方法。
坐标方位角的定义坐标方位角可以理解为从参考方向逆时针旋转的角度,以度数或弧度表示。
参考方向通常以正北或正东为基准,具体取决于实际应用场景。
方位角的取值范围为0°至360°或0至2π弧度。
坐标方位角的计算要计算一个点相对于参考方向的方位角,需要知道两者之间的水平方向角和距离。
水平方向角是指从参考方向到目标点方向的角度。
公式下面是计算坐标方位角的公式:方位角 = atan2(y2 - y1, x2 - x1) * 180 / π其中,(x1, y1)是参考点的坐标,(x2, y2)是目标点的坐标,atan2是求反正切的函数,π是数学常量π。
计算步骤1.确定参考点和目标点的坐标(x1, y1)和(x2, y2);2.计算水平方向角,即参考点指向目标点的角度。
可以借助数学库或计算工具来计算反正切;3.使用公式计算坐标方位角,将水平方向角转换为度数。
示例假设有一个参考点A的坐标为(2, 3),目标点B的坐标为(5, 7)。
我们来计算点B相对于点A的坐标方位角。
1.点A的坐标为(2, 3),点B的坐标为(5, 7);2.计算水平方向角:atan2(7 - 3, 5 - 2) = atan2(4, 3)≈ 51.34°;3.使用公式计算坐标方位角:51.34°。
因此,点B相对于点A的坐标方位角约为51.34°。
结论测量坐标方位角是地理测量中的一项重要任务。
通过计算水平方向角和距离,我们可以轻松计算出点相对于参考方向的方位角。
在实际的地理测量和导航应用中,坐标方位角的计算是不可或缺的步骤,能够帮助我们准确确定物体或位置相对于参考点的方向关系。
以上是测量坐标方位角的公式和计算方法的介绍,希望对您有所帮助。
计算坐标与坐标方位角的基本公式
二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。
下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。
一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为Ax 、A y ,A 到B 的边长和坐标方位角分别为AB S 和ABα,则待定点B 的坐标为 AB A B ABA B y y y x x x ∆+=∆+= }(5—1)式中 AB x ∆ 、ABy ∆——坐标增量。
由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ } (5—2)式中 AB S ——水平边长;AB α——坐标方位角。
将式(5-2)代入式(5-1),则有AB AB A B AB AB A B S y y Sx x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角ABα为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出AB x ∆是边长ABS 在x 轴上的投影长度,AB y ∆是边长ABS 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。
图5—5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表例 1 已知A 点坐标A x =100.00m ,Ay =300.10m ;边长AB s =100m ,方位角AB α=330°。
测量坐标方位角计算
测量坐标方位角计算在数学和物理学中,坐标方位角是指从参考方向(通常为正方向)开始逆时针旋转到目标方向所需的角度。
这个术语通常用于描述平面坐标系中的点。
为了测量坐标方位角,可以使用以下步骤:Step 1:确定参考方向在测量坐标方位角之前,需要确定参考方向。
这通常是正方向,可以选择为x轴或y轴的正方向。
例如,可以选择x轴的正方向作为参考方向。
Step 2:计算向量坐标方位角涉及到从参考方向到目标方向的旋转角度。
为了计算旋转角度,需要先计算从参考方向到目标方向的向量。
可以使用下面的公式来计算向量的分量:v_x=x-x_0v_y=y-y_0其中,(x_0,y_0)是参考点的坐标,(x,y)是目标点的坐标。
Step 3:计算方位角一旦计算出向量的分量,可以使用向量的分量来计算方位角。
可以使用反正切函数来计算角度。
反正切函数的定义如下:θ = atan2(v_y, v_x)其中,θ表示方位角,atan2(是一个数学函数,用于计算反正切。
Step 4:转换为度数在计算方位角后,结果通常以弧度表示。
如果需要以度数表示,可以将方位角乘以180并除以π(π是圆周率)。
θ_degrees = θ * 180 / π这样就得到了以度数表示的方位角。
总结:测量坐标方位角的步骤包括确定参考方向,计算向量的分量,使用反正切函数计算方位角,然后将结果转换为度数。
这个过程可以帮助我们找到从参考方向到目标方向的旋转角度。
坐标方位角的概念在很多领域中都有应用,例如导航、无人机操作和图形设计。
坐标,方位角计算公式
坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。
方位角是卫星接收天线,在水平面上转0°-360°。
设定方位角时,抛物面在水平面上左右移动。
方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。
它是从点的北方向顺时针方向和目标方向之间的水平角度。
一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。
αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。
2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。
3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。
当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。
根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。
