正项级数的根式判别法

合集下载

高等数学下:8.1.3正项级数的性质及其敛散性判别法

高等数学下:8.1.3正项级数的性质及其敛散性判别法

收敛 发散
重要参考级数: 几何级数, p-级数(特别:调和级数)
例4. 证明级数
1 是发散的.
n1 n(n 1)
证明:
1 1, n(n 1) n 1
而级数
1 发散,
n1 n 1
级数
1 发散.
n1 n(n 1)
比较审敛法的极限形式:
设 un 与 vn 都是正项级数,如果
n1
n1
lim un n vn
0 (n )
,
该级数收敛.
例7.
判别级数
1
n1 2
1 n的敛散性。 n
n
解: lim
1
1
n
lim
1
1
1
1
n 2 n n 2 n 2
由 根 值 判 别 法 : 正 项 级数
1
1
n



n1 2 n
例8. 判别级数
n
3
1 n 2





n1 n 1
1 n2
解:lim n 3 n lim1
e-1 e1/ 2 e1/ 6 e-1/ 3 1
由 根 值 判 别 法 : 原 级 数收 敛 。
例13.


级数
n1
nn (2n
bn 1)n
的敛散性。
分析:先拆成两部分,再用根值判别法。
解:
设un
( n )n 2n 1
( b )n 2n 1
n
lim (
n )n lim
n
1
1, (
(n 1)n1(2n 2)! (n!)2 (n 1)!

