线性代数第三章习题与答案(东大绝版)

合集下载

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数课后习题解答第三章习题解答

线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线代第3章习题答案

线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。

线性代数第三 四章答案

线性代数第三 四章答案

解:由3(α1 − α) + 2(α2 + α) = 5(α3 + α) 可得6α = −5α3 + 2α2 + 3α1, 即α = (−5α3 + 2α2 + 3α1)/6 = (1, 2, 3, 4).
3-4. 设β1 = α1 + α2, β2 = α2 + α3, β3 = α3 + α4, β4 = α4 + α1, 证明向量组β1, β2, β3, β4线 性相关.
3v1 + 2v2 − v3 = 3(1, 1, 0) + 2(0, 1, 1) − (3, 4, 0) = (3, 3, 0) + (0, 2, 2) − (3, 4, 0) = (0, 1, 2).
3-2. 设3(α1 − α) + 2(α2 + α) = 5(α3 + α), 其中,α1 = (2, 5, 1, 3), α2 = (10, 1, 5, 10), α3 = (4, 1, −1, 1),求α.
证明:因为β1−β2 = α1−α3, β4−β3 = α1−α3. 所以β1−β2 = β4−β3, 即β1−β2+β3−β4 = 0,向量组β1, β2, β3, β4线性相关。
3-5. 设β1 = α1, β2 = α1 + α2, · · · , βr = α1 + α2 + · · · αr, 且向量组α1, α2, · · · , αr线性无
4-11.
若方程组
x1 + 2x2 + x3 = 0 2x1 + x2 + λx3 = 0
存在基础解系,则λ等于【5】
4-12. 设A为m × n矩阵,则齐次线性方程组AX = 0有结论【若A有n阶子式不为0,则

《线性代数》第3章习题解答(rr)

《线性代数》第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解:∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4T T=-----=-∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]TTTαα+=-+-=2.设 12[2,5,1,3],[10,1,5,10],T T αα==3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α解:∵ 1236325αααα=+-[6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24],T T TT=+--=∴ [1,2,3,4].T α=3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ==== 时, 11220m m k k k ααα+++= 成立, 则向量组12,,m ααα 线性相关解:不正确.如:[][]121,2,3,4T Tαα==,虽然 12000,αα+=但12,αα线性无关。

(2) 如果存在m 个不全为零的数12,,,,m k k k 使11220,m m k k k ααα+++≠ 则向量组12,,,m ααα 线性无关。

解: 不正确. 如[][]11121,2,2,4,1,2,TTk αα====存在k 使121220,,.αααα+≠但显然线性相关(3) 如果向量组12,,,m ααα 线性无关,则其中任何一个向量都不能由其余向量线性表出. 解: 正确。

(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m ααα 线性相关,与题没矛盾。

(4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。

解:不正确。

例如:[][][]1230,0,0,0,1,0,0,0,1,TTTααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。

线性代数课后习题答案第三章 矩阵的初等变换与线性方程组

线性代数课后习题答案第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1))⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010********* 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x xx x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫⎝⎛--0000000021101201,于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数). (4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是⎪⎪⎩⎪⎪⎨⎧==--=++=ww z z w z y w z x 757975767171,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数). 14. 写出一个以⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x为通解的齐次线性方程组. 解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x xx x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x cx c c x c c x ,或 ⎩⎨⎧+-=-=432431432x x x x x x ,或 ⎩⎨⎧=-+=+-04302432431x x x x x x , 这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解? 解⎪⎪⎭⎫⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 当λ取何值时有解?并求出它的解. 解⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ.要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2. 当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311xx x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解. 解B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ.要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )<R (B ), 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)≠0, 所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221, 方程组的解为⎪⎩⎪⎨⎧==++-=33223211x x x x x x x , 或⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数). 18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T .证明 必要性. 由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅=Q P A .令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T .充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是R(A)=R(A,E m),而| E m|是矩阵(A,E m)的最高阶非零子式,故R(A)=R(A,E m)=m.因此,方程AX=E m有解的充分必要条件是R(A)=m.(2)方程YA=E n有解的充分必要条件是R(A)=n.证明注意,方程YA=E n有解的充分必要条件是A T Y T=E n有解.由(1)A T Y T=E n有解的充分必要条件是R(A T)=n.因此,方程YA=E n有解的充分必要条件是R(A)=R(A T)=n.20.设A为m⨯n矩阵,证明:若AX=AY,且R(A)=n,则X=Y.证明由AX=AY,得A(X-Y)=O.因为R(A)=n,由定理9,方程A(X-Y)=O只有零解,即X-Y=O,也就是X=Y.。

线性代数第三章习题及解答

线性代数第三章习题及解答

解:取 α1 = (1, 0, 0)T , α2 = (0, 1, 0)T , β1 = (−1, 0, 0)T , β2 =
(0, −1, 0) α1 + α2 + β1 + β2 = 0, 但 α1 , α2 线性无关, 且 β1 , β2 也线性无关 (3) 若只有当 λ1 , . . . , λm 全为 0 时,等式 λ1 α1 + · · · + λm αm + λ1 β1 +· · ·+λm βm = 0 才能成立, 则 α1 , α2 , . . . , αm 线性无关, β1 , β2 , . . . , βm
证明:因为 n = R(e1 , . . . , en ) ≤ R(α1 , . . . , αn ) ≤ n 于是 R(α1 , . . . , αn ) = n, 则 α1 , α2 , . . . , αn 线性无关
7. 设向量组 α1 , α2 , . . . , αm 线性相关,且 α1 ̸= 0, 证明:存在某
2
(0, 0, 0)T , β3 = (−1, −1, 1)T 5. 利用初等行变换求下列矩阵的列向量组的一个最大线性无关
组, 并把其余列向量用最大线性无关组线性表示 . 25 31 17 43 75 94 53 132 (1) 75 94 54 134 25 32 20 48 25 31 17 43 25 31 17 75 94 53 132 0 1 2 解: 75 94 54 134 −→ 1 3 0 25 32 20 48 0 1 3 α1 α2 α3 α4 25 31 17 43 1 0 0 8 5 0 1 2 3 0 1 0 −1 −→ 0 0 1 2 −→ 0 0 1 2 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3

