模拟电路小信号分析
两级OTA的分析方法2_清华大学模拟集成电路分析与设计
![两级OTA的分析方法2_清华大学模拟集成电路分析与设计](https://img.taocdn.com/s3/m/99ad8bc4240c844769eaeee5.png)
p1
p2
z
p2
z
将补偿后极点和零点的表达式代入,可以得到一个关于 CC 的方程:
90° − PM ≈ tan−1( ωc ) + tan−1( Gm1 )
p2
Gm2
由这个方程可以求解出特定相位裕度所要求的补偿电容 CC 的大小。
消除零点影响的措施:(1)与补偿电容 CC 串联一个电阻来消除零点或者使得零点移到左半平面,与补偿后的第一 非主极点相销;(2)使用源极跟随器来切断前馈通路,消除零点;(3)使用共栅晶体管来切断前馈通路;(4)利用 Cascode 器件减小前馈通路的馈通量
其中,
Cf Gm1 = gm1,2 , Ro1 = ro3,4 || ro1,2 , Gm2 = gm3,4 , Ro2 = ro5,6 || ro7,8
Cx = Cgg1,2 , C1 = Cgg 5,6 + C junction1−4 , CL' = CL + C junction5−8
2.2.1 环路增益
由于反馈的存在,噪声分析很复杂,可参看网络学堂上附加的材料。
Cs vid+
Cs
Cf Cc
+− + + −
−+
v−o1
−+
Cc Cf
+ vo2
−
CL CL
M10
M3
M4
M5
M6
M1 M2
差模半电路为:
M9
M0
M7
M8
vid 2
Cs
Cc Cf
vod 2
CL
将每一级均转化为带有内阻的受控电流源结构:
vi
vo
Gmvi Ro
《模拟电子技术基础》习题课1-2章-概念
![《模拟电子技术基础》习题课1-2章-概念](https://img.taocdn.com/s3/m/099b2388112de2bd960590c69ec3d5bbfc0ada43.png)
三种组态为:BJT的共射、共基、共集 FET的共源、共栅、共漏
BJT
FET
差放
共射 共射 共集 共基 共源 共漏 共栅 差模 共模 (带反馈Re)
微变等效电路
p74
Ri
Ro
Av
15
模拟电路习题课(一)
共射小信号(微变)等效分析 输入电阻、输出电阻和增益
Ri
vi ii
rbe // Rb
Av
vo vi
(1 1)R'L rbe (1 1)R'L
1
R'o
rbe
1 1
//
rce1
rbe
1 1
Ro R'o // ro2 R'o
共集放大器的Ri比共射大很多
电压放大倍数接近于1(小于1)因此称为射随器
共集放大器的Ro比共射的小很多
17
模拟电路习题课(一)
共基小信号(微变)等效分析
R'i
U
反向击穿 电压VBR
2
二极管的电阻
模拟电路习题课(一)
直流等效电阻 RD:
RD
VD ID
交流(动态)电阻 rd:
rd
(
diD dvD
)Q1
2vd 2id
rd
(
diD dvD
)Q1
VT ID
3
模拟电路习题课(一)
共射(共E)BJT工作原理
以发射极(E极)作为公共端,EB结正偏,CB结反偏。
iC
参见 P12 图1.3.4
7
3. 饱和区
vCE<vBE vCB<0
4
集电结正偏
模电(小信号模型分析法)
![模电(小信号模型分析法)](https://img.taocdn.com/s3/m/702d3c46bfd5b9f3f90f76c66137ee06eff94e2c.png)
电路可能出现的问题。
3 优化设计
在设计放大电路时,小信号模型分析法可用于指导电路参数 的调整,优化电路的性能。
小信号模型分析法的优势与局限性
优势
小信号模型分析法能够简化放大电路 的分析过程,提高分析效率,对于工 程设计和科学研究具有一定的实用价 值。
局限性
小信号模型分析法是一种近似分析方 法,对于非线性问题和强信号问题可 能无法得到准确的结果,需要采用其 他更精确的分析方法。
THANKS
调频范围
调频范围是指振荡器能够输出的 频率范围,反映了振荡器的频率
可调性。
输出功率
振荡器的输出功率是指其输出的 信号强度,影响信号的传输距离