正项级数的根式判别法和比式判别法

正项级数的根式判别法和比式判别法

重庆三峡学院毕业设计(论文)题目:对正项级数敛散性判别法应用性的探讨目录摘要 (I)Abstract: ..................................................................................................................................................... I I 1 引言 . (3)2正项级数相关概念 (3)2.1 定义 (3)2.2 正项级数敛散性判别的充要条件 (3)2.3 三个重要比较级数 (4)2.3.1 几何级数 (4)2.3.2 调和级数 (5)2.3.3 P-级数 (5)3 正项级数敛散性判别法 (6)3.1 判别发散的简单方法 (6)3.2 比较判别法 (7)3.2.1 定理及其推论 (7)3.2.2 活用比较判别法 (9)3.2.3 归纳总结 (11)3.3 柯西判别法与达朗贝尔判别法 (12)3.3.1 柯西判别法 (12)3.3.2 达朗贝尔判别法 (13)3.3.3 比值判别法和根值判别法失效的情况 (15)3.4 拉贝判别法 (17)3.5 积分判别法 (19)3.6 两种新方法 (20)3.7 判别正项级数敛散性方法的总结 (23)4 在判别级数敛散性中的作用 (23)4.1 证明负项级数的敛散性 (23)4.2 证明变号级数绝对收敛 (24)4.3 证明函数级数收敛 (25)5 结束语 (26)致谢 (27)参考文献: (27)对正项级数敛散性判别法应用性的探讨尹委红(重庆三峡学院数学学院数学与应用数学专业2006级重庆万州 404000)摘要:正项级数是级数内容中的一种重要级数,它的敛散性是其基本性质.本文主要探讨正项级数∑∞=1 nnu)0(>nu的各种敛散性判别法,主要有积分判别法、比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法.探讨了它们的证明过程及应用其解决相关的例题.并简单介绍了它们之间的关系,如强弱性的比较,不同形式的nu适合用哪种方法来证明其敛散性更为简单.最后介绍了正项级数敛散性判别法在判别级数敛散性中的作用.关键词: 正项级数;判别法;敛散性Positive Series Convergence Criterion of applicabilityYIN Wei-hong(Grade 2006, Mathematics and Applied Mathematics, College of Mathematics and Computer Science, Chongqing Three Gorges University, Wanzhou, Chongqing 404000 )Abstract:Series is a series of positive content is an important series,convergence and Divergence of its basic nature of its. This paper discusses the positive series all Convergence Criterion, There are Integral Test, Comparison Tests, Cauchy Criterion, Criterion big Lambert, Rabe Criterion. Discussed their certification process and application of relevant examples of its solution. And briefly describes the relationships between them, such as comparison of theu which method to prove its convergence and strength of、suitable for different forms ofndivergence easier. Finally, Introduced the positive series Convergence Criterion of Convergence and Divergence in the identification of the role.Keywords: positive series; criterion; convergence1 引言级数是数学分析这门学科中的一个重要部分,而正项级数又是级数中最简单从而也是级数中最基本的一种级数.证明级数的敛散性是级数的一种重要性质,解决级数的问题多半要设计到讨论级数的敛散性.由于正项级数在级数中的基础地位,所以讨论正项级数的敛散性是级数的一个基础内容,也是一个十分重要的内容,故正项级数敛散性判别法在数学分析中有着重要的作用.2正项级数相关概念2.1 定义设有数列{}n u ,即 .,,,,321 n u u u u 将此数列的项依次用加号连接起来,即+++++n u u u u 321 或 ∑∞=1n n u ,称为数值级数,其中n u 称为级数的第n 项或通项.级数就是无限多个数的和.若级数的每一项n u 的符号都是正,则称级数∑∞=1n nu是正项级数.取级数前n 项的和为n s ,即 n n u u u s +++= 21 或 ∑==nk nn us 1,称为级数的n 项部分和.若一级数的部分和数列{}n s 收敛,设s s n n =∞→lim 或 s unk kn =∑=∞→1lim,则称此级数收敛,s是级数的和,表为 +++++==∑∞=n n nu u u u us 3211.若部分和数列{}n s 发散,则称该级数发散,此时级数没有和.2.2 正项级数敛散性判别的充要条件正项级数的每一项都为正的基本特点导致正项级数部分和数列单调增加,从而有正项级数敛散性的基本判别定理:定理1 正项级数∑∞=1n nu收敛⇔它的部分和数列{}n s 有上界.证明 由于),2,1(0 =>i u i ,所以{}n s 是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证.基本判别定理解决了一个级数的收敛问题,不必研究s s n n =∞→lim ,而粗略地估计n s 的值当∞→n 时是否保持有界就可以了,这样就避开了n s 冠以n 的复杂的表达式.它是判断正项级数收敛(或发散)的最基本方法,几乎所有其它的判别法都是由它导出,但是在具体应用时不大方便.由正项级数敛散性的基本判别定理可以推导出正项级数敛散性常用判别定理——积分判别法、比较判别法、柯西判别(又叫根值判别法)、达朗贝尔判别法(又叫比值判别法).2.3 三个重要比较级数在正项级数敛散性的判别中往往需要用到一个比较因子,用比较因子的敛散性来判断一个级数收敛还是发散.常用的比较因子有三个重要的正项级数——几何级数、调和级数、p-级数.下面简单介绍这三个级数,及其它们敛散性的证明,便于后面能更好的应用.2.3.1 几何级数(等比级数)讨论几何级数+++++=-∞=-∑1211n n n ar ar ar a ar的敛散性,其中r a ,0≠是公比.解:1)当0≠r 时,已知几何级数的n 项部分和 +++++=-12n n ar ar ar a s(i )当1<r 时,存在极限,且.11lim lim rar ar a s n n n n -=--=∞→∞→因此,当1<r 时,几何级数收敛,其和是r a -1,即r aar n n -=∑∞=-111.(ii )当1>r 时,不存在极限,且.1lim lim ∞=--=∞→∞→rar a s nn n n因此,当1>r 时,几何级数发散. 2)当1=r 时,有两种情况:(ⅰ)当1=r 时,几何级数是)0(≠a , +++++a a a a .na a a a s n n =+++=个∞==∞→∞→na s n n n lim lim 即部分和数列{}n s 发散.(ⅱ)当1-=r 时,几何级数是 .)1(1+-++-+--a a a a a n{,,0,,是偶数是奇数n n a n s =即部分和数列{}n s 发散.于是,当1=r 时,几何级数发散.综上所述,几何级数∑∞=-11n n ar ,当1<r 时收敛,其和是ra-1,当1≥r 时发散. 2.3.2 调和级数证明调和级数+++++=∑∞=n n n 13121111是发散的. 证明 设调和级数∑∞=11n n 的n 项部分和是ns ,即.131211n s n ++++= 由于已知.1]ln )1211[(lim .)ln 1211(lim =+++=-+++∞→∞→n nc n n n n 或(欧拉常数)即当∞→n 时,调和级数的部分和n s n 131211++++= 与n ln 是等价无穷大,即调和级数∑∞=11n n 发散. 2.3.3 P-级数讨论p-级数+++++=∑∞=p p p n p n n 13121111的敛散性,其中p 是任意实数.(该级数又称为广义调和级数)解:1)当1=p 时,广义调和级数就是调和级数∑∞=11n n,已知调和级数发散,即p-级数发散.2)当1<p 时,+∈∀N n ,有n n p 11≥.已知调和级数∑∞=11n n发散,根据比较判别法可知,当1<p 时,p-级数发散.3)当1>p 时,2≥∀n ,有]1)1(1[11111-----<p p p n n p n .于是,N n ∈∀,有1111)11(111)1)1(131212111(111)1)1(1(11)3121(11)2111(1111312111111111111111-=-+<--+=--++-+--+=---++--+--+≤++++=-------------p p p n p n n p nn p p p n s p p p p p p p p p p p p p p p p n 即p-级数的部分和数列{}n s 有上界,从而p-级数收敛.综上所述,当1≤p 时,p-级数发散;当1>p 时,p-收敛.在正项级数敛散性的证明中常借助于这三个级数敛散性为桥梁来判断其它级数的敛散性,所以必须要熟练掌握这三个级数.3 正项级数敛散性判别法3.1 判别发散的简单方法由级数收敛的基本判别定理——柯西收敛准则:级数∑∞=1n nu收敛,,,,0N p N n N N ∈∀>∀∈∃>∀⇔+ε有ε<++++++p n n n u u u 21.取特殊的1=p ,可得推论:若级数∑∞=1n nu收敛,则0lim =∞→nn u .定理2 该推论的逆否命题:若0lim ≠∞→nn u ,则级数∑∞=1n nu发散.例1 快速判断级数∑∞=+12215n n n 的敛散性.解: 由于05115lim22≠=+∞→n n n ,从而根据定理2可知,该级数发散. 如果0lim ≠∞→n n u ,则可由该逆否命题直接可以判别出该级数发散;如果0lim =∞→nn u ,则不能判断级数是否收敛,因为存在级数满足0lim =∞→nn u 的发散级数,如∑∞=11n n ;也存在级数满足0lim =∞→n n u 的收敛级数,如∑∞=121n n.显然该逆否命题只使用于满足0lim ≠∞→nn u 的发散级数.3.2 比较判别法 3.2.1 定理及其推论定理3 (比较判别法) 有两个正项级数∑∞=1n nu与∑∞=1n nv,且N n N N ≥∀∈∃+,,有n n cv u ≤,c 是正常数.1)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;2)若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.证明 因为有定理若去掉、增添或改变级数∑∞=1n nu的有限项,则不改变级数∑∞=1n nu的敛散性,因此,不妨设+∈∀N n ,有 c cv u n n ,≤是正常数.设级数∑∞=1n nu与∑∞=1n nv的n 项部分和分部是n A 与n B ,由上述不等式,有.)(212121n n n n n cB v v v c cv cv cv u u u A =+++=+++≤+++=1)若级数∑∞=1n nv收敛,根据定理1,数列{}n B 有上界,从而数列{}n A 也有上界,再根据定理1,级数∑∞=1n nu收敛.2)若级数∑∞=1n nu发散,根据定理1,数列{}n A 无上界,从而数列{}n B 也无上界,再根据定理1,级数∑∞=1n nv发散.推论 有两个正项级数∑∞=1n n u 与)0(1≠∑∞=n n n v v ,且 k v u nnn =∞→lim).0(+∞≤≤k1)若级数∑∞=1n nv收敛,且+∞<≤k 0,则级数∑∞=1n nu也收敛;2)若级数∑∞=1n nv发散,且+∞≤<k 0,则级数∑∞=1n nu也发散.证明 1)若级数∑∞=1n nv收敛,且+∞<≤k 0,由已知条件,N n N N ≥∀∈∃>∃+,,00ε,有0||ε<-k v u n n 或 0ε+<k v u n n,即N n ≥∀,有n n v k u )(0ε+<,根据定理2,级数∑∞=1n n u 也收敛.2)若级数∑∞=1n nv发散,且+∞<<k 0,由已知条件,N n N N k ≥∀∈∃<<∃+,,0:00εε,有 0||ε<-k v u n n 或 n n v u k <-0ε )0(0>-εk ,即N n ≥∀,有n n u k v 01ε-≤,根据定理2,级数∑∞=1n nu也发散.若级数∑∞=1n nv发散,且+∞=k ,由已知条件,,,,0N n N N M ≥∀∈∃>∃+有M v u n n>,即N n N N ≥∀∈∃+,,有n n u M v 1<,根据定理2,级数∑∞=1n n u 也发散. 从比较判别法的内容,我们可以得出以下几点启示:(1)比较判别法只适用于正项级数敛散性的判断;(2)比较判别法重在“比较”,是利用两个正项级数的通项结构来比较的;要求必须掌握等比级数,调和级数,p-级数的敛散性,因为比较判别法的比较对象常常就是上述三种级数.(3)要证明某一个级数∑∞=1n nu收敛,需要找一个通项比n u 大的收敛的整形级数∑∞=1n nv,即n n cv u ≤,也就是需要将所求的级数通咯级数项放大;(4)要证明某一个级数∑∞=1n nu发散,需要找一个通项比n u 小的发散的正项级数∑∞=1n nv,即n n u cv ≤,也就是需要将所求的级数通项缩小.比较判别法提供了一个判别级数敛散的简单方法:只须拿一个已知敛散性的级数和要判别的级数作比较便能得出结论.常用的作为比较的级数有等比级数、调和级数、p-级数,因此,正项级数比较判别法的关键是:如何选取比较对象,放大或缩小所求级数的通项.3.2.2 活用比较判别法(1) 当所求级数的通项中出现关于n 的有理式时,比较对象常常选取p-级数或调和级数. 例1 判别级数∑∞=+1)1(1n n n 的敛散性. 分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201n n n =,原级数也接近于级数∑∞=121n n,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n ,至多差一个系数. 解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛. 例2 判别级数∑∞=+1421n nn 的敛散性. 分析: 考虑通项421n n +,分子n 的最高幂是1,分母n 的最高幂是4,这时通项接近341n n n =,原级数也接近于级数∑∞=131n n,这是13>=p 的收敛的p-级数,那么原级数也一定收敛.解: 因为3444122221n n n n n n n n ==+≤+(分子放大,分数放大),又由于∑∞=131n n 收敛,则由比较判别法,原级数∑∞=+1421n nn 也收敛. 例3 判别级数∑∞=--+12521n n n n 的敛散性. 分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n n n 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数. 解: 因为52152221222--+≤--<=n n n n n n n n n (分子缩小,分母放大,分数缩小),又由于∑∞=11n n 是发散的,则由比较判别法,原级数也是发散的. (2) 当所求级数通项中出现正弦函数或对数函数时,利用不等式选取适当的比较对象.主要用到下面两个式子:当0>x 时,.1)11ln(11,sin xx x x x ≤+≤+< 例4 判别级数nn n 3sin21π∑∞=的敛散性.分析: 考虑当0>x 时,x x <sin ,则πππππnnn nn nn)32(323sin2,33sin=⋅<<,而πnn )32(1∑∞=是公比132||<=q 的收敛级数,故原级数收敛. 例5 判别级数∑∞=+1221ln n n n 的敛散性. 分析: 由于有不等式22221)11ln(1ln n n n n ≤+=+,而∑∞=121n n是收敛的级数,故原级数也收敛.(3) 当所求级数的通项放大、缩小不方便时,可采用比较判别法的推论.利用比较判别法的推论时要注意:(1)把要求的级数当作∑∞=1n nu,另找一个正项级数(往往找调和级数、p-级数或等比级数),作∑∞=1n nv;(2)重点考察极限结果1,因为1在0与∞之间.例6 判别级数∑∞=+-12114n nn 的敛散性. 分析: 考虑通项1142+-n n ,分子n 的最高幂为1,分母n 的最高幂为2,通项接近nn n 12=,因此就把级数∑∞=11n n作∑∞=1n n v .解: 由于414lim ]1114[lim 222=+-=+-∞→∞→n nn n n n n n ,又因为∑∞=11n n 是发散的,则原级数也发散.例7 另解上面的例5.分析: 我们前面已经讨论过该题,若忘记前面的不等式,而此题的通项又不易进行放大、缩小,可用推论.把)11ln(2n +作为n u ,再找一个n v .观察到n u 中,有对数函数)11ln(2n+出现,考虑用第二重要极限e nnn =+∞→)11(lim ,取.12n v n =解: 因为1)11ln(lim ]1)11ln([lim 2222=+=+∞→∞→n n n n nn,又∑∞=121n n收敛,故原级数也收敛.3.2.3 归纳总结判断正项级数∑∞=1n nu“ 敛散性的一般步骤:(ⅰ) 检查通项。