线性代数答案第三,四章 课后答案

线性代数答案第三,四章 课后答案

第三章 矩阵的初等变换与线性方程组1.解 (1) ⎪⎪⎪⎭⎫⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020031001201 )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000310*******1~÷r ⎪⎪⎪⎭⎫ ⎝⎛00031005010(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10105663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----2212210022100343112423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000002210032011(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------3473238234202173132 242321232~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~rr r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00410001********* 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000410003********* 2.解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4. 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设 ⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0010000010000001100101 5..解 (1) ⎪⎪⎪⎭⎫⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------56456401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r rr r r 2000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-. (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~rr rr r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-023114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00100007121002301秩为3 三阶子式0702385523085570≠=-=-.6. 解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---34113100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛1343344321kx x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫⎝⎛----5110531631121⎪⎪⎪⎭⎫⎝⎛-00001001021~即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x xx x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x 7. 解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--603411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-0000100011112~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----00007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(0)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解. 9.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫⎝⎛----=)2)(1(0)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-00000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.解 (1)⎪⎪⎪⎭⎫⎝⎛10010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267 (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20143011000010012110012102321~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎪⎪⎭⎫⎝⎛-------1061263111010421110010000100001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛-------10612631110104211 12.解(1) ()⎪⎪⎪⎭⎫⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫⎝⎛--41231521010010001⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001⎪⎪⎭⎫⎝⎛---==∴-4741121BAX . 第四章 向量组的线性相关性1.解 21v v -TT)1,1,0()0,1,1(-=T)10,11,01(---=T)1,0,1(-= 32123v v v -+TTT)0,4,3()1,1,0(2)0,1,1(3-+=T)01203,41213,30213(-⨯+⨯-⨯+⨯-⨯+⨯=T)2,1,0(=2. 解 由)(5)(2)(3321a a a a a a +=++-整理得)523(61321a a a a -+=])1,1,1,4(5)10,5,1,10(2)3,1,5,2(3[61TT T --+=T)4,3,2,1(=3.解 (1) 设)0,,0,0,1(11 ==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示. (2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 其中m e e ,,1 为单位向量,则上式成立,而m a a ,,1 ,m b b ,,1 均线性相关 (3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a 取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的.(4) Ta )0,1(1= Ta )0,2(2= Tb )3,0(1= Tb )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾. 4.证明 设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相 关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 0110110001110014321=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⇒x x x x 由011011000111001=知此齐次方程存在非零解则4321,,,b b b b 线性相关. 综合得证.5.证明 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛0001001101121r k k k因为01111011≠=故方程组只有零解则021====r k k k 所以r b b b ,,,21 线性无关 6.解 (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r rr --- ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛53153103210431731252334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛0003100321043173125所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221114132~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛------2221512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---00222001512012211, 所以第1、2、3列构成一个最大无关组. 7.解 (1) 3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T TT a a a ⎪⎪⎪⎭⎫ ⎝⎛--00032198204121~秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T TTa a a ⎪⎪⎪⎭⎫ ⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---000189903121~秩为2,最大线性无关组为TTa a 21,.8.证明 n 维单位向量n e e e ,,,21 线性无关 不妨设:nnn n n n n n n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛TnT Tnn n n n n T nT Ta a a k k k k k k k k k e e e2121222211121121 两边取行列式,得TnTTnn n n n n TnTT a a a k k k k k k k k k e e e2121222211121121=由002121≠⇒≠TnTT TnTT a a a e e e即n 维向量组n a a a ,,,21 所构成矩阵的秩为n 故n a a a ,,,21 线性无关.9.证明 设n εεε,,,21 为一组n 维单位向量,对于任意n 维向量Tn k k k a ),,,(21 =则有n n k k k a εεε+++= 2211即任一n 维向量都可由单位向量线性表示.必要性⇒n a a a ,,,21 线性无关,且n a a a ,,,21 能由单位向量线性表示,即nnn n n n nn n n k k k k k k k k k εεεαεεεαεεεα+++=+++=+++=22112222121212121111故⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛n T T Tnn n n n n T nT T k k k k k k k k k a a a εεε2121222211121121 两边取行列式,得TnTTnn n n n n TnTT k k k k k k k k k a a a εεε2121222211121121=由0021222211121121≠⇒≠nnn n n n TnTT k k k k k k k k k a a a令⎪⎪⎪⎪⎪⎭⎫⎝⎛=⨯nn n n n n nn k k k k k k k k k A212222111211则 由⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-T n TTT nTTT n T T T n T T a a a A A a a a εεεεεε212112121即n εεε,,,21 都能由n a a a ,,,21 线性表示,因为任一n 维向量能由单 位向量线性表示,故任一n 维向量都可以由n a a a ,,,21 线性表示.充分性⇐已知任一n 维向量都可由n a a a ,,,21 线性表示,则单位向量组:n εεε,,,21 可由n a a a ,,,21 线性表示,由8题知n a a a ,,,21 线性无关.10. 证明 设C B A ,,的最大线性无关组分别为C B A ''',,,含有的向量个数 (秩)分别为221,,r r r ,则C B A ,,分别与C B A ''',,等价,易知B A ,均可由C 线性表示,则秩(C )≥秩(A ),秩(C )≥秩(B ),即321},max{r r r ≤ 设A '与B '中的向量共同构成向量组D ,则B A ,均可由D 线性表示, 即C 可由D 线性表示,从而C '可由D 线性表示,所以秩(C ')≥秩(D ),D 为21r r +阶矩阵,所以秩(D )21r r +≤即213r r r +≤.11.证明:设T n a a a A ),,,(21 = Tn b b b B ),,,(21 =且B A ,行向量组的最大无关组分别为Tr T T ααα,,,21 Ts T T βββ,,,21显然,存在矩阵B A '',,使得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s T TT nT T A a a a ααα 2121,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s TT T n T T B b b b βββ2121⎪⎪⎪⎪⎪⎭⎫⎝⎛+++=+∴T n T n T T T T b a b a b a B A 2211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=T s T T T s T TB A βββααα2121因此 ()()()B R A R B A R +≤+ 12.证明 ⇒若B 组线性无关 令),,(),,(11s r a a A b b B ==则有AK B =由定理知)()}(),(min{)()(K R K R A R AK R B R ≤≤= 由B 组:r b b b ,,,21 线性无关知r B R =)(,故r K R ≥)(. 又知K 为s r ⨯阶矩阵则},min{)(s r K R ≤由于向量组B :r b b b ,,,21 能由向量组A :s a a a ,,,21 线性表示,则s r ≤ r s r =∴},min{综上所述知r K R r ≤≤)(即r K R =)(.⇐若r k R =)(令02211=+++r r b x b x b x ,其中i x 为实数r i ,,2,1 =则有0),,,(121=⎪⎪⎪⎭⎫ ⎝⎛r r x x b b b又K a a b b s r ),,(),,(11 =,则0),,(11=⎪⎪⎪⎭⎫ ⎝⎛r s x x K a a由于s a a a ,,,21 线性无关,所以021=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅r x x x K即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++00002211221122221121221111r rs s s r rr r r r r r r x k x k x k x k x k x k x k x k x k x k x k x k (1)由于r K R =)(则(1)式等价于下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221121221111r rr r r r r r r x k x k x k x k x k x k x k x k x k由于0212221212111≠rrrrr r k k k k k k k k k所以方程组只有零解021====r x x x .所以r b b b ,,,21 线性无关, 证毕.13.证明 集合V 成为向量空间只需满足条件: 若V V ∈∈βα,,则V∈+βα若R V ∈∈λα,,则V ∈λα1V 是向量空间,因为:0),,,(2121=+++=n Tn ααααααα 0),,,(2121=+++=n Tn βββββββTn n ),,,(2211βαβαβαβα+++=+且)()()(2211n n βαβαβα++++++0)()(2121=+++++++=n n αααβββ 故1V ∈+βα),,,(,21n R αααλαλ =∈00)(2121=⋅=+++=+++λαααλλαλαλαn n 故1V ∈λα2V 不是向量空间,因为:)()()(2211n n βαβαβα++++++211)()(2121=+=+++++++=n n αααβββ 故2V ∉+βα),,,(,21n R λαλαλαλαλ =∈λλαααλλαλαλα=⋅=+++=+++1)(2121n n故当1≠λ时,2V ∉λα 14.证明 设),,(321a a a A =11101110,,321a a a A =0211101011)1(1≠-=-=- 于是3)(=A R 故线性无关.由于321,,a a a 均为三维,且秩为3, 所以321,,a a a 为此三维空间的一组基,故由321,,a a a 所生成的向量空间 就是3R .15.证明 设{}R k k a k a k x V ∈+==1122111,{}R x V ∈+==1122112,λλβλβλ任取1V 中一向量,可写成2211a k a k +, 要证22211V a k a k ∈+,从而得21V V ⊆ 由22112211βλβλ+=+a k a k 得⎩⎨⎧=+-+=⇔⎪⎪⎩⎪⎪⎨⎧-=-=-==+1212112122121211212332k k k k k k k k λλλλλλλλλλ上式中,把21,k k 看成已知数,把21,λλ看成未知数0211021≠=-=D 21,λλ⇒有唯一解21V V ⊆∴同理可证: 12V V ⊆ (001112≠=D )故21V V =16.解 由于0623111321,,321≠-=-=a a a 即矩阵),,(321a a a 的秩为3故321,,a a a 线性无关,则为3R 的一个基. 设3322111a k a k a k v ++=,则⎪⎩⎪⎨⎧=+=++-=++723053232321321k k k k k k k k ⎪⎩⎪⎨⎧-===⇒132321k k k 故321132a a a v -+= 设3322112a a a v λλλ++=,则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321λλλλλλλλ⎪⎩⎪⎨⎧-=-==⇒233321k k k 故线性表示为3212233a a a v --=17..解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛---=0041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x 取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=00019719141019119201~367824531232初等行变换A 所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+--=-21100010001),,,(121n nn ξξξ 18.解由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--=00001001825931224321x x x x AB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛59228020802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛2125212114321x x x x , 故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2125212111001B . 19.解 显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组. 20.解 由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈21.证明 设A 的秩为1r ,B 的秩为2r ,则由0=AB 知,B 的每一列向量 都是以A 为系数矩阵的齐次线性方程组的解向量. 当n r =1时,该齐次线性方程组只有零解,故此时0=B ,n r =1,02=r ,n r r =+21结论成立.(2) 当n r <1时,该齐次方程组的基础解系中含有1r n -个向量,从而B 的列向量组的秩1r n -≤,即12r n r -≤,此时12r n r -≤,结论成立。

线性代数第三章习题与答案(东大绝版)

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案

第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。

线性代数第三章习题及解答

线性代数第三章习题及解答

43

3 5 5
2 2 1 5 2 0 0 0 −1 1 0 0
−1 3 0
1

3
6. 设 α1 , α2 , . . . , αn 是一组 n 维向量,已知 n 维单位坐标向量 e1 , e2 , . . . , en 能由它们线性表示, 证明 α1 , α2 , . . . , αn 线性无关.
4 1 −1 1 −2 −22 1 −2 −1 3 6
−24 −11 3 −2 1 −2 −1 0 11 −→ 10 5 −20 0 0 0

10 0
5 9 1 T T 齐次方程的基础解系为 ξ1 = ( 21 11 , 11 , 1, 0) , ξ2 = (− 11 , 11 , 0, 1)
α4 = 8 α − α2 + 2α3 5 1 1 1 2 2 1 0 2 1 5 −1 (2) 3 2 0 3 −1 1 1 0 4 −1 1 1 2 2 1 1 1 0 2 1 5 −1 0 2 解: 2 0 3 −1 3 −→ 0 0 1 1 0 4 −1 0 0 α1 α2 α3 α4 α5 1 1 0 4 −1 1 0 0 1 0 1 0 3 −1 3 −→ 0 1 0 0 0 1 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3 α4 = α1 + 3α2 − α3 , α5 = α3 − α2
T
− 20 83
5 83

− 17 83

线性代数第3章习题解答

线性代数第3章习题解答
一、主要内容
Cauchy 中值定理
F(x)x
洛必达法则

f g1g1 f 1g1 f
0型 0 型
00,1,0型
令y f g 取对数
0型
f g f 1g
Lagrange f(a)f(b)
中值定理
Rolle 定理
n0
Taylor 中值定理
泰勒公式
导数的应用
,极值与最值, 凹凸性,拐点,函数 图形的描绘; 曲率;求根方法.
几何解释: 曲线 y = f (x) 至少有一条切线平行于
连接曲线端点的弦。
.
线性代数第3章习题解答
柯西中值定理:
若 f(x若 )和 F 1f((x x)):: (1)在 闭 区[a间 ,b]上 连 续 ;
(2在 ) 开区 (a,间 b)内可导;
(F 3 (x ) 0 x ( a ,b ).
.
则 至 少 存在 (一 a,b), 点使 得
定 理2 如 果 f(x)在 (x0,x0)内 存 在 二 阶 导 数,则点x0,f(x0)是拐点的必要条件是
f"(x0)0.
线性代数第3章习题解答
方法1: 设函f数 (x)在x0的邻域内二, 阶可导 且f(x0)0, (1 )x 0 两f近 (x )变 ,点 旁 (x 号 0 ,f(x 0 )即 ) 为 ; (2 )x 0 两f( 近 x ) 不 旁 ,点 变 (x 0 ,f(x 0 ) 号 不 ) .是
线性代数第3章习题解答
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点. 极值是函数的局部性概念:极大值可能小于极小 值,极小值可能大于极大值.
定理(必要条件) 设 f(x )在 点 x 0 处 具 有 导 数 ,且 在 x 0 处 取 得 极 值 ,那 末 必 定 f'(x 0 ) 0 .

线性代数第三章题目及答案

线性代数第三章题目及答案

一、判断题1. 设A ,B 为n 阶可逆方阵,则.AB BA =。

F2. 设A ,B 为n 阶可逆方阵,则22()().A B A B A B -=-+ F3. 设A ,B 为n 阶可逆方阵,则.AB A B = T4. 设A 为n 阶方阵,则()().T T A A **=。

T 5. 设A 为n 阶矩阵,则1.n A A -*=。

T6. 若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BAC=E 。

( F )7. 对任意n 阶方阵C B A ,,,若AC AB =,则一定有C B =。

( F )8. 对任意n 阶方阵,,B A 若E AB =,则一定有B A =-1。

( T )9. 设A 、B 为同阶可逆矩阵,则(A +B )-1=A -1+ B -1。

( F )10. 设A ,B 为n 阶可逆矩阵,则()()()111T T T AB A B ---⎡⎤=⎣⎦。

( T )二、选择+填空11. 若32,1T A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭033,167T B -⎛⎫= ⎪⎝⎭则9() .8T AB -⎛⎫= ⎪⎝⎭ 12. 设矩阵120826,435534A B -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且满足方程2A+X=B-2X ,则X=⎽⎽⎽⎪⎪⎭⎫ ⎝⎛---211222⎽⎽⎽⎽⎽。

13. 设3阶方阵121233,A αααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中,,均为三维行向量,211213010100B ,P 100P 010001101αααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,,则必有( C ) 12211212()APP B ()AP P B ()PP A B (D)PP A B A B C ====14. 设矩阵4154,6158X X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭矩阵满足X =则矩阵( A )。

02122221()()()(D)54032530A B C ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭15. 已知矩阵111121,()2,231A r A λλ⎛⎫⎪=== ⎪ ⎪+⎝⎭若则( A )()1()3()1(D)4A B C -16. 若有1133016,02135k k k k ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭则( A )()1()2()5(D)1A B C --17. 01130301,11()02142T A B AB ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭则= 。

