初中中考数学试题及答案
初中数学试题及答案中考
初中数学试题及答案中考一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333D. π答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是:A. 3B. 5C. 8D. 13答案:C3. 如果一个二次方程的解为x1=2和x2=-3,那么这个二次方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + x - 6 = 0C. x^2 - x - 6 = 0D. x^2 + 5x + 6 = 0答案:A4. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A5. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 菱形D. 不规则多边形答案:C6. 一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是:A. 8cm³B. 12cm³C. 24cm³D. 36cm³答案:C9. 下列哪个选项是正确的不等式?A. 2x > 3xB. 5x ≤ 2xC. 3x < 6xD. 4x ≥ 8答案:D10. 一个角的补角是它的余角的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是________或________。
答案:5 或 -512. 一个等差数列的首项是3,公差是2,那么第5项的值是________。
答案:1113. 如果一个三角形的内角和为180°,其中一个角是60°,另一个角是75°,那么第三个角的度数是________。
初中考数学试题及答案
初中考数学试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是2. 下列哪个选项是等腰三角形?A. 两边长分别为3和4的三角形B. 两边长分别为5和5的三角形C. 两边长分别为6和8的三角形D. 两边长分别为7和7的三角形3. 计算下列表达式的结果:A. 2x + 3y = 7B. 3x - 2y = 8C. 4x + 5y = 11D. 5x - 4y = 94. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米5. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是多少?A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米6. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 07. 下列哪个选项是不等式?A. 2x + 3 = 7B. 3x - 2 = 8C. 4x + 5 > 11D. 5x - 4 ≤ 98. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 89. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -310. 计算下列表达式的结果:A. (2x + 3)(2x - 3) = 4x^2 - 9B. (3x - 2)(3x + 2) = 9x^2 - 4C. (4x + 5)(4x - 5) = 16x^2 - 25D. (5x - 4)(5x + 4) = 25x^2 - 16二、填空题(每题2分,共20分)11. 一个数的平方根是3,这个数是______。
12. 一个数的立方根是2,这个数是______。
13. 一个数的倒数是1/4,这个数是______。
14. 如果一个角是30度,那么它的补角是______度。
15. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的表面积是______平方厘米。
2024年重庆市中考数学真题卷(A)及答案解析
重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A 2- B. 0 C. 3D. 12-2. 下列四种化学仪器示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是( ).的A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π-B. 4π-C. 324π- D. 8π-9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )A.B.C.D.10. 已知整式1110:nn n n M a x a xa x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EFAC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想结论:④.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那的的么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.的(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CGAG的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2- B. 0C. 3D. 12-【答案】A 【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵13022>>->-,∴最小的数是2-;故选:A .2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.【答案】C 【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:C .3. 已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A. 3- B. 3C. 6- D. 6【答案】C 【解析】【分析】本题考查了待定系数法求反比例解析式,把()3,2-代入()0ky k x=≠求解即可.【详解】解:把()3,2-代入()0ky k x=≠,得326k =-⨯=-.故选C .4. 如图,AB CD ∥,165∠=︒,则2∠的度数是( )A. 105︒B. 115︒C. 125︒D. 135︒【答案】B【解析】∠=∠=︒,由邻补角性质得【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.23180【详解】解:如图,∥,∵AB CD∠=∠=︒,∴3165∠+∠=︒,∵23180∠=︒,∴2115故选:B.5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A. 1:3B. 1:4C. 1:6D. 1:9【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D.6. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出m ==,即可求出m 的范围.【详解】解:∵m =-=-==,∵34<<,∴34m <<,故选:B .8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4π-C. 324π- D. 8π-【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得28AC AD ==,由勾股定理得出AB =,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接AC ,根据题意可得28AC AD ==,∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒,在Rt ABC △中,AB ==,∴图中阴影部分的面积2904428360ππ⨯=⨯-⨯=.故选:D .9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B. C. D.【答案】A【解析】【分析】过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,证明ADE EHF ≌,则1AD EH ==,设DE HF x ==,得到HF CH x ==,则45HCF ∠=︒,故CF =,同理可求CG ==)1FG CG CF x =-=-,因此FGCE ==.【详解】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒,由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===,∴D H ∠=∠,∵12AEH AEF D ∠=∠+∠=∠+∠,∴12∠=∠,∴ADE EHF ≌,∴DE HF =,1AD EH ==,设DE HF x ==,则1CE DC DE x =-=-,∴()11CH EH EC x x =-=--=,∴HF CH x ==,而90H ∠=︒,∴45HCF ∠=︒,∴sin 45HFCF ==︒,∵DC AB ∥,∴45HCF G ∠=∠=︒,同理可求CG ==∴)1FG CG CF x =-==-,∴FG CE ==,故选:A .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:011(3)(1232π--+=+=,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和360︒除以40︒即可求解,掌握多边形的外角和等于360︒是解题的关键.【详解】解:360409︒÷︒=,∴这个多边形的边数是9,故答案为:9.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.【答案】19【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种,∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】10%【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.【答案】3【解析】【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.【详解】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =,∴1FA CA FE CD==,CD CA DE ==,∴AF EF =,∴22DE CD AC CF ====,∴4AD AC CD =+=,∵DE CB ∥,∴CFA E ∠∠=,ACB D ∠∠=,∵CAB CFA ∠=∠,∴CAB E ∠∠=,∵CD CA =,DE CD =,∴CA DE =,∴CAB DEA ≌,∴4BC AD ==,∴3BF BC CF =-=,故答案为:3,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于x 的一元一次不等式组至少有两个整数解,确定a 的取值范围8a ≤,再把分式方程去分母转化为整式方程,解得22a y -=,由分式方程的解为非负整数,确定a 的取值范围2a ≥且4a ≠,进而得到28a ≤≤且4a ≠,根据范围确定出a 的取值,相加即可得到答案.【详解】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <,解②得:23a x -≥, 关于x 的一元一次不等式组至少有两个整数解,∴223a -≤,解得8a ≤,解方程13211a y y -=---,得22a y -=, 关于y 的分式方程的解为非负整数,∴202a -≥且212a -≠,2a -是偶数,解得2a ≥且4a ≠,a 是偶数,∴28a ≤≤且4a ≠,a 是偶数,则所有满足条件的整数a 的值之和是26816++=,故答案为:16.17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.【答案】①. 8 ②. 【解析】【分析】连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,根据四边形ACDE 为平行四边形,得出∥D E A C ,8AC DE ==,证明AB DE ⊥,根据垂径定理得出142DF EF DE ===,根据勾股定理得出3OF ==,求出538AF OA OF =+=+=;证明EFM CAM ∽,得出EF FM AC AM =,求出83FM =,根据勾股定理得出EM ===,证明EFM HGD ∽,得出FM EM DG DH =,求出DG =.【详解】解:连接DO 并延长,交O 于点H ,连接GH ,设CE 、AB 交于点M ,如图所示:∵以AB 为直径的O 与AC 相切于点A ,∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,∴90BFD CAB ==︒∠∠,∴AB DE ⊥,∴142DF EF DE ===,∵10AB =,∴152DO BO AO AB ====,∴3OF ==,∴538AF OA OF =+=+=;∵∥D E A C ,∴EFM CAM ∽,∴EF FMAC AM =,∴48FMAF FM =-,即488FMFM =-,解得:83FM =,∴EM ===∵DH 为直径,∴90DGH ∠=︒,∴DGH EFM ∠=∠,∵ DG DG =,∴DEG DHG =∠∠,∴EFM HGD ∽,∴FMEMDG DH =,即83310DG =,解得:DG =.故答案为:8【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.【答案】①. 82 ②. 4564【解析】【分析】本题考查了新定义,设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)根据最小的“方减数”可得10,18m n ==,代入,即可求解;根据B 除以19余数为1,且22m n k +=(k 为整数),得出34719a b ++为整数,308a b ++是完全平方数,在19a ≤≤,08b ≤≤,逐个检验计算,即可求解.【详解】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-,∵19a ≤≤,“方减数”最小,∴1a =,则10m b =+,18n b =-,∴()()2222101810020188221m n b b b b b b b -=+--=++-+=++,则当0b =时,2m n -最小,为82,故答案为:82;②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1,∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数,又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数,∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数,则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当2t =时,3431a b +=,则3134a b -=,则3133083084a a b a -++=++是完全平方数,又19a ≤≤,08b ≤≤,无整数解,当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数,经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==,∴68,60m n ==,∴268604564A =-=故答案为:82,4564.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.【答案】(1)222x y +;(2)11a a +-.【解析】【分析】(1)根据单项式乘以多项式和完全平方公式法则分别计算,然后合并同类项即可;(2)先将括号里的异分母分式相减化为同分母分式相减,再算分式的除法运算得以化简;本题考查了单项式乘以多项式,完全平方公式和分式的化简,熟练掌握运算法则是解题的关键.【小问1详解】解:原式22222x xy x xy y =-+++,222x y =+;【小问2详解】解:原式()()()1111a a a a a a +-+=÷+,()()()11·11a a a a a a ++=+-,11a a +=-.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:.66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【解析】【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【小问1详解】根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),C 组:6人,所占百分比为6100%30%20⨯=D 组:202468---=(人)所占百分比为%110%20%30%40%m =---=,则40m =,∴八年级的中位数为第1011、个同学竞赛成绩的平均数,即C 组第45、个同学竞赛成绩的平均数878887.52b +==,故答案为:86,87.5,40;【小问2详解】八年级学生竞赛成绩较好,理由:七、八年级的平均分均为85分,八年级的中位数高于七年级的中位数,整体上看八年级学生竞赛成绩较好;【小问3详解】640040%50032020⨯+⨯=(人),答:该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22. 为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条是。
中考初三数学试题及答案
中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。
答案:±712. 一个数的平方是16,这个数是________。
答案:±413. 一个数的立方根是-2,这个数是________。
答案:-814. 一个三角形的内角和是________。
答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。
答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。
答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。
初三数学中考试题及答案
初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个圆的半径是3cm,那么它的直径是______。
答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。
答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。
2024年四川省泸州市中考数学试题含答案解析