01-根式判别法

01-根式判别法

n2ห้องสมุดไป่ตู้
lim n
1
2
n
*拉贝判别法
1 1, 2
由根式判别法, 原级数收敛.
注 由于极限lim n (n!)2 很难求, 所以上例中的 (i) n (2n)!
采用比式法更方便.
数学分析 第十二章 数项级数
高等教育出版社
§2 正项级数
正项级数收敛性的一 般判别原则
*推论2
比式判别法和根式判别 法
积分判 别法
*拉贝判别法

un 为正项级数,

lim
n
n
un
l,
(i) l < 1 时级数收敛;
(ii) l > 1 时级数发散.
则当
*例10考察级数b c b2 c2 bn cn 的敛 散性,其中 0 b c 1.
§2 正项级数
正项级数收敛性的一 般判别原则
比式判别法和根式判别 法
积分判 别法
*拉贝判别法
第七讲
正项级数的根式判别法
数学分析 第十二章 数项级数
高等教育出版社
§2 正项级数
正项级数收敛性的一 般判别原则
比式判别法和根式判别 法
积分判 别法
*拉贝判别法
定理12.8(柯西判别法,或根式判别法)
设 un 为正项级数, 且存在某正数 N0 及常数l,
2
(1)n 2n
的敛散性.
解 由于
n 2 1
lim n un lim
n
n
2
n
1, 2
所以级数是收敛的.
若在(11)式中 l =1,则根式判别法仍无法对级数的敛
散性做出判断.
例如对
1 n2

8.2正项级数

8.2正项级数


(1)当r 1时, 级数 un为收敛级数
n 1


(2)当r 1时, 级数 un为发散级数
n 1
(3)当r 1时, 级数 un可能收敛, 也可能发散
n 1

【微积分8-2-12】
2、证明: (1)当0 r
1时,
un1 un1 lim r , 对r r0 1, N , 使当n N时有 r0 ,即 n u un n
【微积分8-2-18】
n 1

3、应用举例:
an n 例8 判别级数 ( ) ( a 0)的敛散性 n 1 2n 1

na n a ) 解: lim un lim ( n n 2n 1 2
n n
a 当0 1即0 a 2时, 级数收敛 2
a 当 1即a 2时, 级数发散 2
n 1

un1 un1 1 1 当r 0时有, lim 0 , 故N , 使当n N时有 n u 2 un 2 n
同样可得级数 un为收敛级数
n 1
【微积分8-2-13】
un1 un1 (2)当r 1时, lim r 1,N , 使当n N时有 1 n u un n
n 1
1 n 1 1 n 解: 2 1 2 1 ln 2, 而级数 发散 n n 1 n

1 所以 (1 cos )收敛 n n 1

级数 ( n 2 1)为发散级数
n 1

【微积分8-2-11】
三、比值判别法
un1 r, 则有 1、定理: 设 un为正项级数, 且有 lim n u n 1 n
正项级数与负项级数统称为保号级数。

正项级数判别 法

正项级数判别 法

1 n
5 4
,则
v
n 1 n n 1


1 5 n4
收敛
un ln n 4 ln x lim 1 lim lim lim 0 1 1 n x n v n x n 4 x 4 x 4

ln n 收敛。 由比较判别法的极限形式知, un 3 n 1 n 1 n 2
解: 1) 若 p 1,

1 因调和级数 发散 , 所以p 级数 n 1 n
1 由比较审敛法可知: n
发散 .
2) 若 p 1, 因为当 n 1 1 dx p p n 1 n n 1 1 1 n 1 p 1 d x p 1 p 1 (n 1) n n 1 x p

1 1 1 1 1 2 3 4 n 2 2 2 2

1 1 n 1 n 2 n

而级数

1 2
n 1
n 1
收敛,
1 故级数 n 收敛。 n 1 n
定理3.(比较审敛法的极限形式) 设两正项级数
0, 收敛 un lim l (0 l ), 和 n v n 发散 ,
(2) 当 1 或 时, 级数发散 .
(3)当 = 1 时,不能用此法判定级数的敛散性。
u n 1 知存在 N Z , 当n N 时, u 1 n
收敛 ,由比较审敛法可知 un 收敛 .
证: (1) 当 1 时,
(2) 当 1 或 时,必存在 N Z , u N 0, 当n N 时 从而
un vn sn n (n 1, 2, )

【2019年整理】任意项级数的敛散性判别

【2019年整理】任意项级数的敛散性判别

0 r ,同敛散
给定
v
n
,

lim
n
un vn
r r 0, r ,
vn收敛,则 un收敛
v

n



un发散
1、p
级数
:
n1
1 np
当p 1时, 当p 1时,
收敛 发散
2、 aqn敛散性
n0
当q 当q
1时, 收 敛 1时, 发 散
3、调和级数
1 发散.
n1 n
比值判别法: (不需要比较对象)
复习
正项级数判别法:
(1)
lim
n
un
0?
(2)比值判别法(含n的阶乘)不用比较对象
或根式判别法(通项中含有n次幂)
(3)比较判别法极限形式(含对数函数时 经常采用比较法)
(4)比较判别法 需要敛散性已知的比较对象
比 较 判 别 法:非极极限限形形式式::un
cvn
,

vn收敛,则 un收敛 un发散,则 vn发散
(2)
lim
n
un
0
则 (1)n1un收敛,且它的和s u1 .
n1
证 un1 un 0, S2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
即数列 {S2n }是单调增加的 ,
又S2n u1 (u2 u3 )
u (u2n2 u2n1 ) u2n
n1 n
当x 1时, 原级数 1 发散.
n1 n

判别级数
n1
s
in na n2
(a
0)
的收敛性.
解 经判断该级数为任意项级数(易出错认为正项级数)

12_2正项级数的判别法

12_2正项级数的判别法

下页
返回
结束
例10. 判别级数
的收敛性 . (P224例10)
解:
且 lim n
lim
n
n
1 1 , n 2 2
lim
n
n
3 1 , n 2 2
n
2 (1) n 1 n 2 2
从而所给级数收敛。
机动 目录 上页 下页 返回 结束
内容小结
1. un 收敛 部分和数列 {S n } 有极限
机动
目录
上页
下页
返回
结束
例2. 证明级数
证: 因为
发散 . (P219 例2)
1 n (n 1)
而级数
1 (n 1)

2
1 发散 k 2 k
根据比较审敛法可知, 所给级数发散 .
机动
目录
上页
下页
返回
结束
例3. 判别级数 证: 因为
的收敛性 . (P219 例3)
2n 1 2n 2 2 2 2 2 2 (n 1) (n 2) (n 1) (n 2) (n 1)3
而级数
1 3 k 2 k

收敛
根据比较审敛法可知, 所给级数收敛 .
机动
目录
上页
下页
返回
结束
定理3. (比较审敛法的极限形式) 设两正项级数
un 满足 lim l , 则有 n vn
(1) 当 0 < l <∞ 时, (2) 当 l = 0 (3) 当 l =∞ 两个级数同时收敛或发散 ;
p

p 1, 级数收敛 ; p 1, 级数发散 .
机动

浅谈正项级数收敛性的几种判别方法

浅谈正项级数收敛性的几种判别方法

浅谈正项级数收敛性的几种判别方法浅谈正项级数收敛性的几种判定方法摘要级数理论是数学分析的重要组成部分,而正项级数又是级数理论中重要的组成部分,正项级数的收敛性更是级数理论的核心问题。

正项级数收敛性的判别方法很多,但是用起来需要有一定的技巧。

本论文从四个方面(1)、比较原则;(2)、达朗贝尔判别法,或称为比式判别法;(3)、柯西判别法,或称为根式判别法;(4)、积分判别法归纳了正项级数收敛性。

关键词:正项级数、收敛、判别法、判断引言关于正项级数收敛性的问题,本文首先分析题目的要求,然后再来选择最合适的判别方法来判断正项级数的收敛性。

下面用(1)比较原则,(2)比式判别法,(3)根式判别法,(4)积分判别法四种判别方法对正项级数的收敛性进行判别。

(1)比较原则比较原则是一种常用的极限形式,也是一种常用的判别正项级数收敛性的方法。

根据比较原则,可以利用已知收敛或者发散级数作为比较对象来判别其他级数的敛散性。

比较原则:设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有n u ≤n v(i )若级数∑n v 收敛,则级数∑n u 也收敛;(ii )若级数∑n u 发散,则级数∑n v 也发散。

推论设++++n u u u 21 ,(1) ++++n v v v 21 ()是两个正项级数,若l v u nn n =∞→lim,(3)则(ⅰ)当+∞<<="" 且级数(2)收敛时,级数(1)也收敛;="" (ⅱ)当0="l" (ⅲ)当+∞="l">例1、考察∑+-112n n 的收敛性。

解由于当2≥n 时,有nn n n -≤+-22111=2)1(1)1(1-=-n n n因为正项级数∑∞=-22)1(1n n 收敛,通过比较原则可得级数∑+-112n n 也收敛。

以上例题,用比较原则判断该正项级数,结果是收敛的。

12-2正项级数

12-2正项级数

§ 2 正项级数(一) 教学目的:掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别 法和积分判别法.(二) 教学内容:比较判别法;比式判别法;根式判别法;积分判别法.基本要求:(1)掌握比较判别法,比式判别法,根式判别法和积分判别法. (2) 较高要求:介绍拉贝判别法. (三) 教学建议:(1) 要求学生必须理解和掌握比较判别法,比式判别法,根式判别法,要布置足量的习题.(2) 对较好学生可要求掌握拉贝判别法,可挑选适量的习题.(3)由于这方面内容与反常积分的部分内容有类似之处,可向学生作比较与总结. 重点:比较判别法, 比值判别法, 根式判别法————————————————————————一 正项级数收敛性的一般判别原则显然正项级数的部分和数列是单调递增的,由单调有界定理,正项级数收敛的充分必要条件是:定理5 正项级数∑∞=1n nu收敛⇔它的部分和数列}{n S 有上界。