测量坐标计算公式讲解
测量坐标计算公式讲解在测量和制图领域,测量坐标计算公式是非常重要的工具。
它们用于确定物体在二维或三维空间中的位置,并进行精确的测量和定位。
本文将介绍一些常用的测量坐标计算公式,并讲解其原理和应用。
一、二维坐标计算1. 直角坐标系直角坐标系是最常用的坐标系之一。
在直角坐标系中,通过给定的两个坐标轴(通常是x轴和y轴),我们可以准确地确定点的位置。
对于二维平面上的点P(x, y),我们可以使用以下公式计算其坐标:x = x1 + Δxy = y1 + Δy其中,x1和y1表示已知点的坐标,Δx和Δy分别表示点P到已知点的水平和垂直距离。
2. 极坐标系极坐标系是另一种常用的坐标系,它使用极径和极角来确定点的位置。
极坐标系常用于描述圆形或其他具有对称性的图形。
对于极坐标系中的点P(r, θ),我们可以使用以下公式计算其坐标:x = r * cos(θ)y = r * sin(θ)其中,r表示点P到原点的距离,θ表示点P与正x轴之间的夹角。
二、三维坐标计算1. 笛卡尔坐标系笛卡尔坐标系是三维空间中最常用的坐标系之一。
它使用x、y和z轴来确定点的位置。
对于三维空间中的点P(x, y, z),我们可以使用以下公式计算其坐标:x = x1 + Δxy = y1 + Δyz = z1 + Δz其中,x1、y1和z1表示已知点的坐标,Δx、Δy和Δz分别表示点P到已知点的水平、垂直和深度距离。
2. 球坐标系球坐标系也是一种常用的三维坐标系,它使用球半径、极角和方位角来确定点的位置。
球坐标系常用于描述球形物体或球面上的点。
对于球坐标系中的点P(ρ, θ, φ),我们可以使用以下公式计算其坐标:x = ρ * sin(θ) * cos(φ)y = ρ * sin(θ) * sin(φ)z = ρ * cos(θ)其中,ρ表示点P到原点的距离,θ表示点P与正z轴之间的夹角,φ表示点P在x-y平面上的投影与正x轴之间的夹角。
坐标测量角度及方位角计算
基本计算公式:
sinα=对边/斜边sinα=A/C
cosα=邻边/斜边cosα=B/C
tgα=对边/邻边tgα=A/B
ctgα=邻边/对边ctgα=B/A
B
一、根据其中一个已知坐标点做原点,作坐标系图。
二、根据已知第二坐标点与假定原点坐标的差值确定其所在象限位置。
三、根据第二已知坐标点与假定原点的差值计算第二已知坐标点与假定原点的夹角。
四、根据夹角象限位置+或—180度//90度。
(第四象限减180度,第二象限减90度,第三象限减360度)
五、根据需测坐标数据计算其与假定原点的差值。
六、根据差值计算需测坐标与假定原点的夹角。
七、根据象限位置加+减—已知坐标与假定原点的夹角。
八、得出已知第二坐标与需测坐标的夹角。
九、根据坐标计算假定原点与需测坐标的距离。
十、根据计算结果与经纬仪测定需测坐标的位置。
测量坐标计算公式
坐标计算公式一、导线直线方位角计算:αBC =αAB +180°-β右 或 αBC =αAB -180°+β左式中β右、β左是导线调整后或直线右转角和左转角;当计算结果为“-”则加上360°,大于360°则减去360°;二、直线段中边桩坐标计算:如图所示,已知),(A A y x A ,距离l L AB =,d L BC =,方位角AB α,计算),(B B y x B 、),(C C y x C ;1、),(B B y x B2、),(C C y x C方法一:利用B 点求C 点方法二:利用A 点求C 点C 点位于AB 左侧为“-”,AB 右侧为“+”三、带缓和曲线线路中边桩坐标计算:如图所示,已知曲线要素:缓和曲线长度s l ,圆曲线长度y l ,圆曲线半径R ;ZH 点坐标),(ZH ZH y x ,JD 点坐标),(JD JD y x ,HZ 点坐标),(HZ HZ y x ,ZH 点里程ZH Z ;求里程为Z 点的中桩及距离中桩d 处边桩坐标;则:1、相关参数计算⑴ 曲线主点里程计算HY 点里程:s ZH HY l Z Z += YH 点里程:y s ZH YH l l Z Z ++= HZ 点里程:ys ZH HZ l l Z Z ++=2 ⑵ 曲线其他参数计算ZH 点-JD 点坐标方位角:),arctan(1ZH JD ZH JD y y x x --=αJD 点-HZ 点坐标方位角:),arctan(2JD HZ JD HZ y y x x --=α转角:12ααα-=z 内移值:342268824R l R l p s s -= 切线增值:232402R l l q s s -= 2、ZH 点小里程直线段坐标计算Z <ZH Z中桩坐标:⎩⎨⎧-+=-+=11sin )(cos )(ααZH ZH ZZH ZH Z Z Z y y Z Z x x 边桩坐标:⎩⎨⎧±+='±+=')90sin()90cos(11 ααd y y d x x Z ZZ Z 3、ZH 点与HY 点间缓和曲线段坐标计算ZH Z <Z <HY Z 中桩坐标:⎪⎪⎩⎪⎪⎨⎧-+---=-+---=5511337344922542240)(336)(6)(3456)(40)(s ZH s ZH s ZH s ZH s ZH ZH l R Z Z l R Z Z Rl Z Z y l R Z Z l R Z Z Z Z x边桩坐标:⎪⎪⎩⎪⎪⎨⎧±-±+='±-±+=')90)(90sin()90)(90cos(2121 s ZH Z Z s ZH Z Z Rl Z Z d y y Rl Z Z d x x παπα z α>0为“+”,<0为“-”4、HY 点与YH 点间圆曲线段坐标计算HY Z <Z <YH Z 中桩坐标:⎪⎩⎪⎨⎧+---=+--=p R l Z Z R y q R l Z Z R x s ZH s ZH )90)(180cos 1(90)(180sin ππ 边桩坐标:⎪⎩⎪⎨⎧±--±+='±--±+=')9090)(180sin()9090)(180cos(11 R l Z Z d y y R l Z Z d x x s ZH Z Z s ZH Z Z παπα z α>0为“+”,<0为“-”5、YH 点与HZ 点间缓和曲线段坐标计算YH Z <Z <HZ Z : 中桩坐标: 边桩坐标:⎪⎪⎩⎪⎪⎨⎧±+-+-±+='±+-+-±+=')90)2(90sin()90)2(90cos(2121 