泸州市二〇二四年初中学业水平考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分120分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试卷和答题卡一并交回.2.选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 下列各数中,无理数是( ) A. 13− B. 3.14 C. 0 D. π【答案】D【解析】 【分析】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.【详解】解:根据无理数的定义可知,四个数中,只有D 选项中的数π是无理数,故选:D .2. 第二十届中国国际酒业博览会于2024年3月21-24日在泸州市国际会展中心举办,各种活动带动消费2.6亿元,将数据260000000用科学记数法表示为( )A. 72.610×B. 82.610×C. 92.610×D. 102.610×【答案】B【解析】【分析】本题考查科学记数法的表示方法,一般形式为10n a ×,其中110a ≤<,确定n 的值时,要看原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:8260000000 2.610=×,故选:B .3. 下列几何体中,其三视图的主视图和左视图都为矩形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查三视图.主视图、左视图是分别从物体正面、左面所看到的图形.依此即可求解.【详解】解:A 、主视图为三角形,左视图为三角形,故本选项不符合题意;B 、主视图为三角形,左视图为三角形,故本选项不符合题意;C 、主视图为矩形,左视图为矩形,故本选项符合题意;D 、主视图为矩形,左视图为三角形,故本选项不符合题意.故选:C .4. 把一块含30°角的直角三角板按如图方式放置于两条平行线间,若145∠=°,则2∠=( )A. 10°B. 15°C. 20°D. 30°【答案】B【解析】 【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性质得到3135∠=°,再根据平角的定义求解,即可解题.【详解】解:如图,直角三角板位于两条平行线间且145∠=°,3135∴∠=°,又 直角三角板含30°角,1802330∴°−∠−∠=°,215∴∠=°,故选:B .5. 下列运算正确的是( )A. 34325a a a +=B. 236326a a a ⋅=C. ()23624a a −=D. 62344a a a ÷= 【答案】C【解析】【分析】本题主要考查了积的乘方,单项式除以单项式,单项式乘以单项式和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、3a 与32a 不是同类项,不能合并,原式计算错误,不符合题意;B 、235326a a a ⋅=,原式计算错误,不符合题意;C 、()23624a a −=,原式计算正确,符合题意;D 、62444a a a ÷=,原式计算错误,不符合题意;故选:C .6. 已知四边形ABCD 是平行四边形,下列条件中,不能..判定ABCD 为矩形的是( ) A. 90A ∠=°B. B C ∠=∠C. AC BD =D. AC BD ⊥【答案】D【解析】【分析】本题考查了矩形的判定.根据有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有一个角是直角的平行四边形是矩形判断即可.【详解】解:如图,A 、90A ∠=°,能判定ABCD 为矩形,本选项不符合题意;B 、BC ∠=∠,能判定ABCD 为矩形,本选项不符合题意;C 、AC BD =,能判定ABCD 为矩形,本选项不符合题意;D 、AC BD ⊥,能判定ABCD 为菱形,不能判定ABCD 为矩形,本选项符合题意;故选:D .7. 分式方程12322x x−=−−的解是( ) A. 73x =− B. =1x − C. 53x = D. 3x =【答案】D【解析】【分析】本题考查解分式方程,根据解分式方程方法和步骤(去分母,去括号,移项,合并同类项,系数化为1,检验)求解,即可解题. 【详解】解:12322x x−=−−, 12322x x −=−−−, ()1322x −−=−,1362x −+=−,39x −=−,3x =,经检验3x =是该方程的解,故选:D .8. 已知关于x 一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A. 0B. 1C. 2D. 3【答案】A【解析】【分析】本题考查了根判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程2210x x k ++−=无实数根,∴()Δ4410k =−−<,解得:0k <,则函数y kx =的图象过二,四象限, 的的而函数2y x=的图象过一,三象限, ∴函数y kx =与函数2y x=的图象不会相交,则交点个数为0, 故选:A .9. 如图,EA ,ED 是O 的切线,切点为A ,D ,点B ,C 在O 上,若236BAE BCD ∠+∠=°,则E ∠=( )A. 56°B. 60°C. 68°D. 70°【答案】C【解析】 【分析】本题考查了圆的内接四边形的性质,切线长定理,等腰三角形的性质等知识点,正确作辅助线是解题关键.根据圆的内接四边形的性质得180BAD BCD ∠+∠=°,由236BAE BCD ∠+∠=°得56EAD ∠=°,由切线长定理得EA ED =,即可求得结果.【详解】解:如图,连接AD ,∵四边形ABCD 是O 的内接四边形,∴180BAD BCD ∠+∠=°,∵236BAE BCD ∠+∠=°,∴()236180BAE BCD BAD BCD ∠+∠−∠+∠=°−°,即56BAE BAD ∠−∠=°,∴56EAD ∠=°,∵EA ,ED 是O 的切线,根据切线长定理得,∴EA ED =,∴56EAD EDA ∠=∠=°,∴180180565668E EAD EDA ∠=°−∠−∠=°−°−°=°.故选:C .10.的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B ′处,AB ′交CD 于点E ,则sin DAE ∠的值为( )A. B. 12 C. 35D. 【答案】A【解析】【分析】本题考查了折叠的性质,矩形的性质,勾股定理,全等三角形的判定和性质,三角函数等知识点,利用黄金比例表示各线段的长是解题的关键.设宽,根据比例表示长,证明ADE CB E ′△≌△,在Rt ADE △中,利用勾股定理即可求得结果.【详解】解:设宽为x ,∵, ∴x =, 由折叠的性质可知,AD BC B C x ′===, 在ADE 和CB E ′ 中,AED AEB D B AD B C ∠=∠ ∠=∠′=′ ′, ∴()AAS ADE CB E ′≌, ∴AE CE =,∴AE DE DC x +==,设DE y =,在Rt ADE △中,222x y x y +=−, 变形得:12y x =,设DE k =,则2AD k =,AE ,∴sin DE DAE AE ∠=, 故选A .11. 已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( )A. 918a ≤< B. 302a << C. 908a << D. 312a ≤<【答案】A【解析】【分析】本题考查了二次函数图象与性质.利用二次函数的性质,抛物线与x 轴有2个交点,开口向上,而且与y 轴的交点不在负半轴上,然后解不等式组即可.【详解】解: 二次函数()2231y ax a x a =+−+−图象经过第一、二、四象限, ()()2Δ23410a a a ∴=−−−>且10a −≥,0a >,解得918a ≤<. 故选:A .12. 如图,在边长为6的正方形ABCD 中,点E ,F 分别是边AB BC ,上的动点,且满足AE BF =,AF 与DE 交于点O ,点M 是DF 的中点,G 是边AB 上的点,2AG GB =,则12OM FG +的最小值是( )A. 4B. 5C. 8D. 10【答案】B【解析】 【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,直角三角形的性质,勾股定理等等,先证明()SAS ADE BAF ≌得到ADE BAE ∠=∠,进而得到90DOF ∠=°,则由直角三角形的性质可得12OM DF =,如图所示,在AB 延长线上截取BH BG =,连接FH ,易证明()SAS FBG FBH ≌,则FH FG =,可得当H 、D 、F 三点共线时,DF HF +有最小值,即此时12OM FG +有最小值,最小值即为DH 的长的一半,求出8AH =,在Rt ADH 中,由勾股定理得10DH ==,责任12OM FG +的最小值为5. 【详解】解:∵四边形ABCD 是正方形,∴90AD AB DAB ABC ===°,∠∠,又∵AE BF =,∴()SAS ADE BAF ≌,∴ADE BAE ∠=∠,∴90DOF ADO DAO BAE DAO DAB =+=+==°∠∠∠∠∠∠,∵点M 是DF 的中点, ∴12OM DF =; 如图所示,在AB 延长线上截取BH BG =,连接FH ,∵90FBG FBH FB FB BG BH ==°==∠∠,,,∴()SAS FBG FBH ≌,∴FH FG =, ∴()11112222OM FG DF HF DF HF +=+=+, ∴当H 、D 、F 三点共线时,DF HF +有最小值,即此时12OM FG +有最小值,最小值即为DH 的长的一半,∵2AG GB =,6AB =,∴2BH BG ==,∴8AH =,在Rt ADH 中,由勾股定理得10DH ==, ∴12OM FG +的最小值为5, 故选:B .第Ⅱ卷(非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4小题,每小题3分,共12分).13. 函数y =中,自变量x 的取值范围是_____.【答案】2x ≥−【解析】∴20x +≥,∴2x ≥−,故答案为2x ≥−.14. 在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是23,则黄球的个数为______. 【答案】3【解析】【分析】此题考查了分式方程的应用,以及概率公式的应用.设黄球的个数为x 个,然后根据概率公式列方程,解此分式方程即可求得答案.【详解】解:设黄球的个数为x 个, 根据题意得:6263x =+, 解得:3x =,经检验,3x =是原分式方程的解,∴黄球的个数为3个.故答案为:3.15. 已知1x ,2x 是一元二次方程2350x x −−=两个实数根,则()212123x x x x −+的值是______.【答案】14【解析】【分析】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形求值.对于一元二次方程,若该方程的两个实数根为1x ,2x ,则12b x x a+=−,12c x x a =.先根据根与系数的关系得到123x x +=,125x x =−,再根据完全平方公式的变形()22212112229x x x x x x +=++=,求出()21229x x −=,由此即可得到答案.【详解】解: 1x ,2x 是一元二次方程2350x x −−=的两个实数根,123x x ∴+=,125x x =−,()22212112229x x x x x x ∴+=++=,∴()2221211221229492029x x x x x x x x −=−+=−=+=,∴()()212123293514x x x x −+=+×−=.故答案为:14.16. 定义:在平面直角坐标系中,将一个图形先向上平移()0a a >个单位,再绕原点按逆时针方向旋转θ角度,这样的图形运动叫做图形的(),a ρθ变换.如:点()2,0A 按照()1,90ρ°变换后得到点A ′的坐标为的()1,2-,则点)1B −按照()2,105ρ°变换后得到点B ′的坐标为______.【答案】( 【解析】【分析】本题考查了解直角三角形,坐标与图形.根据题意,点)1B −向上平移2个单位,得到点)C ,再根据题意将点)C 绕原点按逆时针方向旋转105°,得到2OB OC ′==,45B OD ′∠=°,据此求解即可.【详解】解:根据题意,点)1B −向上平移2个单位,得到点)C ,∴1CE =,OE =∴2OC =,1sin 2CE COE OC ∠==, ∴30COE ∠=°,根据题意,将点)C 绕原点按逆时针方向旋转105°, ∴10530135B OE ′∠=°+°=°,作B D x ′⊥轴于点D ,∴2OB OC ′==,18013545B OD ′∠=°−°=°,∴sin 45B D OD OB ′′==⋅°=,∴点B ′的坐标为(,故答案为:(. 三、本大题共3个小题,每小题6分,共18分.17. )101π20242sin 602− −−°+ . 【答案】3【解析】【分析】本题考查了实数的运算,绝对值,零指数幂,负整数指数幂,特殊角的三角函数值,二次根式的加减运算,准确熟练地进行计算是解题的关键.先化简各式,然后再进行加减计算即可解答.【详解】解:原式122−+,3−+,=3.18. 如图,在ABCD 中,E ,F 是对角线BD 上的点,且DE BF =.求证:12∠=∠.【答案】证明见解析【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到AD CB AD CB =,∥,则ADE CBF ∠=∠,再证明()SAS ADE CBF ≌△△,即可证明12∠=∠.【详解】证明:∵四边形ABCD 是平行四边形,∴AD CB AD CB =,∥,∴ADE CBF ∠=∠,又∵DE BF =,∴()SAS ADE CBF ≌△△,∴12∠=∠.19. 化简:2222y x y x y x x −+−÷. 【答案】x y x y−+ 【解析】【分析】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.先将括号里的通分,再将除法转化为乘法,然后根据完全平方公式和平方差公式整理,最后约分即可得出答案.【详解】解:2222y x y x y x x −+−÷ 22222y x xy x x x y+−⋅− ()()()2x y xx x y x y −⋅+−x y x y−=+ 四、本大题共2个小题,每小题7分,共14分.20. 某地两块试验田中分别栽种了甲、乙两种小麦,为了考察这两种小麦的长势,分别从中随机抽取16株麦苗,测得苗高(单位:cm )如下表.甲 7 8 10 11 11 12 13 13 14 14 14 14 15 16 16 18乙 7 10 13 11 18 12 13 13 10 13 13 14 15 16 11 17将数据整理分析,并绘制成以下不完整的统计表格和频数分布直方图.苗高分组甲种小麦的频数710x ≤<a 1013x ≤< b1316x ≤< 71619x ≤<3小麦种类 甲乙统计量平均数12.875 12.875 众数14 d 中位数c 13 方差 8.65 7.85根据所给出的信息,解决下列问题:(1)=a ______,b =______,并补全乙种小麦的频数分布直方图;(2)c =______,d =______;(3)甲、乙两种小麦的苗高长势比较整齐的是______(填甲或乙);若从栽种乙种小麦的试验田中随机抽取1200株,试估计苗高在1013x ≤<(单位:cm )的株数.【答案】(1)2,4,乙种小麦的频数分布直方图见解析;(2)13,13.5;(3)乙,375.【解析】【分析】本题考查的是数据的整理,画频数分布直方图,众数和中位数的定义,根据方差作决策,用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据题中数据和频数分布直方图的,即可直接得到a 、b ,以及乙种小麦1316x ≤<的株数,再画出频数分布直方图,即可解题;(2)根据众数和中位数的概念,即可解题;(3)可根据方差的意义作出判断,根据统计表和统计图得到乙种小麦苗高在1013x ≤<的所占比,再利用总数乘以其所占比,即可解题.【小问1详解】解:由表可知:甲种小麦苗高在710x ≤<的有7、8,故2a =;甲种小麦苗高在1013x ≤<的有10、11、11、12,故4b =,161537−−−=(株), 补全后的乙种小麦的频数分布直方图如下:故答案为:2,4;【小问2详解】解:由表可知:乙种小麦苗高13cm 最多,为5次,故13d =;将甲种小麦苗高从小到大排列得7、8、10、11、11、12、13、13、14、14、14、14、15、16、16、18,故中位数为131413.52+=,即13.5c =; 故答案为:13.513,;【小问3详解】解: 乙种小麦方差7.85<甲种小麦方差8.65,∴甲、乙两种小麦的苗高长势比较整齐的是乙,由题可知:乙种小麦随机抽取16株麦苗中苗高在1013x ≤<有5株,∴若从栽种乙种小麦的试验田中随机抽取1200株,苗高在1013x ≤<的株数为:5120037516×=(株). 21. 某商场购进A ,B 两种商品,已知购进3件A 商品比购进4件B 商品费用多60元;购进5件A 商品和2件B 商品总费用为620元.(1)求A ,B 两种商品每件进价各为多少元?(2)该商场计划购进A ,B 两种商品共60件,且购进B 商品的件数不少于A 商品件数的2倍.若A 商品按每件150元销售,B 商品按每件80元销售,为满足销售完A ,B 两种商品后获得的总利润不低于1770元,则购进A 商品的件数最多为多少?【答案】(1)A ,B 两种商品每件进价各为100元,60元;(2)购进A 商品的件数最多为20件【解析】【分析】本题主要考查了二元一次方程组的实际应用,一元一次不等式组的实际应用:(1)设A ,B 两种商品每件进价各为x 元,y 元,根据购进3件A 商品比购进4件B 商品费用多60元;购进5件A 商品和2件B 商品总费用为620元列出方程组求解即可;(2)设购进A 商品的件数为m 件,则购进B 商品的件数为()60m −件,根据利润不低于1770元且购进B 商品的件数不少于A 商品件数的2倍列出不等式组求解即可.【小问1详解】解:设A ,B 两种商品每件进价各x 元,y 元,由题意得,346052620x y x y −= +=, 解得10060x y = =, 答:A ,B 两种商品每件进价各为100元,60元;【小问2详解】解:设购进A 商品的件数为m 件,则购进B 商品的件数为()60m −件,由题意得,()()()1501008060601770602m m m m −+−−≥ −≥ ,解得1920m ≤≤,∵m 为整数,∴m 的最大值为20,答:购进A 商品的件数最多为20件.五、本大题共2小题,每小题8分,共16分.22. 如图,海中有一个小岛C ,某渔船在海中的A 点测得小岛C 位于东北方向上,该渔船由西向东航行一段时间后到达B 点,测得小岛C 位于北偏西30°方向上,再沿北偏东60°方向继续航行一段时间后到达D 点,这时测得小岛C 位于北偏西60°方向上.已知A ,C 相距30n mile .求C ,D 间的距离(计算过程中的数据不取近似值).【答案】C ,D间的距离为.【解析】为【分析】本题考查了解直角三角形的应用.作CE AB ⊥于点E ,利用方向角的定义求得45CAE ∠=°,30ECB ∠=°,60ECD ∠=°,证明CAE 是等腰直角三角形,在Rt BCE 中,求得BC 的长,再证明90CBD ∠=°,30DCB ∠=°,在Rt BCD 中,利用三角函数的定义即可求解.【详解】解:作CE AB ⊥于点E ,由题意得904545CAE ∠=°−°=°,30ECB ∠=°,60ECD ∠=°,∴CAE 是等腰直角三角形,∵30AC =,∴cos 45AE CE AC ==⋅°=,在Rt BCE 中,cos30CE BC ==°, 在BCD △中,306090CBD ∠=°+°=°,30DCB ECD ECB ∠=∠−∠=°,在Rt BCD 中,)n mile cos30BC CD ==°,答:C ,D 间的距离为.23. 