(完整版)ABAQUS中的三种混凝土本构模型

合集下载

abaquscdp本构原理

abaquscdp本构原理

abaquscdp本构原理
ABAQUS的CDP(Concrete Damaged Plasticity)模型是一种混凝土本
构关系模型,用于描述混凝土的非弹性行为。

该模型通过将各向同性下损伤弹性与拉伸和压缩塑性相结合的方式来描述混凝土的非弹性行为,适用于模拟混凝土在任意荷载作用下的受力情况。

CDP模型考虑了由于拉、压塑性
应变导致的弹性刚度的退化以及循环荷载作用下刚度的恢复,具有较好的收敛性。

CDP模型采用混凝土在单轴受力状态下的应力和非弹性应变,这里的非弹
性应变是根据混凝土的单轴应力-应变关系(混凝土本构关系)换算出来的。

混凝土本构关系有3种:GB《混凝土结构设计规范》欧洲规范、Kent-Park 模型。

CDP模型中,混凝土材料的弹性模量E c 可通过结构试验进行实测,也可以查表,也可以根据下式进行计算:E c = 10^5 × + ( / f cu , k)。

其中,fcu,k为混凝土的峰值抗压强度。

此外,CDP模型本构曲线末尾段的选取,对滞回曲线下降段的影响较大。

为了验证所编子程序的合理性与正确性,可以选用具体的有限元模型进行验证。

以上内容仅供参考,如需更多信息,建议查阅ABAQUS软件相关书籍或咨询软件专家。

基于ABAQUS显式分析梁单元混凝土材料模型开发及应用

基于ABAQUS显式分析梁单元混凝土材料模型开发及应用

基于ABAQUS显式分析梁单元混凝土材料模型开发及应用王鸿斌;叶献国;蒋庆;种迅;吴明【摘要】为准确合理模拟钢筋混凝土构件在大震作用下的地震反应,利用大型通用有限元软件ABAQUS提供的用户材料子程序VUMAT接口,开发了能够用于显式分析的梁单元混凝土材料本构模型.讨论了适用于ABAQUS显式分析的钢筋混凝土构件梁单元构建方法及求解拟静力和动力问题所采用的技术措施.利用所开发的材料模型,通过动力显式分析对大量试验进行了非线性数值模拟分析,并与试验结果进行比较,验证了本构模型和建模方法的可靠性.结果表明,基于ABAQUS软件所开发的混凝土材料模型具有较高的精度和较为广泛的适用性,能够较精确地模拟钢筋混凝土构件在弯矩及弯矩和轴力共同作用下的非线性行为,可以作为下一步研究的基础.【期刊名称】《结构工程师》【年(卷),期】2016(032)004【总页数】7页(P51-57)【关键词】纤维梁单元;ABAQUS;混凝土本构;有限元【作者】王鸿斌;叶献国;蒋庆;种迅;吴明【作者单位】合肥工业大学土木与水利工程学院,合肥230009;合肥工业大学土木与水利工程学院,合肥230009;合肥工业大学土木与水利工程学院,合肥230009;华南理工大学亚热带建筑科学国家重点实验室,广州510640;合肥工业大学土木与水利工程学院,合肥230009;合肥工业大学土木与水利工程学院,合肥230009【正文语种】中文钢筋混凝土结构在强震作用下通常会进入弹塑性阶段,对于高层建筑,采用小震作用下的弹性设计分析方法既无法真实反映结构的地震反应,也不能保证满足我国现行抗震规范[1]规定的“大震不倒”的性能要求。

抗震规范和高层建筑规范[2]都对复杂高层建筑在罕遇地震下的弹塑性时程分析做了规定。

随着计算机技术的飞速发展,有限元软件如ANSYS、MSC.MARC和ABAQUS等已经在结构分析中得到了广泛运用。

在隐式分析程序中,强非线性情况下,材料的退化和失效常常导致收敛困难,同时在分析大型结构时由于需要大量的迭代,亦会导致计算成本加大。

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇ABAQUS显式分析梁单元的混凝土、钢筋本构模型1在ABAQUS中,梁单元是一种经常用于模拟混凝土和钢筋梁的元素。

它使用线性或非线性混凝土本构模型和钢筋本构模型来描述材料的行为,并考虑梁单元在三个方向上的应力和应变。

混凝土本构模型:ABAQUS提供了多个混凝土本构模型,它们可以用于描述混凝土的本构行为。

其中一个常用的模型是Mander本构模型,它考虑了混凝土的三个不同阶段的行为:1. 压缩阶段: 混凝土在受到压缩时会逐渐变硬,所以Mander模型使用一个非线性的应力-应变关系来描述混凝土的压缩行为。