s ZH y s z Z Z s ZH y s z Z Z Rl Z Z l l d y y Rl Z Z l l d x x πααπαα z α>0为“-”,<0为“+”6、HZ 点大里程直线段坐标计算Z >HZ Z中桩坐标:⎩⎨⎧---+=---+=22sin )2(cos )2(ααy s ZH HZ Zy s ZH HZ Z l l Z Z y y l l Z Z x x边桩坐标:⎩⎨⎧±+='±+=')90sin()90cos(22 ααd y y d x x Z ZZ Z四、曲线坐标积分形式公式曲线坐标直线、缓和曲线及圆曲线积分形式统一公式:1、直线段:+∞=s R ,+∞=e R ,则2、正向完整缓和曲线段:+∞=s R ,R R e =,则3、反向完整缓和曲线段:R R s =,+∞=e R ,则4、圆曲线段:R R R e s ==,则令0HZ 点坐标为)(00Y X ,,坐标方位角为0α;ZH 点坐标为)(11Y X ,,坐标方位角为1α; HY 点坐标为)(22Y X ,,坐标方位角为2α;YH 点坐标为)(33Y X ,,坐标方位角为3α;HZ 点坐标为)(44Y X ,,坐标方位角为4α;2ZH 点坐标为)(55Y X ,,坐标方位角为5α;注:这里的角度单位为度;五、坐标方位角反算如图所示,已知),(A A y x A ,),(B B y x B ,计算方位角AB α;。
测量学中坐标方位角怎么算
测量学中坐标方位角怎么算坐标方位角是测量学中一项重要的测量参数。
它用于描述一个点或物体相对于参考点的方位位置。
在测量学中,坐标方位角的计算方法有很多种,下面将介绍其中的一种常用方法。
1. 什么是坐标方位角?坐标方位角是指一个点相对于参考点的方向角度。
通常情况下,参考点被视为坐标系原点,点的方位角是从参考点出发,逆时针旋转一定角度后到达目标点的角度。
2. 坐标方位角的计算方法坐标方位角可以使用三角函数来计算。
下面介绍一种常用的计算方法。
首先,确定参考点和目标点的坐标值。
假设参考点的坐标为 (x1, y1),目标点的坐标为 (x2, y2)。
接下来,计算两点间的水平距离 dx 和垂直距离 dy。
可以使用公式 dx = x2 - x1 和 dy = y2 - y1 来计算。
然后,利用反正切函数 atan2(dy, dx) 计算坐标方位角。
这个函数可以直接得出坐标方位角的值。
最后,将计算得到的坐标方位角进行标准化。
通常情况下,坐标方位角的取值范围是从0°到360°。
如果结果小于0°,则加上360°,如果结果大于360°,则减去360°。
下面是具体的计算过程:dx = x2 - x1dy = y2 - y1angle = atan2(dy, dx)if angle < 0:angle += 360elif angle > 360:angle -= 3603. 坐标方位角的应用坐标方位角广泛应用于测量学中的各个领域,包括地理测量、测量工程和导航定位,以及其他需要描述方位关系的领域。
在地理测量中,坐标方位角用于确定地理位置的方向关系。
比如,通过测量两个地理位置的坐标方位角,可以确定它们之间的方向关系,例如东西方向、南北方向等。
在测量工程中,坐标方位角可以用于描述建筑物或工程物体的方位关系。
通过测量目标点相对于一个参考点的坐标方位角,可以确定目标物体相对于参考点的方向角度。
计算坐标与坐标方位角的基本公式
精心整理二计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。
下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。
1式中∆∆式中AB α——坐标方位角。
将式(5-2)代入式(5-1),则有ABAB A B AB AB A B S y y S x x ααsin cos +=+=}(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出x∆是边长AB S在x轴上的投影长度,AB y∆是边长AB S在ABy轴上的投影长度,边长是有向线段,是在实地由A量到B得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标(例1已知A点坐标x=100.00m,A y=300.10m;边长AB s=100m,方位角Aα=330°。
求B点的坐标B x、B y。
AB解:根据公式(5—3)有2、坐标反算由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计∆∆A点到达角α或SAB公式(5—5)称为坐标反算公式。
应当指出,使用公式(5—5)中第一式计算的角是象限角R,应根据⊿x、⊿y的正负号,确定所在象限,再将象限角换算为方位角。
因此公式(5—5)中的第一式还可表示为:例2.已知x=300m,A y=500m,B x=500m,B y=300m,求A、B二点连线的A坐标方位角AB α和边长AB S 。
解:由公式(5-5)有因为AB x ∆为正、AB y ∆为负,直线AB 位于第四象限。
所以︒=45NW R AB 根据第四象限的坐标方位角与象限角的关系得: AB 边长为:1.观测左角时的坐标方位角计算公式在图5—7与5—8中,已知AB 边的方位角为AB α,左β为左观测角,需要求得BC 边的方位角BC α。
角度坐标测量计算公式细则