如图,在平面直角坐标系xOy 中,一次函数y kx b =+与x 轴相交于点()2,0A −,与反比例函数ay x=的图象相交于点()2,3B .(1)求一次函数和反比例函数的解析式;(2)直线()2x m m =>与反比例函数()0a y x x =>和()20y x x =−>的图象分别交于点C ,D ,且2OBC OCD S S =△△,求点C 的坐标.【答案】(1)一次函数解析式为33y x 42=+,反比例函数解析式为6y x= (2)()61C ,【解析】【分析】本题主要考查了一次函数与反比例函数综合,反比例函数与几何综合: (1)利用待定系数法求解即可;(2)先利用反比例函数比例系数的几何意义得到31COF ODF S S ==△△,,进而得到28OBC OCD S S ==△△;再证明3OBE COF S S ==△△,推出8BOC BEFC S S ==△梯形,设6C m m,,则6OF m CF m ==,,求出2OF m =−,可得()63282m m +⋅−=,解方程即可得到答案. 【小问1详解】解:把()2,3B 代入a y x=中得:32a =,解得6a =, ∴反比例函数解析式为6y x=; 把()2,0A −,()2,3B 代入y kx b =+中得:2023k b k b −+= +=, ∴3432k b = =, ∴一次函数解析式为33y x 42=+; 【小问2详解】解:如图所示,过点B 作BE x ⊥轴于E ,设CD 与x 轴交于F , ∵直线()2x m m =>与反比例函数()60y x x =>和()20y x x =−>的图象分别交于点C ,D , ∴11632122COF ODF S S =×==×−= ,, ∴4COD COF DOF S S S =+=△△△,∴28OBC OCD S S ==△△; ∵BE x ⊥轴,点B 在反比例函数()60y x x=>的图象上, ∵3OBE COFS S ==△△, ∵BOC COF BOE OBCF BEFC S S S S S =+=+△△△四边形梯形,∴8BOC BEFCS S ==△梯形, 设6C m m,,则6OF m CF m==,, ∵()23B ,, ∴23OE BE ==,,∴2OF m =−, ∴()63282m m +⋅−=, 解得6m =或23m =−(舍去), 经检验6m =是原方程的解,且符合题意,∴()61C ,.六、本大题共2个小题,每小题12分,共24分.24. 如图,ABC 是O 的内接三角形,AB 是O 的直径,过点B 作O 的切线与AC 的延长线交于点D ,点E 在O 上,AC CE =,CE 交AB 于点F .(1)求证:CAE D ∠=∠;(2)过点C 作CG AB ⊥于点G ,若3OA =,BD =FG 的长.【答案】(1)证明见解析(2)45【解析】【分析】(1)由直径所对的圆周角是直角得到90BCD ∠=°,则90D CBD ∠+∠=°,由切线的性质推出90ABC CBD ,则ABC D ∠=∠,再由同弧所对的圆周角相等和等边对等角得到E ABC ∠=∠,CAE E ∠=∠,据此即可证明CAE D ∠=∠;(2)由勾股定理得AD =,利用等面积法求出BC =,则AC =,同理可得CG =,则4AG =,进而得到2BG =;如图所示,过点C 作CH AE ⊥于H ,则2AE AH =,证明ACB CHA △∽△,求出AH =,则AE =FG x =,则4AF x =+,证明AEF CBF ∽△△,推出CF =,在Rt CGF △中,由勾股定理得(222x +,解方程即可得到答案.【小问1详解】证明:∵AB 是O 的直径, ∴90ACB ∠=°, ∴90BCD ∠=°,∴90D CBD ∠+∠=°;∵BD 是O 的切线,∴90ABD ,∴90ABC CBD ,∴ABC D ∠=∠,∵ AC AC=, ∴E ABC ∠=∠,∵AC CE =,∴CAE E ∠=∠,∴CAE D ∠=∠;【小问2详解】解:∵3OA =,∴26AB OA ==,在Rt △ABD 中,由勾股定理得AD =,∵1122ABD S AB BD AD BC =⋅=⋅△,∴AB BD BC AD ⋅==,∴AC =,同理可得CG =,∴4AG ===,∴2BG =;如图所示,过点C 作CH AE ⊥于H ,则2AE AH =,由(1)可得90ABC CAH ACB CHA ∠=∠∠=∠=°,,∴ACB CHA △∽△,∴AH AC BC AB ==∴AH =,∴AE =设FG x =,则4AF x =+,∵E CBF EAF BCF ==∠∠,∠∠,∴AEF CBF ∽△△,∴CF BC AF AE =,即4CF x =+,∴CF =,在Rt CGF △中,由勾股定理得222CF CG FG =+,∴(222x +, 解得45x =或4x =(舍去), ∴45FG =. 【点睛】本题主要考查了切线的性质,相似三角形的性质与判定,勾股定理,同弧所对的圆周角相等,直径所对的圆周角是直角,等腰三角形的性质等等,正确作出辅助线构造直角三角形和相似三角形是解题的关键.25. 如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx ++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t −≤≤时,y 的取值范围是021y t ≤≤−,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.【答案】(1)223y x x =−++ (2)52t = (3)存在点以B ,C ,D ,E 为顶点四边形是菱形,边长为2或2【解析】【分析】本题考查二次函数的综合应用,菱形的性质,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.(1)待定系数法求出函数解析式即可;(2)分1t ≤和1t >,两种情况,结合二次函数的增减性进行求解即可.的(3)分BD 为菱形的边和菱形的对角线两种情况进行讨论求解即可.【小问1详解】解:∵抛物线23y ax bx ++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称, ∴129330b a a b −= ++=,解得:12a b =− = , ∴223y x x =−++; 【小问2详解】∵抛物线的开口向下,对称轴为直线1x =,∴抛物线上点到对称轴上的距离越远,函数值越小,∵1x t −≤≤时,021y t ≤≤−,①当1t ≤时,则:当x t =时,函数有最大值,即:22123t t t −=−++, 解得:2t =−或2t =,均不符合题意,舍去;②当1t >时,则:当1x =时,函数有最大值,即:2211234t −=−++=, 解得:52t =; 故52t =; 【小问3详解】存在;当2230y x x =−++=时,解得:123,1x x ==−,当0x =时,3y =, ∴()3,0A ,()0,3B ,设直线AB 的解析式为3y kx =+,把()3,0A 代入,得:1k =−, ∴3y x =−+, 设()()2,2303C m m m m −++<<,则:(),3D m m −+, ∴222333CD m m m m m =−+++−=−+,BD =,()22222BC m m m =+−+,当B ,C ,D ,E 为顶点的四边形是菱形时,分两种情况:①当BD 为边时,则:BD CD =,即23m m −+,解得:0m =(舍去)或3m =2−;②当BD 为对角线时,则:BC CD =,即:()()2222223m m m m m +−+=−+, 解得:2m =或0m =(舍去)此时菱形的边长为:22322−+×=;综上:存在以B ,C ,D ,E 为顶点的四边形是菱形,边长为2−或2.。
中考数学试题试卷及答案
中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。
答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。
答案:5或-513. 一个正数的平方根是2,那么这个数是_________。
答案:414. 一个数除以-1/2等于乘以_________。
2024年扬州市中考数学试题及答案
2024年扬州市初中毕业升学考试数学一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.实数2的倒数是()A.2- B.2C.12-D.122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是()A. B. C. D.3.下列运算中正确的是()A.222()a b a b -=-B.523a a a -=C.()235a a = D.236326a a a ⋅=4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力 4.34.44.54.64.74.84.95.0人数7447111053这45名同学视力检查数据的众数是()A.4.6B.4.7C.4.8D.4.95.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是()A.()1,2 B.()1,2- C.()1,2- D.()1,2--6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体7.在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676B.674C.1348D.1350二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为____.10.分解因式:2242a a -+=_____.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于__________(精确到0.01).12.有意义,则x 的取值范围是___.13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为____cm .14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x ,y 轴交于A,B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为_____.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要____分钟.16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为_____cm .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为_____.18.如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B,点C,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E,BH CD ⊥于点H,则当BAH ∠最大时,sin BAH ∠的值为_____.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:0|3|2sin 302)π-+︒--(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪⎩,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<aD 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图(2)这200名学生成绩的中位数会落在________组(填A,B,C,D 或E )(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A,B,C,D,E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______(2)小明和小亮在C,D,E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A,B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1 的度数.25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.(1)求b c 、的值(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠.(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等.(保留作图痕迹,不写作法)(3)在(1),(2)的条件下,若3sin 5A =,12CM =,求BM 的长.27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF 、为边在直线l 同侧作正方形ABCD ,正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =,O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD ,BD ,CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________【一般化探究】(2)如图2,若60ACB ∠=︒,点C ,D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由【拓展性延伸】(3)若ACB α∠=,直接写出AD ,BD ,CD 满足的数量关系.(用含α的式子表示)2024年扬州市初中毕业升学考试数学解析一、选择题.题号12345678答案DCBBDCBD8.【解析】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= 即前2024个数共有674组,且余2个数∴奇数有674221350⨯+=个.故选:D二、填空题.9.【答案】71.8710⨯10.【答案】()221a -11.【答案】0.5312.【答案】2x ≥13.【答案】514.【答案】2x =-15.【答案】2.516.【答案】2017.【答案】18.【答案】13【解析】解:∵两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ∴点B 为定点,AB 的长度为定值∵12l l ∥∴ACE BDE ∠=∠,CAE DBE=∠∠∵AC BD=∴()ASA ACE BDE ≌∴12BE AE AB ==∵BH CD ⊥∴90BHE ∠=︒∴点H 在以BE 为直径的圆上运动如图,取线段BE 的中点O,以点O 为圆心,OB 为半径画圆则点H 在O 上运动∴当AH 与O 相切时BAH ∠最大∴OH AH ⊥∵2AE OB OE ==∴3AO AE OE OE =+=∵OH OE =∴3sin 13OH OE AO O BAH E ==∠=故答案为:13.三、解答题.19.【答案】(1)3π-.(2)11x +20.【答案】132x <≤,整数和为621.【答案】(1)20,条形统计图见详解(2)D(3)300人【小问1详解】5153522105%%%%%a -=---=C 组人数为:20020%40⨯=补全条形统计图如图所示:故答案为:20【小问2详解】055124005%%%%%+=<+51532075505%%%%++=>+∴200名学生成绩的中位数会落在D 组.【小问3详解】120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.22.【答案】(1)15(2)13【小问1详解】解:由题意得从这些景区随机选择1个景区,选中东关街的有1种可能∴选中东关街的概率是15故案䅁为:15【小问2详解】共有9种等可能结果,其中小明和小亮选到相同景区的结果有3种结果∴小明和小亮选到相同景区的概率:3193P ==答:小明和小亮选到相同景区的概率13.23.【答案】B 型机器每天处理60吨【解析】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾根据题意,得50030040x x=+解得60x =.经检验,60x =是所列方程的解.答:B 型机器每天处理60吨.24.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【小问1详解】解:四边形ABCD 是菱形,理由如下如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U 根据题意,四边形EFGH ,四边形MNPQ 是矩形∴////EH FG MQ NP,∴////AB DC AD BC,∴四边形ABCD 是平行四边形∵宽度相等,即AT CU =,且90ATB CUB ABT CBU ∠=∠=︒∠=∠,∴()ATB CUB AAS ≌∴AB CB=∴平行四边形ABCD 是菱形【小问2详解】解:如图所示,过点A 作AR CD ⊥于点R根据题意,2AR cm=∵·8ABCD S CD AR ==四边形∴4CD =由(1)可得四边形ABCD 是菱形∴4AD =在Rt ATD 中,12AR AD =∴130∠=︒.25.【答案】(1)12b c =-=,(2)122434()()P P ---,,,【小问1详解】解:二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点∴42010b c b c --+=⎧⎨-++=⎩解得,12b c =-⎧⎨=⎩∴12b c =-=,【小问2详解】解:由(1)可知二次函数解析式为:22y x x =--+,(2,0)A -,(1,0)B ∴1(2)3AB =--=设(),P m n ∴1·62PAB S AB n == ∴4n =∴4n =±∴当224x x --+=时,1870∆=-=-<,无解,不符合题意,舍去当224x x --+=-时,13x =-,22x =∴122434()()P P ---,,,.26.【答案】(1)作图见详解(2)作图见详解(3)BM =【小问1详解】解:如图所示∴2COQ CAQ∠=∠点O 即为所求【小问2详解】解:如图所示连接BC ,以点B 为圆心,以BC 为半径画弧交AQ 于点1B ,以点1B 为圆心,以任意长为半径画弧交AQ 于点11C D ,,分别以点11C D ,为圆心,以大于1112C D 为半径画弧,交于点1F ,连接11B F 并延长交AP 于点M ∵AB 是直径∴90ACB ∠=︒,即BC AP⊥根据作图可得11111111B C B D C F D F ==,∴1MB AQ ⊥,即190MB B ∠=︒,1MB 是点M 到AQ 的距离∵1BC BB =∴()1Rt BCM Rt BB M HL ≌∴1CM B M=点M 即为所求点的位置【小问3详解】解:如图所示根据作图可得,212COQ CAQ MC MW MC AQ ∠=∠==⊥,,,连接BC ∴在Rt AMW 中,3sin 5WM A AM ==∴55122033WM AM ⨯===∴20128AC AM CM =-=-=∵AB 是直径∴90ACB ∠=︒∴3sin 5BC A AB ==设3BC x =,则5AB x =∴在Rt ABC 中,()()222538x x =+解得,2x =(负值舍去)∴36BC x ==在Rt BCM 中,BM ===.