该模型使用三个参数来描述混凝土在不同应变范围内的硬化行为。

2. 弯曲-拉伸阶段: 当混凝土受到弯曲或拉伸时,会发生一些微小的裂缝,导致其变得更容易受到破坏。

因此,Mander模型采用一个渐进应力-应变关系来描述混凝土的弯曲和拉伸行为。

该模型也使用三个参数来描述不同应变范围内的弯曲和拉伸行为。

3. 破坏阶段: 当混凝土受到极大应力时,会发生破坏。

为了模拟破坏行为,Mander模型使用两个参数来描述混凝土的弹性模量和极限应变。

当混凝土受到超过极限应变的应变时,该模型将输出一个非常大的应力值,这意味着梁单元已经破坏。

钢筋本构模型:ABAQUS也提供了多个钢筋本构模型。

其中一个常用的模型是多屈服弹塑性模型,它考虑了钢筋的应力-应变关系的多个拐点:1. 弹性阶段: 在应力小于屈服强度时,钢筋的行为是弹性的。

因此,多屈服弹塑性模型使用一个线性应力-应变关系来描述弹性阶段的行为。

2. 屈服阶段: 当钢筋的应力达到屈服强度时,它的行为将开始变得非线性。

因此,多屈服弹塑性模型使用一个拐点来描述屈服后的应力-应变关系。

该模型使用一组参数来描述每个拐点的应力和应变差。

3. 再次弹性阶段: 当钢筋的应变超过屈服点后,它的应变-应力关系将再次变得线性。

多屈服弹塑性模型也考虑了这个阶段的行为。

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析发表时间:2009-10-12 刘劲松刘红军来源:万方数据钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。

随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。

由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。

然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。

但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。

ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。

本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。

1 混凝土损伤塑性模型ABAQUS在钢筋混凝土分析上有很强的能力。

它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。

其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。

这一特性使得损伤塑性模型具有更好的收敛性。

2 模型材料的定义2.1 混凝土的单轴拉压应力-应变曲线本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。

2.2 钢筋的本构关系钢筋采用本构关系为强化的二折线模型,无刚度退化。

折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。

2.3 损伤的定义损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。

材料的损伤状态,可以用损伤因子来描述。

根据前面确定的混凝土非弹性阶段的应力一应变关系。

Abaqus混凝土材料模型解读与参数设置

Abaqus混凝土材料模型解读与参数设置

Abaqus混凝土材料塑性损伤模型浅析与参数设置【壹讲壹插件】欢迎转载,作者:星辰-北极星,QQ群:431603427Abaqus混凝土材料塑性损伤模型浅析与参数设置 (1)第一部分:Abaqus自带混凝土材料的塑性损伤模型 (2)1.1概要 (2)1.2学习笔记 (2)1.3 参数定义与说明 (3)1.3.1材料模型选择:Concrete Damaged Plasticity (3)1.3.2 混凝土塑性参数定义 (3)1.3.3 混凝土损伤参数定义: (4)1.3.4 损伤参数定义与输出损伤之间的关系 (4)1.3.5 输出参数: (4)第二部分:根据GB50010-2010定义材料损伤值 (5)第三部分:星辰-北极星插件介绍:POLARIS-CONCRETE (6)3.1 概要 (6)3.2 插件的主要功能 (6)3.3 插件使用方法: (6)3.3.1 插件界面: (6)3.3.2 生成结果 (7)3.4、算例: (9)3.4.1三维实体简支梁模型说明 (9)3.4.2 计算结果: (9)第一部分:Abaqus自带混凝土材料的塑性损伤模型1.1概要首先我要了解Abaqus内自带的参数模型是怎样的,了解其塑性模型,进而了解其损伤模型,其帮助文档Abaqus Theory Manual 4.5.1 An inelastic constitutive model for concrete讲述的是其非弹性本构,4.5.2 Damaged plasticity model for concrete and other quasi-brittle materials则讲述的塑性损伤模型,同时在Abaqus Analysis User's Manual 22.6 Concrete也讲述了相应的内容。

1.2学习笔记1、混凝土塑性损伤本构模型中的损伤是一标量值,数值范围为(0无损伤~1完全失效[对于混凝土塑性损伤一般不存在]);2、仅适用于脆性材料在中等围压条件(为围压小于轴抗压强度1/4);3、拉压强度可设置成不同数值;4、可实现交变载荷下的刚度恢复;默认条件下,由拉转压刚度恢复,由压转拉刚度不变;5、强度与应变率相关;6、使用的是非相关联流动法则,刚度矩阵为非对称,因此在隐式分析步设置时,需在分析定义other-》Matrix storate-》Unsymmetric。