例∑∞=1!1n n121222113211!1-=⋅⋅≤⋅⋅=n n n 从而 321212111!1!31!211112≤+++++≤+++++=-n n n S 部分和有界,该正项级数收敛。

比较判别法由定理5,容易推出下面判别法:定理6(比较原则)有两个正项级数∑∞=1n nu,∑∞=1n nv若存在自然数 N ,当N n >时,有0,>≤c cv u n n , 则1) 若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;2) 若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散。

例 讨论 -p 级数∑∞=11n pn的敛散性。

1)1=p 时为调和级数发散; 2) 1<p 时nn p 11> 由比较判别法,-p 级数发散; 3)1>p 时]1)1(1[11111-----<p p p nn p n 111)11(111)]1)1(1()3121()211[(111131211111111-+<--+=--++-+--+<++++=------p n p n n p n S p p p p p p p p p n部分和有界,级数收敛。

正项级数

正项级数

根据推论1,级数收敛.
前页 后页 返回
n 1 nx ( x 0) 的敛散性. 例7 讨论级数
解 因为
un1 ( n 1) x n n 1 x x ( n ), n1 un nx n
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发 散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
(iii) 若l , 则对于正数1, 存在相应的正数N,当
n > N 时, 都有
un 1 或 un vn . vn 于是由比较原则知道, 若级数 vn 发散, 则级数
u
n
也发散.
前页 后页 返回
1 例3 级数 n 是收敛的, 因为 2 n
1 n n 2 1 2 n lim lim n lim 1 n n 2 n n 1 n 1 n n 2 2 1 以及等比级数 n 收敛, 根据比较原则的极限形 2
前页 后页 返回
1 1 un 1( n ), 但 2 是收敛的, 而 却是 n n 发散的.
n
若(11)式的极限不存在, 则可根据根式 un 的上极限 来判断.
n
前页 后页 返回
例10 判别下列级数的敛散性:
( n !)2 (i) ; n 1 (2n )!

(ii)

数列 { Sn } 有界, 即存在某正数M, 对一切正整数 n 有
Sn M .
前页 后页 返回
证 由于 ui 0( i 1,2, ), 所以{Sn}是递增数列.而 单调数列收敛的充要条件是该数列有界(单调有界 定理).这就证明了定理的结论. 仅靠定义和定理12.5来判断正项级数的收敛性是不 容易的,因此要建立基于级数一般项本身特性的收 敛性判别法则.

正项级数的判别法

正项级数的判别法


思考题
设正项级数 un 收敛, 能否推得 un 收敛?
2 n1 n1
反之是否成立?
思考题解答
由正项级数 un 收敛,可以推得 un 收敛,
2 n 1 n1
un lim lim un 0 n u n n
由比较审敛法知 un 收敛.
2
1时级数发散; 1 时失效.
1 例如, 设级数 n , n1 n

1 1 un n n 0 ( n ) 级数收敛. n n
n
小 结
正 项 级 数
1. 若 Sn S , 则级数收敛;


2. 当 n , un 0, 则级数发散;
3.按基本性质; 4.充要条件 5.比较法 6.比值法 7.根值法Leabharlann lim a2 nn
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例 4 判别下列级数的收敛性:
1 (1) ; n 1 n!


n! 1 (2) n ; (3) . n 1 10 n 1 ( 2n 1) 2n 1 un1 ( n 1)! 1 (1) 0 ( n ), 1 un n1 n! 1 故级数 收敛. n 1 n!
1 (1) sin ; n n 1


二、比值判别法
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
则 1时级数收敛; 1 时级数发散; 1 时失效.

证明 当为有限数时, 对 0,

正项级数判别 法

正项级数判别 法

-----精品文档------
注意: 条件是充分的,而非必要.
例 un22 ( n1)n2 3nvn,
级数un
n1
2(1)n
2n
n1
收,敛
但un1 un
22(2(( 1)1n)n1)an,
lim
n
a2n
1, 6
lnima2n1
3, 2
limun1 n un
ln iman
不存.在
-----精品文档------
级数。 (3)比较对象的选取有时比较困难。
-----精品文档------
定理4 . 比值审敛法 ( D’alembert 判别法)
设(1) 当un为正1项时级, 级数数, 且收敛nl im; uunn1 , 则
(2) 当1或 时, 级数发散 .
(3)当 = 1 时,不能用此法判定级数的敛散性。
考 1 虑2 级p 1 数1 n 22 p 1 ( n1 113 )pp 1 11 n p 11 n 的p 1 部 1 分 ( 和n 1 1 )p 1 n kn1k1p1(k11)p11(n11)p1 n 1
故级数收敛 , 由比较审敛法知 p 级数收敛 .
n 1
u n 收敛;
n 1
l i m n
un vn
l(0l), u n 和 v n
n 1
n 1
,
v n 发散
有相同的 敛散性。
u n 发散;
n 1
n 1
注意lnim: uv若nn
0,