【点睛】本题主要考查尺规作角等于已知角,尺规作垂线,作平行线,勾股定理,锐角三角函数的计算方法等知识的综合,掌握以上知识的综合运用是解题的关键.27.【答案】(1)4或6.(2)12.5.(3).【小问1详解】解:设BM x =,则10ME x =-∵四边形ABCD ,EFGH 是正方形∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒∵90PMN ∠=︒∴90EMH CMB ∠+∠=︒∴BCM EMH∠=∠∴BCM EMH∽∴BC BM EM EH =,即21012x x =-,则210240x x -+=解得:6x =或4x =∴6BM =或4BM =【小问2详解】设BM x =,则10ME x=-∵四边形ABCD ,EFGH 是正方形∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒∵90PMN ∠=︒∴90EMH CMB ∠+∠=︒∴BCM EMH∠=∠∴BCM EMH∽∴BC BM EM EH =,即210x x HE =-∴()22115512.522HE x x x =-+=--+当5BM =时,HE 有最大,最大值为12.5【小问3详解】连接FH∵四边形EFGH 是正方形∴45HFE ∠=︒即点H 在对角线FH 所在直线上运动如图,作B 关于FH 的对称点B ',连接B C ',过C 作CQ FG ⊥于点Q ∴'BF B F =,四边形BFQC 为矩形则点'B G Q 、、三点共线,2BC FQ ==,22CQ BF ==∴'22B F FB ==∴''20B Q B F FQ =-=∵90CMH ∠= ,点O 是CH 的中点∴12OM CH =∴2OM HB CH HB+=+∴当C H B '、、三点共线时,CH HB +有最小值B C '∴在Rt 'CB Q 中,由勾股定理得:2222'2220884221B C CQ B Q '=+=+==∴2OM HB +的最小值为2221故答案为:2221.28.【答案】(1)AD BD CD -=.(2)AD BD CD -=(3)当D 在 BC上时,2sin 2CD AD BD α⋅=-.当D 在 AB 上时,2sin 2CD AD BD α⋅=+【解析】解:∵CA CB =,60ACB ∠=︒∴ABC 是等边三角形,则60CAB ∠=︒∵O 是ABC 的外接圆∴AD 是BAC ∠的角平分线,则30DAB ∠=︒∴AD BC⊥∵四边形ACDB 是圆内接四边形∴120CDB ∠=︒∴30DCB DBC ∠=∠=︒设,AD BC 交于点E ,则BE CE =设1BD =,则1CD BD ==在Rt BDE △中∴33cos3022BE BD BD =︒⋅==∴3BC =∵AD 是直径,则90ABD Ð=°在Rt △ABD 中,2AD BD =2=∴211AD BD -=-=∴AD BD CD-=(2)如图所示,在AD 上截取DF BD=∵ AB AB=∴60ADB ACB ∠=∠=︒∴DBF 是等边三角形∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形∴120CDB ∠=︒∴AFB CDB∠=∠∵CA CB =,60ACB ∠=︒∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC=又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD=∴AD BD AD DF AF CD -=-==即AD BD CD-=(3)解:①如图所示,当D 在 BC上时在AD 上截取DE BD=∵ AB AB=∴ACB ADB Ð=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD ∠=∠∴AB BC EB BD =即AB EB BC BD =又∵ABC EBD ∠=∠∴ABE CBD ∠=∠∴ABE CBD V V ∽∴AE AB BE CD BC BD ==∵AE AD DE AD BD =-=-∴AD BD AB CD BC -=如图所示,作CF AB ⊥于点F在Rt BCF 中,1122BCF BAC α∠=∠=∴sin 2BC BF α⋅=∴2sin 2AB BC α=⋅∴2sin 2AD BD CD α-=,即2sin 2CD AD BD α⋅=-②当D 在 AB 上时,如图所示,延长BD 至G ,使得DG DA =,连接AG∵四边形ACDB 是圆内接四边形∴180GAD ACB ADB ∠=∠=︒-∠又∵,CA CB DG DA==∴CAB DAG ∽,则CAB DAG ∠=∠∴AC AB AD AG =即AC AD AB AG=又∵CAB DAG ∠=∠∴CAD BAG ∠=∠∴CAD BAG∽∴CD AC BG AB=∵BG BD DG BD AD=+=+同①可得2sin2AB AC α=⋅∴2sin 2CD AC AC BD AD AB AC α==+⋅∴2sin 2CD AD BD α⋅=+综上所述,当D 在 BC 上时,2sin 2CD AD BD α⋅=-.当D 在 AB 上时,2sin 2CD AD BD α⋅=+.。
2024年湖北武汉中考数学试题及答案
2024年湖北武汉中考数学试题及答案亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B 铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A . B. C. D. 2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A. B. C. D.4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近亿元,同比增长300000,国家高质量发展取得新成效.将数据用科学记数法表示是( )5.3%300000A. B. C. D.50.310⨯60.310⨯5310⨯6310⨯5. 下列计算正确的是( )A. B. C. D. 236a a a ⋅=()1432a a =()2236a a =()2211a a +=+6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D.7. 小美同学按如下步骤作四边形:①画;②以点为圆心,个单位长为半径画弧,分ABCD MAN ∠A 1别交,于点,;③分别以点,为圆心,个单位长为半径画弧,两弧交于点;④连接AM AN B D B D 1C ,,.若,则的大小是( )BC CD BD 44A ∠=︒CBD ∠A. B. C. D.64︒66︒68︒70︒8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A. B. C. D. 191349599. 如图,四边形内接于,,,,则ABCD O 60ABC ∠=︒45BAC CAD ∠=∠=︒2AB AD +=O 的半径是( )10. 如图,小好同学用计算机软件绘制函数的图象,发现它关于点中心对32331y x x x =-+-()1,0称.若点,,,……,,都在函数图象上,()110.1,A y ()220.2,A y ()330.3,A y ()19191.9,A y ()20202,A y 这个点的横坐标从开始依次增加,则的值是( )200.10.11231920y y y y y +++++A. B. C. 0 D. 11-0.729-二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上记作,则3℃3+℃零下记作_________.2℃℃12. 某反比例函数具有下列性质:当时,y 随x 的增大而减小,写出一个满足条件的k 的值是k y x =0x >__________.13. 分式方程的解是______. 131x x x x +=--14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼的高度,具体过程如下:如图,将无人机垂直上升至距水平地面的C AB 102m 处,测得黄鹤楼顶端A 的俯角为,底端B 的俯角为,则测得黄鹤楼的高度是__________m .(参考45︒63︒数据:)tan632︒≈15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.直线交正方形的两边于点,,MNPQ ABCD MP ABCD E F 记正方形的面积为,正方形的面积为.若,则用含的式子表示ABCD 1S MNPQ 2S (1)BE kAE k =>k的值是___________.12S S16. 抛物线(a ,b ,c 是常数,)经过,两点,且.下列四个2y ax bx c =++0a <()1,1-(),1m 01m <<结论:①;0b >②若,则;01x <<()()2111a x b x c -+-+>③若,则关于x 的一元二次方程 无实数解;1a =-22ax bx c ++=④点,在抛物线上,若,,总有,则. ()11,A x y ()22,B x y 1212x x +>-12x x >12y y <102m <≤其中正确的是__________(填写序号).三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组的整数解. 3121x x x +>⎧⎨-≤⎩①②18. 如图,在中,点,分别在边,上,.ABCD Y E F BC AD AF CE =(1)求证:;C ABE DF ≌△△(2)连接.请添加一个与线段相关的条件,使四边形是平行四边形.(不需要说明理由)EF ABEF 19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮次,投中一次计分.随机抽取名学生的成绩作为样本,将收集的数据整理并绘制成如41m 下的统计图表.测试成绩频数分布表 成绩/分 频数4 123 a 2151 b 06根据以上信息,解答下列问题:(1)直接写出,的值和样本的众数;m n (2)若该校九年级有名学生参加测试,估计得分超过分的学生人数.900220. 如图,为等腰三角形,是底边的中点,腰与半圆相切于点,底边与半圆ABC O BC AC O D BC O 交于,两点.E F(1)求证:与半圆相切;AB O (2)连接.若,,求的值.OA 4CD =2CF =sin OAC ∠21. 如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.三个顶点都是格点.仅用34⨯ABC 无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线交于点D ,使平分的面积;AD BC AD ABC (2)在(1)的基础上,在射线上画点E ,使;AD ECB ACB ∠=∠(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转到点C ,再画射线交于点G ;90︒AF BC (4)在(3)的基础上,将线段绕点G 旋转,画对应线段(点A 与点M 对应,点B 与点N AB 180︒MN 对应).22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线和直线.其中,当火箭运行的水平距离为2y ax x =+12y x b =-+9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为.3.6km ①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低,求这两个位置之间的距离.1.35km (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过.15km 23. 问题背景:如图(1),在矩形中,点,分别是,的中点,连接,,求ABCD E F AB BC BD EF 证:.BCD FBE ∽△△问题探究:如图(2),在四边形中,,,点是的中点,点在边ABCD AD BC ∥90BCD ∠=︒E AB F 上,,与交于点,求证:.BC 2AD CF =EF BD G BG FG =问题拓展:如图(3),在“问题探究”的条件下,连接,,,直接写出的AG AD CD =AG FG =EG GF值.24. 抛物线交轴于,两点(在的右边),交轴于点. 215222y x x =+-x A B A B y C(1)直接写出点,,的坐标;A B C (2)如图(1),连接,,过第三象限的抛物线上的点作直线,交y 轴于点.若AC BC P PQ AC ∥Q 平分线段,求点的坐标;BC PQ P (3)如图(2),点与原点关于点对称,过原点的直线交抛物线于,两点(点在轴下D O C EF E F E x 方),线段交抛物线于另一点,连接.若,求直线的解析式.DE G FG 90EGF ∠=︒DE2024年武汉市初中毕业生学业考试数学试卷亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】D【答案】A【10题答案】【答案】D二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.【11题答案】【答案】2-【12题答案】【答案】1(答案不唯一)【13题答案】【答案】3x =-【14题答案】【答案】51【15题答案】 【答案】 221(1)k k +-【16题答案】【答案】②③④三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.【17题答案】【答案】整数解为:1,0,1-【18题答案】【答案】(1)见解析 (2)添加(答案不唯一)AF BE =【19题答案】【答案】(1),,众数为分60m =15n =3(2)该校九年级有名学生参加测试,估计得分超过分的学生人数为人9002450【20题答案】【答案】(1)见解析 (2) 45【答案】(1)作图见解析(2)作图见解析 (3)作图见解析(4)作图见解析【22题答案】【答案】(1)①,;② 115a =-8.1b =8.4km (2) 2027a -<<【23题答案】【答案】 【24题答案】【答案】(1),, ()1,0A ()5,0B -50,2C ⎛⎫- ⎪⎝⎭(2) 92,2P ⎛⎫--⎪⎝⎭(3) 152y x =--。
初二中考数学试题及答案
初二中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 0.5答案:B2. 一个等腰三角形的两边长分别为4和6,那么第三边的长度是?A. 2B. 4C. 6D. 10答案:C3. 以下哪个表达式等于x² - 4x + 4?A. (x - 2)²B. (x + 2)²C. (x - 4)²D. (x + 4)²答案:A4. 如果一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A5. 一个正比例函数y = kx的图象经过点(2, 6),那么k的值是?A. 3B. 1.5C. 2D. 0.5答案:A6. 一个二次函数y = ax² + bx + c的顶点坐标是(-1, 4),那么a的值是?A. 1B. -1C. 2D. -2答案:B7. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D8. 一个圆的半径为5,那么它的面积是?A. 25πB. 50πC. 75πD. 100π答案:C9. 一个扇形的圆心角为60°,半径为6,那么它的面积是?A. 18πB. 9πC. 6πD. 3π答案:B10. 下列哪个选项是正确的?A. 2x + 3y = 5是二元一次方程B. x² - 4x + 4 = 0是一元二次方程C. 3x - 2 = 0是一元一次方程D. 3x² - 2x + 1 = 0是一元一次方程答案:C二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是____。
答案:512. 一个数的绝对值是8,那么这个数可以是____或____。
答案:8或-813. 一个二次函数y = ax² + bx + c的图象开口向上,那么a的取值范围是____。
初中数学中考试题及答案
初中数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 3 - 2B. 2 - 3C. 4 - 1D. 5 - 53. 哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 44. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是5. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd6. 一个三角形的两边长分别为3cm和4cm,第三边的长度范围是?A. 1cm到7cmB. 1cm到5cmC. 3cm到7cmD. 3cm到5cm7. 下列哪个选项是不等式3x - 5 > 2的解?A. x > 2B. x < 2C. x > 3D. x < 38. 计算下列哪个表达式的结果为0?A. 5 + (-5)B. 5 - (-5)C. 5 × (-5)D. 5 ÷ (-5)9. 一个直角三角形的两个直角边长分别为3cm和4cm,斜边的长度是?A. 5cmB. 6cmC. 7cmD. 8cm10. 一个数的立方是-8,这个数是?A. 2B. -2D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。
12. 一个数除以-2等于3,这个数是______。
13. 一个数的相反数是-4,这个数是______。
14. 一个数的倒数是2,这个数是______。
15. 一个数的平方根是3,这个数是______。
三、解答题(每题5分,共55分)16. 计算表达式:(-3) × (-2) + 4 ÷ 2。
17. 解方程:5x - 3 = 2x + 8。
18. 计算一个数的平方,如果这个数是-4。
19. 一个长方形的长是6cm,宽是4cm,求它的周长和面积。
2024年北京市中考数学试题(含答案解析)
2.【答案】B
【详解】解:∵ ,
∴ ,
∵ , ,
∴ ,
3.【答案】C
【详解】解:A、由数轴可知 ,故本选项不符合题意;
B、由数轴可知 ,由绝对值的意义知 ,故本选项不符合题意;
C、由数轴可知 ,而 ,则 ,故 ,故本选项符合题意;
D、由数轴可知 ,而 ,因此 ,故本选项不符合题意.
(1)当 时,求抛物线的顶点坐标;
(2)已知 和 是抛物线上的两点.若对于 , ,都有 ,求 的取值范围.
27.已知 ,点 , 分别在射线 , 上,将线段 绕点 顺时针旋转 得到线段 ,过点 作 的垂线交射线 于点 .
(1)如图1,当点 在射线 上时,求证: 是 的中点;
(2)如图2,当点 在 内部时,作 ,交射线 于点 ,用等式表示线段 与 的数量关系,并证明。
7.下面是“作一个角使其等于 ”的尺规作图方法.
(1)如图,以点 为圆心,任意长为半径画弧,分别交 , 于点 , ;
(2)作射线 ,以点 为圆心, 长为半径画弧,交 于点 ;以点 为圆心, 长为半径画弧,两弧交于点 ;
(3)过点 作射线 ,则 .
上述方法通过判定 得到 ,其中判定 的依据是()
A.三边分别相等的两个三角形全等
评委1
评委2
评委3
评委4
评委5
甲
乙
丙
若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是____________,表中 ( 为整数)的值为____________.
24.如图, 是 的直径,点 , 在 上, 平分 .
(1)求证: ;
(2)延长 交 于点 ,连接 交 于点 ,过点 作 的切线交 的延长线于点 .若 , ,求 半径的长.