ABAQUS钢筋混凝土有限元分析

ABAQUS钢筋混凝土有限元分析

ABAQUS钢筋混凝土有限元分析发表时间:2009-10-12 刘劲松刘红军来源:万方数据钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。

随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。

由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。

然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。

但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。

ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。

本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。

1 混凝土损伤塑性模型ABAQUS在钢筋混凝土分析上有很强的能力。

它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。

其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。

这一特性使得损伤塑性模型具有更好的收敛性。

2 模型材料的定义2.1 混凝土的单轴拉压应力-应变曲线本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。

2.2 钢筋的本构关系钢筋采用本构关系为强化的二折线模型,无刚度退化。

折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。

2.3 损伤的定义损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。

材料的损伤状态,可以用损伤因子来描述。

根据前面确定的混凝土非弹性阶段的应力一应变关系。

abaqus混凝土本构解析

abaqus混凝土本构解析

Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Overview of ABAQUS Version 6.3
介绍
加强筋(REBAR)选项提供非常全面的几何设计: Rebar可以是单独的筋,也可以是夹层,加强筋和夹层 的方向是任意的
可以加载初始应力,初始应力可以为“pre-tensioned” (灌浆前后都可以) 也可以为“post-tensioned” (通常无灌 浆).
高压 (equivalent pressure stress many times larger than uniaxial compression failure stress) 混凝土的压碎(crushing) 是主导行为
大荷载 (非弹性) 单调荷载、循环荷载都可以
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Triaxial concrete behavior
Chen (1982)
Copyright 2002 Hibbitt, Karlsson & Sorensen, Inc.
Ov
Mechanical Behavior of Plain Concrete
Overview of ABAQUS Version 6.3
Mechanical Behavior of Plain Concrete
混凝土双轴强度包络图
Biaxial strength envelope of concrete
Kupfer et al. (1969)
Failure modes of biaxially loaded concrete

abaqus参数报告

abaqus参数报告

断裂模拟方法:一.弥散裂缝模型弥散裂缝模型也可以称为分布裂缝模型,是在年提出的`叫。

此模型假设当单元的最大主应力超过混凝土抗拉强度时,单元在最大主应力垂直的方向形成无数平行的微裂纹如图一所示。

单元发生损伤,需对单元的本构矩阵进行调整。

弥散裂缝模型认为开裂的混凝土还具有一定的连续性,将实际的裂缝“弥散”到整个单元中。

在第一条裂缝出现后,认为混凝土变成了一种“正交异性体”。

裂缝不是离散的或单个的。

此模型一开始认为,当单元开裂时,沿裂纹面垂直方向的应力立刻为零,裂纹面垂直方向与裂纹面切线方向失去了任何抵抗拉应力、剪应力的能力,而另外方向的刚度不变,如果三个方面都发生开裂,则认为这个单元完全失效。

因而单元的弹性矩阵为零。

后来人们发现混凝土开裂后,由于裂纹面颗粒与颗粒之间的相互叹合,裂纹面的抗拉能力并不立即降为零,并且裂纹面还具有一定的抗剪能力。

并且,应力应变曲线具有明显的下降阶段。

于是在本构模型中引进了剪力传递系数,它反映了骨料咬合作用,并且考虑开裂的受拉软化特性,在应变可加性基础上建立开裂单元的本构关系,得到有多条、固定裂纹的单元本构关系或考虑最大主应力方向在加载过程中不断改变的旋转裂纹模型、考虑材料塑性的弹塑性断裂模型。

因为此类模型只需改变开裂单元的本构关系,无须改变单元形式或重新划分单元网格,因此,广泛使用于混凝土结构断裂模拟。

,提出裂缝带模型和非局部连续模型,引入裂缝带、断裂能概念,减少了单元尺寸的影响。

但裂缝带模型假设断裂过程区的宽度是单元的宽度与实际不符。

非局部连续模型的物理意义不明确,且只针对工型张开型裂缝。

二.据北建工一常使用损伤模型的学生说,用损伤模型模拟效果也不错。

《混凝土抗压强度与断裂参数尺寸效应的数值模拟研究》三.《混凝土塑性弥散裂缝模型和应用》混凝土梁的尺寸为600 mm×180 mm ×100 mm[3],2 个支撑点间长度为500 mm,载荷作用点离左端支撑点距离为175 mm,预设在混凝土梁上的裂缝深度为30 mm,见图1.试验中混凝土参数属性见表1.四.ABAQUS中的混凝土模型开裂问题应用弥散裂纹模型。