vn
n 1
发散,则
un
n 1
不一定发散。
本质:比较两正项级数一般项作为无穷小量的阶
-----精品文档------

02第二节正项级数的判别法

02第二节正项级数的判别法

第二节 正项级数的判别法‎ 一般情况下,利用定义和准则来‎判断级数的收敛性是很困难的,能否‎找到更简单有效的判别方法呢?我们‎先从最简单的一类级数找到突破口,‎那就是正项级数.分布图示★‎ 正项级数★ 比较‎判别法 ★ 例1★ 例2‎★ 例3★ 例4 ★ 例5‎★ 比较判别法的极限形式★ ‎例6 ★ 例7★ 例8‎★ 例9 ★ 例10 ★ 比值‎判别法 ★ 例11 ★ 例12‎ ★ 例13 ★ 根值判别法‎★ 例14★ 例15‎★ 例16 ★ 积分判别法 ★‎ 例17 ★ 内容小结 ★ ‎课堂练习 ★ 习题12-2‎★ 返回内容要点一‎、正项级数收敛的充要条件是:它的‎部分和数列}{n s 有界. 以此为基础推‎出一系列级数收敛性的判别法:‎ 比较判别法;比较判别法的‎极限形式;推论(常用结论)比较‎判别法是判断正项级数收敛性的一个‎重要方法. 对一给定的正项级数,‎如果要用比较判别法来判别其收敛性‎,则首先要通过观察,找到另一个已‎知级数与其进行比较,并应用定理2‎进行判断. 只有知道一些重要级数‎的收敛性,并加以灵活应用,才能熟‎练掌握比较判别法. 至今为止,我‎们熟悉的重要的已知级数包括等比级‎数、调和级数以及-p 级数等. 要应‎用比较判别法来判别给定级数的收敛‎性,就必须给定级数的一般项与某一‎已知级数的一般项之间的不等式. ‎但有时直接建立这样的不等式相当困‎难,为应用方便,我们给出比较判别‎法的极限形式.使用比较判别法或‎其极限形式,需要找到一个已知级数‎作比较,这多少有些困难. 下面介‎绍的几个判别法,可以利用级数自身‎的特点,来判断级数的收敛性. ‎ 比值判别法(达朗贝尔判别法‎):适合1+n u 与n u 有公因式且nn n u u 1lim +∞→ 存在‎或等于无穷大的情形.根‎值判别法(柯西判别法):适合n u 中‎含有表达式的n 次幂,且ρ=∞→n n n u lim 或等于‎∞+的情形.积分判别法:对于正项‎级数,1∑∞=n na ,如果}{na 可看作由一个在),1[+∞上‎单调减少函数)(x f 所产生, 即有).(n f a n = ‎则可用积分判别法来判定正项级数∑∞=1n n a ‎的敛散性. 例题选讲比较判别‎法的应用例1(E01)讨论p —‎级数)0(131211>+++++p np p p 的收敛性. 解 1p ≤时,,11n np≥‎-∴p 级数发散. 1>p 时,由图可见‎,11⎰-<n n p p x dx n p p p n ns 131211++++=,111111111111121-+<⎪⎭⎫ ⎝⎛--+=+=+++<--⎰⎰⎰p n p x dx x dx x dx p n n n pp p即n s ‎有界,-∴p 级数收敛. ‎ 当1>p 时收敛 故-p 级‎数 ‎ . ‎ 当1≤p 时发散例2(E ‎02)证明级数∑∞=+1)1(1n n n 是发散的.证 ‎)1(1+n n ,11+>n 而级数∑∞-+111n n 发散, ∴∑∞-+1)1(1n n n 发‎散.例3(E03)判别级数∑∞=+++122)2()1(12n n n n ‎的收敛性.解 运用比较判别法‎.因22)2()1(12+++n n n 22)2()1(22+++<n n n 3)1(2+<n ,23n <而∑∞=131n n是收敛的,所‎以原级数收敛.例4(E04)‎设n n n b c a ≤≤),,2,1( =n 且∑∞=1n na及∑∞=1n nb均收敛, 证明级数‎∑∞=1n nc收敛.证 由,n n n b c a ≤≤得 ,),2,1(0 =-≤-≤n a b a c n n n n 由‎于∑∞=1n na与∑∞=1n nb都收敛,故)(1nn na b ∑∞=-是收敛的,‎从而由比较判别法知,正项级数)(1n n n a c ∑∞=-也‎收敛.再由∑∞=1n na与)(1n n na c-∑∞=的收敛性可推知‎: 级数∑∞=1n n c )]([1n n n na c a∑∞=-+=也收敛.例5 设‎⎰=40tan πxdx a nn ,证明级数∑∞=1n nna λ)0(>λ收敛. 证 由‎⎰=4tan πxdx a n n ⎰<42sec tan πxdx x n⎰=40tan tan πx xd n⎪⎪⎭⎫⎝⎛+=+41tan 11πx n n 11+=n n 1< 得.λλ+<<110n n a n 因为,11>+λ所以∑∞=+111n n λ‎收敛, 由比较判别法知∑∞=1n nn a λ收敛.‎比较判别法及其推论的应用例6‎(E05)判定下列级数的敛散性:‎(1) ;11ln 12∑∞=⎪⎭⎫ ⎝⎛+n n (2)‎.cos 111∑∞=⎪⎭⎫ ⎝⎛-+n n n π解 )1(因⎪⎭⎫ ⎝⎛+211ln n ),(1~2∞→n n 故 n n u n 2lim ∞→⎪⎭⎫ ⎝⎛+=∞→2211ln lim n n n 221lim nn n ⋅=∞→1=‎根据极限判别法,知所给级数收敛‎. )2(因为n n u n2/3lim ∞→⎪⎭⎫ ⎝⎛-+=∞→n n u n n n πcos 11lim 2/322211lim ⎪⎭⎫ ⎝⎛⋅+=∞→n n n nn π,212π= 根据极限判‎别法, 知所给级数收敛.比值‎判别法的应用例7 判别级数∑∞=++1)(n an nn a n 的‎敛散性. 解 记an nn na n u ++=)(a n n n n n n a n ⎪⎭⎫ ⎝⎛+=1,1a nn n a ⎪⎭⎫ ⎝⎛+= 采用‎比较法的极限形式,取,1an n v =因 nn n v u ∞→lim nn n a ⎪⎭⎫⎝⎛+=∞→1lim a e =‎,0≠ 所以原级数与级数∑∞=11n an具有相同的‎敛散性,从而知当1>a 时,级数∑∞=++1)(n an nn a n 收‎敛; 当1≤a 时,级数∑∞=++1)(n an nna n 发散.例‎8 判别级数∑∞=⎪⎭⎫ ⎝⎛-1sin n n n ππ的敛散性. 解 ‎选取级数∑∞=⎪⎭⎫⎝⎛13n n π作比较.由,613cos 1lim sin lim203=-=-→→x x x n x x x π可得3sinlim ⎪⎭⎫⎝⎛-∞→n n n n πππ.61=‎因级数∑∞=⎪⎭⎫⎝⎛13n n π收敛,所以原级数也收敛‎.注:从以上解答过程中可以看到‎极限中的某些等价无穷小在级数审敛‎讨论时十分有用的,事实上级数的收‎敛性取决于通项n u 趋向于零的“快慢‎”程度.例9(E06)判别级‎数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n的敛散性. 解 令)1ln()(x x x u +-=),0(0>>x .)(2x x v =由‎于2)1ln(limx x x x +-+∞→x x x 2111lim +-=+∞→)1(21lim x x +=+∞→,21=从而2111ln 1limn n n n ⎪⎭⎫ ⎝⎛+-∞→211ln1lim nn n n n +-=∞→.21= 由级数‎∑∞=121n n 的收敛推知本题所给级数也收敛.‎例10 级数,11∑∞=n p n 当1>p 时收敛,‎ 有人说, 因为,111>+n 故级数∑∞=+1111n nn 收敛‎. 你认为他的说法对吗?解 ‎ 不对.前者-p 级数的p 是一常数与‎n 无关,而后者n11+与n 有关,事实上‎ n nnn /11lim11+∞→1)(lim -∞→=n n n 1=由级数∑∞=11n n 的发散性,可知‎级数∑∞=+1111n nn 也发散.例11(E07‎)判别下列级数的收敛性:(1)‎ ∑∞=1!1n n ; (2)∑∞=110!n nn . ‎ (3) ().21211∑∞=⋅-n n n解 )1(‎n n u u 1+!/1)!1/(1n n +=11+=n ,0−−→−∞→n 故级数∑∞=1!1n n 收敛.)2(n n u u 1+!1010)!1(1n n n n ⋅+=+,∞−−→−∞→n ‎故级数∑∞=110!n n n 发散. )3(nn n u u 1lim+∞→)22()12(2)12(lim +⋅+⋅-=∞→n n nn n ,1=比值判别‎法失效,改用比较判别法,因为n n 2)12(1⋅-‎,21n <而级数∑∞=121n n 收敛,所以∑∞=⋅-12)12(1n n n 收敛.‎例12(E08)判别级数∑∞=⎪⎭⎫ ⎝⎛+1212n nn n 的散敛‎性.解 因为n nn )12(2+,22nn <而对于级数,212∑∞=n n n ‎由比值判别法,因 nn n u u 1lim +∞→21222)1(lim n n n n n ⋅+=+∞→2)11(21lim n n +=∞→21=,1< 所‎以级数∑∞=122n nn 收敛,从而原级数亦收敛.‎例13 判别级数)0(!1>∑∞=a n a n n n n的收敛性.‎解 采用比较判别法,由于nn n u u 1lim +∞→‎!)1()!1(lim 11n a n n n a n n n n n ⋅⋅++=++∞→n n n a )/11(lim +=∞→,e a= 所以当e a <<0时,原级数收敛;‎当e a >时,原级数发散;当e a =时,比值‎法失效,但此时注意到:数列nn n x ⎪⎭⎫ ⎝⎛+=11严‎格单调增加,且,e n n<⎪⎭⎫⎝⎛+11于是,11>=+nn n x e u u 即,n n u u >+1故,e u u n =>1‎由 此得到,0lim ≠∞→n n u 所以当时原级数发散.‎例14 判别级数2111n n n ∑∞=⎪⎭⎫⎝⎛-的散敛性.‎解 一般项含有n 次方, 故可‎采用根值判别法.因为n nn u ∞→lim n n n n 211lim ⎪⎭⎫⎝⎛-=∞→nn n ⎪⎭⎫ ⎝⎛-=∞→11lim e1=1<‎故所求级数收敛.例15(E ‎09)判别级数∑∞=---1)1(2n n n的收敛性:解 ‎ 因为n n n u ∞→lim nn n n n)(2lim ---∞→=nn n)1(12lim ---∞→=21=1< 由根值判别法‎知题设级数收敛.例16(E1‎0) 判别级数∑∞=-+12)1(2n nn的收敛性. 解 ‎ 因为n 21n n 2)1(2-+≤n23≤ 而,2121lim =∞→n n n ,2123lim =∞→n n nn n nn 2)1(2l i m -+∞→21=1< 故原级数收敛.‎例17(E11)试确定级数∑∞=1ln n n n的敛‎散性. 解 若设,xxx f ln )(=则显然)(x f 在‎1>x 时非负且连续. 因,2ln 1)(x xx f -='所以在e x >时‎有,0)(<'x f 函数)(x f 单调减少, 于是,可以‎对级数∑∞=1ln n n n应用积分判别法.注意到 ‎dx xxe⎰∞ln ⎰∞→=beb dx x xln limbeb x ⎥⎦⎤⎢⎣⎡=+∞→2ln lim 22ln ln lim 22e b b -=+∞→,+∞= 即广义积分以散,所以‎级数∑∞=1ln n n n发散.课堂练习1.设‎正项级数∑∞=1n n u 收敛, 能否推得∑∞=12n n u 收敛‎? 反之是否成立?2.判别下列‎级数的收敛性.1)3(;22)2(;cos 1)1(111∑∑∑∞=∞=∞=-+⎪⎭⎫ ⎝⎛-n nn n n e n n n π达朗贝尔(D ‎’Alember Jean Le ‎ Rond ,1717~1783)‎达朗贝尔是法国物理学家、数学家‎。