2024年四川省乐山市中考数学真题卷及答案解析
乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1. 不等式20x -<的解集是( )A. 2x <B. 2x >C. <2x -D. 2x >-2. 下列文物中,俯视图是四边形的是( )A. 带盖玉柱形器B. 白衣彩陶钵C. 镂空人面覆盆陶器D. 青铜大方鼎3. 2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A. 8410⨯B. 9410⨯C. 10410⨯D. 11410⨯4. 下列多边形中,内角和最小的是( )A. B. C. D.5. 为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )交通方式公交车自行车步行私家车其它人数(人)3051582A. 100B. 200C. 300D. 4006. 下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ,AB CD AD BC∥∥ B. ,AB CD AD BC ==C. ,OA OC OB OD== D. ,AB CD AD BC =∥7. 已知12x <<2x +-的结果为( )A. 1- B. 1 C. 23x - D. 32x-8. 若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A. 23- B. 23 C. 6- D. 69. 已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A. 02t <≤B. 04t <≤C. 24t ≤≤D. 2t ≥10. 如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B点运动到C 点时,点M 的运动路径长为( )A.B.C. D.第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:2a a +=______.12. 一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.13. 如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=______.14. 已知3a b -=,10ab =,则22a b +=______.15. 如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AOD BOCS S =△△______.16. 定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数图象上存在“近轴点”的是______(填序号);①3y x =-+;②2y x=;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.的17. 计算:()03π2024-+-.18. 解方程组:4{25x y x y +=-=19. 知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20. 先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.21. 乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.22. 如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.23. 我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA的长度;的(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.24. 如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.25. 在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.26. 在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 长.解:如图2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连结ED '.的由旋转特征得BAD CAD '∠=∠,B ACD ∠=∠',AD AD =',BD CD '=.∵90BAC ∠=︒,45DAE =︒∠,∴45BAD EAC ∠+∠=︒.∵BAD CAD '∠=∠,∴45CAD EAC '∠+∠=︒,即45EAD '∠=︒.∴DAE D AE '∠=∠.在DAE 和D AE ' 中,AD AD =',DAE D AE '∠=∠,AE AE =,∴___①___.∴DE D E '=.又∵90ECD ECA ACD ECA B ''︒∠=∠+∠=∠+∠=,∴在Rt ECD '△中,___②___.∵3CD BD '==,4CE =,∴DE D E '==___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.知识迁移】如图3,在正方形ABCD 中,点E 、F 分别在边BC CD 、上,满足CEF △的周长等于正方形ABCD 的周长的一半,连结AE AF 、,分别与对角线BD 交于M 、N 两点.探究BM MN DN 、、的数量关的【系并证明.【拓展应用】如图4,在矩形ABCD 中,点E 、F 分别在边BC CD 、上,且45EAF CEF ∠=∠=︒.探究BE EF DF 、、的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 、E 在边AC 上,且45DBE ∠=︒.设AD x =,CE y =,求y 与x 的函数关系式.乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1. 不等式20x -<的解集是( )A. 2x <B. 2x >C. <2x -D. 2x >-【答案】A【解析】【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键.移项可得一元一次不等式的解集.【详解】解:20x -<,解得,2x <,故选:A .2. 下列文物中,俯视图是四边形的是( )A 带盖玉柱形器 B. 白衣彩陶钵C. 镂空人面覆盆陶器D. 青铜大方鼎【答案】D【解析】【分析】本题考查简单几何体的三视图,掌握简单几何体三视图的形状是正确判断的前提.得出各个选项中的几何体的俯视图即可.【详解】解:A .俯视图是圆形,因此选项A 不符合题意;.B .俯视图不是四边形,因此选项B 不符合题意;C .俯视图不是四边形,因此选项C 不符合题意;D .俯视图是正方形,因此选项D 符合题意;故选:D .3. 2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A. 8410⨯ B. 9410⨯ C. 10410⨯ D. 11410⨯【答案】C【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:40000000000大于1,用科学记数法表示为10n a ⨯,其中4a =,10n =, ∴40000000000用科学记数法表示为10410⨯,故选:C .4. 下列多边形中,内角和最小的是( )A.B. C. D. 【答案】A【解析】【分析】边数为n 的多边形的内角和()2180n =-⨯︒,分别求出三角形,四边形,五边形,六边形的内角和,即可得到.【详解】解:三角形的内角和等于180︒四边形的内角和等于360︒五边形的内角和等于()52180540-⨯︒=︒六边形的内角和等于()62180720-⨯︒=︒所以三角形的内角和最小故选:A .【点睛】本题考查了多边形的内角和,能熟记边数为n 的多边形的内角和()2180n =-⨯︒是解此题的关键.5. 为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )交通方式公交车自行车步行私家车其它人数(人)3051582A. 100B. 200C. 300D. 400【答案】D【解析】【分析】本题主要考查了用样本估计总体,用学校总人数乘样本中乘坐公交车上学的人数的比例,即可得出答案.【详解】解:估计该年级学生乘坐公交车上学的人数为:3080040060⨯=(人),故选:D .6. 下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ,AB CD AD BC∥∥ B. ,AB CD AD BC ==C. ,OA OC OB OD== D. ,AB CD AD BC=∥【答案】D【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A 、∵,AB CD AD BC ∥∥,∴四边形ABCD 是平行四边形,故此选项不合题意;B 、∵,AB CD AD BC ==,∴四边形ABCD 是平行四边形,故此选项不合题意;C 、∵,OA OC OB OD ==,∴四边形ABCD 平行四边形,故此选项不合题意;D 、∵,AB CD AD BC =∥,不能得出四边形ABCD 是平行四边形,故此选项符合题意;故选:D .【点睛】此题主要考查平行四边形的判定,解题的关键是熟知平行四边形的判定定理.7. 已知12x <<2x +-的结果为( )A. 1- B. 1 C. 23x - D. 32x -【答案】B 【解析】【分析】本题考查了二次根式的性质,去绝对值,熟练掌握知识点是解题的关键.a =化简二次根式,然后再根据12x <<去绝对值即可.212x x x +-=-+-, ∵12x <<,∴10,20x x ->-<,∴12121x x x x ----==++,21x +-=,故选:B .8. 若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A. 23- B. 23 C. 6- D. 6【答案】A【解析】【分析】本题考查了一元二次方程20(0)ax bx c a ++=≠根与系数的关系:若方程的两实数根为12,x x ,则1212,b x x x x a+=-⋅c a =.根据一元二次方程20(0)ax bx c a ++=≠根与系数的关系得到121222,1x x x x p +=-=-⋅=,然后通是分,11x +1221212x x x x x p+-==,从而得到关于p 的方程,解方程即可.【详解】解:121222,1x x x x p +=-=-⋅=Q ,121212112x x x x x x p+-∴+==,而12113x x +=,23p-∴=,23p ∴=-,故选:A .9. 已知二次函数()2211y x x x t =--≤≤-,当=1x -时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A. 02t <≤ B. 04t <≤ C. 24t ≤≤ D. 2t ≥【答案】C【解析】【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由()22211y x x x =-=--,可知图象开口向上,对称轴为直线1x =,顶点坐标为()11-,,当=1x -时,3y =,即()13-,关于对称轴对称的点坐标为()33,,由当=1x -时,函数取得最大值;当1x =时,函数取得最小值,可得113t ≤-≤,计算求解,然后作答即可.【详解】解:∵()22211y x x x =-=--,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11-,,当=1x -时,3y =,∴()13-,关于对称轴对称的点坐标为()33,,∵当=1x -时,函数取得最大值;当1x =时,函数取得最小值,∴113t ≤-≤,解得,24t ≤≤,故选:C .10. 如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为( )A. B. C. D. 【答案】B【解析】【分析】该题主要考查了菱形的性质,垂直平分线的性质和判定,全等三角形的性质和判定等知识点,解题的关键是掌握以上点M 的运动路径.过点C 作CH AD ⊥交AD 于点H ,根据60ABC ∠=︒,四边形ABCD 是菱形,1AB =,算出1DH =,得出AH DH =,CH 垂直平分AD ,再证明PCM QCM V V ≌,得出PM MQ =,证明CM 垂直平分PQ ,点M 在CH 上运动,根据解直角三角形 tan 30CM BC '=⋅︒=.即可求解.【详解】解:过点C 作CH AD ⊥交AD 于点H ,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴60ADC ∠=︒,1CD BC AB ===,∴30DCH ∠=︒,∴112DH CD ==,∴1AH AD DH =-=,∴AH DH =,∴CH 垂直平分AD ,∵点P 和点Q 关于点C 对称,∴PC QC =,∵90,PCM QCM CM CM ∠=∠=︒=,∴()PCM QCM SAS ≌,∴PM MQ =,∴CM 垂直平分PQ ,∴点M 在CH 上运动,当点P 与点B 重合时,点M 位于点M ',此时,∵60ABC ∠=︒,四边形ABCD 是菱形,1AB =,∴1302M BC ABC '∠=∠=︒,1BC =∴tan 30CM BC '=⋅︒=.故点M 的运动路径长为CM '=故选:B .第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:2a a +=______.【答案】3a【解析】【分析】直接利用合并同类项法则计算得出答案.【详解】23a a a +=.故答案为:3a .【点睛】本题主要考查了合并同类项,正确把握运算法则是解题关键.12. 一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是______.【答案】66【解析】【分析】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.先将数据从小到大重新排列,根据中位数的概念求解可得.【详解】解:将这组数据重新排列为57,58,66,69,71,所以这组数据的中位数为66.故答案为:66.13. 如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=______.【答案】120︒##120度【解析】【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥ ,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒-︒=︒,故答案:120︒.14. 已知3a b -=,10ab =,则22a b +=______.【答案】29【解析】【分析】本题考查了完全平方公式的变形.熟练掌握完全平方公式的变形是解题的关键.根据()2222a b a b ab +=-+,计算求解即可.【详解】解:由题意知,()22222321029a b a b ab +=-+=+⨯=,故答案为:29.15. 如图,在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AOD BOCS S =△△______.【答案】19【解析】【分析】本题考查了平行线间的距离,相似三角形的判定与性质等知识.熟练掌握平行线间的距离,相似三角形的判定与性质是解题的关键.为设AD BC ,的距离为d ,则112132ABDBCD AD d S S BC d ⋅==⋅△△,即13AD BC =,证明AOD COB ∽,则2AOD BOC S AD S BC ⎛⎫= ⎪⎝⎭△△,计算求解即可.【详解】解:设AD BC ,的距离为d ,∴112132ABD BCD AD d S S BC d ⋅==⋅△△,即13AD BC =,∵AD BC ∥,∴ADO CBO ∠=∠,DAO BCO ∠=∠,∴AOD COB ∽,∴221139AOD BOC S S AD BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V ,故答案为:19.16. 定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是______(填序号);①3y x =-+;②2y x=;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为______.【答案】①. ③ ②. 102m -≤<或102m <≤【解析】【分析】本题主要考查了新定义——“近轴点”.熟练掌握新定义,一次函数,反比例函数,二次函数图象上的点到坐标轴距特点,是解决问题的关键.(1)①3y x =-+中,取 1.5x y ==,不存在“近轴点”;②2y x=,由对称性,取x y ==,不存在“近轴点”;③()22211y x x x =-+-=--,取1x =时,0y =,得到()1,0是221y x x =-+-的“近轴点”;(2)()33y mx m m x =-=-图象恒过点()3,0,当直线过()1,1-时, 12m =,得到102m <≤;当直线过()1,1时,12m =-,得到102m -≤<.【详解】(1)①3y x =-+中,1.5x =时, 1.5y =,不存在“近轴点”;②2y x =,由对称性,当x y =时,x y ==,不存在“近轴点”;③()22211y x x x =-+-=--,1x =时,0y =,∴()1,0是221y x x =-+-的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:()03π2024-+-.【答案】1【解析】【分析】本题考查了绝对值,零指数幂,算术平方根.熟练掌握绝对值,零指数幂,算术平方根是解题的关键.先分别计算绝对值,零指数幂,算术平方根,然后进行加减运算即可.【详解】解:()03π2024-+--313=+-1=.18. 解方程组:4{25x y x y +=-=【答案】详见解析【解析】【分析】用加减消元法把二元一次方程转化成一元一次方程.