线性代数第一三四章练习题参考答案

线性代数第一三四章练习题参考答案

第一章练习题参考答案一、填空题.1.-6d;2. 12;3. 23231414()()a a b b a a b b --;4. 1(1)(1)n n ---;5. -10;6. 0;7.-888;8. 4;-6.9. 132531445213253241541325344251,,a a a a a a a a a a a a a a a . 二、计算题. 1. 14().j k k j D x x ≤<≤=∏-2. 117!(2)27D =-+++.3. (1)(2)2121(1)(1)2n n n n n D x x x ---+=- ;4. 34560;5. 11[1]()nni i i i a x a x a==+⋅∏--∑.6.11024x +.7. 3(2)x x + 三、3(1)2n n -第三章练习参考答案 一、选择题1. C ;2. C ;3. C;4.C. 二、填空题1. (1)m nab -; 2.100122010345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. 2123n --; 4. 108; 5. 2132-⎡⎤⎢⎥-⎣⎦; 6. 0; 7. 301050103⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;8. 12; 9. 1100BA B A--⎡⎤⎢⎥⎣⎦; 10. 3E ;11. 3A E +; 12. 25A ;13. 88000880008808⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 14. 12.三、计算与证明题 1. 600006006060031⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; 2. 02100000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. (1) T CA , (2) 101214122--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 4. 2a =-; 5. 12345B A A E -=++; 6. -16; 7. 001010100B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 8. 见课堂笔记; 9. 111212132122222331323233114411441144b b b b b b b b b b b b ⎡⎤-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦. 10. 22211212513--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 11. 略. 第四章练习参考答案一、选择题1. C ;2. D ;3. B;4.D. 二、填空题1. (1,2,0,4)(0,3,3,10)T T t -+--, 其中t 为任意实数;2. 12,αα; 2;3. 3-;4.122113311441233224423443,,,,,E E E E E E E E E E E E ------; dimV=6;(2,3,1,4,2,2)T--; 5. 极大无关组为12,αα; 3124122,23αααααα=-+=-+;6. 12(1,0,1,1)(1,1,0,1)(1,3,1,0),T T Tk k α=-+-+-- 其中 12,k k 是任意数;7.141113M ⎡⎤=⎢⎥⎣⎦, 15(,)33TX =-. 三、计算与证明题1.(1) 当1b =时, 极大无关组为124,,ααα, (2) 当1b =时, 4α不能由12,αα线性表示, 3α能由12,αα线性表示(3122ααα=-+).2. (1) 5λ≠时,123,,ααα是基,21311222131222M λλλ⎡⎤⎢⎥-+⎢⎥⎢⎥=--⎢⎥⎢⎥+⎢⎥--⎣⎦; (2)ξ在基123,,βββ下的坐标为 (1,0,1)T;(3)所有非零向量为 (3,3,2)T k -. 3. (1) 只要证123,,0ααα≠ ,(2) 1232,0),1,1),2,1,5)TTTβββ==-=-;(3)M ⎤⎥⎥⎢⎥=⎢⎥⎢⎥⎢⎢⎣; (4)坐标为10)T β=.4. 1)通解为0112233X k k k ξηηη=+++, 其中021(,,0,0,0)33T ξ=-,1(5,2,3,0,0)Tη=,2(1,0,0,1,0)Tη=-,3(1,2,0,0,3)Tη=-, 123,,k k k 为任意数.2)解向量的极大无关组是0010203,,,.ξξηξηξη+++5. 1)过渡矩阵111100010010010M ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦; 2)α在基I 下的坐标为(1,1,1,1)TX =,α在基II 下的坐标为(4,1,1,1)TX =---; 3)(1,1,1,1)Tk β=,k 为任意常数.6. 15,5a b ==, 3121322βαα=+;7. 因为1V 的零元素00000⎡⎤=⎢⎥⎣⎦不在1V 中,所以1V 不是V 的子空间;而2V 是V 的子空间(主要验证运算封闭),2V 的基是2111010,,;dim 3.001001V -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6-10. 证明略。