数学分析12.2正项级数

数学分析12.2正项级数

第十二章 数项级数2 正项级数一、正项级数收敛的一般判别原则概念:若数项级数各项的符号都相同,则称它为同号级数. 各项都是正数组成的同号级数称为正项级数.定理12.5:正项级数∑n u 收敛的充要条件是:部分和数列{S n }有界,即存在某正数M ,对一切正整数n ,有S n <M.证:∵u i >0(i=1,2,…),∴{S n }递增. 根据数列的单调有界定理,得证.定理12.6:(比较原则)设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n>N ,都有:u n ≤v n 则: (1)若级数∑n v 收敛,则级数∑n u 也收敛; (2)若级数∑n u 发散,则级数∑n v 也发散. 证:由改变级数的有限项不影响其收敛性, 不妨设对一切正整数,u n ≤v n 都成立.以S ’n 和S ”n 分别记级数∑n u 和∑n v 的部分和,则对一切正整数n , 有S ’n ≤S ”n .(1)若∑n v 收敛,则∞n lim +→S ”n 存在,记为S ,则S ’n ≤S ,即{S ’n }有界,∴∑n u 也收敛.(2)若级数∑n v 收敛,由(1)知级数∑n u 收敛,矛盾!得证.例1:考察∑+1n -n 12的收敛性.解:当n ≥2时,1n -n 12+<1)-n (n 1.∵正项级数∑-1)n(n 1收敛,∴∑+1n -n 12也收敛.推论:设∑n u =u 1+u 2+…+u n +…与∑n v =v 1+v 2+…+v n +… 是两个正项级数,若nn∞n v u lim+→=l. 则 (1)当0<l<+∞时,同时收敛或同时发散; (2)当l=0且级数∑n v 收敛时,级数∑n u 也收敛; (3)当l=+∞且级数∑n v 发散时,级数∑n u 也发散.证:(1)当0<l<+∞时,对任意正数ε(ε<l),存在某正数N ,当n>N 时, 恒有l -nnv u <ε,即(l-ε)v n <u n <(l+ε)v n . 显然, 若∑n v 收敛,则∑n ε)v +(l 收敛,∴∑n u 也收敛; 若∑n v 发散,则∑-n ε)v (l 发散,∴∑n u 也发散.(2)当l=0时,由u n <(l+ε)v n =εv n ,可知∑n v 收敛时,∑n u 也收敛. (3)当l=+∞时,任给正数M ,存在相应的正数N ,当n>N 时,都有nnv u >M ,即u n >Mv n ,由比较原则知:若∑n v 发散时,∑n u 也发散.例2:证明:级数∑n -21n 收敛.证:∵nn ∞n 21n -21lim+→=n ∞n 2n 11lim -+→=1, 又等比级数∑n21收敛,∴级数∑n -21n 也收敛.例3:证明:级数∑n 1sin =sin1+sin 21+…+sin n1+…发散. 证:∵n1n 1sinlim∞n +→=1,又调和级数∑n 1发散,∴级数∑n 1sin 也发散.二、比式判别法和根式判别法定理12.7:(达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某正整数N 0及常数q(0<q<1). (1)若对一切n> N 0,不等式n1n u u +≤q 成立,则级数∑n u 收敛; (2)若对一切n> N 0,不等式n1n u u +≥1成立,则级数∑n u 发散. 证:(1)不妨设不等式n1n u u +≤q 对一切n ≥1都成立,于是有 12u u ≤q, 23u u ≤q,…, n 1n u u +≤q, .... 把前n-1个不等式的左右各相乘得 12u u .23u u .. (1)-n n u u ≤q n-1,即u n ≤u 1q n-1. ∵等比级数∑1-n q (0<q<1)收敛,∴级数∑n u 也收敛. (2)由对一切n> N 0,不等式n1n u u +≥1成立,∴有u n+1≥u n ≥0N u ,可知∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(比式判别法极限形式)若∑n u 为正项级数,且n1n ∞n u u lim++→=q ,则 (1)当q<1时,级数∑n u 收敛; (2)当q>1或q=+∞时,级数∑n u 发散. 证:∵n 1n ∞n u u lim++→=q ,∴对取定的正数ε=21|1-q|,存在正数N , 当n>N 时,都有q-ε<n1n u u +<q+ε. (1)当q<1时,n 1n u u +<q+ε=21(1-q)<1,∴级数∑n u 收敛. (2)当q>1时,n 1n u u +>q-ε=21(1+q)>1,∴级数∑n u 发散; 当q=+∞时,存在N ,当n>N 时,有n1n u u +>1,∴级数∑n u 发散.例4:证明:级数12+5152⨯⨯+951852⨯⨯⨯⨯+…+)]1n (41[951)]1n (32[852-+⋯⨯⨯-+⋯⨯⨯+…收敛.证:∵n 1n ∞n u u lim++→=n 41n 32lim ∞n +++→=43<1,∴该级数收敛.例5:讨论级数∑1-n nx (x>0)的敛散性. 解:当x=1时,级数∑n 发散. 又n 1n ∞n u u lim++→=nx)1n (lim ∞n ++→=x. ∴当0<x<1时,该级数收敛;当x ≥1时,该级数发散;推论2:设∑n u 为正项级数,则 (1)若n1n ∞n u u lim++→=q<1,则级数∑n u 收敛; (2)若n1n ∞n u u lim ++→=q>1,则级数∑n u 发散.例6:讨论级数1+b+bc+b 2c+b 2c 2+…+b m c m-1+b m c m +…的敛散性,0<b<c.解:∵n 1n u u +=⎩⎨⎧为偶数为奇数n c n b . ∴n1n ∞n u u lim ++→=c, n 1n ∞n u u lim ++→=b. ∴当c<1时,该级数收敛;当b>1时,该级数发散; 当c<1<b 时,无法判定.定理12.8:(柯西判别法,或称根式判别法)设∑n u 为正项级数,且存在某正数N 0及正常数l ,则(1)若对一切n>N 0,不等式n n u ≤l<1成立,则级数∑n u 收敛; (2)若对一切n>N 0,不等式n n u ≥1成立,则级数∑n u 发散. 证:(1)∵n n u ≤l<1,∴u n ≤l n ,又等比级数∑n l 当0<l<1时收敛, 由比较原则知∑n u 也收敛.(2)∵n n u ≥1,∴u n ≥1n =1, ∴∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(根式判别法极限形式)设∑n u 为正项级数,且n n ∞n u lim +→=l ,则 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.证:∵n n ∞n u lim +→=l ,∴当取ε<|1-l|时,存在某正数N ,对一切n>N , 有l-ε<n n u <l+ε. 根据定理12.8得证.例7:研究级数∑+nn2)(-12的敛散性.解:∵n n ∞n u lim +→=nnn ∞n 2)(-12lim ++→=21<1,∴该级数收敛.推论2:设∑n u 为正项级数,且n n ∞n u lim +→=l ,则当 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.例8:讨论级数b+c+b 2+c 2+…+b m +c m +…的敛散性,0<b<c<1.解:∵n n u =⎪⎩⎪⎨⎧-为偶数为奇数n cn b 2m m12m m . ∴n n∞n u lim +→=2m m ∞n c lim +→=c <1, ∴该级数收敛.注:根式判别法较比式判别法更有效,所以优先使用根式判别法.例9:讨论级数∑∞=+1n n2nx1x 的敛散性,其中x>0. 解:∵nn 2∞n x 1lim ++→=max{1,x 2},∴n n ∞n u lim +→=nn 2n∞n x 1x lim ++→=}x max {1,x 2=⎩⎨⎧==≠<1x 11x 1. ∴当x ≠1时,该级数收敛;当x=1时,该级数发散.例10:判别下列级数的敛散性:(1)∑∞=1n 2!n)2()(n!;(2)∑∞=⎪⎭⎫⎝⎛+1n n2n 12n .解:(1)∵n1n ∞n u u lim ++→=1)2)(2n n 2(1)(n lim 2∞n ++++→=41<1,∴该级数收敛. (2)∵n n ∞n u lim+→=n12n lim n2∞n ++→=21<1,∴该级数收敛.三、积分判别法定理12.9:设f 为[1,+∞)上非负减函数,那么正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时收敛或同时发散.证:∵f 在[1,+∞)上非负减,∴对任何正数A ,f 在[1,A]上可积,从而 有f(n)≤⎰n1-n f(x )dx ≤f(n-1), n=2,3,…. 依次相加可得:∑=m2n f(n)≤⎰m1f(x )dx ≤∑=m 2n 1)-f(n =∑=1-m 1n f(n).若反常积分收敛,则有S m =∑=m1n f(n)≤f(1)+⎰m 1f(x )dx ≤f(1)+⎰+∞1f(x )dx ,根据定理12.5知,级数∑f(n)收敛.若级数∑f(n)收敛,则有⎰m1f(x )dx ≤S m-1≤∑f(n)=S. 又f 在[1,+∞)上非负减,∴对任何正数A ,都有 0≤⎰A1f(x )dx ≤S n <S, n ≤A ≤n+1. ∴⎰+∞1f(x )dx 收敛.用反证法或同理可证:正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时发散.例11:讨论p 级数∑p n1的敛散性. 解:当p<0时,p∞n n 1lim+→≠0,∴级数∑p n 1的发散. 当p>0时,f(x)=p x1为[1,+∞)上非负减函数,又当0<p ≤1时,⎰+∞1px 1dx 发散,∴级数∑p n 1也发散; 当p>1时,⎰+∞1p x 1dx 收敛,∴级数∑p n1也收敛.例12:讨论下列级数的敛散性:(1)∑∞=2n p lnn)(n 1;(2)∑∞=3n plnlnn)(lnn)(n 1. 解:(1)∵⎰+∞2p lnn)(n 1dx=⎰+∞2p lnn)(1dlnn=⎰+∞ln2p u1du. ∴当p ≤1时,原级数发散;当p>1时,原级数收敛. (2)∵⎰+∞3plnlnn)(lnn)(n 1dx=⎰+∞3p lnlnn)(lnn 1dlnn=⎰+∞ln3p u(lnu)1du. 由(1)可知: ∴当p ≤1时,原级数发散;当p>1时,原级数收敛.四、拉贝判别法定理12.10:(拉贝判别法)设∑n u 为正项级数,且存在某正整数N 0及数常r, 则:(1)若对一切n>N 0, 不等式n ⎪⎪⎭⎫⎝⎛-+n 1n u u 1≥r>1成立,则级数∑n u 收敛; (2)若对一切n>N 0, 不等式n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1成立,则级数∑n u 发散. 证:(1)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≥r>1可得n 1n u u +<1-nr,取p 使1<p<r ,则 由nr n 1-1-1lim p∞n ⎪⎭⎫⎝⎛+→=()rx x -1-1lim p0x →=rp <1知:存在正数N ,使对任意n>N ,有n r >p n 1-1-1⎪⎭⎫ ⎝⎛. ∴n n u 1u +<1-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛p n 1-1-1=p n 1-1-1⎪⎭⎫ ⎝⎛=pn 1-n ⎪⎭⎫⎝⎛. 于是当n>N 时,就有u n+1=N N 1N 1-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅++≤pn 1-n ⎪⎭⎫ ⎝⎛p1-n 2-n ⎪⎭⎫ ⎝⎛…Npu N 1-N ⋅⎪⎭⎫ ⎝⎛=u N (N-1)p ·p n 1. ∵p>1,∴∑p n1收敛,∴原级数收敛. (2)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1可得n1n u u +≥1-n 1=n 1-n ,于是 u n+1=2231-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅+>2u 211-n 2-n n 1-n ⋅⋅⋯⋅⋅=u 2·n1. ∵调和级数∑n1发散,∴原级数发散.推论:(拉贝判别法的极限形式)设∑n u 为正项级数,且极限⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =r 存在,则 (1)当r>1时,级数∑n u 收敛;(2)当r<1时,级数∑n u 发散.例13:讨论级数:∑⎥⎦⎤⎢⎣⎡⋯⋅⋯⋅s(2n)421)-(2n 31当s=1,2,3时的敛散性. 解:n1n ∞n u u lim++→=s∞n (2n)421)-(2n 312)(2n 421)(2n 31lim ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋅⋯⋅+⋯⋅+⋯⋅+→=s ∞n 22n 12n lim ⎪⎭⎫ ⎝⎛+++→=1,无法判别. 