【详解】解:①+②,得39x =.解得3x =.把3x =代入②,得1y =.∴原方程组的解是31x y =⎧⎨=⎩,.19. 知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【解析】【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20. 先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.【答案】(1)③(2)12x +,15【解析】【分析】本题考查了分式的化简求值,异分母的分式减法运算,熟练掌握知识点是解题的关键.(1)第③步分子相减时,去括号变号不彻底;(2)先通分,再进行分子相减,化为最简分式后,再代入求值即可.【小问1详解】解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;【小问2详解】解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-()()2222x x x x --=+-()()222x x x -=+-12x =+当3x =时,原式15=21. 乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为______人,扇形统计图中m 的值为______;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.【答案】(1)240,35(2)见详解(3)16【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考音了统计图.(1)根据:该项所占百分比=该项人数÷总人数.两图给出了“跷脚牛肉”的数据,代入即可算出抽取的游客总人数,然后再算出“钵钵鸡”的人数;(2)根据条形图中数据和调查总人数,先计算出喜欢“甜皮鸭”的人数,再补全条形图;(3)画树状图展示所有12种等可能的结果数,找出恰好同时抽到“钵钵鸡和跷脚牛肉”“钵钵鸡和跷脚牛肉”的结果数,然后根据概率公式求解.【小问1详解】解:本次抽取的游客总人数为7230%240÷=(人),84100%35%240m =⨯=,故答案为:240,35;【小问2详解】“甜皮鸭”对应的人数为240(487284)36-++=(人),补全图形如下:的【小问3详解】假设“麻辣烫”“跷脚牛肉”“钵钵鸡”“甜皮鸭”对应为“A 、B 、C 、D ”,画树状图如图所示,共有12种等可能的结果数,其中抽到“钵钵鸡和跷脚牛肉”题目的结果数为2,∴抽到“钵钵鸡和跷脚牛肉”的概率是21126=.22. 如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 【解析】【分析】(1)根据点()1,A m 、(),1B n 在反比例函数3y x=图象上,代入即可求得m 、n 的值;根据一次函数y kx b =+过点()1,3A ,()0,1C ,代入求得k ,b ,即可得到表达式;(2)连结BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CEAB ⊥,垂足为点E ,可推出 BC x ∥轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据1122ABC S BC AD AB CE =⋅=⋅ ,计算得CE 的长度,即为点C 到线段AB 的距离.【小问1详解】点()1,A m 、(),1B n 在反比例函数3y x =图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩解得:21k b =⎧⎨=⎩∴一次函数表达式为:21y x =+;【小问2详解】如图,连结BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E()0,1C ,()3,1B ∴BC x ∥轴,3BC = 点()1,3A ,()3,1B ,AD BC⊥∴点()1,1D ,2AD =,2DB =在Rt ADB 中,AB ==又 1122ABC S BC AD AB CE=⋅=⋅即113222CE⨯⨯=⨯∴CE =,即点C 到线段AB 【点睛】本题考查了求反比例函数值,待定系数法求一次函数表达式,勾股定理,与三角形高有关的计算,熟练掌握以上知识点并作出适当的辅助线是解题的关键.23. 我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.【答案】(1)秋千绳索的长度为14.5尺(2)能,cos cos h OA βα=-【解析】【分析】该题主要考查了勾股定理的应用以及解直角三角形的应用,解题的关键是掌握以上知识点.(1)如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,得出4OB x =-.在Rt OA B '△中,由勾股定理解得14.5x =,即可求解;(2)由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,得出cos OP OA α=⋅,同理,cos OQ OA β=⋅.再根据OQ OP h -=,列等式即可求出OA .【小问1详解】解:如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,∴4OB OA AB x =-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=∴()222104x x +-=.解得14.5x =.答:秋千绳索的长度为14.5尺.【小问2详解】能.由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅,同理,cos cos OQ OA OA ββ''=⋅=⋅.∵OQ OP h -=,∴cos cos OA OA h βα⋅-⋅=.∴cos cos h OA βα=-.24. 如图,O 是ABC 的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE ∥;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.【答案】(1)见解析(2)3π-【解析】【分析】(1)如图1,连结OC .则90OCD ∠=︒,即90DCA OCA ∠+∠=︒.由AB 为直径,可得90ACB ∠=︒,即190OCA ∠+∠=︒.则1DCA ∠=∠.由OC OB =,可得12∠=∠.由 AC CE=,可得23∠∠=.则3DCA ∠=∠.进而可证DC AE ∥.(2)如图2,连结OE BE 、.由EF 垂直平分OB ,可得OE BE =.则OEB 为等边三角形.60BOE ∠=︒,120AOE ∠=︒.由OA OE =,可得30OAE OEA ∠=∠=︒.由DC AE ∥,可得30D OAE ∠=∠=︒.60DOC ∠=︒.证明AOC 为等边三角形.则60OCA ∠=︒,OA OC AC ==.30DCA ∠=︒.则D DCA ∠=∠.3DA AC OA OC OE =====.sin 60EF OE =⋅︒.12OAE S AO EF =⋅△.2120π3360OAE S ⨯=扇形,根据OAE OAE S S S =-阴影扇形△,计算求解即可.【小问1详解】证明:如图1,连结OC .图1∵CD 为O 的切线,∴90OCD ∠=︒,即90DCA OCA ∠+∠=︒.又∵AB 为直径,∴90ACB ∠=︒,即190OCA ∠+∠=︒.∴1DCA ∠=∠.∵OC OB =,∴12∠=∠.∵ AC CE =,∴23∠∠=.∴3DCA ∠=∠.∴DC AE ∥.【小问2详解】解:如图2,连结OE BE 、.图2∵EF 垂直平分OB ,∴OE BE =.又∵OE OB =,∴OEB 为等边三角形.∴60BOE ∠=︒,120AOE ∠=︒.∵OA OE =,∴30OAE OEA ∠=∠=︒.∵DC AE ∥,∴30D OAE ∠=∠=︒.又∵90OCD ∠=︒,∴60DOC ∠=︒.∵OA OC =,∴AOC 为等边三角形.∴60OCA ∠=︒,OA OC AC ==.∴30DCA ∠=︒.∴D DCA ∠=∠.∴3DA AC OA OC OE =====.∴sin 60EF OE =⋅︒=∴12OAE S AO EF =⋅=△.又∵2120π33π360OAE S ⨯==扇形,∴3πOAE OAE S S S =-=阴影扇形△∴阴影部分的面积为3π-【点睛】本题考查了切线的性质,直径所对的圆周角为直角,同弧或等弧所对的圆周角相等,平行线的判定与性质,等边三角形的判定与性质,垂直平分线的性质,正弦,扇形面积等知识.熟练掌握切线的性质,直径所对的圆周角为直角,同弧或等弧所对的圆周角相等,平行线的判定与性质,等边三角形的判定与性质,垂直平分线的性质,正弦,扇形面积是解题的关键.25. 在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .的(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.【答案】(1)()1,1(2)3522a ≤< (3)2152a <≤【解析】【分析】本题考查二次函数的图象与系数的关系,二次函数图象上点的特征.数形结合解题是解题的关键.(1)把1a =代入后再将抛物线化成顶点式为()222211y x x x =-+=-+,即可求顶点坐标;(2)根据整点个数的范围确定点A 纵坐标的范围;(3)结合图象确定有4个“完美点”时a 的最大和最小值,进而确定a 的范围.【小问1详解】解:当1a =时,抛物线()222211y x x x =-+=-+.∴顶点坐标()1,1.【小问2详解】令0x =,则2y a =,∴()0,2A a ,∵线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.∵0a >,∴当“完美点”个数为4个时,分别为()0,0,()0,1,()0,2,()0,3;当“完美点”个数为5个时,分别为()0,0,()0,1,()0,2,()0,3,()0,4.∴325a ≤<.∴a 的取值范围是3522a ≤<.【小问3详解】根据()22221y ax ax a a x a =-+=-+,得抛物线的顶点坐标为()1,a ,过点()2,2P a ,()3,5Q a ,()4,10R a .∵抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,显然,“完美点”()1,1,()2,2,()3,3符合题意.下面讨论抛物线经过()2,1,()3,2的两种情况:①当抛物线经过()2,1时,解得12a =此时,()2,1P ,53,2Q ⎛⎫ ⎪⎝⎭,()4,5R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,3,共4个.②当抛物线经过()3,2时,解得25a =此时,42,5P ⎛⎫ ⎪⎝⎭,()3,2Q ,()4,4R .如图所示,满足题意的“完美点”有()1,1,()2,1,()2,2,()3,2,()3,3,()4,4,共6个.∴a 的取值范围是2152a <≤.26. 在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE =︒∠,3BD =,4CE =,求DE 的长.。
2024年江苏省常州市中考数学试题(含答案及解析)
常州市二○二四年初中学业水平考试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生应将答案全部填写在答题卡相应的位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试号填写在试卷上,并填写好答题卡上的考生信息.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2024−的绝对值是( )A.12024− B. 12024 C.2024 D.2024−2.有意义,则x 可取的值是( )A 1− B.0 C.1 D.23.计算222a a −的结果是( )A.2B.2a C.23a D.42a 4.下列图形中,为四棱锥的侧面展开图的是()A B.C. D.5.如图,在纸上画有AOB ∠,将两把直尺按图示摆放,直尺边缘的交点P 在AOB ∠的平分线上,则( )..A.1d 与2d 一定相等B.1d 与2d 一定不相等C.1l 与2l 一定相等D.1l 与2l 一定不相等6.2024年5月10日,记者从中国科学院国家天文台获悉,“中国天眼”FAST 近期发现了6个距离地球约50亿光年的中性氢星系,这是人类迄今直接探测到的最远的一批中性氢星系.50亿光年用科学记数法表示为( )A.85010×光年B.8510×光年C.9510×光年D.10510×光年7.如图,推动水桶,以点O 为支点,使其向右倾斜.若在点A 处分别施加推力1F 、2F ,则1F 的力臂OA 大于2F 的力臂OB .这一判断过程体现的数学依据是( )A.垂线段最短B.过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.过直线外一点有且只有一条直线与已知直线平行8.在马拉松、公路自行车等耐力运动的训练或比赛中,为合理分配体能,运动员通常会记录每行进1km 所用的时间,即“配速”(单位:min/km ).小华参加5km 的骑行比赛,他骑行的“配速”如图所示,则下列说法中错误的是( )A.第1km 所用时间最长B.第5km 的平均速度最大C.第2km 和第3km 的平均速度相同D.前2km 的平均速度大于最后2km 的平均速度二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将答案直接填写在答题卡相应位置上)9.16算术平方根是___________.10.分解因式: 2244x xy y −+=_________.11.计算:111x x x +=++________. 12.若等腰三角形周长是10,则底边长y 与腰长x 的函数表达式为________.13.如图,在平面直角坐标系xOy 中,正方形ABCD 的对角线AC BD 、相交于原点O .若点A 的坐标是()2,1,则点C 的坐标是________.14.如图,AB 是O 的直径,CD 是O 的弦,连接AD BC BD 、、.若20BCD ∠=°,则ABD ∠=________°.的的的15.如图,在矩形ABCD 中,对角线BD 的垂直平分线分别交边AB CD 、于点E 、F .若8AD =,10BE =,则tan ABD ∠=________.16.如图,在Rt ABC △中,90ACB ∠=°,6AC =,4BC =,D 是边AC 的中点,E 是边BC 上一点,连接BD DE 、.将CDE 沿DE 翻折,点C 落在BD 上的点F 处,则CE =________.17.小丽进行投掷标枪训练,总共投掷10次,前9次标枪的落点如图所示,记录成绩(单位:m ),此时这组成绩的平均数是20m ,方差是221m s .若第10次投掷标枪的落点恰好在20m 线上,且投掷结束后这组成绩的方差是222m s ,则21s ________22s (填“>”、“=”或“<”).18. “绿波”,是车辆到达前方各路口时,均遇上绿灯,提高通行效率.小亮爸爸行驶在最高限速80km /h 的路段上,某时刻的导航界面如图所示,前方第一个路口显示绿灯倒计时32s ,第二个路口显示红灯倒计时44s ,此时车辆分别距离两个路口480m 和880m .已知第一个路口红、绿灯设定时间分别是30s 、50s ,第二个路口红、绿灯设定时间分别是45s 、60s .若不考虑其他因素,小亮爸爸以不低于40km /h 的车速全程匀速“绿波”通过这两个路口(在红、绿灯切换瞬间也可通过),则车速v (km /h )的取值范围是________.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.解方程组和不等式组:(1)034x y x y −= +=(2)36012x x x −< −< 20. 先化简,再求值:()()211x x x +−+,其中1x =.21.某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);①这20个充电宝的完全充放电次数都不低于300次;②这20个充电宝的完全充放电次数t 的中位数满足500600t ≤<;③这20个充电宝的完全充放电次数t 的平均数满足300400t ≤<.(3)估计这批充电宝中完全充放电次数在600次及以上的数量.22.在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.23.如图,B 、E 、C 、F 是直线l 上的四点,AC DE 、相交于点G ,AB DF =,AC DE =,BC EF =.(1)求证:GEC 是等腰三角形;(2)连接AD ,则AD 与l 的位置关系是________.24.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图像与反比例函数m y x=的图像相交于点()1,A n −、()2,1B .(1)求一次函数、反比例函数的表达式;(2)连接OA OB 、,求OAB 的面积.25.书画装裱,卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ×,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.26.对于平面内有公共点的两个图形,若将其中一个图形沿着某个方向移动一定的距离d 后与另一个图形重合,则称这两个图形存在“平移关联”,其中一个图形叫做另一个图形的“平移关联图形”.(1)如图1,B C D 、、是线段AE 的四等分点.若4AE =,则在图中,线段AC 的“平移关联图形”是________,d =________(写出符合条件的一种情况即可);(2)如图2,等边三角形ABC 的边长是2.用直尺和圆规作出ABC 的一个“平移关联图形”,且满足2d =(保留作图痕迹,不要求写作法);(3)如图3,在平面直角坐标系xOy 中,点D E G 、、的坐标分别是()1,0−、()1,0、()0,4,以点G 为圆心,r 为半径画圆.