和接收质量。
04
小信号模型的参数提取
参数提取的方法
实验测量法
通过实验测量电路的性能指标,从而提取出相关参数。
仿真分析法
利用电路仿真软件对电路进行模拟,通过仿真结果提 取参数。
滤波器传递函数
滤波器传递函数描述了信号通过滤波器后的频 率响应特性。
滤波器阶数
滤波器阶数是指滤波器的系统函数中极点数量 ,决定了滤波器的性能和复杂度。
振荡器电路分析
振荡频率
振荡频率是指振荡器输出的信号 频率,是振荡器的重要参数。
相位噪声
相位噪声是衡量振荡器性能的重 要参数,表示输出信号的相位抖
动。
02
小信号模型分析法的基本原 理
线性时不变系统
线性时不变系统
在输入信号的作用下,系统的输出量随时间的变化而变化,并且该变化规律可以用一个数学表达 式来描述的系统。
线性
系统的输出量与输入量之间成正比关系,即输出量随输入量的增加或减小而增加或减小,并且成 正比。
模拟电子技术基础-场效应管的参数和小信号模型
![模拟电子技术基础-场效应管的参数和小信号模型](https://img.taocdn.com/s3/m/4b779221a66e58fafab069dc5022aaea998f419f.png)
iS S
上页 下页 后退
模拟电子技术基础
式中
为跨导
rds为FET共源极输出电阻 故
上页 下页 后退
模拟电子技术基础
或者
rds很大,通常数值在几十千欧,可以忽略
微变等效电路
简化的微变等效电路
g
d
gm ugs
ugs
rds
uds
s
g
ugs s
d gmugs uds
上页 下页 后退
模拟电子技术基础
易泄露,
而栅极上的绝缘层又很薄,这将在栅极上产生很高的电
场强度,
以致引起绝缘层的击穿而损坏管子。
增强型 G
D G
S
D
耗尽型
S
上页 下页 后退
–
s
–
ig
id
+ ugs
线性
+ uds
– 网络 –
上页 下页 后退
模拟电子技术基础
N沟道
d
g
s
N沟道 d N沟道 d
g
g
s
s
uGS 反偏 或者 栅极绝缘
g
d
因此 iG= 0
gm ugs
ugs
u rds
ds
ugs 之间相当于开路
s
上页 下页 后退
模拟电子技术基础
g
ugs s
d
gm ugs
rds
uds
模拟电子技术基础
3.3 场效应管的参数和小信号模型
3.3.1 结型场效应管的主要电参数
1.直流参数
(1) 夹断电压UGS(off)
U u GS(off)
GS
U DS ID
小信号模型分析法(微变等效电路法)
![小信号模型分析法(微变等效电路法)](https://img.taocdn.com/s3/m/76b8ab5077232f60ddcca1d7.png)
ic hoe vce
β = hfe
rce= 1/hoe
• ur很小,一般为10-3∼10-4 , 很小,一般为10 • rce很大,约为100kΩ。故 很大,约为100kΩ 100k 一般可忽略它们的影响, 一般可忽略它们的影响, 得到简化电路 BJT的 BJT的H参数模型为
上页
下页
返回
模拟电子技术基础
2
β 一般用测试仪测出; 一般用测试仪测出;
H参数的确定 H参数的确定
rbe 与Q点有关,可用图示 点有关,
仪测出。 仪测出。 也用公式估算 rbe rbe= rb + (1+ β ) re
rb为基区电阻,约为200Ω 为基区电阻,约为200 200Ω
VT (m ) V 26(m ) V re = = IEQ(m ) IEQ(m ) A A
上页
下页
返回
模拟电子技术基础
二
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极管 当放大电路的输入信号电压很小时, 小范围内的特性曲线近似地用直线来代替, 小范围内的特性曲线近似地用直线来代替,从而可以把三 极管这个非线性器件所组成的电路当作线性电路来处理。 极管这个非线性器件所组成的电路当作线性电路来处理。
dvBE = ∂vBE ∂iB
VCE ⋅ di + B
ic ib + vbe – b e c + vce –
∂iC d iC = ∂iB
∂iC VCE ⋅ diB + ∂vCE
∂vBE ∂vCE
IB