高等数学 线性代数 习题答案第三章

高等数学 线性代数 习题答案第三章

第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。

解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。

由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。

也即440x y --=或8160x y --=。

4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。

东北大学线性代数_第三章课后答案详解向量组的线性相关性

东北大学线性代数_第三章课后答案详解向量组的线性相关性

第三章 向量组的线性相关性基本教学要求:1. 理解n 维向量的概念.2. 理解向量的线性组合、线性相关和线性无关的概念.3. 掌握向量的线性相关和线性无关的有关理论及判断方法.4. 了解向量组的极大线性无关组与秩的概念,会求向量组的极大线性无关组及秩.5. 理解矩阵的秩的概念,掌握求秩的方法.一、向量及其运算 1. 向量的概念有大小无方向的量,叫做数量或标量.既有大小又有方向的量则是向量,又称矢量,用有序数组表示:12n a a a ⎛⎫⎪⎪ ⎪ ⎪⎝⎭或 ()12,,,n a a a .前者称为n 维列向量,后者称为n 维行向量.列向量通常记作a 、或a 、或α,对应的行向量则相应地记作Ta 、或Ta 、或T α.如不特别说明,向量一般常指列向量. 以下讨论主要针对实向量.2. 向量的运算因为向量是矩阵,所以它有许多与矩阵相同的运算及运算规律(P 62):(1)相等; (2)加法; (3)数乘; (4)转置,但向量没有矩阵形式的“乘法”和“逆”,而有所谓的“向量的乘法”运算——内积.向量的加法和数乘运算称为向量的线性运算.例3.1(例3.1 P 62)(5)内积(P 63) 设向量1212(,,,),(,,,)T T n n a a a b b b αβ==,令1122[,]n n a b a b a b αβ=+++,称[,]αβ为α与β的内积.例如,内积的性质:①[,][,]αββα=(对称性);②[,][,][,]αβγαγβγ+=+,[,][,]k k αβαβ=(线性性); ③[,]0αα≥.当且仅当αο=时,[,]0αα=(正定性).2n a =++为向量α的长度(或范数),记为α(或α).当1α=时,称α为单位向量.如果αο≠,则1αα是与α同方向的单位向量.对任意非零向量αβ、,称[,],arccosαβαβαβ=⋅,(0,αβπ≤≤)为向量α与β的夹角.如果[,]=0αβ,则称α与β正交.3.应用(1)向量表示线性方程组(P 65) 考虑线性方程组1111221n n 12112222n n 2m11m22mn n m a x a x a x b ,a x a x a x b ,a x a x a x b .+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(1)若设1i 12i 2i mi m a b a ba (i 1,2,,n),b a b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则(1)式可表示为1122n n x a x a x a b +++=. (2)(2)向量表示矩阵(P 64)111121n 21222n 2m1m2mn m a a a a a a A a a a ⎛⎫α⎛⎫ ⎪ ⎪α ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪α⎝⎭⎝⎭或 ()11121n 21222n 12n m1m2mn a a a a a a A a a a ⎛⎫⎪⎪=βββ ⎪⎪⎝⎭,12m ,,,ααα与12n ,,,βββ分别称为矩阵A 的行向量组与列向量组.二、向量组的线性相关性 1. 基本概念由同维数的列向量(或行向量)组成的集合叫做向量组.定义3.1 对向量β和向量组12s ,,,ααα,若存在一组数12s k ,k ,,k 使1122s s k k k β=α+α++α, (3) 则称向量β可由向量组12s ,,,ααα线性表示,也称β是向量组12s ,,,ααα的一个线性组合. (P 64)例如:3112210--⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭表明向量⎪⎪⎭⎫ ⎝⎛-23可由向量组⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-0111,线性表示.例如:10532436327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭是向量组1052,3,6327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的一个线性组合,而1052236327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-+-- ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭是向量组1052,3,6327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的另一个线性组合.根据定义3.1,方程组(2)有解可表述为向量b 可由向量组12n a ,a ,,a 线性表示.式(3)可以用分块矩阵的乘积形式表示为(P 64)1212s s k k (,,,)k ⎛⎫ ⎪ ⎪β=ααα ⎪ ⎪⎝⎭;(当12s ,,,,βααα为列向量时)或 1212s s (k ,k ,,k )α⎛⎫ ⎪α ⎪β= ⎪ ⎪α⎝⎭. (当12s ,,,,βααα为行向量时)定义3.2 对向量β和向量组12s ,,,ααα,若存在一组不全为零的数12s k ,k ,,k 使1122s s k k k α+α++α=ο, (4)则称向量组12s ,,,ααα线性相关;否则,称向量组12s ,,,ααα线性无关.(P 65)定义3.2表明: 向量组12s ,,,ααα线性相关,即齐次线性方程组1122s s x x x α+α++α=ο有非零解. (P 65) 向量组12s ,,,ααα线性无关,即齐次线性方程组1122s s x x x α+α++α=ο只有零解. (P 65)又根据Cramer 法则,有n 个n 维向量线性相关⇔n 个向量构成的矩阵的行列式为0. n 个n 维向量线性无关⇔n 个向量构成的矩阵的行列式不为0.例如,311022100--⎛⎫⎛⎫⎛⎫⎛⎫--+= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭表明向量组311,,210--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭线性相关.0700230321321 =⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-k k k ,即0723032001321 =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-k k k .由于只有零解,所以向量组1002,3,0327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭线性无关.定义3.3一组两两正交的非零向量称为正交向量组.由单位向量构成的正交向量组称为规范正交向量组. (P 66)例如,n 维标准单位向量组e 1=(1,0,…,0)T , e 2=(0,1,…,0)T , …, e n =(0,0,…,1)T是一个规范正交向量组.2. 有关结论(P 66-68) (1)向量组12s ,,,ααα线性相关⇔12s ,,,ααα中至少有一个向量可由其余向量线性表示. (定理3.3 P 67)向量组12s ,,,ααα线性无关⇔12s ,,,ααα中任意一个向量不能由其余向量线性表示.(2)一个向量α线性相关⇔α=ο. (P 66) 一个向量α线性无关⇔α≠ο.(3)两个向量,αβ线性相关 k l ⇔α=ββα或=(几何上,即,αβ共线或平行). (P 66) 两个向量,αβ线性无关 k l ⇔α≠ββ≠α且(几何上,即,αβ不共线或不平行).(4)三个向量,,αβγ线性相关,即,,αβγ共面. (P 66) 三个向量,,αβγ线性无关,即,,αβγ不共面.(5)正交向量组线性无关. (定理3.1 P 66)标准单位向量组是线性无关向量组.(6)若向量组有一个部分组线性相关,则该向量组线性相关.(部分相关,整体相关) (定理3.2 P 67) 线性无关向量组的任一部分组线性无关.(整体无关,部分无关) (推论2 P 67)推论 含有零向量的向量组线性相关. (推论1 P 67)(7)设向量组12s ,,,ααα线性无关,12s ,,,,αααβ线性相关,则β可由向量组12s ,,,ααα线性表示,且表示式唯一.(表示式中的系数称为β关于向量组12s ,,,ααα的坐标) (定理3.4 P 67)(8)线性相关向量组的缩短向量组线性相关.线性无关向量组的加长向量组线性无关. (定理3.5 P 68) 证 设()Ti 1i 2i mi a ,a ,,a (i 1,2,,s)α==是一组m 维向量,令1122s s k k k α+α++α=ο,即1111221s s 2112222s sm11m22ms s a k a k a k 0,a k a k a k 0,a k a x a k 0.+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(5) 不妨去掉最后一个方程(这对应于12s ,,,ααα同时去掉了最后一个分量),有1111221s s 2112222s sm 111m 122m 1s s a k a k a k 0,a k a k a k 0,a k a x a k 0.---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(6) 显然,若方程组(5)有非零解,那么方程组(6)也必然有非零解,即线性相关向量组的缩短向量组线性相关.反之,若方程组(6)只有零解,那么方程组(5)也必然只有零解,即线性无关向量组的加长向量组线性无关.例如,(9)任意n+1个n 维向量线性相关. 证 设12n 1,,,+ααα为n+1个n 维向量,那么①若12n ,,,ααα线性相关,则12n 1,,,+ααα线性相关;②若12n ,,,ααα线性无关,则由Cramer 法则知,线性方程组1122n n n 1x x x +α+α++α=α有唯一解,即n 1+α可由12n ,,,ααα线性表示,故12n 1,,,+ααα线性相关.推论任意m 个n(n<m)维向量线性相关.3. 向量组线性相关/线性无关的判定方法(1)观察法;(2)定义法;(3)基本结论法;(4)秩法(第三、四节). 三、秩 (一)向量组的秩 1. 向量组的等价设有两个向量组:(Ⅰ)α1,α2,…,αr ;(Ⅱ)β1,β2,…,βs .定义3.4 若向量组(Ⅰ)中的每个向量都可由向量组(Ⅱ)线性表示,则称向量组(Ⅰ)可由向量组(Ⅱ)线性表出;若向量组(Ⅰ)与向量组(Ⅱ)可以互相线性表出,则称它们等价. (定义3.10 P 69)向量组等价的性质:1)反身性;2)对称性;3)传递性. (P 69)若向量组(Ⅰ)可由向量组(Ⅱ)线性表出,则有s ×r 矩阵C 使(α1,α2,…,αr )=(β1,β2,…,βs )C ,C 为表出矩阵.记A=(α1,α2,…,αr ), B=(β1,β2,…,βs ),上式即为A=BC.实际上,A=BC既表示A的列向量组可由B的列向量组线性表出,也表示A的行向量组可由C的行向量组线性表出.注意:当A、B为同型矩阵,A、B的行(列)向量组等价,必有矩阵A、B等价;反之,矩阵A、B等价,它们的行(列)向量组未必等价. (P70)定理3.1如果向量组α1,α2,…,αm线性无关,则有规范正交向量组ε1,ε2,…,εm与之等价. (定理3.6P70) 证令β1=α1,β2=α2+k1β1且[β2,β1]=0,得k1=-[α2,β1]/[β1,β1],所以β2=α2-([α2,β1]/[β1,β1])β1,βm=αm+k1β1+…+k m-1βm-1且[βm,β1]=0, [βm,β2]=0,…, [βm,βm-1]=0,得k1=-[αm,β1]/[β1,β1], k2=-[αm,β2]/[β2,β2],…, k m-1=-[αm,βm-1]/[βm-1,βm-1],所以βm=αm-([αm,β1]/[β1,β1]) β1-…-([αm,βm-1]/[βm-1,βm-1]) βm-1,则β1,β2,…,βm是正交向量组,且(α1,α2,…,αm)=(β1,β2,…,βm)[][][][][][]2221m111112m,,,,,,101001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝αβαβββββαβββ⎭,故向量组β1,β2,…,βm与向量组α1,α2,…,αm等价.再将向量组β1,β2,…,βm规范化,便得到与α1,α2,…,αm等价的规范正交向量组ε1,ε2,…,εm.例3.2(例3.5 P70)定义3.5 如果实矩阵A满足AA T=E,则称A为正交矩阵. (定义3.11 P71)正交矩阵的性质:(1)A 1=±;(2)实矩阵A 为正交矩阵的充分必要条件是A 的行向量组(或列向量组)为规范正交向量组.2. 极大线性无关组定义3.6 如果向量组T 中有一部分向量组α1,α2,…,αr 满足: (1)α1,α2,…,αr 线性无关;(2)T 中任一向量β与α1,α2,…,αr 线性相关,则称α1,α2,…,αr 为向量组T 的一个极大线性无关向量组,简称极大无关组.(定义3.12 P 71)极大无关组的含义:向量组中没有比“极大无关组”“更大的”的线性无关向量组.注意:一个向量组可能有极大无关组,也可能没有极大无关组;可能有一个极大无关组,也可能有多个极大无关组.如:只有零向量的向量组没有极大无关组;线性无关的向量组只有一个极大无关组;102,,013⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有多个极大无关组.定理3.2 向量组与它的任一极大线性无关组等价. (定理3.7 P 72) 推论1 向量组中的任意两个极大线性无关组等价. (推论 P 72)定理3.3 若列向量组α1,α2,…,αr 线性无关,且(α1,α2,…,αr )A=O ,则A=O . (定理3.8 P 72)定理3.4 等价的线性无关向量组含有相同个数的向量. (定理3.9 P 72) 推论 一个向量组的所有极大线性无关组中的向量个数相等. (推论 P 72)定义3.7 一个向量组的极大线性无关组中的向量个数称为向量组的秩,记为R(·)或rank(·). (定义3.13 P 72)规定:不存在极大无关组的向量组的秩为0. 例如,102R ,,2013⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=.相关结论: (1){}12s R ,,,s ααα≤.(2)对于任意的同维向量组12s ,,,ααα和12t ,,,βββ,总有{}{}{}{}{}{}12s 12t 12s 12t 12s 12t max R ,,,,R ,,,R ,,,,,,,R ,,,R ,,,αααβββ≤αααβββ≤ααα+βββ (3)若向量组12s ,,,ααα可由向量组12t ,,,βββ线性表出,则{}{}12s 12t R ,,,R ,,,ααα≤βββ.(定理3.10 P 73)推论1 等价的向量组的秩相等. (推论1 P 73) 推论2 若向量组12s ,,,ααα线性无关,且可由向量组12t ,,,βββ线性表出,则s t ≤. (推论2P 73)推论3 若向量组12s ,,,ααα可由向量组12t ,,,βββ线性表出,且s t >,则12s ,,,ααα线性相关. (推论3 P 73)推论4 任意m 个n(n<m)维向量线性相关. (推论4 P 73)求极大无关组的方法:(1)观察法;(2)基本结论法;(3)初等变换法(第四节).(二)矩阵的秩定义3.8 在一个m n ⨯矩阵A 中任选k 个行与k 个列(1k min{m,n}≤≤),位于这些行、列交叉处的k 2个元素按原相互位置关系所形成的k 阶行列式,称为矩阵A 的一个k 阶子式. (定义3.14 P 73)定义3.9 若矩阵A 有不等于零的r 阶子式,且所有r+1阶子式(如果存在的话)全等于零,则r 称为矩阵A 的秩,记为R(·)或rank(·). (定义3.15 P 73)定义3.9指出:(1) 矩阵的秩为r ,则矩阵所有r+1及以上阶子式(如果存在的话)都等于零; (2) 矩阵的秩是矩阵不等于零的最高阶子式的阶数; (3) 0≤R(A)≤min{m,n}; (4) R(A T )= R(A);(5) 可逆矩阵的秩等于矩阵的阶数.