(完整版)ABAQUS中的三种混凝土本构模型

(完整版)ABAQUS中的三种混凝土本构模型

ABQUS中的三种混凝土本构模型ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。

低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。

在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。

三种混凝土本构模型

三种混凝土本构模型

ABAQUS中的三种混凝土本构模型2010-05-12 22:19:14| 分类:ABAQUS | 标签:|字号大中小订阅资料来自SIMWE论坛shanhuimin923,特表示感谢!ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。

低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model(ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。

在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。

混凝土mazars本构模型在abaqus中的数值实现及验证

混凝土mazars本构模型在abaqus中的数值实现及验证
Numerical Implementation and Validation of Concrete MAZARS Constitutive Model in ABAQUS
HAN Feng1 XU Lei2 JIN Yongmiao2 WANG Shaozhou2 CUI Shanshan2
1. Zhejiang Water Resources and Hydropower Survey and Design Institute Hangzhou 310002 Zhejiang China
等效应变为损伤演化方程的自变量 k 且令其初值为
第 46 卷第 5 期
2020 年 5 月
水力发电
混凝土 MAZARS 本构模型在
ABAQUS 中的数值实现及验证
韩 峰1 ꎬ 徐 磊2 ꎬ 金永苗2 ꎬ 王绍洲2 ꎬ 崔姗姗2
(1 浙江省水利水电勘测设计院ꎬ 浙江 杭州 310002ꎻ
2 河海大学水利水电工程学院ꎬ 江苏 南京 210098)
correctness of numerical implementation is verified through the simulation of the uniaxial tensile fracturing process of concrete
followed by the applications of the developed UMAT subroutine in the damage and failure analysis of concrete gravity dam and
摘 要: 由于对混凝土的非线性力学行为具有良好的模拟能力ꎬ 在损伤力学框架内建立起来的 MAZARS 本构模型已

ABAQUS钢筋混凝土本构模型

ABAQUS钢筋混凝土本构模型

ABAQUS钢筋混凝土本构模型钢是各向同性材料,其本构关系理论比较成熟,考虑了其弹性、弹塑性、强化、断裂和包辛格效应并得到充分验证。

基本参数:密度:ρ=7800kg/m^3弹性模量:E_s=2.07×10^5泊松比:ν =0.31.2 混凝土混凝土在拉压方向上的力学性能不同,存在着强化、软化、开裂、损伤等复杂的力学行为。

如何在有限元程序中准确模拟混凝土的本构关系,对于后续有限元计算结构的合理性和准确性尤为重要。

基本参数:密度:ρ=2200~2400kg/m^3弹性模量:E_c(与强度有关)泊松比:ν =0.18~0.22(建议取0.2)Ψe fb0/fc Kυ30°0.11.160.6677.5e-042 混凝土单轴应力-应变关系2.1 混凝土单轴受压应力-应变关系混凝土材料在单轴压缩下的应力-应变关系由弹性段、强化段和软化段组成。

图1 混凝土单轴应力-应变关系ε_{c0}^{el}——未损伤或者未考虑损伤的混凝土受压弹性应变,材料无损时的弹性应变ε_c^{el}——考虑损伤的混凝土受压弹性应变(损伤导致刚度减小,相应的弹性应变就增大了)ε_c^{pl}——混凝土受压塑性应变(总应变减去考虑损伤的受压弹性应变)ε_c^{in}——混凝土受压非弹性应变(包括了一部分塑性应变和受压损伤导致的刚度变小产生的应变等)1.弹性段定义——确定初始切线模量E0(1) 确定弹性极限点(ε_{c,e0},σ_{c,e0}) \\建议一般取σ_{c,e0}=f_c/3 \\则初始切线弹性模量为E_0=ε_{c,e0}/σ_{c,e0} \\(2) 混凝土的弹性模量Ec(3) 也可以采用如下方法进行确定:首先计算混凝土拉伸开裂时的割线模量,并按此割线模量取值确定混凝土压缩应力-应变关系曲线上升段中割线模量的等值点,以此作为混凝土受压受力阶段的弹塑性分界点,通过这样的方法可以保证混凝土的压缩弹性模量和拉伸弹性模量取值保持一致。

4.1ABAQUS中的混凝土本构模型(5页)

4.1ABAQUS中的混凝土本构模型(5页)