⋅ dvCE
IB
⋅ dvCE
下页 返回
上页
模拟电子技术基础
vbe = hieib + hrevce ic = hfe ib + hoevce
小信号
![小信号](https://img.taocdn.com/s3/m/7a92b28bcc22bcd126ff0c79.png)
小信号:主要指无线收发机(tranciever,没拼错吧)的下行通路,即Rx通路,传输的信号。
因为该信号是在空气中,通过天线接受进来的,所以信号的能量很小,当然电压的幅值也很小,而且通常跟噪声混杂在一起。
要利用该信号,就要对该信号进行放大。
知道该信号是处于那个频率段的,设计放大器使之对该频率段有放大作用,即选频。
一般该放大器称为低噪声放大器(LNA)。
大信号:主要指无线收发机的上行通路,即Tx通路,传输的信号。
因为要将信号通过天线发射出去,所以要求信号具有相当大的能量,当然,信号的幅值也很大。
所以就要用一个放大器将电路中的信号放大到所谓的“大信号”。
一般放大该信号的放大器叫功率放大器(PA)。
确切的说,应该是“大信号图解分析法和小信号模型分析法”。
大信号图解分析法:就是当输入信号的能量很大时,或者通俗的说就是,当输入电压的幅值很大时,三极管有可能会进入饱和状态而不是放大状态,此时三极管的输出电压的幅值就会失真(和输入波形不一样),所以针对会出现这种情况,我们选用宏观的分析方法,即,大信号图解分析法。
小信号模型分析法:顾名思义,输入信号的电压的幅值很小,你用宏观的分析方法大信号图解分析法,显然结果会很不精确,所以就用小信号模型分析法。
小信号模型,就是把抽象元件三极管等效成由电阻、受控电流源等元件组成的二端口网络。
这些等效元件有具体数值,可直接数字计算。
从而在这个基础上对信号进行分析。
功率放大电路应该是大信号下工作比较常见。
小信号就是输入电平很低,以至输出电平在零值左右,这样做的好处就是保证你的放大器,PA,都能有足够的线性度,缺点嘛可能会影响你的增益平坦度。
大信号故明思意,输入电平可能比较大,输出也相应增大,这样在做大信号电路时,选择合适的器件就是很重要的了,因为如果输入超过了器件的饱合度就会有失真,严重会损坏器件。
所以一般电路都选择小信号输入。
大信号就是幅度大的信号,小信号就是幅度小的信号.这里的大信号是相对的,对于运放来说,100mv以上的幅度的信号就可以是大信号了.记不记得在我们大学的模拟电路书上有讲过晶体管,MOS的小信号模型,其后的运放,反馈的种种分析都是基于这些元件的小信号模型.当输入信号不再是小信号(大信号),小信号模型就不再适用.举个例子,MOS管的关系式Id=Vgs*gm.gm在一定范围内(既输入信号偏离静态工作点的范围)是一个常数,当输入信号的值更多的偏离静态工作点时,gm的值会改变.这个使gm的值足以改变的信号就是大信号.可以看到,大信号和小信号都是相对的概念.对于不同的电路,大信号的实际幅度是不同的.“小信号”这个概念是在分析运放的理想模型时定义的一个输入标量,特指分析运放的交流特性时,其线性范围所能承受的输入电压。
模拟电子技术放大电路分析小信号模型分析法
![模拟电子技术放大电路分析小信号模型分析法](https://img.taocdn.com/s3/m/9a871587960590c69ec376e0.png)
ib
ic
vi
i
vo
电压增益: 输入电阻: 输出电阻:
AV
( Rc // RL ) rbe
Ri
vi ii
Rb
// rbe
Ro = Rc
AV
rbe
(Rc // RL )
(1 )Re
Ri Rb1 // Rb2 // rbe (1 )Re
Ro Rc
β2(Rc2 || rbe2
RL )
β2 1
Av
β1( Rc2 || rbe1
RL )
RL
rbe2 1 β2
组合放大电路总的电压增益等于
组成它的各级单管放大电路电压增益
的乘积。
前一级的输出电压是后一级的输
入电压,后一级的输入电阻是前一级
的负载电阻RL。
4.6.1 共射—共基放大电路
电压跟随器
4.5.1 共集电极放大电路
2.动态分析 ③输入电阻
Ri
vi ii
vi
vi vi
Rb rbe (1 β)R'L