计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα;式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角;2、方位角计算:1、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数±号判断象限;2、方位角:arctany2-y1/x2-x1;加减180大于180就减去180还大于360就在减去360、小于180就加180如果x轴坐标增量为负数,则结果加180°;如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°;S=√y2-y1+x2-x1,1)、当y2-y1>0,x2-x1>0时;α=arctany2-y1/x2-x1;2)、当y2-y1<0,x2-x1>0时;α=360°+arctany2-y1/x2-x1;3)、当x2-x1<0时;α=180°+arctany2-y1/x2-x1;再用两点之间的距离公式可算距离根号下两个坐标距离差的平方相加;拨角:arctany2-y1/x2-x11、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法前视边方位角减后视边方位在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”+360°就可化为右偏,正值为右偏“顺时针”;2、在图上标识方位的方法:就是导线边与Y轴的夹角;3、高程计算:目标高程=测点高程+h+仪器高—占标高;4、直角坐标与极坐标的换算:直角坐标用坐标增量表示;极坐标用方位角和边长表示1、坐标正算极坐标化为直角坐标已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知AXa,Ya、Sab、αab,求BXa,Ya解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离称反算边长和方位角称反算方位角的方法已知AXa,Ya、BXb,Yb,求αab、Sab;解:tanαab=Ya b/Xab所以;Αab=tanˉYab/Xab;则有:Sab=Yab/SINαab=Xab/COSαab=√X2ab+Y2ab;5、缘和曲线的方位角和坐标计算公式:S12=sqr<X2 -X12×Y2-Y12> =sqr X221× Y221;A12=arcsinY2-Y1/S12;S12为测站点1至放样点2的距离,A12为测站点1至放样点2的坐标方位角;X1,Y1为测站坐标,X2,Y2为放样点坐标;新公式:A12=arccosX21/S12×sgnY21360°只需将测量的成果用直线或其他线形连接起来;坐标输入时需注意交换输入,也就是将实测的X坐标在CAD中当Y坐标输入,而Y坐标则当X坐标输入;标高则用文字在标注在各相应的坐标点傍;一、建立新图时坐标偏移法1、先按比例大小绘制坐标网格,2、然后将测量整理得来的坐标拐点在CAD中输入绘制矿区范围,3、根据相应的测点坐标绘制实测图,4、填写图例;二、坐标增量上图相对坐标法①:如果比例尺为1:2000,平距除以2之后乘以方位角得坐标增量;②:点击直线或多线段按回车键点击后点,再输入ΔY,ΔX;倾斜巷道贯通计算:可根据倾斜角度进行换算,再结合地测交庄书中给的贯距或标高差来算,而且还要结合巷道的断面高差来综合计算;坡度的表示方法有百分比法、度数法、密位法和分数法四种;其中百分比法和度数法较为常用;1、百分比法表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=高程差/水平距离﹡100%,是指水平距离每100米垂直方向上下降…米;2、度数法用度数来表示坡度,利用反三角函数计算而得,其公式如下:TAN坡度=高程差 /水平距离,所以坡度=TAN-;一、平巷开门点仪器安设过程:用全站仪确定巷道开门点,C为开门点位置;1、在B点安置仪器,2、后视A点,用卷尺量出开门点的距离位置,定为C点然后在C点顶板钉点挂占标,再前视C点;3、把仪器移动安设在C点,后视B点,再用仪器把设计的方位、角度拨出来,用手拿着垂线或粉笔在开门点帮上,用仪器观测,左右移动垂线或粉笔,确定好准确点后用钉子钉上再用喷漆在帮上喷出;也就是中线点;为防止以后施工的破坏,多确定几个中线点,也是为了以后方便跟踪测量;一、标定腰线方法:1、用半圆仪标定倾斜巷道腰线,1点为新开斜巷的起点,称为起破点;1点高程H1由设计给出,Ha为已知点A高程,从图可知Ha-H1=ha在A点悬挂垂球,自A点向下量取ha,得到a点过a点拉一条水平线I'I,使1点位于新开巷道的一帮上,挂上半圆仪,此时半圆仪上读数应为0;将1点固定在巷道帮上,在1点系上测绳,沿巷道同侧拉向掘进方向,在帮上选定一点2,拉直测绳,悬挂半圆仪,上下移动测绳,使半圆仪的读数等于巷道设计倾角,此时固定2点,连接1、2点,划出腰线;2、用经纬仪标定腰线在主要倾斜巷道中,通常采用经纬仪标定腰线,其方法较多,这里只介绍三种; 1)、利用中线点标定腰线,图a为巷道横断图,图b为巷道纵断面图;标定方法如下:a:在中线点1安置仪器,量取仪器高i;b:使竖盘读数为巷道的设计倾角,此时的望远镜视线方向与腰线平行;然后瞄准掘进方向已标定的中线点2、3、4的垂线,分别作临时记号,得到 2'、3'、4',倒镜再测一次倾角a作为检查;c:由下式计算k值:k=H1-H'1+h-i;式中H1―1点处的高程;H'1 ―1点处轨面设计高程;i―仪器高;h ―轨面到腰线点的铅垂距离;d:由中线点的记号2'、3'、4' 分别向下量k值,得到 2"、3"、4"即为所求的腰线点;e:用半圆仪分别从腰线点拉一条垂直中线的水平线到两帮上;f:用测绳连接帮壁上的2"、3"、4"点并用喷漆沿测绳划出腰线;3、平巷与斜巷连接处腰线的标定:平巷与斜巷连接处是巷道坡度变化的地方,腰线到这里要改变坡度,巷道底板在竖起面上的转折点称为巷道变坡点,设平巷腰线到轨面或底板的距离为a,斜巷腰线到轨面或底板的法线距离也保持为a,那么,在变坡点处,平巷腰线必须抬高Δh,才能得到斜巷腰线起坡点,或者自变坡点处向前或向后量取距离ΔL,得到斜巷腰线起坡点,由此标定出斜巷腰线; Δh和ΔL值按下式计算Δh=a/COSδ-a=asecδ-1ΔL= Δδ;标定时,测量人员首先应在平巷的中线点上标定出A点的位置,然后在A点垂直于巷道中线的两帮上标出平巷腰线点,再从平巷腰线向上量取Δh 