例3.3(例3.6 P 74) 求矩阵A 和B 的秩,其中1234512302312456,0003421000000A B ⎛⎫⎛⎫⎪⎪⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.2. 求矩阵的秩定理3.5初等变换不改变矩阵的秩. (定理3.11 P 74)推论1 若A ~B ,则R(A)= R(B). (推论 P 75) 推论2行阶梯形矩阵的秩等于元素不全为零行的行数.定理3.5、推论1和推论2给出了一个求矩阵秩的方法:对矩阵做初等行变换将其化为行阶梯形矩阵,行阶梯形矩阵中元素不全为零行的行数即为矩阵的秩.例3.4(类似例3.8 P 75)求矩阵12101210A 10112022-⎛⎫⎪--⎪= ⎪-⎪-⎝⎭的秩. 解 因为2131434123+,221210121012101210000002011011020100002022042000---↔---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪--⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭r r r r r r r r r r , 所以R(A)2=.例3.5(例3.7 P 75) 证明:R(AB )≤min{R(A),R(B)}. 证 因为()()R AB R AB A ≤,而()()12c c BAB A O A -→,所以()()()R AB R O A R A ≤=.又()()()()()T T T T R AB R (AB)R B A R B R B ==≤=,所以R(AB)min{R(A),R(B)}≤.3. 求向量组的秩与极大无关组定理3.6 矩阵的秩等于矩阵的行向量组的秩(称为矩阵的行秩),也等于矩阵的列向量组的秩(称为矩阵的列秩). (定理3.12 P 76)证A ~B(对A 作行变换,B 是A 的行最简形矩阵)⇒R(A)=R(B),A 、B 的行向量组等价又R(B)=R(B 的行向量组)⇒R(A)=R(B 的行向量组)=R(A 的行向量组)又R(A)=R(A T )⇒R(A T )=R(A T 的行向量组)=R(A 的列向量组) ⇒ R(A)=R(A 的列向量组)定理3.6给出了求向量组秩的方法:首先由向量组构成矩阵,然后求矩阵的秩,从而得向量组的秩.例3.6求向量组α1=(1,2,-1,3)T , α2=(1,3,2,5)T , α3=(-2,2,-4,3)T , α4=(1,-5,-6,-8)T , α5=(2,-3,-7,-5)T 的秩. 解 A =(α1,α2,α3,α4,α5)=2131413242233211212112122325301677124670325535385029111111212112120167701677,00161616001110033300000-+-----⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→⎪ ⎪-----⎪ ⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→→ ⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭r r r r r r r r r r所以R(α1,α2,α3,α4,α5)=3.定理3.7 完全的初等行变换不改变矩阵的列向量组的线性相关性;完全的初等列变换不改变矩阵的行向量组的线性相关性.例 3.7(例 3.9 P 76) 讨论向量组α1=(1,2,-1,3)T , α2=(1,3,2,5)T , α3=(-2,2,-4,3)T , α4=(1,-5,-6,-8)T , α5=(2,-3,-7,-5)T 的线性相关性,求极大无关组,并用极大无关组表示其余向量.解 A=(α1,α2,α3,α4,α5)=2131413242123233261121211212232530167712467032553538502911111121211212016770167700161616001110033300000r r r r r r r r r r r r r -+---+---⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→⎪ ⎪-----⎪ ⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→→⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭→312211010100010101101011,011100111000000000r r r --⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→⎪ ⎪---- ⎪⎪⎝⎭⎝⎭故R(α1,α2,α3,α4,α5)=3,说明α1,α2,α3,α4,α5中任意4个向量都线性相关.α1,α2,α3 (α1,α2,α4、α1,α2,α5都)是一个极大无关组,且α4=-α2-α3,α5=α1-α2-α3.定义3.10 若矩阵的秩等于矩阵的行数,则称矩阵是行满秩的;若矩阵的秩等于矩阵的列数,则称矩阵是列满秩的.既是行满秩又是列满秩的矩阵称为满秩矩阵(即可逆矩阵).求秩的方法:(1)观察法;(2)定义法;(3)基本结论法;(4)初等变换法.常识结论:(1)R(AB)min{R(A),R(B)}≤ (2)R(AB)R(A)R(B)A ≥+-的列数(3)max{R(A),R(B)}R(A B)R(A)R(B)≤≤+ 简证:见向量组的基本结论 (4)R(A B)R(A)R(B)±≤+ 简证:∵12c c (A B B)(A B)±→∴R(A B)R(A B B)R(A B)R(A)R(B)±≤±=≤+四、向量应用实例[实例3-1] 几何应用 [实例3-2] 混凝土配制问题 [实例3-3] 药方配制问题五、习题(P 80-84) 选择题:1-5. AC B C A6. 提示:AB=C ,A=CB -1表明,A 与C 的列向量组可以互相线性表出,故选B.7. 提示:当c 1≠0时,|(α1,α2,α3)|≠0, |(α1,α2,α4)|≠0,故排除选项A,B. |(α1,α3,α4)|≡0,故选C.当c 3+c 4≠0时,|(α2,α3,α4)|≠0,故排除选项D.填空题:1. 提示:方法一α1,α2,α3,α4线性相关⇔|(α1,α2,α3,α4)|=0⇒k=-5/13方法二初等变换法α1,α2,α3,α4线性相关⇔R(α1,α2,α3,α4)<42. 提示:β可由α1,α2线性表示⇔线性方程组(α1,α2)x=β有解⇔(α1,α2,β)~B,R(α1,α2,β)=R(α1,α2)⇒k=-19/23. 提示:设A=(α1,α2,α3,α4),作初等变换A=(α1,α2,α3,α4)~B (B为A的行最简矩阵)⇒R(A)=R(B)=44.提示:α1,α2,α3线性无关⇔|(α1,α2,α3)|≠0⇒abc≠0三、解答题:1. 略.2. 提示:(1) 能.α2,α3,α4线性无关⇒α2,α3线性无关⇒若α1,α2,α3线性相关,则α1必可由α2,α3线性表示(2)不能.因为若α4可由α1,α2,α3线性表示,则α4就可由α2,α3线性表示,这与α2,α3,α4线性无关矛盾.3. 提示:(1)-(3)可用行列式法判断,(3)-(4)可用初等变换法4.提示:设A=(α1T,α2 T,α3 T,α4 T),然后对A作行初等变换,将A化为行最简矩阵.5.提示:设A=(α1,α2,α3),则当|(α1,α2,α3)|≠0时,β可由α1,α2,α3唯一线性表示,且表达式唯一.6. 提示:(1)当k1,k2,…,k m全为零时等式自然成立;否则,若k1=0,此时等式为k2α2+…+k mαm=ο,由于α2,…,αm 线性无关,得k2=…=k m=0,所以k1,k2,…,k m或全不为零.(2)由(1)知l1,l2,…,l m全不为零.设a=k1/l1,则两式相减,得(k 1-a l 1)α1+(k 2-a l 2)α2+…+(k m -a l m )αm =ο,因k 1-a l 1=0,由(1)知(k 2-a l 2)=…=(k m -a l m )=0,即k 1/l 1= k 2/l 2=…=k m /l m .8. 提示:令 k 1(a α1-α2)+k 2(b α2-α3)+k 3(c α3-α1)=ο, (1) 即(k 1a-k 3)α1+(k 2b-k 1)α2+(k 3c-k 2)α3=ο.α1,α2,α3线性无关⇒k 1a-k 3=0, k 2b-k 1=0, k 3c-k 2=0 (2)式(2)是关于k 1,k 2,k 3的齐次线性方程组,所以a α1-α2,b α2-α3,c α3-α1线性相关⇔存在不全为零的k 1,k 2,k 3使式(1)成立,即方程组(2)有非零解.⇔a11b00abc 101c--=⇒=-.9. 提示:因为α1,α2,…,αs 线性相关,所以存在不全为零的数k 1,k 2,…,k s 使k 1α1+k 2α2+…+k s αs =ο.设i 是k 1,k 2,…,k s 中不为零的数的最大下标,由α1≠ο可知i>1,于是αi 就可由α1,…,αi-1线性表示.10. 证112223n n 1k ()k ()k ()α+α+α+α++α+α=ο, 即 1n 1122n 1n n (k k )(k k )(k k )-+α++α+++α=ο.因12n ,,,ααα线性无关,得1n 1122233n 1n n k k 0k 1001k k 0k 1100k k 0k A 0110001k k 0k ∆-+=⎧⎛⎫⎛⎫ ⎪⎪⎪+= ⎪⎪ ⎪⎪⎪ ⎪+=⇔=κ=ο⎨ ⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪+=⎪⎝⎭⎩⎝⎭. 而1n A 1(1)+=+-0,2, n n ⎧=⎨⎩为偶数,为奇数.所以,当n 为偶数时,α1+α2,α2+α3,…,αn +α1线性相关; 当n 为奇数时,α1+α2,α2+α3,…,αn +α1线性无关.11.提示:n 个n 维向量α1,α2,…,αn 线性相关⇔存在不全为零的数k 1,k 2,…,k n 使k 1α1+k 2α2+…+k n αn =ο.⇔|(α1,α2,…,αn )|=0. (克拉默法则)12.证 因为e 1, e 2, …, e n 可由α1,α2,…,αn 线性表出,所以R(e 1, e 2, …, e n )≤R(α1,α2,…,αn ).又因为α1,α2,…,αn 可由e 1, e 2, …, e n 线性表出,所以R(α1,α2,…,αn )≤R(e 1, e 2, …, e n ).因此R(α1,α2,…,αn )=n ,α1,α2,…,αn 线性无关.13. 证 充分性 因为任一n 维向量都可由α1,α2,…,αn 线性表示,所以标准单位向量组e 1, e 2, …, e n 可由α1,α2,…,αn 线性表出,于是由第11题可知,α1,α2,…,αn 线性无关.必要性 设α1,α2,…,αn 线性无关,因n+1个n 维向量线性相关,所以任一n 维向量β都可由α1,α2,…,αn 线性表示.14. 提示:先进行schimidt 正交化,然后规范化.15.提示:方法一 令A=(α1,α2,α3,α4,β),则()1234111110112123a 24b 3351a 85⎛⎫ ⎪-⎪ααααβ= ⎪++ ⎪+⎝⎭1111112100112101121012100100225200010a b a b a a -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→→ ⎪ ⎪++ ⎪⎪-++⎝⎭⎝⎭1021001121,10000000021000110100,110010100010a b b a a b a a b a ⎧-⎛⎫⎪ ⎪-⎪ ⎪=-⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪⎪⎛⎫⎪-→ ⎪⎨+ ⎪⎪++ ⎪⎪ ⎪⎪≠-+ ⎪⎪ ⎪⎪ ⎪+⎪ ⎪⎪⎝⎭⎩当当所以,(1)当a=-1且b≠0时,β不能由α1,α2,α3,α4线性表示. (2)当a≠-1时,β能由α1,α2,α3,α4唯一地线性表示为1232b a b 1ba 1a 1a 1++β=-α+α+α+++. (3)当a=-1且b=0时,β能由α1,α2,α3,α4线性表示,但表示不唯一.方法二 向量β能不能由向量组α1,α2,α3,α4线性表示等同于非齐次线性方程组1234(,,,)x αααα=β是否有解.根据克拉默法则,令|(α1,α2,α3,α4)|=0,得a=-1,否则,a ≠-1. 所以当a ≠-1时,此时β可由α1,α2,α3,α4唯一地线性表示; 当a=-1时,对矩阵(α1,α2,α3,α4,β)作初等行变换,得()123410210011210000b 00000-⎛⎫⎪- ⎪ααααβ= ⎪⎪⎝⎭,所以当a=-1且b≠0时,β不能由α1,α2,α3,α4线性表示.16.解 向量组α1,α2与向量组β1,β2,β3等价,即α1,α2与β1,β2,β3可以互相线性表出,并且R(α1,α2)=R(β1,β2,β3).4332431323113231110110422211120021111310204222r r r r r r +++⎛⎫⎛⎫ ⎪⎪-- ⎪ ⎪→ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭3213231021110000000000r r ↔⎛⎫⎪⎪→ ⎪⎪⎝⎭12312121231012321201121212,,,00000000001101101120,,,0000000000⎧-⎛⎫⎪ ⎪⎪ ⎪⇒βββαα⎪ ⎪⎪ ⎪⎪⎝⎭→⎨-⎛⎫⎪ ⎪⎪ ⎪⎪⇒ααβββ ⎪⎪ ⎪⎪⎝⎭⎩可由线性表出可由线性表出17. 提示:根据极大线性无关组的定义.18.(3)解 213123202310231 0343001304710013r r r r----⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭32r r 02310013,0000 R 2.+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭∴=(4)解 322141r r r 3r r r 17253143172531435375941322013 5475941341002202532483015---⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭42313132323231r 225r r r r 17r r r r 2r r r r 31r 02531910020011025319100200110000000010028010500110000 R 3.⨯---↔-↔-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪→ ⎪ ⎪- ⎪⎪⎝⎭∴=,19. 提示:x y y x 2y x 2y x 2y A y x y y x y y y x y y x 111111y x y 0x y 0,x 2y 0y y x 00x y 000000y x y y x 0,x 2y 0y y x 0y x x y 111000,x 2y 0x y R(A)1000+++⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎧⎛⎫⎛⎫⎪ ⎪ ⎪→-+≠⎪ ⎪ ⎪ ⎪ ⎪⎪-⎪⎝⎭⎝⎭→⎨⎛⎫⎛⎫⎪ ⎪ ⎪⎪→+= ⎪ ⎪⎪ ⎪ ⎪--⎪⎝⎭⎝⎭⎩⎛⎫ ⎪+≠=⇒= ⎪ ⎪⎝⎭→且111010,x 2y 0x y R(A)3001000y x 0,x 2y 0x y R(A)00y x x y 000y x 0,x 2y 0x y R(A)20y x x y ⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎛⎫⎪⎪ ⎪⎪+≠≠⇒=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎪⎩⎨⎧⎛⎫⎪⎪ ⎪⎪+==⇒=⎪ ⎪⎪ ⎪⎪--⎪⎪⎝⎭⎨⎪⎛⎫⎪⎪ ⎪⎪⎪+=≠⇒= ⎪⎪⎪ ⎪--⎪⎪⎝⎭⎩⎩且且且 所以 0,x y 0,1,x y 0,R(A)2,x 2y 0,3,x 2y x y.==⎧⎪=≠⎪=⎨=-≠⎪⎪≠-≠⎩且20. 提示:按阶梯形矩阵构造1030011000000100000100000⎛⎫⎪-- ⎪ ⎪⎪ ⎪ ⎪⎝⎭ 或 1030011000000100000100011⎛⎫⎪-- ⎪⎪⎪⎪ ⎪⎝⎭……21. 证∵12c c (A+B B)(A B)-→∴R(A B)R(A B B)R(A B)R(A)R(B)+≤+=≤+22.