Rb || [rbe (1 β)R'L ]
当 1 , RL rbe 时, Ri Rb // RL
输入电阻大
4.5.1 共集电极放大电路
固定偏流放大电路
静态:
IBQ
VCC
VB EQ Rb
ICQ β IBQ
VCEQ VCC ICQ Rc
射极偏置放大电路
VB Q
Rb2 Rb1 Rb2
模电03(小信号模型分析法)
![模电03(小信号模型分析法)](https://img.taocdn.com/s3/m/cc39f4ac18e8b8f67c1cfad6195f312b3069eb56.png)
将非线性元件的特性用线性元件来表示,并假设这些线性元件的电压或电流为小信号量。
确定线性化工作点
选择一个合适的工作点,在该工作点附近对非线性元件的特性进行线性化处理。
小信号模型的线性化处理
泰勒级数展开
将非线性元件的特性函数展开成泰勒级数,并保留线 性项。
确定线性化参数
根据泰勒级数的展开结果,确定线性化参数,如晶体 管的放大系数、二极管的导纳等。
THANKS
验证线性化精度
根据实际需要,确定线性化的精度,并验证小信号模 型的准确性。
小信号模型的等效电路
根据线性化参数,构建等效电路
01
根据小信号模型的线性化参数,用线性元件构建等效电路。
分析等效电路的频率响应
02
对等效电路进行分析,计算其频率响应,以了解电路在不同频
率下的性能。
验证等效电路的准确性
03
通过实验或仿真验证等效电路的准确性,并根据需要对其进行
小信号模型分析法的未来研究方向
1 2
跨尺度建模与仿真
研究如何在不同尺度上建立小信号模型,实现从 微观到宏观的跨尺度模拟,以更好地理解电路性 能。
异构集成与混合信号建模
针对异构集成和混合信号电路,研究更为复杂的 小信号模型,以适应不同工艺和材料的应用。
3
动态特性和非线性效应
深入研究电路的动态特性和非线性效应,提高小 信号模型的动态性能和非线性描述能力。
修正。
03
小信号模型分析法的实现方 法
频域分析法
频域分析法是一种在频域中对电路进行分析的方法,通过将时域中的电路转换为频 域中的电路,可以更容易地分析电路的频率响应和稳定性。
频域分析法的优点是计算简便、直观,可以快速得到电路的频率响应和稳定性。
模电第四讲-小信号模型分析法
![模电第四讲-小信号模型分析法](https://img.taocdn.com/s3/m/bafceb325a8102d276a22f9e.png)
Rb在B、E之间
第四讲 Rc和RL在C、E 之 间
ic
输
+
出
vce
信
-
输
入
信
号
共射极放大电路
交流通路
发射极接地
在
B
C
B、
+
+
号 在 C、 E 之 间
E
rbe
βIb
之 间
Vi Rb Ib
Rc
E
RL Vo
-
-
end
第四讲
3、求电压增益 如图可得: Vi=Ib•rbe Ic=βIb Vo=-Ic•(Rc//RL)=-βIb •(Rc//RL) 则电压增益为:
= Av •
Ri Ri+Rs
=-115.87*0.863/(0.863+0.5)
=-73.36
end
第四讲
第四节、小信号模型分析法
一、三极管小信号建模 二、用H参数小信号模型分析基本共射放大电路
end
第四讲
建立小信号模型的意义
由于三极管是非线性器件,这样就使得放大电路的 分析非常困难。建立小信号模型,就是将非线性器件做 线性化处理,从而简化放大电路的分析和设计。
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。
2、动态分析:rbe=200+(1+β)•26/IEQ≈200+51*26/2=863Ω Av=-(β•RL’)/rbe=-50*2/0.863=-115.87
end
第四讲
Ri=Rb//rbe=300//0.863≈0.863KΩ Ro=Rc=4KΩ
电子技术模拟电路知识点总结
![电子技术模拟电路知识点总结](https://img.taocdn.com/s3/m/124ddce5e43a580216fc700abb68a98271feace4.png)
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年