也可向前或向后量取ΔL,得到斜巷腰线起坡点位置;斜巷掘进时的最初10米,可以用半圆仪在帮手按δ角划出腰线;倾斜巷道的贯通:上下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘;这种贯通的特殊性在于上部开切点P的位置是未知的;为此,首先应确定P点的位置;确定P点的位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置;这种方法解联立方程的工作相当复杂,一般不予采用;第二种方法是根据三角学的基本知识,解算ΔAPB;由于在ΔAPB中,A、B的坐标已知,从而可求出它们间的水平距离Lba,和方位角eab,而且eba=edb,eap=eac也是已知的;这样我们就可以根据正弦定理求得Lap,确定出P点的位置;Lap=LbaSINδb/SINδp=<Ya-YbCOSeb-Xa-XbSINedb>/SINebd-eca;P点确定后,即可测定出其高程Hp,然后即可按与第一个例子类似的方法,标定贯通巷道的中线和腰线;水平巷道间的贯通:1、准备工作布设仪器和水准路线,计算出A、B点的平面直角坐标XA,YA、XB,YB以及它们的高程Ha、Hb;2、计算贯通测量的几何要素1计算贯通巷道中心线的方位角aAB:tanaAB=YB-YA/XB-XA;(2)计算A、B处的指向角β1、β2:β1=αAB- αAC β2=αBA- αBD(3)计算A、B间的水平距离LAB:LAB=√XB-XA2+YB-YA2;(4)计算贯通巷道的倾角δ:tanδ=HB-HA/LAB;(5)计算A、B间的斜长LAB:LAB=√LAB2+HB2-HA2或LAB=LAB/COSδ。
角度坐标测量计算公式细则
角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y2-y1)/(x2-x1)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。
2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。
3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+h+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
测量学坐标反算公式
测量学坐标反算公式引言在测量学中,坐标反算是一项基本而重要的任务。
它指的是根据给定的测量数据和参考点坐标,计算出待测点的坐标。
坐标反算在地理测量、工程测量等领域都有着广泛的应用。
本文将介绍测量学中常用的坐标反算公式,其中包括平面坐标反算和空间坐标反算两种方法。
平面坐标反算平面坐标反算适用于二维平面上的测量,常用于建筑工程、道路规划等领域。
以下是平面坐标反算的公式:1.距离公式:根据两点的坐标计算出它们之间的直线距离。
假设两点的坐标分别为(X₁, Y₁)和(X₂, Y₂),则它们之间的距离D可以通过以下公式计算:D = √((X₂ - X₁)² + (Y₂ - Y₁)²)2.角度公式:根据三个点的坐标计算出其中一个点的角度。
假设三个点的坐标分别为(X₁, Y₁)、(X₂, Y₂)和(X₃, Y₃),要计算的角度为∠BAC,则该角度能通过以下公式计算:cos(∠BAC) = ((X₂ - X₁) * (X₃ - X₁) + (Y₂ - Y₁) * (Y₃ - Y₁)) / (D₁ *D₂)其中,D₁和D₂分别为点A到点B和点A到点C之间的距离。
3.坐标反算公式:根据已知点的坐标和距离、角度信息反算出待测点的坐标。
假设已知点的坐标为(X₁, Y₁),已知距离为D₂,已知角度为∠BAC,待测点的坐标为(X₂, Y₂),则待测点的坐标可以通过以下公式计算:X₂ = X₁ + D₂ * cos(∠BAC)Y₂ = Y₁ + D₂ * sin(∠BAC)其中,∠BAC的计算方法参照上述角度公式。
空间坐标反算空间坐标反算适用于三维空间中的测量,常用于地理测量、航空测量等领域。
以下是空间坐标反算的公式:1.距离公式:根据两点的坐标计算出它们之间的空间距离。
假设两点的坐标分别为(X₁, Y₁, Z₁)和(X₂, Y₂, Z₂),则它们之间的距离D可以通过以下公式计算:D = √((X₂ - X₁)² + (Y₂ - Y₁)² + (Z₂ - Z₁)²)2.方位角公式:根据两点的坐标计算出连线与正北方向的水平夹角。
工程测量常用计算公式
工程测量常用计算公式工程测量是指通过测量手段获取工程项目的相关数据,以便进行设计、施工和监测等工作。
在工程测量中,常常需要用到一些计算公式来进行数据处理和分析。
下面是一些常用的工程测量计算公式:1.距离测量相关公式:- 直线距离计算公式:d=sqrt((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)分别为直线两个点的坐标。
- 准线距离计算公式:d=(s/n)*sqrt((m1)^2+(m2)^2+...+(mn)^2),其中s为总长度,n为总测次数,m1、m2、..、mn分别为各测次的测量值。
- 斜距计算公式:d=sqrt((HC+ΔH)^2-(n1-n2)^2),其中HC为水平视距,ΔH为高差,n1和n2分别为测站的高程。
2.角度测量相关公式:- 三角测量公式:tanA=(a/b),其中A为角度,a为A边长,b为B边长。
-方位角计算公式:Az=At+Δ,其中Az为目标点的方位角,At为测站的方位角,Δ为目标点相对测站的方位角修正数。
- 高程角计算公式:V=(100/π)*atan((n2-n1)/d),其中V为高程角,n1和n2分别为测站和目标点的高程,d为水平距离。
3.面积和体积测量相关公式:- 面积计算公式:S=(1/2)*(x1y2+x2y3+...+xn-1yn+xny1-x2y1-x3y2-...-xn-yn-1-x1yn),其中(x1,y1)到(xn,yn)为多边形边界点的坐标。
-体积计算公式:V=S*H,其中V为体积,S为横截面面积,H为高度。
4.坐标转换公式:- 平面坐标转换公式:X=x0+R*sin(A),Y=y0+R*cos(A),其中(x0,y0)为原点坐标,R为距离,A为方位角。
-大地坐标转换公式:B=B0+ΔB,L=L0+ΔL,其中(B0,L0)为基准点的大地坐标,ΔB和ΔL分别为相对于基准点的纬度和经度差值。
这些计算公式只是工程测量中的一部分,在实际应用中还可以根据具体测量需求进行更多的计算和推导。
测量坐标方位角计算公式是什么
测量坐标方位角计算公式是什么引言在测量和导航领域中,确定两个点之间的方位角(也称为方向角或航向角)是一项重要的任务。
方位角定义为从一个参考点到目标点的方向,通常以北方向为参考。