14 ABAQUS中的混凝土本构模型4.1 概述A wide variety of materials is encountered in stress analysis problems, and for any one of these materials a range of constitutive models is available to describe the material's behavior. For example, a component made from a standard structural steel can be modeled as an isotropic, linear elastic, material with no temperature dependence. This simple model would probably suffice for routine design, so long as the component is not in any critical situation. However, if the component might be subjected to a severe overload, it is important to determine how it might deform under that load and if it has sufficient ductility to withstand the overload without catastrophic failure. The first of these questions might be answered by modeling the material as a rate-independent elastic, perfectly plastic material, or—if the ultimate stress in a tension test of a specimen of the material is very much above the initial yield stress—isotropic work hardening might be included in the plasticity model. A nonlinear analysis (with or without consideration of geometric nonlinearity, depending on whether the analyst judges that the structure might buckle or undergo large geometry changes during the event) is then done to determine the response. But the severe overload might be applied suddenly, thus causing rapid straining of the material. In such circumstances the inelastic response of metals usually exhibits rate dependence: the flow stress increases as the strain rate increases. A ―viscoplastic‖ (rate-dependent) material model might, therefore, be required. (Arguing that it is conservative to ignore this effect because it is a strengthening effect is not necessarily acceptable—the strengthening of one part of a structure might cause load to be shed to another part, which proves to be weaker in the event.) So far the analyst can manage with relatively simple (but nonlinear) constitutive models. But if the failure is associated with localization—tearing of a sheet of material or plastic buckling—a more sophisticated material model might be required because such localizations depend on details of the constitutive behavior that are usually ignored because of their complexity (see, for example, Needleman, 1977). Or if the concern is not gross overload, but gradual failure of the component because of creep at high temperature or because of low-cycle fatigue, or perhaps a combination of these effects, then the response of the material during several cycles of loading, in each of which a small amount of inelastic deformation might occur, must be predicted: a circumstance in which we need to model much more of the detail of the material's response.So far the discussion has considered a conventional structural material. We can broadly classify the materials of interest as those that exhibit almost purely elastic response, possibly with some energy dissipation during rapid loading by viscoelastic response (the elastomers, such as rubber or solid propellant); materials that yield andexhibit considerable ductility beyond yield (such as mild steel and other commonly used metals, ice at low strain rates, and clay); materials that flow by rearrangement of particles that interact generally through some dominantly frictional mechanism (such as sand); and brittle materials (rocks, concrete, ceramics). The constitutive library provided in Abaqus contains a range of linear and nonlinear material models for all of these categories of materials. In general the library has been developed to provide those models that are most usually required for practical applications. There are several distinct models in the library; and for the more commonly encountered materials (metals, in particular), several ways of modeling the material are provided, each suitable to a particular type of analysis application. But the library is far from comprehensive: the range of physical material behavior is far too broad for this ever to be possible. The analyst must review the material definitions provided in Abaqus in the context of each particular application. If there is no model in the library that is useful for a particular case, Abaqus/Standard contains a user subroutine—UMAT—and, similarly, Abaqus/Explicit contains a user subroutine—VUMAT. In these routines the user can code a material model (or call other routines that perform that task). This ―user subroutine‖ capability is a powerful resource for the sophisticated analyst who is able to cope with the demands of programming a complex material model.Theoretical aspects of the material models that are provided in Abaqus are described in this chapter, which is intended as a definition of the details of the material models that are provided: it also provides useful guidance to analysts who might have to code their own models in UMAT or VUMAT.From a numerical viewpoint the implementation of a constitutive model involves the integration of the state of the material at an integration point over a time increment during a nonlinear analysis. (The implementation of constitutive models in Abaqus assumes that the material behavior is entirely defined by local effects, so each spatial integration point can be treated independently.) Since Abaqus/Standard is most commonly used with implicit time integration, the implementation must also provide an accurate ―material stiffness matrix‖ for use in fo rming the Jacobian of the nonlinear equilibrium equations; this is not necessary for Abaqus/Explicit.The mechanical constitutive models that are provided in Abaqus often consider elastic and inelastic response. The inelastic response is most commonly modeled with plasticity models. Several plasticity models are described in this chapter. Some of the constitutive models in Abaqus also use damage mechanics concepts, the distinction being that in plasticity theory the elasticity is not affected by the inelastic deformation (the Young's modulus of a metal specimen is