若对G 上的任意点F ,连接DE EF FD 、、所形成的图形都存在“平移关联图形”,且满足3d ≥,直接写出r 的取值范围.27.将边长均为6cm 的等边三角形纸片ABC DEF 、叠放在一起,使点E 、B 分别在边AC DF 、上(端点除外),边AB EF 、相交于点G ,边BC DE 、相交于点H .(1)如图1,当E 是边AC 的中点时,两张纸片重叠部分的形状是________;(2)如图2,若EF BC ∥,求两张纸片重叠部分的面积的最大值;(3)如图3,当AE EC >,FB BD >时,AE 与FB 有怎样的数量关系?试说明理由.28.在平面直角坐标系xOy 中,二次函数23y x bx =−++的图像与x 轴相交于点A 、B ,与y 轴相交于点C .(1)OC =________;(2)如图,已知点A 的坐标是(1,0)−.①当1x m ≤≤,且1m >时,y 的最大值和最小值分别是s 、t ,2s t −=,求m 的值;②连接AC ,P 是该二次函数的图像上位于y 轴右侧的一点(点B 除外),过点P 作PD x ⊥轴,垂足为D .作DPQ ACO ∠=∠,射线PQ 交y 轴于点Q ,连接DQ PC 、.若DQ PC =,求点P 的横坐标.常州市二○二四年初中学业水平考试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生应将答案全部填写在答题卡相应的位置上,写在本试卷上无效.考试结束后,请将本试卷和答题卡一并交回.考试时不允许使用计算器.2.答题前,考生务必将自己的姓名、考试号填写在试卷上,并填写好答题卡上的考生信息.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2024−的绝对值是( )A 12024− B. 12024 C.2024 D.2024−【答案】C【解析】【分析】本题主要考查了求一个数的绝对值,根据正数和0的绝对值是它本身,负数的绝对值是它的相反数进行求解即可.【详解】解:2024−的绝对值是20242024−=, 故选:C .2.有意义,则x 可取的值是( )A.1− B.0 C.1 D.2【答案】D【解析】【分析】根据二次根式有意义的条件得出x 的取值范围,继而得出答案.有意义,则20x −≥,解得2x ≥,在四个选项中符合2x ≥的是2,故选:D .【点睛】本题主要考查二次根式有意义的条件,二次根式中的被开方数是非负数..3.计算222a a −的结果是( )A.2B.2aC.23aD.42a 【答案】B【解析】【分析】本题主要考查同类项的计算,熟练掌握合并同类项法则是解题的关键.根据运算法则进行计算即可.【详解】解:2222a a a −=,故选:B .4.下列图形中,为四棱锥的侧面展开图的是()A. B.C. D.【答案】B【解析】【分析】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.根据棱锥的侧面展开图的特征即可得到答案.【详解】解:棱锥的侧面是三角形,故四棱锥的侧面展开图的是故选:B .5.如图,在纸上画有AOB ∠,将两把直尺按图示摆放,直尺边缘的交点P 在AOB ∠的平分线上,则( )A.1d 与2d 一定相等B.1d 与2d 一定不相等C.1l 与2l 一定相等D.1l 与2l 一定不相等【答案】A【解析】【分析】本题主要考查了平行线的性质,角平分线的性质,过点P 分别作,OA OB 的垂线,垂足分别为E 、F ,由角平分线的性质得到PE PF =,由平行线间间距相等可知12d PB d PE ==,,则12d d =,而1l 和2l 的长度未知,故二者不一定相等,据此可得答案.【详解】解:如图所示,过点P 分别作,OA OB 的垂线,垂足分别为E 、F∵点P 在AOB ∠的平分线上,∴PE PF =,由平行线间间距相等可知12d PB d PE ==,, ∴12d d =,由于1l 和2l 的长度未知,故二者不一定相等,故选:A ,6.2024年5月10日,记者从中国科学院国家天文台获悉,“中国天眼”FAST 近期发现了6个距离地球约50亿光年的中性氢星系,这是人类迄今直接探测到的最远的一批中性氢星系.50亿光年用科学记数法表示为( )A.85010×光年B.8510×光年C.9510×光年D.10510×光年【答案】C【解析】【分析】本题考查科学记数法,根据科学记数法表示方法()10110,n a a n ×≤<为整数,进行表示即可.关键是确定a 与n 的值.【详解】解:50亿光年9510=×光年;故选C .7.如图,推动水桶,以点O 为支点,使其向右倾斜.若在点A 处分别施加推力1F 、2F ,则1F 的力臂OA 大于2F 的力臂OB .这一判断过程体现的数学依据是( )的A.垂线段最短B.过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】本题考查了力臂,平行公理,垂直的性质,直线特点,垂线段最短,根据图形分析得到过点O 有OB AB ⊥,进而利用垂线段最短得到OA OB >即可解题.【详解】解: 过点O 有OB AB ⊥,OA OB ∴>,即得到1F 的力臂OA 大于2F 的力臂OB ,∴其体现的数学依据是垂线段最短,故选:A .8.在马拉松、公路自行车等耐力运动的训练或比赛中,为合理分配体能,运动员通常会记录每行进1km 所用的时间,即“配速”(单位:min/km ).小华参加5km 的骑行比赛,他骑行的“配速”如图所示,则下列说法中错误的是( )A.第1km 所用的时间最长B.第5km 的平均速度最大C.第2km 和第3km 的平均速度相同D.前2km 的平均速度大于最后2km 的平均速度【答案】D【解析】【分析】本题主要考查从图像中获取信息,理解题意是解题的关键.根据配速的定义依次进行判断即可.【详解】解:“配速”是每行进1km 所用的时间,故从图中可知,第1km 所用的时间最长,故选项A 不符合题意;平均速度是指在这一段路程中所用的平均值,是路程÷时间,由图可知,配速最小,故第5km 所用时间最短,故第5km 的平均速度最大,故选项B 不符合题意;第2km 所用的时间与第3km 所用的时间一致,故第2km 的和第3km 的平均速度相同,故选项C 不符合题意;由于前2km 的的时间大于最后2km 的时间,故前2km 的平均速度小于最后2km 的平均速度,故选项D 符合题意;故选D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将答案直接填写在答题卡相应位置上)9.16的算术平方根是___________.【答案】4【解析】【详解】解:∵2(4)16±=∴16的平方根为4和-4,∴16的算术平方根为4,故答案为:410.分解因式: 2244x xy y −+=_________.【答案】2(2)x y −【解析】【分析】把一个多项式分解成几个整式的积的形式,叫分解因式.【详解】22244(2)x xy y x y −+=−11.计算:111x x x +=++________. 【答案】1【解析】【分析】本题主要考查了同分母分式加法计算,直接根据同分母分式加法计算法则求解即可.详解】解:111111x x x x x ++==+++,故答案为:1.12.若等腰三角形的周长是10,则底边长y 与腰长x 的函数表达式为________.【【答案】102y x =− 【解析】【分析】本题考查列函数解析式,根据三角形的周长等于三边之和,等腰三角形的两腰相等,列出函数关系式,即可.【详解】解:由题意,得:102y x =−; 故答案为:102y x =−. 13.如图,在平面直角坐标系xOy 中,正方形ABCD 的对角线AC BD 、相交于原点O .若点A 的坐标是()2,1,则点C 的坐标是________.【答案】()2,1−−【解析】【分析】本题考查坐标与图形,根据正方形的对角线互相垂直平分,得到,A C 关于原点对称,即可得出结果.【详解】解:∵正方形ABCD 的对角线AC BD 、相交于原点O ,∴OA OC =,∴,A C 关于原点对称,∵点A 的坐标是()2,1,∴点C 的坐标是()2,1−−;故答案为:()2,1−−.14.如图,AB 是O 的直径,CD 是O 的弦,连接AD BC BD 、、.若20BCD ∠=°,则ABD ∠=________°.【答案】70【解析】【分析】本题考查圆周角定理,根据同弧所对的圆周角相等,直径所对的圆周角为直角,结合三角形的内角和定理,进行求解即可.【详解】解:∵AB 是O 的直径, BD BD =,20BCD ∠=°,∴290,0BC ADB A D ∠=°∠=°∠=, ∴902070ABD ∠=°−°=°;故答案为:70.15.如图,在矩形ABCD 中,对角线BD 的垂直平分线分别交边AB CD 、于点E 、F .若8AD =,10BE =,则tan ABD ∠=________.【答案】12【解析】【分析】本题主要考查三角形相似的判定和性质以及勾股定理,熟练掌握三角形的判定和性质是解题的关键.设EF 与BD 相交于点O ,证明BOE BAD ∽△△,根据相似的性质进行计算即可;【详解】解:BD 的垂直平分线分别交边AB CD 、于点E 、F .EF BD ∴⊥,12BO BD =,90BOE A ∴∠=∠=°,ABD ABD ∠=∠ ,BOE BAD ∴∽△△,BE OE BD AD ∴=, 8AD =,10BE =,12BO BD =, 1028OE BO ∴=,40OE BO ∴⋅=,222100OE OB BE +== ,令,OE x OB y ==, 2240100xy x y = +=,解得x y = =或x y = = (舍去),1tan 2OE ABD BO ∴∠==. 故答案为:12.16.如图,在Rt ABC △中,90ACB ∠=°,6AC =,4BC =,D 是边AC 的中点,E 是边BC 上一点,连接BD DE 、.将CDE 沿DE 翻折,点C 落在BD 上的点F 处,则CE =________.【答案】32【解析】【分析】本题考查勾股定理与折叠问题,勾股定理求出BD 的长,折叠得到CD DF =,,90CE EF EFD =∠=°,设CE x =,在Rt BFE △中,利用勾股定理进行求解即可.【详解】解:∵90ACB ∠=°,6AC =,4BC =,D 是边AC 的中点, ∴132CD AC ==,∴5BD ,∵将CDE 沿DE 翻折,点C 落在BD 上的点F 处,∴3CD DF ==,,90CE EF EFD =∠=°, ∴2,90BF BD DF BFE =−=∠=°, 设CE x =,则:,4EF x BE BC CE x ==−=−, 在Rt BFE △中,由勾股定理,得:()22242x x −=+,解得:32x =; ∴32CE =; 故答案为:32.17.小丽进行投掷标枪训练,总共投掷10次,前9次标枪的落点如图所示,记录成绩(单位:m ),此时这组成绩的平均数是20m ,方差是221m s .若第10次投掷标枪的落点恰好在20m 线上,且投掷结束后这组成绩的方差是222m s ,则21s ________22s (填“>”、“=”或“<”).【答案】>【解析】【分析】本题主要考查方差,熟练掌握方差的意义是解题的关键.根据方差的意义即可得到答案.【详解】解:设这组数据为前9个数分别为129x x x ,,,, 由题意可知,222211291[(20)(20)(20)]9s x x x =−+−++− ,2222129221[(20)(20)(20)]0(2020)1s x x x −+−=−+++−2221291[(20)(20)(20)]10x x x =−+−++− 2221s s ∴<;根据方差越小越稳定,即前九次波动较大,2212s s ∴>,故答案为:>.18. “绿波”,是车辆到达前方各路口时,均遇上绿灯,提高通行效率.小亮爸爸行驶在最高限速80km /h 的路段上,某时刻的导航界面如图所示,前方第一个路口显示绿灯倒计时32s ,第二个路口显示红灯倒计时44s ,此时车辆分别距离两个路口480m 和880m .已知第一个路口红、绿灯设定时间分别是30s 、50s ,第二个路口红、绿灯设定时间分别是45s 、60s .若不考虑其他因素,小亮爸爸以不低于40km /h 的车速全程匀速“绿波”通过这两个路口(在红、绿灯切换瞬间也可通过),则车速v (km /h )的取值范围是________.【答案】5472v ≤≤【解析】【分析】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.利用路程=速度×时间,结合小亮爸爸以不低于40km /h 的车速全程匀速“绿波”通过这两个路口(在红、绿灯切换瞬间也可通过),可列出关于v 的一元一次不等式组,解之即可得出车速(km /h)v 的取值范围.【详解】解: km /h m/s 3.6v v =.根据题意得:40324803.6448803.6(4460)8803.6v v v v ≥ ×≥ ×≤ +×≥,解得:5472v ≤≤,∴车速(km /h)v 的取值范围是5472v ≤≤.故答案为:5472v ≤≤.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.解方程组和不等式组:(1)034x y x y −= +=(2)36012x x x −< −< 【答案】(1)11x y = = (2)12x −<<【解析】【分析】本题考查解方程组和一元一次不等式组:(1)加减法解方程组即可;(2)先求出每一个不等式的解集,找到它们的公共部分,找到它们的公共部分,即为不等式组的解集.【小问1详解】解:034x y x y −=+=①②+①②,得:44x =,解得:1x =;把1x =代入①,得:10y −=,解得:1y =; ∴方程组的解为:11x y = =.【小问2详解】 解:36012x x x −< −< ①②,由①,得:2x <;由②,得:1x >−;∴不等式组的解集为:12x −<<.20.先化简,再求值:()()211x x x +−+,其中1x=.【答案】1x +【解析】【分析】本题主要考查了整式的化简求值,实数的运算,先根据完全平方公式和单项式乘以多项式的计算法则去括号,然后合并同类项化简,最后代值计算即可.【详解】解:()()211x x x +−+2221x x x x =++−−1x =+,当1x =−时,原式11=−+=21.某企业生产了2000个充电宝,为了解这批充电宝的使用寿命(完全充放电次数),从中随机抽取了20个进行检测,数据整理如下:完全充放电次数t300400t ≤<400500t ≤<500600t ≤<600t ≥ 充电宝数量/个 2 3 10 5(1)本次检测采用的是抽样调查,试说明没有采用普查的理由;(2)根据上述信息,下列说法中正确的是________(写出所有正确说法的序号);①这20个充电宝的完全充放电次数都不低于300次;②这20个充电宝的完全充放电次数t 的中位数满足500600t ≤<;③这20个充电宝的完全充放电次数t 的平均数满足300400t ≤<.(3)估计这批充电宝中完全充放电次数在600次及以上的数量.【答案】(1)见解析 (2)①②(3)500个【解析】【分析】本题考查调查方式,求中位数,众数,利用样本估计总体:(1)根据调查方式的选择,进行说明即可;(2)根据统计表的数据,中位数和平均数的计算方法,逐一进行判断即可;(3)利用样本估计总体的思想进行求解即可.【小问1详解】解:对充电宝的使用寿命进行调查,对充电宝具有破坏性,故不能采用普查的方式.【小问2详解】解:由统计表可知:这20个充电宝的完全充放电次数都不低于300次;故①正确;将数据排序后,第10个和第11个数据均位于500600t ≤<,故这20个充电宝的完全充放电次数t 的中位数满足500600t ≤<;故②正确;由统计表的中的数据可知,300400t ≤<的数据只有2个,故平均数一定大于400,故③错误; 故答案为:①②;【小问3详解】 解:5200050020×=(个).22.在3张相同的小纸条上分别写有“石头”、“剪子”、“布”.将这3张小纸条做成3支签,放在不透明的盒子中搅匀.(1)从盒子中任意抽出1支签,抽到“石头”的概率是________;(2)甲、乙两人通过抽签分胜负,规定:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”.甲先从盒子中任意抽出1支签(不放回),乙再从余下的2支签中任意抽出1支签,求甲取胜的概率.【答案】(1)13(2)12【解析】【分析】本题主要考查了简单的概率计算,树状图法或列表法求解概率:(1)直接根据概率计算公式求解即可;(2)先列表得到所有等可能性的结果数,再找到甲获胜的结果数,最后依据概率计算公式求解即可.【小问1详解】解:∵一共有3支签,写有“石头”的签有1支,且每支签被抽到的概率相同,∴从盒子中任意抽出1支签,抽到“石头”的概率是13,故答案为:13;【小问2详解】解:设分别用A 、B 、C 表示“石头”、“剪子”、“布”,列表如下:由表格可知,一共有6种等可能性的结果数,其中甲获胜的结果数有(),A B ,(),B C ,(),C A ,共3种,∴甲获胜的概率为3162=. 23.如图,B 、E 、C 、F 是直线l 上的四点,AC DE 、相交于点G ,AB DF =,AC DE =,BC EF =.(1)求证:GEC 是等腰三角形;(2)连接AD,则AD 与l 的位置关系是________.【答案】(1)见解析 (2)AD l【解析】【分析】本题考查全等三角形的判定和性质,等腰三角形的判定,平行线的判定:(1)证明ABC DFE △≌△,得到ACB DEF ∠=∠,即可得证;(2)根据线段的和差关系,易得AG DG =,根据三角形的内角和定理,得到CAD ACB ∠=∠,即可得出结论.【小问1详解】证明:在ABC 和DFE △中AB DF AC DE BC EF = = =,∴ABC DFE △≌△,∴ACB DEF ∠=∠,∴=EG CG ,∴GEC 是等腰三角形;【小问2详解】∵AC DE =,=EG CG ,∴AC CG DE EG −=−,∴AG DG =, ∴()11802GAD GDA AGD ∠=∠=°−∠, ∵()11802ACE DEF CGE ∠=∠=°−∠, ∵AGD EGC ∠=∠,∴CAD ACB ∠=∠,∴AD l .24.如图,在平面直角坐标系xOy 中,一次函数y kx b =+图像与反比例函数m y x=的图像相交于点()1,A n −、()2,1B .(1)求一次函数、反比例函数的表达式;(2)连接OA OB 、,求OAB 的面积.