证∵21c c (B)A O A O E B E O +-⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭A O R EB ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≥R(A)+R(B) A O R =E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭A 的列数∴R(A)+R(B)≤A 的列数23.证∵A 2-A=(A-E)A=O∴R(A-E)+R(A)≤n (第22题) ∵ E=(E-A)+A∴R(E)=R((E-A)+A)≤R(A-E)+R(A) (第21题) ∴R(A-E)=n-r24. 提示:E-A 2=(E-A)(E+A)=O, 2E=(E+A)+(E-A)25. 证因为A 的秩为r ,所以存在n 阶初等行矩阵P 1,P 2,…,P k 与m 阶初等列矩阵Q 1,Q 2,…,Q l ,使得()rr k2112l r r m n m n rE O E P P P AQ Q Q =E O O O O ⨯⨯⨯⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.令()r 11111112krl 21r m n rE P P PP Q=E O Q Q Q O ------⨯⨯⎛⎫= ⎪⎝⎭,,则A=PQ,其中()()()()r rr m n r E R P R =R Q R E O r O ⨯⨯⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭.26.解det(B)1231231231232323123233123123det(,24,39)det(,3,5)det(,3,2)det(,,2)2det(,,) 2.=α+α+αα+α+αα+α+α=α+α+αα+αα+α=α+α+αα+αα=ααα=ααα=27. 提示:设A=(α1,α2,α3,β1,β2,β3),则312r r r 101111101111A 013a 23013a 23115135001a 01--⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2131323r 2r r r r r r 1011112102(a 1)00001a 011001+a 100104a 20001a 01----⎧⎛⎫⎪ ⎪→--⎪ ⎪⎪⎪-⎪⎝⎭⎨⎛⎫⎪ ⎪⎪→ ⎪⎪ ⎪-⎪⎝⎭⎩R(A)=3, R(B )≥2.(1)因为α1,α2,α3不能由β1,β2,β3线性表出,所以R(B)<R(A),故a=1. (2)β1=2α1+4α2-α3,β2=α1+2α2,β3=α3.28. 解 因为向量α=(2,4,-3)与向量β=(-1,-2,3/2)平行,所以直线L 1与L 2平行.又直线L 1过点(1,2,3),且点(1,2,3)也在直线L 2上,所以直线L 1与L 2重合.六、计算实践实践指导:(1)理解向量线性组合、线性相关和线性无关的概念; (2)了解向量线性相关和线性无关的有关理论,掌握判别方法;(3)理解向量组的极大线性无关组和向量组的秩的概念,理解矩阵秩的概念; (4)会求向量组的极大线性无关组及秩,会求矩阵的秩.例3.1设三阶矩阵()T 122A 212,a,1,1304-⎛⎫⎪== ⎪ ⎪⎝⎭α,已知Aα与α线性相关,求a.解()TA a,2a 3,3a 4α=++,Aα与α线性相关a 2a 33a 4a 1a 11++⇒==⇒=-. 例3.2 已知()()1231234R ,,R ,,,3,ααα=αααα=()1235R ,,,4αααα=,证明:()12354R ,,,4αααα-α=.解 ()()1231234R ,,R ,,,3ααα=αααα=⇒4112233k k k α=α+α+α12354(,,,)αααα-α()()12351122331212353,,,k k k 100k 010k ,,,001k 0001=αααα-α-α-α-⎛⎫⎪-⎪=αααα ⎪- ⎪⎝⎭()()123541235R ,,,R ,,,4⇒αααα-α≤αααα=()()()()1235112123543123512354 ,,,100k 010k ,,,001k 0001R ,,,R ,,,-⇒αααα-⎛⎫ ⎪-⎪=αααα-α ⎪- ⎪⎝⎭⇒αααα≤αααα-α ⇒()12354R ,,,4αααα-α=例3.3 已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩是2,求t .解1231211A 20t 00452α-⎛⎫⎛⎫ ⎪ ⎪=α= ⎪ ⎪ ⎪ ⎪α--⎝⎭⎝⎭1211121104t 220452045200t 30--⎛⎫⎛⎫ ⎪ ⎪→-+-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.()R A 2t 3=⇔=,故t 3=.例3.4设n m m n n A B E ⨯⨯=,则[A ]. (A )n m m n R(A )R(B )n ⨯⨯==; (B)n m m n R(A )n,R(B )m ⨯⨯==; (C)n m m n R(A )m,R(B )n ⨯⨯==; (D)n m m n R(A )R(B )m ⨯⨯==.例3.5若n m m n n A B E (n m)⨯⨯=<,证明:n m m n R(A )R(B )n ⨯⨯==.证明 反证法.显然m n R(B )n ⨯≤.若m n R(B )n ⨯<,则n n m m n n R(E )min(R(A ),R(B ))n ⨯⨯=≤<,这是矛盾的结果,所以必有()n m R A n ⨯=.同理,有()m n R B n ⨯=.例3.6n A 0=说明什么? 答: 说明n A 不可逆;(第二章)齐次线性方程组n A x =ο有非零解; (第一、四章)()n R A n <;(第三章)n A 的行向量组线性相关; 行秩n <;(第三章) n A 的列向量组线性相关; 列秩n <;(第三章)n A 的标准形为rE O (r n)O O ⎛⎫<⎪⎝⎭;(第二、三章) 0是n A 的特征值. (第五章)例3.7设向量组Ⅰ:α1,α2,…,αr 可由向量组Ⅱ:β1,β2,…,βs 线性表示,下列命题正确的是[A ]. (A )若向量组Ⅰ线性无关,则r s ≤; (B)若向量组Ⅰ线性相关,则r s >; (C)若向量组Ⅱ线性无关,则r s ≤; (D)若向量组Ⅰ线性相关,则r s >.例3.8设(β1,β2,…,βs )=(α1,α2,…,αt )A t×s ,且α1,α2,…,αt 线性无关,试判断β1,β2,…,βs 的线性相关性.七、知识扩展1. 设α1,α2,…,αn 为n 维列向量组,A 是m×n 矩阵,下列选项正确的是[A ].(2006 数一) (A) 若α1,α2,…,αn 线性相关,则A α1,Aα2,…,Aαn 线性相关; (B) 若α1,α2,…,αn 线性相关,则A α1,Aα2,…,Aαn 线性无关; (C) 若α1,α2,…,αn 线性无关,则A α1,Aα2,…,Aαn 线性相关; (D) 若α1,α2,…,αn 线性无关,则A α1,Aα2,…,Aαn 线性无关. 提示:∵12n 12n (A ,A ,,A )A(,,,)ααα=ααα∴12n 12n R(A ,A ,,A )R(A(,,,))ααα=ααα12n min{R(A),R(,,,)}≤ααα若α1,α2,…,αn 线性相关,则12n R(A ,A ,,A )n ααα<. 选A .注意到,若α1,α2,…,αn 线性无关,则R(A α1,A α2,…,A αn )=R(A).2. 已知向量组α1,α2,α3,α4线性无关,则向量组[C ]. (1994 数一)(A) α1+α2, α2+α3, α3+α4, α4+α1线性无关; (B) α1-α2, α2-α3, α3-α4, α4-α1线性无关; (C)α1+α2, α2+α3, α3+α4, α4-α1线性无关; (D) α1+α2, α2+α3, α3-α4, α4-α1线性无关. 提示:观察法3.设A,B 为满足AB=O 的任意两个非零矩阵,则必有[A ]. (2004 数一) (A) A 的列向量组线性相关,B 的行向量组线性相关; (B) A 的列向量组线性相关,B 的列向量组线性相关; (C) A 的行向量组线性相关,B 行向量组线性相关; (D)A 的行向量组线性相关,B 的列向量组线性相关. 提示:方法一()()A O,B O,R A R B A ≠≠+≤的列向量数n()()()()R A 1,R B 1R A n 1,R B n 1≥≥⎧⎪⇒⎨≤-≤-⎪⎩,故选A . 方法二设1212n n A (,,,)O,B O β⎛⎫⎪β⎪=ααα≠=≠ ⎪ ⎪β⎝⎭,i1i2in 1j 2j nj (a ,a ,,a ),(b ,b ,,b )⇒∃≠ο≠οi11i22in n 1j 12j 2nj n a a a ,b b b ,β+β++β=ο⎧⇒⎨α+α++α=ο⎩故选A .4.设n 维列向量组α1,α2,…,αm (m<n)线性无关,n 维列向量组β1,β2,…,βm 线性无关的充要条件为[D ].(2000 数一)(A) 向量组α1,α2,…,αm 可由向量组β1,β2,…,βm 线性表示; (B) 向量组β1,β2,…,βm 可由向量组α1,α2,…,αm 线性表示; (C) 向量组α1,α2,…,αm 与向量组β1,β2,…,βm 等价; (D) 矩阵A=(α1,α2,…,αm )与矩阵B=(β1,β2,…,βm )等价.提示:因为m m E E A ~,B ~A,B O O ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭等价,故选D .(A)⇒β1,β2,…,βm 线性无关;反之,β1,β2,…,βm 线性无关⇒(A).例如,100010001⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭与 1 ,0,1.(B)⇒β1,β2,…,βm 线性无关.(C)⇒β1,β2,…,βm 线性无关;反之,β1,β2,…,βm 线性无关⇒(C). **注意向量组等价与矩阵等价的差别5.设四维向量组α1=(1+a,1,1,1)T ,α2=(2,2+a,2,2)T ,α3=(3,3,3+a,3)T ,α4=(4,4,4,4+a)T ,问a 为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余量用该极大线性无关组线性表出.(2006 数一)提示:()12341a23412a 34,,,123a 41234a +⎛⎫ ⎪+ ⎪αααα= ⎪+ ⎪+⎝⎭ i 11i r r c c i 2,3,4i 2,3,41a23410a234a a 000a 00a0a 000a 0a00a 000a -+==++⎛⎫⎛⎫⎪⎪- ⎪ ⎪→→⎪ ⎪- ⎪⎪-⎝⎭⎝⎭⇒当a=0或a=-10时,α1,α2,α3,α4线性相关.且当a=0时,R (α1,α2,α3,α4)=1,一个极大线性无关组为α1;当a=-10时,R (α1,α2,α3,α4)=3,一个极大线性无关组为α2,α3,α4.6. 设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p +2)T,α4=(-2,-6,10,p)T ,问:(1)p 为何值时,该向量组线性无关? 此时用α1,α2,α3,α4表示向量α=(4,1,6,10)T .(2) p 为何值时,该向量组线性相关? 此时求它的秩和一个极大线性无关组. (1999)(答案:p≠2,p=2) 提示:方法一 初等行变换法(1)()12341132413261,,,15110631p 2p 10--⎛⎫⎪--⎪ααααα= ⎪-⎪+⎝⎭()()())p 2113 24021 43001 01000p 21p 10002010021p p 2~0010100011p p 2≠--⎛⎫⎪---- ⎪ ⎪⎪--⎝⎭⎛⎫ ⎪-- ⎪⎪ ⎪⎪--⎝⎭故p≠2,这时()()123421p 1p 2p 2p 2--α=α+α+α+α--. (2) p=2,秩为3,一个极大线性无关组为α1,α2,α3.(另一个极大线性无关组为α1,α3,α4.) 方法二 行列式法 计算1234,,,αααα113211321326021415110001031p 2p 0p 20p 20p 2---------==-+-≠⇒≠⎧⎨=⇒=⎩当p≠2,令()1234,,,x αααα=α,计算()())()()12341132413261,,,15110631p 2p1010002010021p p 2,0010100011p p 2--⎛⎫⎪-- ⎪ααααα=⎪-⎪+⎝⎭⎛⎫ ⎪-- ⎪⎪ ⎪⎪--⎝⎭得()()123421p 1p 2p 2p 2--α=α+α+α+α--.7.设R(A m×n )=m<n ,则下述结论正确的是[C ]. (A)A m×n 的任意m 个列向量必线性无关. (B)A m×n 的任意一个m 阶子式不等于零. (C)若矩阵B 满足BA=O ,则B=O.(D)A m×n 通过初等行变换必可以化为(E m O)的形式. 提示:T T BA OA B O =⇒=T T T R(A)R(B)R(A )R(B )A ⇒+=+≤的列数m =R(B)0B O ⇒=⇒=,故选C .(D)的正确说法是A m×n 通过初等变换必可以化为(E m O)的形式.8.设A 是m×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B=AC 的秩为r 1,则[C ]. (A)r>r 1;(B)r<r 1; (C)r=r 1;(D)r 与r 1的关系依C 而定.(1994 数三)提示:由B=AC 及C 是n 阶可逆矩阵知B ~A ,故选C .9.设A,B 都是n 阶非零矩阵,且AB=O ,则A 和B 的秩(A)必有一个等于零; (B)都小于n ;(C)一个小于n ,一个等于n ; (D)都等于n.(1994 数四)提示:由A,B 都是n 阶非零矩阵,且AB=O⇒()()A O,B O,R A R B A ≠≠+≤的列向量数n⇒()()()()R A 1,R B 1,R A n 1,R B n 1,≥≥⎧⎪⎨≤-≤-⎪⎩故选B .10.设A 是4×3矩阵,且R(A)=2,而102B 020103⎛⎫⎪= ⎪ ⎪-⎝⎭,则R(AB)=2. (1996 数一)提示:B 可逆.11.已知矩阵123Q 24t 369⎛⎫⎪= ⎪ ⎪⎝⎭及3阶非零矩阵P 满足PQ=O ,则[C ].(A) t=6时,P 的秩必为1; (B) t=6时,P 的秩必为2; (C)t≠6时,P 的秩必为1;(D) t≠6时,P 的秩必为2. (1993 数一)提示:t=6时,R(Q)=1, R(P)≤2;t≠6时,R(Q)=2, R(P)≤1. 又因P ≠O ⇒R(P)≥1,故选C.12.设122A 4t3311-⎛⎫ ⎪= ⎪ ⎪-⎝⎭,B 为3阶非零矩阵,且AB=O ,则t=-3. (1997 数一) 提示:AB OR(A)R(B)A =⇒+≤的列向量数3B O R(B)1≠⇒≥所以R(A)2≤.但显然R(A)2≥,故R(A)2=.于是由A 0t 3=⇒=-.或由21331r r r r 3r 122122122A 4t 30t 1401131107700t 3------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭R(A)2t 30t 3=⇒+=⇒=-.13.设矩阵k1111k 11A 11k 1111k ⎛⎫⎪⎪= ⎪⎪⎝⎭,且R(A)=3,则k=-3.提示:k 3k 3k 3k 31k 11A ~11k 1111k ++++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭k 30001k 100~10k 10100k 1+⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭()R A 3k 3=⇒=-.14.设n(n ≥3)阶矩阵1a a a a1a a A aa 1a a a a1⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,若矩阵A 的秩为n-1,则a 必为 (A)1; (B)11n -; (C) -1; (D)1n 1-. (1998 数三) 提示:()()()n 1a 1n 1a 1n 1a 1a1a A ~a a1⎛-+-+-+⎫⎪⎪ ⎪⎪⎝⎭11101a 01,a n 1001a ~000a 1a 01,a=n 1a 01a ⎧⎛⎫⎪ ⎪-⎪ ⎪≠-⎪ ⎪-⎪ ⎪-⎪⎝⎭⎨⎛⎫⎪ ⎪⎪-⎪⎪-⎪-⎪ ⎪⎪-⎝⎭⎩ n 31,a 1,1R(A)n,a 1a ,n 11n 1,a=.n 1≥⎧⎪=⎪⎪⇒=≠≠-⎨-⎪⎪--⎪⎩-且 故选B.。