测量坐标方位角是一种基本的导航技术,广泛应用于地理测量、航行、航空、地图制作等领域。
本文将介绍如何计算测量坐标方位角的公式。
问题陈述给定两个点的坐标(经度和纬度),我们的目标是计算从一个点到另一个点的方位角。
方法为了计算两个点之间的方位角,我们可以使用以下公式:Δφ = φ2 - φ1Δλ = λ2 - λ1θ = atan2(sin(Δλ) * cos(φ2), cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * co s(Δλ))其中,φ1和λ1是起始点的纬度和经度,φ2和λ2是目标点的纬度和经度。
Δφ和Δλ是纬度和经度的差值。
以上公式是基于球面三角学的原理。
测量坐标方位角的计算方法是通过计算两个点形成的三角形的角度来确定方位角。
理解公式让我们逐步分解公式来理解其含义。
首先,我们计算纬度差值Δφ和经度差值Δλ。
这是因为方位角的计算涉及到两个点之间的相对位置。
接下来,我们使用以下公式计算方位角θ:•sin(Δλ) * cos(φ2):这部分表示纬度差(即起始点到目标点的维度变化)对方位角的影响。
sin(Δλ)表示纬度差的正弦值,而cos(φ2)表示目标点纬度的余弦值。
•cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ):这部分表示经度差(即起始点到目标点的经度变化)对方位角的影响。
cos(φ1) *sin(φ2)表示起始点纬度的余弦值乘以目标点纬度的正弦值,而sin(φ1) *cos(φ2) * cos(Δλ)表示起始点纬度的正弦值乘以目标点纬度的余弦值再乘以经度差的余弦值。
最后,使用atan2()函数计算弧度,并将其转换为角度值。
结论本文介绍了计算测量坐标方位角的公式。
测量坐标怎么计算的
测量坐标怎么计算的在测量领域中,我们常常需要准确地计算物体、地点或空间的坐标。
坐标是指在某个坐标系下,用数值来描述位置的方法。
不同的测量任务和场景需要不同的坐标系统和计算方法。
本文将为您介绍常见的坐标计算方法。
一维坐标计算在一维坐标计算中,我们需要确定物体在直线上的位置。
最简单的情况是,我们给定了直线的起点和终点,以及物体在直线上的位置。
例如,我们可以用起点A 和终点B表示一条直线,物体C位于AB之间的某个位置。
我们想知道物体C相对于起点A的距离。
根据数学原理,我们可以使用以下公式进行计算:AC = AB * (m - n)其中,AC表示物体C相对于起点A的距离,AB表示直线的总长度,m表示物体C在直线上的位置,n表示起点A在直线上的位置。
通过这个公式,我们可以简单地计算出物体C相对于起点A的坐标。
二维坐标计算在二维坐标计算中,我们需要确定物体在平面上的位置。
最常见的二维坐标系统是笛卡尔坐标系,其中平面被分为水平的x轴和垂直的y轴。
以原点O为参考点,我们可以使用x和y来表示物体在平面上的位置。
在二维坐标计算中,我们常常需要计算物体的距离和角度。
两点之间的欧氏距离可以使用以下公式计算:AB = sqrt((x2 - x1)^2 + (y2 - y1)^2)其中,AB表示两点之间的距离,(x1, y1)和(x2, y2)表示两个点的坐标。
这个公式利用了勾股定理的原理,通过计算x轴和y轴上的距离,求得欧氏距离。
另外,我们还可以根据两个点的坐标计算出物体相对于某一点的角度。
可以使用以下公式计算两点之间的角度:θ = atan2(y2 - y1, x2 - x1)其中,θ表示两个点之间的角度,(x1, y1)和(x2, y2)表示两个点的坐标。
这个公式利用了反正切函数的原理,通过计算y轴和x轴上的差值,求得角度。
三维坐标计算在三维坐标计算中,我们需要确定物体在空间中的位置。
最常见的三维坐标系统是笛卡尔坐标系,其中空间被分为水平的x轴、垂直的y轴和竖直的z轴。
测量坐标计算公式
坐标计算公式一、导线(直线)方位角计算:αBC =αAB +180°-β右 或 αBC =αAB -180°+β左式中β右、β左是导线调整后(或直线)右转角和左转角; 当计算结果为“-”则加上360°,大于360°则减去360°。
二、直线段中(边)桩坐标计算:如图所示,已知),(A A y x A , 距离l L AB =,d L BC =, 方位角AB α,计算),(B B y x B 、),(C C y x C 。
1、),(B B y x B⎩⎨⎧+=+=AB A B AB A B l y y l x x ααsin cos2、),(C C y x C方法一:利用B 点求C 点⎩⎨⎧±+=±+=)90sin()90cos( AB B CAB B C d y y d x x αα 方法二:利用A 点求C 点⎪⎩⎪⎨⎧±++=±++=)arctan cos()arctan cos(2222l d d l y y ld d l x x AB A C AB A C αα C 点位于AB 左侧为“-”,AB 右侧为“+”三、带缓和曲线线路中边桩坐标计算:如图所示,已知曲线要素:缓和曲线长度sl ,圆曲线长度yl ,圆曲线半径R ;ZH 点坐标),(ZH ZH y x ,JD 点坐标),(JD JD y x ,HZ 点坐标),(HZ HZ y x ,ZH 点里程ZH Z 。
求里程为Z 点的中桩及距离中桩d 处边桩坐标。
则:1、相关参数计算 ⑴ 曲线主点里程计算 HY 点里程:sZH HY l Z Z +=YH 点里程:ys ZH YH l l Z Z ++= HZ 点里程:ys ZH HZ l l Z Z ++=2⑵ 曲线其他参数计算 ZH 点-JD 点坐标方位角:),arctan(1ZH JD ZH JD y y x x --=αJD 点-HZ 点坐标方位角:),arctan(2JD HZ JD HZ y y x x --=α转角:12ααα-=z内移值:342268824R l R l p s s -= 切线增值:232402R l l q s s -=2、ZH 点小里程直线段坐标计算(Z <ZH Z )中桩坐标:⎩⎨⎧-+=-+=11sin )(cos )(ααZH ZH ZZH ZH Z Z Z y y Z Z x x边桩坐标:⎩⎨⎧±+='±+=')90sin()90cos(11ααd y y d x x Z ZZ Z 3、ZH 点与HY 