【答案】(1)1y x =−,2y x =(2)32【解析】【分析】本题考查反比例函数与一次函数的交点问题:的(1)待定系数法求出函数解析式即可;(2)设直线AB 与y 轴交于点C ,分割法求出OAB 的面积即可.【小问1详解】解:∵一次函数y kx b =+的图像与反比例函数m y x=的图像相交于点()1,A n −、()2,1B ,∴211m n =×=−⋅,∴2,2m n ==−, ∴反比例函数的解析式为:2y x=,()1,2A −−,∴221k b k b −+=− +=,解得:11k b = =− ,∴一次函数的解析式为:1y x =−;【小问2详解】解:设直线AB 与y 轴交于点C ,∵1y x =−,∴当0x =时,1y =−,∴()0,1C −,∴OAB 的面积()113121222B A OC x x =⋅−=××+=. 25.书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ×,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【解析】【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+, ∵AB 与AD 的比是16:10, ∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.26.对于平面内有公共点的两个图形,若将其中一个图形沿着某个方向移动一定的距离d 后与另一个图形重合,则称这两个图形存在“”,其中一个图形叫做另一个图形的“平移关联图形”.(1)如图1,B C D 、、是线段AE 的四等分点.若4AE =,则在图中,线段AC 的“平移关联图形”是________,d =________(写出符合条件的一种情况即可);(2)如图2,等边三角形ABC 的边长是2.用直尺和圆规作出ABC 的一个“平移关联图形”,且满足2d =(保留作图痕迹,不要求写作法);(3)如图3,在平面直角坐标系xOy 中,点D E G 、、的坐标分别是()1,0−、()1,0、()0,4,以点G 为圆心,r 为半径画圆.若对G 上的任意点F ,连接DE EF FD 、、所形成的图形都存在“平移关联图形”,且满足3d ≥,直接写出r 的取值范围.【答案】(1)CE ,2(2)图见解析(答案不唯一)(3)03r <≤−或3r ≥+【解析】【分析】(1)根据平移的性质,进行求解即可; (2)延长AB ,在射线AB 上截取线段BE AB =,分别以B C ,为圆心,AB 的长为半径画弧,两弧交于点E ,连接BE DE ,,EBD △即为所求;(3)分DE 在圆内和圆外两种情况,进行求解即可.小问1详解】解:∵B C D 、、是线段AE 的四等分点.4AE =,∴1ABBC CD DE ====, ∴2AC BD CE ===,∴线段AC 的平移图形是CE ,2d =;故答案为:CE ,2;【小问2详解】解:如图所示,EBD △即为所求;由作图可知:BE CE AB AC BC BD BE CE ======,,∴四边形ABEC 为菱形,∴CE AB ∥,∵BC BD CE ==,∴四边形CBDE 为菱形,∴2BD DE BE AB ====,∴EBD △即为所求;【小问3详解】∵点D E G 、、的坐标分别是()1,0−、()1,0、()0,4,∴14OD OE OG ===,,【∴2DE DG EG ====,∵对G 上的任意点F ,连接DE EF FD 、、所形成的图形都存在“平移关联图形”,且满足3d ≥,且23DE =<,∴3,3DF EF ≥≥,当DE 在圆外时,∵DF DG GF ≥−,EF EG GF ≥−,3GF −≥,∴3GF ≤,∴03r <≤.当DE 在圆内时,则:3GF ≥,∴3GF ≥,∴3r ≥+;综上:03r <≤−或3r ≥+. 【点睛】本题考查图形的平移,点到圆上一点的最值,坐标与图形,勾股定理,菱形的判定,尺规作图等知识点,熟练掌握相关知识点,理解新定义,是解题的关键.27.将边长均为6cm 的等边三角形纸片ABC DEF 、叠放在一起,使点E 、B 分别在边AC DF 、上(端点除外),边AB EF 、相交于点G ,边BC DE 、相交于点H .(1)如图1,当E 是边AC 的中点时,两张纸片重叠部分的形状是________;(2)如图2,若EF BC ∥,求两张纸片重叠部分的面积的最大值;(3)如图3,当AE EC >,FB BD >时,AE 与FB 有怎样的数量关系?试说明理由.【答案】(1)菱形 (2)2(3)AE BF =,理由见解析【解析】【分析】(1)连接BE CD ,,由等边三角形的性质可得60ACB EDF ∠=∠=°,则B D C E 、、、四点共圆,由三线合一定理得到90BEC ∠=°,则BC 为过B D C E 、、、的圆的直径,再由6cm DE BC ==,得到DE 为过B D C E 、、、的圆的直径,则点H 为圆心,据此可证明30GEB EBH GBE BEH ====°∠∠∠∠,推出四边形BHEG 是平行四边形,进而可证明四边形BHEG 是菱形,即两张纸片重叠部分的形状是菱形;(2)由等边三角形的性质得到60ABC DEF C ===°∠∠∠,6cm AC BC ==,则由平行线的性质可推出ABC CHE =∠∠,进而可证明四边形BHEG 是平行四边形,再证明EHC △是等边三角形,则可设2cm EH CH x ==,则()62cm BH x =−,1cm 2HT CH x ==,由勾股定理得到cm ET =,可得232BHEG S S BH ET x ==⋅−−+ 重叠四边形,则当32x =时,S 重叠2;(3)过点B 作BM AC ⊥于M ,过点E 作EN DF ⊥于N ,连接BE ,则113cm 22AM FN DF AC ====,6cm EF AB ==,BE BE =,证明EN BM =,进而可证明()Rt Rt HL NBE MEB ≌,得到NB ME =,则FN BN AM ME +=+,即AE BF =.【小问1详解】解:如图所示,连接BE CD ,∵ABC DEF △,△都是等边三角形,∴60ACB EDF ∠=∠=°,∴B D C E 、、、四点共圆,∵点E 是AC 的中点,∴90BEC ∠=°, ∴BC 为过B D C E 、、、的圆的直径,又∵6cm DE BC ==,∴DE 为过B D C E 、、、的圆的直径,∴点H 为圆心,∴EH BH =,∴30HBE HEB ==°∠∠,∴30GEB EBH GBE BEH ====°∠∠∠∠,∴BG EH BH EG ∥,∥,∴四边形BHEG 是平行四边形,又∵EH BH =,∴四边形BHEG 是菱形,∴两张纸片重叠部分的形状是菱形;【小问2详解】解:∵ABC DEF △,△都是等边三角形,∴60ABC DEF C ===°∠∠∠,6cm AC BC ==, ∵EF BC ∥,。
初中中考数学试题及答案
初中中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 2B. x = 1C. x = 0D. x = -1答案:A2. 一个矩形的长是10cm,宽是6cm,那么它的面积是多少平方厘米?A. 60B. 30C. 40D. 50答案:A3. 一个数的平方是36,那么这个数是?A. 6B. -6C. 6或-6D. 以上都不对答案:C4. 一个圆的直径是14cm,那么它的半径是多少?A. 7cmB. 14cmC. 28cmD. 无法确定答案:A5. 一个三角形的三个内角分别是40°,60°和80°,那么这个三角形是什么类型的三角形?A. 直角三角形B. 等腰三角形C. 等边三角形D. 不规则三角形答案:D6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C7. 一个数除以2得到5,那么这个数是多少?A. 10B. 5C. 2D. 0答案:A8. 一个数的立方是27,那么这个数是?A. 3B. -3C. 3或-3D. 9答案:A9. 一个数的倒数是2,那么这个数是多少?A. 1/2B. 2C. -1/2D. -2答案:A10. 一个数的平方根是4,那么这个数是?A. 16B. 4C. -4D. 以上都不对答案:A二、填空题(每题3分,共30分)1. 一个数的平方是16,这个数是______。
答案:4或-42. 一个数的立方是-8,这个数是______。
答案:-23. 一个数的绝对值是4,这个数是______。
答案:4或-44. 一个数的倒数是1/3,这个数是______。
答案:35. 一个数的平方根是2,这个数是______。
答案:46. 一个数的立方根是3,这个数是______。
答案:277. 一个数除以3得到2,这个数是______。
答案:68. 一个数的平方是25,这个数是______。
2024年陕西省中考数学试题及答案
2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 3-的倒数是( )A. 3B. 13 C. 13- D. 3-2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.3. 如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A. 25︒B. 35︒C. 45︒D. 55︒4. 不等式()216x -≥的解集是( )A 2x ≤ B. 2x ≥ C. 4x ≤ D. 4x ≥5. 如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有().A. 2个B. 3个C. 4个D. 5个6. 一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =-C. 13y x =D. 13y x =-7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )A. 2 B. 3 C. 52 D. 838. 已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象的对称轴是直线1x =第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab -=_______________.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)的11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12. 已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
数学中考试题及答案
数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 4答案:A2. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C3. 一个三角形的两边长分别为5cm和12cm,第三边的长度至少为:A. 7cmB. 8cmC. 9cmD. 10cm答案:B4. 已知一个圆的直径为10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 一个等腰三角形的底角为45度,那么顶角的度数是:A. 90度B. 45度C. 60度D. 120度答案:A7. 函数y = 3x + 2的图象经过点(-1,1),那么函数y = 3x - 1的图象经过点:A. (-1,-2)B. (-1,-4)C. (-1,2)D. (-1,1)答案:A8. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B9. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 6cmC. 7cmD. 8cm答案:A10. 一个数的倒数是1/2,那么这个数是:A. 1/2B. 2C. -1/2D. -2答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是______。
答案:92. 一个数的相反数是-5,那么这个数是______。
答案:53. 一个数的绝对值是8,那么这个数可能是______。
答案:8或-84. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数的倒数是2/3,那么这个数是______。
答案:3/2三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10。
中考试题及答案解析数学
中考试题及答案解析数学一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax + b答案:A解析:二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c是常数,且a≠0。
2. 计算下列哪个表达式的结果为0?A. 3x - 2xB. 4y + 5yC. 7z - 7zD. 6a - 5a答案:C解析:7z - 7z = 0,因为任何数减去它自己都等于0。
3. 以下哪个分数是最简分数?A. 3/6B. 8/12C. 5/10D. 7/9答案:D解析:最简分数是指分子和分母没有公因数的分数。
选项A、B和C都可以进一步简化,而选项D的分子和分母互质,因此是最简分数。
4. 如果一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B解析:圆的面积公式是A = πr^2,其中r是半径。
将半径5厘米代入公式,得到面积为25π平方厘米。
5. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A解析:解不等式2x - 3 > 5,首先将3加到不等式的两边,得到2x > 8,然后将两边都除以2,得到x > 4。
6. 计算下列哪个表达式的结果为负数?A. (-3) × (-2)B. (-3) × 2D. 3 × 2答案:B解析:负数乘以正数得到负数,所以(-3) × 2 = -6,结果是负数。
7. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 22答案:A解析:完全平方数是指一个整数的平方。
16是4的平方,因此是完全平方数。
中考数学题目试题及答案
中考数学题目试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 一个数的平方等于16,这个数是:A. 4B. -4C. 4或-4D. 2答案:C3. 以下哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 4答案:A4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A5. 计算下列表达式的值:(3x - 2) + (5x + 6) =A. 8x + 4B. 8x - 4C. 3x + 8D. 5x + 4答案:A6. 一个三角形的两个内角分别是30度和60度,第三个内角是:A. 90度B. 60度C. 30度D. 120度答案:A7. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是10,这个数可以是:A. 10B. -10C. 0D. 10或-10答案:D9. 计算下列表达式的值:(2x^2 - 3x + 1) - (3x^2 - 2x + 4) =A. -x^2 + 5x - 3B. -x^2 + 5x + 3C. -x^2 - 5x + 3D. -x^2 - 5x - 3答案:A10. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -4答案:A二、填空题(每题4分,共20分)1. 一个数的立方是-27,这个数是______。
答案:-32. 一个数的平方根是2,这个数是______。
答案:43. 一个数的倒数是2,这个数是______。
答案:1/24. 一个数的绝对值是5,这个数可以是______。
答案:5或-55. 一个数的平方是25,这个数可以是______。
答案:5或-5三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 11。
答案:3x - 7 = 113x = 18x = 62. 计算:(2x^2 - 3x + 5) / (x - 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中中考数学试题及答案
1. 选择题
1.1. 以下哪个数大?
A. 0.09
B. 0.9
C. 0.99
答案:C
1.2. 下面哪个数是无理数?
A. 3
B. √2
C. 1.5
答案:B
1.3. 如图所示,矩形ABCD中,AB=8cm,BC=4cm,点E是AD的中点,连结BE,则所得图形是一个:
(图略)
A. 正方形
B. 长方形
C. 直角三角形
答案:A
2. 解答题
2.1. 求下列方程的解:
2x + 5 = 15
解:将方程两边同时减去5,得到2x = 10,然后除以2,得到x = 5。
因此方程的解为x = 5。
2.2. 已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角ADC的度数为120°,求平行四边形的面积。
解:由平行四边形的性质,对角线互相平分,可以得出BD的长度为AC的长度,即BD = AC。
利用余弦定理计算三角形ADC的第三边AD的长度:
AD² = AC² + CD² - 2(AC)(CD)cosADC
= 8² + 6² - 2(8)(6)cos120°
= 100
⇒ AD = 10
由平行四边形的性质,对角线互相平分,可以得出AC的长度为BD的长度,即AC = BD = 8cm。
因此平行四边形形状为菱形,菱形的面积可以通过对角线的乘积除以2来计算,即面积 = (AC)(BD)/2 = (8)(8)/2 = 32。
因此平行四边形的面积为32平方厘米。
3. 应用题
某商品原价为120元,商家打8.8折促销,现在价格为多少?
解:打8.8折相当于原价乘以0.88,所以现在价格为120元 × 0.88 = 105.6元。
因此现在的价格为105.6元。
以上是初中中考数学试题及答案,希望对你的学习有所帮助。