![集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年](https://img.taocdn.com/s3/m/1655c801590216fc700abb68a98271fe900eaf41.png)
集成电路设计基础_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.画小信号等效电路时,恒定电流源视为。
答案:开路2.模拟集成电路设计中可使用小信号分析方法的是。
答案:增益3.模拟集成电路设计中可使用大信号分析方法的是()。
答案:输出摆幅4.题1-1-1 中国高端芯片联盟正式成立时间是:。
答案:2016年7月5.题1-1-2 如下不是集成电路产业特性的是:。
答案:低风险6.题1-1-3 摩尔定律是指集成电路上可容纳的晶体管数目,约每隔:个月便会增加一倍,性能也将提升一倍。
答案:187.MOS管的小信号模型中,体现沟长调制效应的参数是()。
答案:8.工作在饱和区的MOS管,可以被看作是一个。
答案:电压控制电流源9.下图中的MOS管工作在区(假定Vth=0.7V)。
【图片】答案:饱和区10.一个MOS管的本征增益表述错误的是。
答案:与MOS管电流无关11.工作在区的MOS管,其跨导是恒定值。
答案:饱和12.MOS管中相对最大的寄生电容是。
答案:栅极氧化层电容13.MOS管的小信号输出电阻【图片】是由MOS管的效应产生的。
答案:沟长调制14.题1-1-4 摩尔定律之后,集成电路发展有三条主线,以下不是集成电路发展主线的是:。
答案:SoC15.题1-1-5 单个芯片上集成约50万个器件,按照规模划分,该芯片为:。
答案:VLSI16.题1-1-6 年发明了世界上第一个点接触型晶体管。
答案:194717.题1-1-7 年发明了世界上第一块集成电路。
答案:195818.题1-1-8 FinFET等多种新结构器件的发明人是:。
答案:胡正明19.题1-1-9 集成电路代工产业的缔造者:。
答案:张忠谋20.题1-1-10 世界第一块集成电路发明者:。
答案:基尔比21.MOS管一旦出现现象,此时的MOS管将进入饱和区。
答案:夹断22.MOS管从不导通到导通过程中,最先出现的是。
答案:耗尽23.在CMOS模拟集成电路设计中,我们一般让MOS管工作在区。
模拟小信号模型分析法
![模拟小信号模型分析法](https://img.taocdn.com/s3/m/a827173059fafab069dc5022aaea998fcc2240c6.png)
当放大电路旳输入信号电压很小时,就能够把三 极管小范围内旳特征曲线近似地用直线来替代,从而 能够把三极管这个非线性器件所构成旳电路看成线性 电路来处理。
网络有输入端和输出端两个端口,常可用电压vi、 vo及电流i1、i2来研究网络旳特征,选vi、vo及i1、i2 四个参数中旳两个作为自变量,另两个为应变量, 就可得到不同旳网络参数,如
3.4.2 共射极放大电路旳小信号模型分析
1. 利用直流通路求Q点
IB
VCC VBE Rb
IC β IB
VCE VCC IC Rc
共射极放大电路
一般对硅管取VBE=0.7V,锗管VBE=0.2V,且 已知。
3.4.2 共射极放大电路旳小信号模型分析
2. 画小信号等效电路
ic + vce -
O
k2
100%
Vo1
t
O
VO1是输出电压信号基波分量
旳有效值,Vok是高次谐波分
量旳有效值,k为正整数。
频率失真(线性失真)与非线性失真旳区别
1.2.3 放大电路旳主要性能指标
思索与习题(放大电路旳主要性能指标)
思索题: 习题:
end
3.4 小信号模型分析法
3.4.0 放大电路模型
3.4.1 BJT旳小信号建模
放大电路模型
信号源
Ii
+ Vs
Rs
+ Vi
放大电路
–
–
Io
+
Vo
RL
–
负载
放大电路是一种双口网络。从端口特征来研究放大 电路,可将其等效成具有某种端口特征旳等效电路。
输入端口特征能够等效为一种输入电阻 输出端口能够根据不同情况等效成不同旳电路形式