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。

线性代数第3章习题答案PPT课件

线性代数第3章习题答案PPT课件
3在全为零的数使成立c2设其中则有a向量组是任意实数总线性相关b向量组总线性相关c向量组总线性无关d向量组总线性无关c四若已知向量组证明线性无关线性相关由于向量组证1线性无关则线性无关2线性无关1四若已知向量组证明线性无关线性无关由于向量组证1线性无关线性相关2线性相关2令3已知向量组问线性无关是否线性无关解向量组考察向量方程3已知向量组问线性无关是否线性无关当m为偶数时方程组有非零解则向量组线性相关解向量组当m为奇数时方程组有零解则向量组线性无
k11 k22 knn .
成立.
(2) 设 1 = (1, 0, 0, 1),2 = (1, 2, 0, 2 ),3 (1,2,3,3),
4 (2,1,5,4 ),其中 1, 2 , 3, 4是任意实数, 则有( C ).
(A) 向量组 1,2,3 总线性相关; (B) 向量组 1,2,3,4 总线性相关; (C) 向量组 1,2,3 总线性无关;
问:向量 可以由向量 1,2,3 线性表示?若可以,
写出其表达式.
解: 设 k11 k22 k33, 则有:
8,3,1 k1 1,2,3 k2 3,1,0 k3 1,1,1
即 k1 3k2 k3 8 2k1 k2 k3 3 3k1 k3 1
1 3 1 D 2 1 1 1 0
,r线性表示.选项(A)正确. 此外,显然 1可由1,2 , ,r线性表示, 选项(C)正确. n可由r1 ,r2 , ,n线性表示.选项(D)也正确.
由排除法知选项(B)错误. 故应选(B).
2、 若向量组1,2, ,s 的秩r s ,则 ( B ) A 向量组 1,2, ,s 线性无关;
B 向量组 1,2, ,s 线性相关; C 存在一个向量i 1 i r 可以由其余向量 线性表示; D 任一向量都不能由其余向量线性

线性代数第三章习题答案

线性代数第三章习题答案

习题三 A 组1. 设1232()3()2()αααααα-++=+,求α,其中1110α⎛⎫ ⎪= ⎪⎪⎝⎭, 2011α⎛⎫ ⎪= ⎪⎪⎝⎭,3340α⎛⎫ ⎪= ⎪⎪⎝⎭。

解123103423221312430103αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+-=+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2. 判定下列向量组是线性相关还是线性无关。

(1)131-⎛⎫ ⎪ ⎪ ⎪⎝⎭,210⎛⎫ ⎪ ⎪⎪⎝⎭,141⎛⎫ ⎪ ⎪⎪⎝⎭;(2)230⎛⎫ ⎪⎪⎪⎝⎭,140-⎛⎫⎪⎪⎪⎝⎭,002⎛⎫ ⎪ ⎪⎪⎝⎭解(1)121121121101101314077011011011101022000000000-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭::::, R(A)=2,线性相关(2)210210*********00102002000002-⎛⎫-⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭::, R(A)=3,线性无关 3. a 取什么值时,下列向量组线性相关?111a α⎛⎫ ⎪= ⎪ ⎪⎝⎭, 211a α-⎛⎫⎪= ⎪ ⎪⎝⎭,311a α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 解 (法一)求系数行列式3211112(1)(2)11a a a a a a a a-=-+=+-+,令其为0,得1a =-。