点间缓和曲线段坐标计算(ZH Z <Z <HY Z )中桩坐标:⎪⎪⎩⎪⎪⎨⎧-+---=-+---=5511337344922542240)(336)(6)(3456)(40)(s ZH s ZH s ZH s ZH s ZH ZH l R Z Z l R Z Z Rl Z Z y l R Z Z l R Z Z Z Z x ⎪⎩⎪⎨⎧±++=±++=)arctan sin()arctan cos(122122x y y x y y xy y x x x ZH Z ZH Zαα 边桩坐标:⎪⎪⎩⎪⎪⎨⎧±-±+='±-±+=')90)(90sin()90)(90cos(2121s ZH Z Z s ZH Z ZRl Z Z d y y Rl Z Z d x x παπα (z α>0为“+”,<0为“-”)4、HY 点与YH 点间圆曲线段坐标计算(HY Z <Z <YH Z )中桩坐标:⎪⎩⎪⎨⎧+---=+--=pR l Z Z R y q Rl Z Z R x s ZH s ZH )90)(180cos 1(90)(180sin ππ⎪⎩⎪⎨⎧±++=±++=)arctan sin()arctan cos(122122x y y x y y xy y x x x ZH Z ZH Zαα 边桩坐标:⎪⎩⎪⎨⎧±--±+='±--±+=')9090)(180sin()9090)(180cos(11R l Z Z d y y Rl Z Z d x x s ZH Z Z s ZH Z Zπαπα (z α>0为“+”,<0为“-”)5、YH 点与HZ 点间缓和曲线段坐标计算(YH Z <Z <HZ Z ):中桩坐标:⎪⎪⎩⎪⎪⎨⎧+-+++-+-+-+=+-+++-+-+-+=5511337344922542240)2(336)2(6)2(3456)2(40)2(2s ZH y s s ZH y s s ZH ys s ZH y s s ZH y s ZH y s l R Z Z l l l R Z Z l l Rl Z Z l l y l R Z Z l l l R Z Z l l Z Z l l x⎪⎩⎪⎨⎧+-=+-=)arctan sin()arctan cos(122122x y y x y y xy y x x x HZ Z HZ Zαα 边桩坐标:⎪⎪⎩⎪⎪⎨⎧±+-+-±+='±+-+-±+=')90)2(90sin()90)2(90cos(2121s ZH y s zZ Z s ZH y s zZ Z Rl Z Z l l d y y Rl Z Z l l d x x πααπαα (z α>0为“-”,<0为“+”)6、HZ 点大里程直线段坐标计算(Z >HZ Z )中桩坐标:⎩⎨⎧---+=---+=22sin )2(cos )2(ααy s ZH HZ Zy s ZH HZ Z l l Z Z y y l l Z Z x x边桩坐标:⎩⎨⎧±+='±+=')90sin()90cos(22ααd y y d x x Z ZZ Z 四、曲线坐标积分形式公式曲线坐标直线、缓和曲线及圆曲线积分形式统一公式:⎪⎪⎩⎪⎪⎨⎧-+++=-+++=⎰⎰l s e s l s e s dl L l R R R l Y Y dl L l R R R l X X 02000200)90)11(180sin()90)11(180cos(ππαππα 1、直线段:+∞=s R ,+∞=e R ,则⎩⎨⎧+=+=0000sin cos ααl Y Y l X X 2、正向完整缓和曲线段:+∞=s R ,R R e =,则⎪⎪⎩⎪⎪⎨⎧++=++=⎰⎰l l dl RL l Y Y dl RL l X X 02000200)90sin()90cos(παπα 3、反向完整缓和曲线段:R R s =,+∞=e R ,则⎪⎪⎩⎪⎪⎨⎧+++=+++=⎰⎰l l dl RL l R l Y Y dl RL l R l X X 02000200)90180sin()90180cos(ππαππα 4、圆曲线段:R R R e s ==,则⎪⎩⎪⎨⎧-+-=++=-++=++=⎰⎰l l R l R Y dl R l Y Y R l R X dl R l X X 000000000000)cos )180(cos(2)180sin()sin )180(sin(2)180cos(απαπααπαπα令0HZ 点坐标为)(00Y X ,,坐标方位角为0α;ZH 点坐标为)(11Y X ,,坐标方位角为1α; HY 点坐标为)(22Y X ,,坐标方位角为2α;YH 点坐标为)(33Y X ,,坐标方位角为3α;HZ 点坐标为)(44Y X ,,坐标方位角为4α;2ZH 点坐标为)(55Y X ,,坐标方位角为5α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算细则1、坐标计算:X¹=X+Dcosα,Y¹=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y²-y¹)/(x²-x¹)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y²-y¹)+(x²-x¹),1)、当y²-y¹>0,x²-x¹>0时;α=arctan(y²-y ¹)/(x²-x¹)。
2)、当y²-y¹<0,x²-x¹>0时;α=360°+arctan(y ²-y¹)/(x²-x¹)。
3)、当x²-x¹<0时;α=180°+arctan(y²-y¹)/(x ²-x¹)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y²-y¹)/(x²-x¹)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+∆h(高差)+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:∆Xab=Sab×COSαab 则有Xb=Xa+∆Xab∆Yab=Sab×SINαab Yb=Ya+∆Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