当s=1时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎪⎭⎫ ⎝⎛++-+→22n 12n 1n lim ∞n =22n n lim ∞n ++→=21<1,∴发散; 当s=2时,⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛++-222n 12n 1n =4n 84n 3n4n 22+++<1,∴发散;当s=3时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-+→3∞n 22n 12n 1n lim=8n 42n 248n n 7n 1812n lim 2323∞n ++++++→=23>1,∴收敛.习题1、应用比较原则判别下列级数的敛散性: (1)∑+22a n 1;(2)∑n n3πsin 2;(3)∑+2n11;(4)∑n )n (ln 1; (5)∑⎪⎭⎫ ⎝⎛-n 1cos 1;(6)∑n nn 1;(7)∑-)1a (n (a>1);(8)∑∞=2n n ln )n (ln 1;(9)∑-+)2a 1a (nn(a>0);(10)∑n12nsinn1.解:(1)∵0≤22a n 1+≤2n 1,又级数∑2n 1收敛,∴原级数收敛. (2)∵0<n n 3πsin 2<n32π⎪⎭⎫ ⎝⎛,又等比级数∑⎪⎭⎫⎝⎛n32收敛,∴原级数收敛.(3)∵2n 11+>1n 1+,又级数∑+1n 1发散,∴原级数发散. (4)∵0<n )n (ln 1<n 21 (n>e 2),又级数∑∞=2n n21收敛,∴原级数收敛. (5)∵0≤n 1cos 1-=2sin 22n 1<22n 1,又级数∑22n1收敛,∴原级数收敛. (6)∵n nn 1>2n 1,又级数∑2n1发散,∴原级数发散. (7)∵1a n ->n a ,又当a>1时,n∞n a lim +→=1≠0,∴级数∑n a 发散, ∴原级数发散. (8)∵0≤n ln )n (ln 1=ln(lnn)n 1<2n 1 (n>2e e ),又级数∑2n 1收敛,∴原级数收敛.(9)∵2nn∞n n 12a1a lim-++→=2t t 0t t2a 1a lim-+→=(lna)2>0, 又级数∑2n 1收敛,∴原级数收敛. (10)∵2n12nsin∞n n 1n 1lim +→=2tsint 20t t tlim ⋅→=1>0,又级数∑2n 1收敛,∴原级数收敛.2、用比式判别法或根式判别法鉴定下列级数的敛散性.(1)∑⋯⋅n!1)-(2n 31;(2)∑+n 101)!(n ;(3)∑⎪⎭⎫⎝⎛+n1n 2n ;(4)∑n n n!;(5)∑n 22n ;(6)∑⋅n n n n!3;(7)∑⎪⎪⎭⎫⎝⎛nn a b (其中n ∞n a lim +→=a, a n ,b,a>0, 且a ≠b). 解:(1)∵n1n ∞n u u lim++→=n!1)-(2n 31!)1(n 1)(2n 31lim ∞n ⋯⋅++⋯⋅+→=1n 12n lim ∞n +++→=2>1,∴原级数发散. (2)∵n1n ∞n u u lim++→=n1n ∞n 101)!(n 102)!(n lim ++++→=102n lim ∞n ++→=+∞,∴原级数发散. (3)∵n n∞n u lim +→=n n∞n 1n 2n lim ⎪⎭⎫⎝⎛++→=1n 2n lim∞n ++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n1n ∞n n n!)1(n 1)!(n lim ++→++=n∞n 1n n lim ⎪⎭⎫ ⎝⎛++→=e1<1,∴原级数收敛. (5)∵n n∞n u lim +→=nn 2∞n 2n lim +→=2n lim n2∞n +→=21<1,∴原级数收敛.(6)∵n1n ∞n u u lim++→=n n 1n 1n ∞n nn!31)(n 1)!n (3lim ⋅++⋅+++→=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛++→=e 3>1,∴原级数发散.(7)∵n n∞n u lim +→=n ∞n a b lim +→=ab,∴当a=b 时,无法判定; 当b>a>0时,原级数发散;当a>b>0时,原级数收敛.3、设∑n u 与∑n v 为正项级数,且存在正数N 0,对一切n>N 0, 有n1n u u +≤n 1n v v +. 证明: 若级数∑n v 收敛,则级数∑n u 收敛;若∑n u 发散,则∑n v 发散. 证:由题意知:当n>N 0时,1n 1n v u ++≤nn v u,从而对n>N 0有, 0<1n 1n v u ++≤n n v u ≤1-n 1-n v u ≤…≤1N 1N 00v u ++,∴u n ≤1N 1N 00v u ++v n ,又1N 1N 00v u ++是常数, 根据比较原则,得证.4、设正项级数∑n a 收敛,证明∑2n a 也收敛;试问反之是否成立? 证:由∑n a 收敛知n ∞n a lim +→=0,∴存在N ,使n ≥N 时,有0≤a n <1,从而n ≥N 时,有0≤a n 2<a n ,由比较原则知 ∑2n a 也收敛.但反之不成立,如∑2n1收敛,而∑n 1发散.5、设a n ≥0, n=1,2,…. 且{na n }有界,证明∑2n a 收敛. 证:∵a n ≥0, {na n }有界,可设0≤na n ≤M ,则0≤a n ≤nM,从而a n 2≤22nM ,又级数∑22n M 收敛,由比较原则知 ∑2na也收敛.6、设级数∑2n a 收敛,证明∑na n(a n >0)也收敛. 证:∵0<n a n <21(a n 2+2n 1),又级数∑2n a 和∑2n1都收敛,∴级数∑+)n1(a 22n 收敛,由比较原则知级数∑n a n 也收敛.7、设正项级数∑n u 收敛,证明级数∑+1n n u u 也收敛.证:∵0<1n n u u +<21(u n +u n+1),又由级数∑n u 收敛知∑+1n u 也收敛, ∴级数∑)u +(u 1+n n 收敛,由比较原则知∑+1n n u u 也收敛.8、利用级数收敛的必要条件,证明下列等式:(1)2n∞n )(n!n lim +→=0;(2)n!∞n a )!(2n lim +→=0 (a>1). 证:(1)记u n =2n)(n!n ,则n1n ∞n u u lim ++→=2n 21n ∞n )(n!n ]1)![(n 1)(n lim ++++→=n∞n n 1n 1n 1lim ⎪⎭⎫ ⎝⎛+⋅++→=0<1, ∴级数∑2n)(n!n 收敛,∴2n ∞n )(n!n lim +→=0.(2)记u n =n!a )!(2n ,则当a>1时,n1n ∞n u u lim ++→=n!1)!(n ∞n a)!(2n a )!2(2n lim ++→+=!n n ∞n a )21)(2n (2n lim ⋅+→++=0, ∴级数∑n!a )!(2n 收敛,∴n!∞n a )!(2n lim +→=0 (a>1).9、用积分判别法讨论下列级数的敛散性:(1)∑+1n 12;(2)∑+1n n 2;(3)∑∞=3n )nlnnln(lnn 1;(4)∑∞=3n qp (lnlnn)n(lnn)1. 解:(1)∵f(x)=1x 12+在[1,+ ∞)上非负减,且 ⎰+∞1f(x )dx=⎰++∞121x 1dx=2π,积分收敛;∴原级数收敛. (2)∵f(x)=1x x2+在[1,+ ∞)上非负减,且由1x x x lim 2∞x +⋅+→=1知 ⎰++∞121x xdx 发散;∴原级数发散. (3)∵f(x)=ln(lnx )lnx x 1⋅⋅在(3,+ ∞)上非负减,且⎰+∞3f(x )dx=⎰+⋅⋅∞3ln(lnx )lnx x 1dx=⎰+∞ln(ln3)u1du ,积分发散;∴原级数发散.(4)∵f(x)=qp (lnlnx )x (lnx )1在(3,+ ∞)上非负减,且 ⎰+∞3f(x )dx=⎰+∞3q p (lnlnx )x (lnx )1dx=⎰+∞ln(ln3)q 1)u -(p ue 1du , 当p=1时,⎰+∞3f(x )dx=⎰+∞ln(ln3)q u1du ;若q>1,收敛;若q ≤1,发散. 当p ≠1时,取t>1,有q 1)u -(p t∞u u e 1u lim ⋅+→=1)u -(p q -t ∞u e u lim +→=⎩⎨⎧<∞+>1p 1p 0,,, ∴当p>1或(p=1且q>1)时,由积分收敛知原级数收敛; 当p<1或(p=1且q ≤1)时,由积分发散知原级数发散.10、判别下列级数的敛散性:(1)∑1-2n n -n ;(2)∑+na 11 (a>1);(3)∑n 2nlnn ;(4)∑n n n n!2; (5)∑n n n n!3;(6)∑lnn 31;(7)∑+⋯++)x (1)x x)(1(1x n2n(x>0). 解:(1)∵1-2n n -n >1-2n 1(n ≥3),又级数∑1-2n 1发散,∴原级数发散. (2)∵n a 11+<n a 1,又当a>1时,等级级数∑na1收敛,∴原级数收敛. (3)n1n ∞n u u lim++→=n1n ∞n 2nlnn 21)1)ln(n (n lim ++→++=nlnn 21)1)ln(n (n lim ∞n +++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n n 1n 1n ∞n n n!21)(n 1)!2(n lim +++→++=n∞n 1n n 2lim ⎪⎭⎫ ⎝⎛+⋅+→=e2<1,∴原级数收敛. (5)∵n1n ∞n u u lim++→=nn 1n 1n ∞n n n!31)(n 1)!3(n lim +++→++=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛+⋅+→=e3>1,∴原级数发散. (6)3lnn =n ln3,又ln3>1,∴∑ln3n 1收敛,∴原级数收敛. (7)n1n ∞n u u lim++→=1n ∞n x 1xlim++→+=⎪⎩⎪⎨⎧<=<><1x x 1x 1211x 10,,∴原级数收敛.11、设{a n }为递减正项数列,证明:级数∑∞=1n n a 与∑∞=0m 2m ma 2同敛散性.证:记两个级数的部分和分别为S n , T n ,由{a n }为递减正项数列知: S n <n2S ≤a 1+(a 2+a 3)+…+(n2a +…+121n a -+)≤a 1+2a 2+…+2n n2a =T n ,∴当级数∑∞=0m 2mma 2收敛时,级数∑∞=1n n a 也收敛.又n2S =a 1+a 2+(a 3+a 4)+…+(121n a +-+…+n2a )≥21a 1+a 2+2a 4+…+2n-1n2a =21T n , ∴当级数∑∞=1n n a 收敛时,级数∑∞=0m 2m ma 2也收敛. 得证!12、用拉贝判别法判别下列级数的敛散性: (1)12n 1(2n)421)-(2n 31+⋅⋯⋅⋯⋅∑;(2)∑+⋯++n)(x 2)1)(x (x n!(x>0). 解:(1)∵⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =6n 104n 5n 6n lim 22∞n ++++→=23>1,∴原级数收敛. (2)当x=1时,原级数为∑+1n 1发散,又⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =1x n xn lim ∞n +++→=x , ∴当x>1时,原级数收敛;当0<x ≤1时,原级数发散.13、用根式判别法证明级数∑n(-1)--n 2收敛,并说明比式判别法对此级数无效.证:∵n n∞n u lim +→=n (-1)-n -∞n n2lim +→=n(-1)-1-∞n n2lim +→=21<1,∴原级数收敛.又n 1n ∞n u u lim ++→=n 1n (-1)-n -(-1)-1--n ∞n 22lim ++→=n1n )1((-1)--1∞n 2lim -++→+=⎪⎩⎪⎨⎧><为偶数为奇数n 12n 181,,,可见, 比式判别法对此级数无效.14、求下列极限(其中p>1): (1)⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim ;(2)⎪⎪⎭⎫ ⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p 1lim . 解:(1)∵当p>1时,级数∑p n1收敛,由柯西准则知,任给ε>0,存在N ,当n>N 时,有pp p (2n)12)(n 11)(n 1+⋯++++<ε, ∴⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim =0. (2)∵当p>1时,等级级数∑n p1收敛,由柯西准则知, 任给ε>0,存在N ,当n>N 时,有2n 2n 1n p1p 1p 1+⋯++++<ε, ∴⎪⎪⎭⎫⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p1lim =0.15、设a n >0,证明数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性. 解:数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑+)a ln(1n 有相同的敛散性. 又当级数∑n a 或∑+)a ln(1n 收敛时,都有n ∞n a lim +→=0,∴nn ∞n a )a 1ln(lim++→=1. 由比较判别法知∑+)a ln(1n 与∑n a 有相同的敛散性. ∴数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性.。