由此可知,当1a =-时,R(A)<3,即题给向量组线性相关。

(法二)()23121212311110110101,,111101101111111111r r r r r r a a a a a a a a a a a a a a a a a ααα-+--+-+-++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭:::向量组线性相关,所以10a +=,即1a =-4. 设123,,ααα线性无关,证明:1α,12αα+,123ααα++也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩ 所以1230k k k ===,即112123,,αααααα+++线性无关. 5.设1(1,1,1)α=,2(1,2,3)α=,3(1,3,)t α=,问: (1) t 为何值时向量组123,,ααα线性相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 习题与答案 习题 A1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1,3)T T T=--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-=+- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ααα1251613109491512561037⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=+-= ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭. 2.从以下方程中求向量α1233()2()5()-++=+αααααα,其中123(2,5,1,3),(10,1,5,10),(4,1,1,1).TT T ===-ααα 解 由方程得1233322550-++--=αααααα,1232104651112632532515118310124⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+-=+-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα故1234⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭α,即(1,2,3,4)T =α.3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα4.证明: 包含零向量的向量组线性相关.证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有12110α0αα00α0α0,0i i s k k -++++++++=≠而0,0,,0,,0,,0k 不全为0,故向量组线性相关.5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关.6.判断下列向量组的线性相关性(1) (1,1,0),(0,1,1,),(3,0,0,); (2) (2,0),(0,-1);(3) (-4,-5,2,6),(2,-2,1,3),(6,-3,3,9),(4,-1,5,6);(4) (1,0,0,2,5),(0,1,0,3,4),(0,0,1,4,7),(2,-3,4,11,12).解 (1)设有三个数123,,k k k ,使123(1,1,0)(0,1,1,) (3,0,0,)=(0,0,0)k k k ++则有方程组131223000k k k k k +=⎧⎪+=⎨⎪=⎩,因为系数行列式10311030010D =≠.方程组仅有零解,所以三个向量线性无关. (2)设有两个数12,k k 使12(2,0)(0,-1)=(0,0)k k + 则有方程组12200k k =⎧⎨-=⎩,由此解得120k k ==,所以两个向量线性无关.另外,也可由其分量不成比例看出两个向量线性无关. (3)设有四个数1234,,,k k k k ,使1234(-4,-5,2,6)(2,-2,1,3)(6,-3,3,9)(4,-1,5,6)=(0,0,0,0)k k k k +++,则有方程组1234123412341234426405230235063960k k k k k k k k k k k k k k k k +++=⎧⎪----=⎪⎨+++=⎪⎪+++=⎩,其系数行列式42645231021356396D ----==,所以方程组有非零解,向量组线性相关.(4) 设有四个数1234,,,k k k k ,使1234(1,0,0,2,5)(0,1,0,3,4)(0,0,1,4,7)(2,-3,4,11,12)=(0,0,0,0)k k k k +++则有方程组14243412341234203040234110547120k k k k k k k k k k k k k k +=⎧⎪-=⎪⎪+=⎨⎪+++=⎪⎪+++=⎩由前三个方程得1424342,3,4k k k k k k =-==-,代入第五个方程得4140k -=, 即40k =,从而1230k k k ===,所以向量组线性无关.7.设123α,α,α线性无关,证明:122331αα,αα,αα+++也线性无关. 证 设有三个数123,,k k k ,使()()()112223331αααααα0k k k +++++=, 则()()()131122233ααα0k k k k k k +++++=,因123α,α,α线性无关,故13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩,因系数行列式10111020011D ==≠,所以只有1230k k k ===, 由此知122331αα,αα,αα+++线性无关.8.设12α,α,,αn 线性无关,问向量组122311αα,αα,,αα,ααn n n -++++ 是线性相关,还是线性无关?并给出证明. 解 设有n 个数12,,,,n k k k 使()()()()112223111αααααααα0n n n n n k k k k --++++++++= ,则得方程组1122310000n n n k k k k k k k k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 其系数行列式11000011100000110001(1),000110000011n n D +==+-可见,当n 为奇数时,20n D =≠,方程组仅有零解,向量组线性无关, 当n 为偶数时,0n D =,方程组有非零解,向量组线性相关.9.设12α(,,,)(1,2,,)i i i in a a a i n == ,证明:向量组12α,α,,αn 线性相关的充分必要条件是det()0ij a =.证 必要性:设12α,α,,αn 线性相关,则存在不全为0的n 个数12,,,,n k k k 使1122ααα0n n k k k +++= ,即有方程组()11121211212222112200*0n n n nn n nn n a k a k a k a k a k a k a k a k a k +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 该方程组有非零解,故系数行列式0n D =,即det()0ij a =,充分性: 对于方程组(*)当det()0ij a =时,系数行列式0n D =,所以有非零解,即存在不全为0的12,,,,n k k k 使1122ααα0n n k k k +++= 成立,故12α,α,,αn 线性相关.10.设12α,α,,αn 是一组n 维向量.已知n 维标准单位向量组12e ,e ,,e n 能由它们线性表出,证明: 12α,α,,αn 线性无关.证 设12α(,,,)(1,2,,)i i i in a a a i n == ,则有1122αe e e ,i i i in n a a a =+++可见12α,α,,αn 也能由12e ,e ,,e n 线性表出,从而两个向量组等价. 因为12e ,e ,,e n 线性无关,所以12α,α,,αn 也线性无关.11.设12α,α,,αn 是一组n 维向量.证明:它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表出.证 必要性:设12α,α,,αn 线性无关,β为任一n 维向量,则12α,α,,αn ,β必线性相关.(个数大于维数),因此β可由12α,α,,αn 线性表出.充分性:设任一n 维向量β都可由12α,α,,αn 线性表出.因此12α,α,,αn 与12e ,e ,,e n 等价,从而12α,α,,αn 线性无关.12.判断下列向量是否线性相关,并求出一个极大线性无关组.(1)123α(1,2,1,4),α(9,100,10,4),α(2,4,2,8);T T T =-==--- (2) 123α(1,1,0),α(0,2,0),α(0,0,3);T T T ===(3) 1234α(1,2,1,3),α(4,1,5,6),α(1,3,4,7),α(2,1,1,0);T T T T ==---=---=- 解 (1)19221004A 1102448-⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭ 192082001900320-⎛⎫ ⎪ ⎪→ ⎪ ⎪-⎝⎭192010000000-⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭102010000000-⎛⎫⎪ ⎪→⎪ ⎪⎝⎭, 向量组的秩为2, 12α,α为一个极大线性无关组.(2) 100A 120003⎛⎫ ⎪= ⎪ ⎪⎝⎭100020003⎛⎫ ⎪→ ⎪ ⎪⎝⎭向量组的秩为3, 123α,α,α为一个极大线性无关组.(3) 14122131A 15413670⎛⎫ ⎪--⎪= ⎪--- ⎪--⎝⎭141209530953018106⎛⎫ ⎪--- ⎪→ ⎪--- ⎪---⎝⎭1412095300000000⎛⎫ ⎪--- ⎪→ ⎪ ⎪⎝⎭向量组的秩为2, 12α,α为一个极大线性无关组.13.求一个秩是4的方阵,它的两个行向量是(1,0,3,0,0),(1,1,0,0,0)--. 解 所求方阵可写成1030011000A 001000001000000⎛⎫ ⎪-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则1030001300A 00100000100000⎛⎫⎪- ⎪⎪→⎪⎪ ⎪⎝⎭显然(A)4R =.14.已知12α,α,,αs 的秩为r ,证明: 12α,α,,αs 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12α,α,,α,r i i i 为12α,α,,αs 中任意r 个线性无关的向量,因为向量组的秩为r ,故1212α,α,,α,α,(,,)r i i i i r i i i i ≠ 线性相关.可见12α,α,,αs 中的每个向量都可由12α,α,,α,r i i i 线性表出.因此, 12α,α,,α,r i i i 是12α,α,,αs 的一个极大线性无关组.15.用初等变换化下列矩阵为阶梯形,并判断其秩.(1)001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭; (2)1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(3)023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)1725314353759413254759413420253248⎛⎫⎪⎪⎪⎪⎝⎭.解 (1) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭131********r r ↔⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为3.(2) 1234110215610-⎛⎫ ⎪- ⎪ ⎪⎝⎭2131123403360336r r r r+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭32123403360000r r -⎛⎫ ⎪→ ⎪ ⎪⎝⎭,秩为2.(3)023*********-⎛⎫ ⎪- ⎪⎪--⎝⎭12011203430471r r ---⎛⎫⎪→- ⎪ ⎪--⎝⎭213134011200130039r r r r ++--⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭323011*********r r ---⎛⎫⎪→-- ⎪ ⎪⎝⎭, 秩为2.(4)1725314353759413254759413420253248⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭213143317253143201330153015r r r r r r ---⎛⎫ ⎪ ⎪→ ⎪ ⎪⎝⎭433217253143201310020000r r r r --⎛⎫⎪⎪→⎪ ⎪⎝⎭1310022013172531430000r r ↔⎛⎫ ⎪⎪→ ⎪ ⎪⎝⎭2131217100200110253190000r r r r --⎛⎫ ⎪- ⎪→ ⎪ ⎪⎝⎭23100202531900110000r r ↔⎛⎫⎪ ⎪→ ⎪- ⎪⎝⎭,秩为3. 16.证明: 两个矩阵和的秩不超过这两个矩阵秩的和,即 (A B)(A)(B)R R R +≤+.证 设1A (α,,α),(A),n R r == 1α,,αr 为一个极大线性无关组,1B (β,,β),(B),n R s == 1β,,βs 为一个极大线性无关组, 1A B (r ,,r )n += .因为1r ,,r n 可由1α,,αn ,1β,,βn 线性表出,从而也可由1α,,αr ,1β,,βs 线性表出.故()1A B (r ,,r )n R R +=≤ ()11α,,α,β,,βr s R r s =+=(A)(B)R R +.17.设A 与B 可乘,且AB 0=,证明: (A)(B)A R R +≤的列数. 证法一 设A 为m n ⨯矩阵,B 为n l ⨯矩阵 由AB 0=,有11111111n l m mn n nl m n n l a a b b a a b b ⨯⨯⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 0000m l⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭ 比较等式两边对应元素,有111111111100n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩,11121211220,0n n m mn n a b a b a b a b ++=⎧⎪⎨⎪++=⎩ ,11111100l n nl m lmn nl a b a b a b a b ++=⎧⎪⎨⎪++=⎩ . 可见B 的列向量组为上述l 个齐次线性方程组的解向量,因此有 (B)(A)R n R ≤-, 移项得(A)(B)R R n +≤(A 的列数).证法二 设A 为m n ⨯矩阵,B 为n l ⨯矩阵, 12(A),(B)R r R r ==,因为1(A)R r =,则A 的标准形可写成1E 000r ⎛⎫⎪⎝⎭,即存在可逆阵P,Q 使得 PAQ 1E 000r ⎛⎫=⎪⎝⎭.又设()111B Q B B r m n r m ⨯--⨯⎛⎫= ⎪ ⎪⎝⎭, 则10(AB)(PAB)(PAQQ B)R R R -===,但()111111B E 0B PAQQ B Q B B 000r m r r m n r m ⨯⨯---⨯⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 可见11(B )(PAQQ B)0r m R R -⨯==,又因为12(Q B)(B)R R r -==,所以()12(B )n r m R r -⨯=,而()1B n r m -⨯共1n r -行,因此12n r r -≥,即12r r n +≤或(A)(B)R R n +≤.习题 B1.证明: 12α,α,,αs (其中1α0≠)线性相关的充要条件是至少有一个α(1)i i s <≤可被121α,α,,αi - 线性表出.证 必要性:设12α,α,,αs 线性相关(1α0≠),则存在不全为0的s 个数12,,,s k k k 使1122ααα0s s k k k +++= ,设i k 是12,,,s k k k 中最后一个不为零的数,即0i k ≠,而10i s k k +=== ,则1122ααα0i i k k k +++= ,因为1α0≠,所以1i >,即1i s <≤,(否则120,0s k k k ≠=== 则1α0k =不能成立),于是1111αααi i i i ik k k k --=--- ,即αi 可由121α,α,,αi - 线性表出.充分性:如果1111αααi i i k k --=++ ,则11111ααα0αα0i i i i s k k --+++-+++= ,而11,,,1,0,,0i k k -- 不全为0,所以12α,α,,αs 线性相关.2.证明:一个向量组的任一线性无关组都可扩充为一个极大线性无关组. 证 设有向量组12α,α,,αn 秩为s ,12α,α,,αr i i i 是它的任意一个线性无关组,如果r s =,则它就是12α,α,,αn 的一个极大线性无关组.如果r s <,则12α,α,,αn 的其余向量中一定可以选出向量1αr i +,使12α,α,,αr i i i ,1αr i +线性无关(否则与12α,α,,αn 秩s r >矛盾),只要1r s +<,重复上述过程,直到r i s +=时为止.这样121α,α,,α,α,,αr r s i i i i i + 就是由12α,α,,αr i i i 扩充成的一个极大线性无关组.3.已知两向量组有相同的秩,且其中之一可被另一个线性表出,证明:这两个向量组等价. 证 设12A :α,α,,α;s 12B:β,β,,βt 为两个秩为r 的向量组, 1212α,α,,α;β,β,,βr r 分别为A,B 极大线性无关组,设B 可由A 线性表出,则有()()1212β,β,,βα,α,,αTr r K = ,其中K 为组合系数构成的r 阶方阵,因为1212α,α,,α;β,β,,βr r 线性无关,所以K 可逆,()()11212α,α,,αβ,β,,βr r K -= ,从而12α,α,,αr 可由12β,β,,βr 线性表出,从而可由12β,β,,βt 线性表出,又12α,α,,αs 可由12α,α,,αr 线性表出,所以12α,α,,αs 可由12β,β,,βt 线性表出,即A 可由B 线性表出,因此向量组A ,B 等价.4.设向量组12α,α,,αs 的秩为r ,在其中任取m 个向量12α,α,,αm i i i ,证明:{}12α,α,,αm i i i R r m s ≥+- .证 设12α,α,,αm i i i 的秩为t ,从它的一个极大线性无关组(含t 个向量)可扩充为12α,α,,αs 的一个极大线性无关组(含r 个向量),所扩充向量的个数为r t -个.但12α,α,,αs 中除了12α,α,,αm i i i 外,还有s m -个向量,故r t s m -≤-,即t r m s ≥+-.5.设n m ⨯阶矩阵A 的秩为r ,证明:存在秩为r 的n r ⨯阶矩阵P 及秩为r 的r m ⨯阶矩阵Q ,使A PQ =.证 因(A)R r =,故可经有限次初等行变换和初等列变换化为标准形,即存在m 阶可逆阵F 和n 阶可逆阵G ,使得 E 0GAF 00r ⎛⎫=⎪⎝⎭,即11E 0A GF ,00r--⎛⎫= ⎪⎝⎭记111212122G G G ,G G -⎛⎫= ⎪⎝⎭111212122F F F F F -⎛⎫= ⎪⎝⎭,其中1111G ,F 均为r 阶方阵,则111211121121222122G G F F E0E 0A G F GG F F 0000rr--⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111112212122G 0F F G 0F F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=1111111221212122G F G F G F G F ⎛⎫ ⎪⎝⎭()11112121G F F G ⎛⎫= ⎪⎝⎭, 记1121G P G ⎛⎫=⎪⎝⎭,则P 为n r ⨯矩阵且(P )R r =(因1G -可逆,故其前r 列线性无关), ()1121Q F F =,则Q 为r m ⨯矩阵且(Q)R r =(因1F -可逆,故其前r 列线性无关),而A PQ =.。

相关文档
最新文档