解:tanαab=∆Yab/∆Xab所以。
Αab=tan¯∆Yab/∆Xab;则有:Sab=∆Yab/SINαab=∆Xab/COSαab=√∆X²ab+∆Y ²ab;5、緣和曲线的方位角和坐标计算公式:S12=sqr<(X2 -X1)²×(Y2-Y1)²> =sqr( ∆X221×∆Y221)。
A12=arcsin((Y2-Y1)/S12)。
S12为测站点1至放样点2的距离,A12为测站点1至放样点2的坐标方位角。
X1,Y1为测站坐标,X2,Y2为放样点坐标。
新公式:A12=arccos(∆X21/S12)×sgn(∆Y21)360°只需将测量的成果用直线或其他线形连接起来。
坐标输入时需注意交换输入,也就是将实测的X坐标在CAD中当Y 坐标输入,而Y坐标则当X坐标输入。
标高则用文字在标注在各相应的坐标点傍。
一、建立新图时(坐标偏移法)1、先按比例大小绘制坐标网格,2、然后将测量整理得来的坐标拐点在CAD中输入绘制矿区围,3、根据相应的测点坐标绘制实测图,4、填写图例。
二、坐标增量上图(相对坐标法)①:如果比例尺为1:2000,平距除以2之后乘以方位角得坐标增量。
②:点击直线或多线段按(回车键)点击后点,再输入ΔY,ΔX。
倾斜巷道贯通计算:可根据倾斜角度进行换算,再结合地测交庄书中给的贯距或标高差来算,而且还要结合巷道的断面高差来综合计算。
坡度的表示方法有百分比法、度数法、密位法和分数法四种。
其中百分比法和度数法较为常用。
1、百分比法表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=(高程差/水平距离)﹡100%,是指水平距离每100米垂直方向上(下降)…米。
2、度数法用度数来表示坡度,利用反三角函数计算而得,其公式如下:TAN(坡度)=高程差 /水平距离,所以坡度=TAN-。
一、平巷开门点仪器安设过程:用全站仪确定巷道开门点,C为开门点位置。
1、在B点安置仪器,2、后视A点,用卷尺量出开门点的距离位置,定为C点然后在C点顶板钉点挂占标,再前视C点。
3、把仪器移动安设在C点,后视B点,再用仪器把设计的方位、角度拨出来,用手拿着垂线或粉笔在开门点帮上,用仪器观测,左右移动垂线或粉笔,确定好准确点后用钉子钉上再用喷漆在帮上喷出。
也就是中线点。
为防止以后施工的破坏,多确定几个中线点,也是为了以后方便跟踪测量。
一、标定腰线方法:1、用半圆仪标定倾斜巷道腰线,1点为新开斜巷的起点,称为起破点。
1点高程H1由设计给出,Ha为已知点A高程,从图可知Ha-H1=ha在A点悬挂垂球,自A点向下量取ha,得到a点过a点拉一条水平线I'I,使1点位于新开巷道的一帮上,挂上半圆仪,此时半圆仪上读数应为0。
将1点固定在巷道帮上,在1点系上测绳,沿巷道同侧拉向掘进方向,在帮上选定一点2,拉直测绳,悬挂半圆仪,上下移动测绳,使半圆仪的读数等于巷道设计倾角,此时固定2点,连接1、2点,划出腰线。
2、用经纬仪标定腰线在主要倾斜巷道中,通常采用经纬仪标定腰线,其方法较多,这里只介绍三种。
1)、利用中线点标定腰线,图a为巷道横断图,图b为巷道纵断面图。
标定方法如下:a:在中线点1安置仪器,量取仪器高i。
b:使竖盘读数为巷道的设计倾角,此时的望远镜视线方向与腰线平行。
然后瞄准掘进方向已标定的中线点2、3、4的垂线,分别作临时记号,得到 2'、3'、4',倒镜再测一次倾角a作为检查。
c:由下式计算k值:k=H1-(H'1+h)-i。
式中H1―1点处的高程;H'1 ―1点处轨面设计高程;i―仪器高;h ―轨面到腰线点的铅垂距离;d:由中线点的记号2'、3'、4' 分别向下量k值,得到 2"、3"、4"即为所求的腰线点。
e:用半圆仪分别从腰线点拉一条垂直中线的水平线到两帮上。
f:用测绳连接帮壁上的2"、3"、4"点并用喷漆沿测绳划出腰线。
3、平巷与斜巷连接处腰线的标定:平巷与斜巷连接处是巷道坡度变化的地方,腰线到这里要改变坡度,巷道底板在竖起面上的转折点称为巷道变坡点,设平巷腰线到轨面或底板的距离为a,斜巷腰线到轨面或底板的法线距离也保持为a,那么,在变坡点处,平巷腰线必须抬高Δh,才能得到斜巷腰线起坡点,或者自变坡点处向前或向后量取距离ΔL,得到斜巷腰线起坡点,由此标定出斜巷腰线。
Δh和ΔL值按下式计算Δh=a/COSδ-a=a(secδ-1)ΔL= Δh.Cotδ。
标定时,测量人员首先应在平巷的中线点上标定出A点的位置,然后在A点垂直于巷道中线的两帮上标出平巷腰线点,再从平巷腰线向上量取Δh (也可向前或向后量取ΔL),得到斜巷腰线起坡点位置。
斜巷掘进时的最初10米,可以用半圆仪在帮手按δ角划出腰线。
倾斜巷道的贯通:上下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘。
这种贯通的特殊性在于上部开切点P的位置是未知的。
为此,首先应确定P点的位置。
确定P点的位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置。
这种方法解联立方程的工作相当复杂,一般不予采用。
第二种方法是根据三角学的基本知识,解算ΔAPB。
由于在ΔAPB中,A、B的坐标已知,从而可求出它们间的水平距离Lba,和方位角ðab,而且ðba=ðdb,ðap=ðac也是已知的。
这样我们就可以根据正弦定理求得Lap,确定出P点的位置。
Lap=Lba*SINδb/SINδp=<(Ya-Yb)COSðb-(Xa-Xb)SINðdb>/SIN(ðbd-ðca)。
P点确定后,即可测定出其高程Hp,然后即可按与第一个例子类似的方法,标定贯通巷道的中线和腰线。
水平巷道间的贯通:1、准备工作布设仪器和水准路线,计算出A、B点的平面直角坐标(XA,YA)、(XB,YB)以及它们的高程Ha、Hb。
2、计算贯通测量的几何要素(1)计算贯通巷道中心线的方位角aAB:tanaAB=YB-YA/XB-XA。
(2)计算A、B处的指向角β1、β2:β1=αAB- αAC β2=αBA- αBD(3)计算A、B间的水平距离LAB:LAB=√(XB-XA)²+(YB-YA)²。
(4)计算贯通巷道的倾角δ:tanδ=(HB-HA)/LAB。
(5)计算A、B间的斜长LAB:LAB=√LAB²+(HB²-HA²)或LAB=LAB/COSδ。