not changed by loading it beyond yield, until the specimen is very close to failure), while damage models include the degradation of the elasticity caused by severe loading (such as the loss of elastic stiffness suffered by a concrete specimen after it has been subjected to large uniaxial compressive loading).2In the inelastic response models that are provided in Abaqus, the elastic and inelastic responses are distinguished by separating the deformation into recoverable (elastic) and nonrecoverable (inelastic) parts. This separation is based on the assumption that there is an additive relationship between strain rates:where is the total strain rate, is the rate of change of the elastic strain, and isthe rate of change of inelastic strain.A more general assumption is that the total deformation, , is made up of inelasticdeformation followed by purely elastic deformation (with the rigid body rotation added in at any stage in the process):In ―The additive strain rate decomposition,‖ Section 1.4.4, the circumstances are discussed under which Equation 4.1.1–1is a legitimate approximation to Equation 4.1.1–2. We conclude that, if1.the total strain rate measure used in Equation 4.1.1–1is the rate ofdeformation:where is the velocity and is the current spatial position of a material point;and2.the elastic strains are small,then the approximation is consistent. Abaqus uses the rate of deformation as the strain rate measure in finite-strain problems for this reason. (The distinction between different strain measures matters only when the strains are not negligible compared to unity; that is, in finite-strain problems.) The elastic strains always remain small for many materials of practical interest; for example, the yield stress of a metal is typically three orders of magnitude smaller than its elastic modulus, implying elasticstrains of order . However, some materials (polymers, for example) can undergo large elastic straining and also flow inelastically, in which case the additive strain rate decomposition is no longer a consistent approximation.Various elastic response models are provided in Abaqus. The simplest of these is linear elasticity:where is a matrix that may depend on temperature but does not depend on the deformation (except when such dependency is introduced in damage models). This elasticity model is intended to be used for small-strain problems or to model the elasticity in an elastic-plastic model in which the elastic strains are always small.An extension of the elastic type of behavior is the hypoelastic model:where now may depend on the deformation. In this case the elasticity may be nonlinear, but the implementation in Abaqus still assumes that the elastic strains will always be small. In porous and granular media, the elastic properties are strongly dependent on the volume strain; porous elastic behavior is described in ―Porous elasticity,‖ Section 4.4.1.The most general type of nonlinear elastic behavior is the hyperelastic model, in which we assume that there is a strain energy density potential—U—from which the stresses are defined (to within a hydrostatic stress value if the material is fully incompressible) bywhere and are any work conjugate stress and strain measures. This form of elasticity model is generally used to model elastomers: materials whose long-term response to large deformations is fully recoverable (elastic). The hyperelasticity modeling provided in Abaqus is described in ―Large-strain elasticity,‖ Section 4.6. The hyperelasticity models cannot be used with the plastic deformation models in the program, but can be combined with viscoelastic behavior, as described in ―Finite-strain viscoelasticity,‖ Section 4.8.2.The plasticity models offered in Abaqus are discussed in general terms in ―Plasticity overview,‖ Section 4.2. Both rate-independent and rate-dependent models, with and without yield surfaces, are offered. Models are included in the program that are intended for applications to metals (―Metal plasticity,‖ Section 4.3) as well as some nonmetallic materials such as soils, polymers, and crushable foams (―Pl asticity for non-metals,‖ Section 4.4). The jointed material model (―Constitutive model for jointed materials,‖ Section 4.5.4) and the concrete model (―An inelastic constitutive model for concrete,‖ Section 4.5.1) also include plasticity modeling.The constitutive routines in Abaqus exist in a library that can be accessed by any of the solid or structural elements. This access is made independently at each ―constitutive calculation point.‖ These points are the numerical integration points in the elements. Thus, the constitutive routines are concerned only with a single calculation point. The element provides an estimate of the kinematic solution to the problem at the point under consideration. These kinematic data are passed to the constitutive routines as the deformation gradient——or, more typically, as the strain and rotation increments—and . The constitutive routines obtain the state atthe point under consideration at the start of the increment from the ―material point data base.‖ The state variables include the stress and any state variables used in the constitutive models—plastic strains, for example. The constitutive routines also look up the constitutive definition. Their function then is to update the state to the end of the increment and, if the procedure uses implicit time integration and if Newton's method is being used to solve the equations, to define the material contribution to theJacobian matrix, . For material models that are defined in rate form and, therefore, require integration (such as incremental plasticity models), this Jacobian contribution depends on the model and also on the integration method used for the model. Its derivation is, therefore, discussed in some detail in the sections that define such models.Reference―Material library: overview,‖ Section 18.1.1 of the Abaqus Analysis User's Manual。