实验指导书-《电路分析与模拟电子技术》
![实验指导书-《电路分析与模拟电子技术》](https://img.taocdn.com/s3/m/3617fa3154270722192e453610661ed9ad515569.png)
电路分析与模拟电子技术实验指导书实验要求1.实验前必须充分预习,完成指定的预习任务。
预习要求如下:(1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。
(2)完成各实验“预习要求”中指定的内容。
(3)熟悉实验任务。
(4)复习实验中所用各仪器的使用方法及注意事项。
2.使用仪器和实验箱前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。
3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。
4.模拟电路实验注意:(1)在进行小信号放大实验时,由于所用信号发生器及连接电缆的缘故,往往在进入放大器前就出现噪声或不稳定,有些信号源调不到毫伏以下,实验时可采用在放大器输入端加衰减的方法。
一般可用实验箱中电阻组成衰减器,这样连接电缆上信号电平较高,不易受干扰。
(2)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大,由于实验箱所用三极管h fe较大,特别是两级放大电路容易饱和失真。
5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。
找出原因、排除故障,经指导教师同意再继续实验。
6.实验过程中需要改接线时,应关断电源后才能拆、接线。
7.实验过程中应仔细观察实验现象,认真记录实验结果(数据波形、现象)。
所记录的实验结果经指导教师审阅签字后再拆除实验线路。
8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。
9.实验后每个同学必须按要求独立完成实验报告。
实验一电位、电压的测定及电路电位图的绘制一.实验目的1.学会测量电路中各点电位和电压的方法,理解电位的相对性和电压的绝对性。
2.学会电路电位图的测量、绘制方法。
3.掌握使用直流稳压电源、直流电压表的使用方法。
二.实验原理在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。
专升本《CMOS模拟集成电路分析与设计》_试卷_答案
![专升本《CMOS模拟集成电路分析与设计》_试卷_答案](https://img.taocdn.com/s3/m/746c830c964bcf84b9d57b30.png)
专升本《CMOS模拟集成电路分析与设计》一、(共75题,共150分)1. Gordon Moore在1965年预言:每个芯片上晶体管的数目将每()个月翻一番(2分)A.12B.18C.20D.24.标准答案:B2. MOS 管的小信号输出电阻是由MOS管的()效应产生的。
(2分)A.体B.衬偏C.沟长调制D.亚阈值导通.标准答案:C3. 在CMOS模拟集成电路设计中,我们一般让MOS管工作在()区。
(2分)A.亚阈值区B.深三极管区C.三极管区D.饱和区.标准答案:D4. MOS管一旦出现()现象,此时的MOS管将进入饱和区。
(2分)A.夹断B.反型C.导电D.耗尽.标准答案:A5. ()表征了MOS器件的灵敏度。
(2分)A.B.C.D..标准答案:C6. Cascode放大器中两个相同的NMOS管具有不相同的()。
(2分)A.B.C.D..标准答案:B7. 基本差分对电路中对共模增益影响最显著的因素是()。
(2分)A.尾电流源的小信号输出阻抗为有限值B.负载不匹配C.输入MOS不匹配D.电路制造中的误差.标准答案:C 8. 下列电路不能能使用半边电路法计算差模增益()。
(2分)A.二极管负载差分放大器B.电流源负载差分放大器C.有源电流镜差分放大器D.Cascode负载Casocde差分放大器.标准答案:C9. 镜像电流源一般要求相同的()。