正项级数收敛的判别方法

正项级数收敛的判别方法

数学与统计学院应用数学系综合课程设计成绩评定书设计题目:正项级数收敛的判别方法摘要:各项都由正数组成的级数称为正项级数,它是数项级数的特例。

本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。

关键字:正项级数收敛比较原则 比式判别法 根式判别法 积分判别法1基本概念1.1 数项级数及其敛散性在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。

定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式12n u u u ++++(1)称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。

数项级数(1)的前n 项之和,记为1nn kk S u==∑,称为(1)的前n 项部分和。

定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞=),则称数项级数(1)收敛,并称S 为(1)的和,记为1nn S u∞==∑,若{}n S 为发散数列,则称数列(1)发散。

根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0ε∀>,0N ∃>,n N ∀>,p Z +∀>,有12||.n n n p u u u ε++++++<(ii) 级数收敛的必要条件:若级数1nn u∞=∑收敛,则lim 0n n u →∞=.(iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。

(iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。

(v) 运算性质:若级数1nn u∞=∑与1nn v∞=∑都收敛,c d 是常数,则1()nn n cudv ∞=+∑收敛,且满足1()nn n cudv ∞=±∑=11n n n n c u d dv ∞∞==±∑∑1.2 正项级数及其收敛的判别方法设级数∑∞=1n nu的各项0≥n u (1,2,3,n =), 则称级数∑∞=1n nu为正项级数.显然,正项级数的部分和数列}{n S 是单调增加的,即12n S S S ≤≤≤≤由数列极限存在准则知:如果这个数列有上界,则它收敛;否则它发散.根据这一基本事实,可以得到正项级数收敛的基本定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正项级数的根式判别法
正项级数指的是所有项都为正数的级数。

根式判别法是一种判断正项级数收敛或发散的方法。

设有正项级数∑an, 我们可以计算其项的极限:
lim[(an)^(1/n)], n趋于无穷大
如果这个极限存在且小于1,即lim[(an)^(1/n)] < 1,则正项级数∑an收敛。

如果这个极限存在且大于1,即lim[(an)^(1/n)] > 1,则正项级数∑an发散。

如果这个极限存在且等于1,即lim[(an)^(1/n)] = 1,则该方法无法确定正项级数的收敛性,需要使用其它方法进一步判断。

需要注意的是,根式判别法只适用于正项级数,如果级数中有负项,不能直接使用根式判别法。

相关文档
最新文档