用于ABAQUS显式分析梁单元的混凝土单轴本构模型_王强

用于ABAQUS显式分析梁单元的混凝土单轴本构模型_王强

2011年7月第27卷第4期沈阳建筑大学学报(自然科学版)Journal of Shenyang Jianzhu University (Natural Science )Jul .2011Vol .27,No .4收稿日期:2010-12-31基金项目:住房和城乡建设部科技基金项目(2008-K1-15)作者简介:王强(1971—),男,副教授,博士,主要从事工程结构抗震研究.文章编号:2095-1922(2011)04-0679-06用于ABAQUS 显式分析梁单元的混凝土单轴本构模型王强,潘天林,刘明,李哲(沈阳建筑大学土木工程学院,辽宁沈阳110168)摘要:目的为实现采用梁单元进行钢筋混凝土杆系结构的弹塑性响应分析,对其混凝土本构关系进行二次开发,使ABAQUS 软件提供的混凝土材料模型能用于三维梁单元.方法利用ABAQUS 用户自定义材料程序VUMAT 接口,开发用于显式动力分析的梁单元混凝土单轴本构模型,并编制相应的计算程序,对低周往复加载下的钢筋混凝土柱进行数值模拟计算.结果数值模拟结果能够较好地反映轴力对钢筋混凝土构件滞回性能的影响以及钢筋混凝土柱的双向弯曲耦合性能.结论笔者所开发的混凝土本构模型能够用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,满足钢筋混凝土杆系结构动力弹塑性分析的需求.关键词:混凝土;滞回性能;本构模型;ABAQUS ;VUMAT 中图分类号:TU375.3文献标志码:AStudy on a Uniaxial Constitutive Model of Concrete for Explicit Dynamic Beam Elements of ABAQUSWANG Qiang ,PAN Tianlin ,LIU Ming ,LI Zhe(School of Civil Engineering ,Shenyang Jianzhu University ,Shenyang ,China ,110168)Abstract :In order to use the beam element of FEM software ABAQUS for analyzing the elastic-plastic dy-namic response of RC truss structures ,it is necessary to carry out a secondary development of the concrete constitutive for spatial beam element.In this paper ,a uniaxial constitutive model of concrete is established.The material subroutine of this model is successfully developed and applied to explicit dynamic module ofABAQUS by means of user-defined subroutine interface VUMAT.Afterwards ,the hysteretic performance of RC columns under cyclic loading is numerically simulated and compared with experiment results.The results show that the uniaxial constitutive model can rightly simulate the influence on the hysteretic performance of RC columns under varies axial load ,as well as the bi-axes bending coupling performance.The established model can meet the demand of analyzing the elastic-plastic dynamic response of RC frame structures.Key words :concrete ;hysteretic performance ;constitutive model ;ABAQUS ;VUMAT混凝土结构在大震作用下通常会进入塑性状态,采用弹性分析方法进行结构的受力分析不能真实反映结构实际受力情况.进行结构的动力弹塑性响应分析,特别是基于构件材料层次分析模型的弹塑性响应分析,能够较为准确地把握结构在大震作用下的非线性形态,对于评估结构的抗680沈阳建筑大学学报(自然科学版)第27卷震安全性具有重要意义.目前各国学者及工程界已开始致力于此方面的研究[1-4].通用有限元软件ABAQUS 具有较好的计算稳定性、丰富的单元材料模型以及强大的前后处理功能,目前已在结构构件的非线性分析中得到了广泛的应用[5-7],特别是其显式分析模块(ABAQUS /EXPLICIT ),由于其采用中心差分法求解动力平衡方程,计算中无需形成结构的整体刚度矩阵,具有计算收敛性好的特点,更适于结构动力弹塑性响应分析.但在ABAQUS 显式分析模块中,软件提供的混凝土材料模型不能用于三维梁单元.