(2分)A.制造工艺B.器件宽长比C.器件宽度WD.器件长度L.标准答案:D10. 某一恒流源电流镜如图所示。
忽略M3的体效应。
要使和严格相等,应取为()。
(2分)A.B.C.D..标准答案:A11. 选择题:下列结构中密勒效应最大的是()。
(2分)A.共源级放大器B.源级跟随器C.共栅级放大器D.共源共栅级放大器.标准答案:A12. 下图中,其中电压放大器的增益为-A,假定该放大器为理想放大器。
请计算该电路的等效输入电阻为()。
(2分)A.B.C.D..标准答案:A13. 对电路进行直流工作点分析的Hspice命令是()。
模拟电路基础-BJT交流小信号模型
![模拟电路基础-BJT交流小信号模型](https://img.taocdn.com/s3/m/0785fa0381c758f5f71f673f.png)
diC Q diB
Q
rce rce
(2.51)
3)高频参数
图2.21 BJT完整小信号模型
①集电结电容Cbc: 由生产厂家提供或 器件手册查到。
②发射结电容Cbe:
Cbe
gm
2 fT
Cbc(2.52)
其中,fT为特征频率, 器件手册可查到。
厄利电压VA
iC
概念:反映iC~vCE曲线在线性区内水平
iC ic
iB Q ib
ic ib
表明:BJT的输出端口ce间,可等效为一受控电流源。
图2.19 参数简化模型
②.模型参数估算:交流电阻rbe
vBE
对于发射结,其伏安特性方程为: iE IESe VT
则:
iB
iE
1
IES
1
vBE
e VT
根据rbe的定义,可得:
rbe
vBE iB
Q
所以:
g m
d iC d vBE
Q
vBEI ESe VTVTiC IC VT Q VT
Q
当T=300K时,gm=38.5IC
③.模型参数 与gm、rbe之间的关系
(2.45)
rbe
(1 ) VT
IE
VT
IE
VT
IC
IC VT
gm
(3)BJT完整小信号模型——混合Π模型
考虑BJT的实际物理结构,以及PN结电容效应:
I
C
1
vi VT
1 2!
vi VT
2
1 3!
vi VT
3
....
vRC
RCiC
RC
IC
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电路小信号分析
模拟电路小信号分析是电子工程领域中一项重要的技术,它用于评估电路在小信号输入情况下的行为。
通过分析电路的小信号行为,我们可以更好地理解电路的工作原理,优化电路设计,并对电路进行性能预测。
一、小信号模型
在进行小信号分析之前,我们首先需要建立电路的小信号模型。
小信号模型描述了电路在输入信号幅度较小的情况下的行为。
对于一个线性电路,可以使用电路的小信号等效电路模型来描述。
二、BJT小信号分析
以双极型晶体管(BJT)为例,进行小信号分析时,我们需要将其建立为小信号等效电路模型。
BJT的小信号等效电路模型通常由输入电阻ri、输出电阻ro和电流传输比hfe组成。
三、MOS小信号分析
对于场效应晶体管(MOSFET),小信号分析同样是很重要的。
MOSFET的小信号等效电路模型由输入电阻ri、输出电阻ro和转移电导gm组成。
四、利用小信号模型进行分析
在建立了电路的小信号模型后,我们可以利用这些模型来分析电路
的小信号行为。
具体而言,可以计算电路的增益、频率响应以及稳定
性等性能指标。
五、差分放大器的小信号分析
差分放大器是一种常见的电路,广泛应用于放大和信号处理等领域。
我们可以通过小信号分析来评估差分放大器的性能。
六、反馈电路的小信号分析
反馈电路是一种常见的电路结构,用于调节电路的增益和稳定性。
小信号分析可以帮助我们理解反馈电路的工作原理,并进行性能优化。
七、小信号分析工具
在进行小信号分析时,我们可以借助各种工具,如伯德图和小信号
参数等,来简化分析过程,提高效率。
结论
模拟电路小信号分析是电子工程中一项重要的技术,它可以帮助我
们更好地理解电路的行为,优化电路设计,并预测电路性能。
通过建
立电路的小信号模型,并应用合适的工具进行分析,我们可以得到有
关电路增益、频率响应和稳定性等性能指标的重要信息。
因此,掌握
模拟电路小信号分析技术对于电子工程师来说至关重要。