若采用实体单元进行高层建筑等杆系结构的整体分析,则计算工作量较大,难以满足工程计算需求.笔者基于纤维模型[8],利用ABAQUS 显式分析模块的用户自定义材料子程序VU-MAT ,对梁单元的混凝土材料模型进行二次开发,以满足结构动力弹塑性响应分析的需求.1纤维梁单元模型基于材料单轴本构关系的纤维模型是将构件沿纵向划分为若干子段,再沿构件横截面划分成纤维束.每个纤维只考虑它的轴向本构关系,且可定义不同的本构关系.柱横截面变形符合平截面假定.对截面纤维的当前状态积分就可以得到截面的双向抗弯刚度、双向抵抗矩以及轴力,进而沿杆长进行积分,就可以得到精确的杆件单元刚度矩阵.纤维模型可以自然、简单地描述构件的双向弯曲-轴力耦合效应.1.1基本假定(1)构件截面变形满足平截面假定;(2)不考虑钢筋与混凝土之间的相对滑移;(3)不考虑构件的剪切非线性及与其他变形的耦合关系.1.2单元截面刚度矩阵梁单元类型为ABAQUS 显式分析模块中的B31梁单元[9].该单元是基于铁摩辛柯(Timosh-enko )梁理论构建的,可以考虑剪切变形.B31梁单元具有两个节点,一个积分点,转角和位移采用线性插值,如图1(a )所示.采用GREEN 应变计算公式,可考虑大应变.单元质量阵为对角阵形式.采用矩形梁截面描述构件截面中的混凝土部分,将其划分为25个积分点或更多,如图1(b )所示;同时采用箱型截面按等面积原则、等位置代替截面中的钢筋,划分为16个积分点或更多,如图1(c )所示.每个积分点即为一个纤维.图1B31梁单元的积分点设置Fig.1Integration points of B31beam element假设梁单元的横截面坐标轴分别为y 、z 轴,纵向坐标轴为x 轴.由单元节点位移通过插值函数可以得到轴向积分点处变形向量d (x )={Φz (x )Φy (x )ε0(x )}T .(1)根据截面积分点的位置,由轴向积分点处变形向量可以得到纤维的应变向量ε(x )25ˑ1=H 25ˑ3d (x ).(2)其中截面纤维几何位置转换矩阵H =[H 1H 2…H 25]T,H i =[-y iz i1],i =1,2, (25)由纤维的应变向量与材料的本构关系可得截面应力向量σ=E ε,其中E 为纤维切线刚度对角阵.截面恢复力向量F (x )={M zM yN }T =H T A σ=H T AE ε=H T AEH d (x ).(3)式中:M z ,M y ,N 分别为截面上绕y 、z 轴的弯矩及轴向力;A 为纤维面积对角阵.整理可得单元截面的刚度矩阵为K sec =H T AEH .(4)运用单元形函数矩阵,可以从截面刚度矩阵推得单元刚度矩阵K e =∫lB T KsecB d x.式中,B 为单元形函数矩阵,l 为单元长度.第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型6812材料的本构模型2.1钢筋的本构模型钢筋在反复荷载作用下本构模型采用ABAQUS 中自带的随动强化模型[9],并考虑钢筋屈服硬化,钢筋屈服后刚度取E =0.01E 0,对应的单轴本构模型如图2所示.其中E 0为初始弹性模量,E 为屈服后弹性模量,f y 为屈服应力,εy 为屈服应变.图2钢筋的本构模型Fig.2Constitutive model of steel2.2混凝土的本构模型笔者采用基于文献[10]提出的混凝土本构模型,如图3所示.其中E c 0为原点切线模量;E cr 为损伤后弹性模量;εcm 为混凝土所经历的最大压应变;f c 为混凝土抗压强度;ε0为混凝土峰值应力所对应的应变,ε0=0.002;εu 为混凝土的极限压应变,εu =4ε0.混凝土受压骨架曲线采用Kent 和Park 所提出并由B.D.Scott 改进的混凝土应力-应变曲线[11].由于混凝土的抗拉强度很低,且在滞回过程中一旦开裂,混凝土就不能再承受拉力,因此抗拉强度对混凝土构件滞回性能影响较小[12-13].故在本构模型中忽略混凝土的抗拉强度,并忽略裂面效应影响.混凝土卸载及再加载曲线均取为直线形式.卸载时考虑刚度的退化,卸载模量按式(7)确定:E cr =E c0εc ≤ε0,E c0ε0ε()cm0.9εc >ε0{.(7)当混凝土卸载至零压应力时,如继续卸载则材料应力保持为零.若混凝土卸载至零压应力之前又开始加载,则沿原路径返回.再加载时加载曲线始终指向骨架曲线上所经历的最大应变点.若应力超过骨架曲线上的相应点,则沿骨架曲线加载.若混凝土应力在达到骨架曲线之前开始卸载,则按照所经历的最大压应变来确定卸载刚度.图3混凝土的本构模型Fig.3Constitutive model of concrete3用户自定义材料子程序(VU-MAT )实现依据前述的混凝土本构模型,笔者基于用户自定义材料子程序VUMAT 接口,编制了计算程序,并嵌入ABAQUS /EXPLICIT 模块中[9].主程序通过ABAQUS 输入文件中的关键字“*USER-MATERIAL ”来判断是否使用了用户自定义材料,并提供混凝土本构模型所需的材料参数[11].在ABAQUS 中对编制的VUMAT 子程序进行调试,来跟踪每一步调用子程序时变量的更新情况,从而及时发现所产生的错误.调试时要在com-mand 窗口中输入“abaqus -j 文件名.inp -user程序名.for -debug -explicit ”,在VISUAL STU-DIO 开发环境中打开子程序,然后设置断点进行调试.在VUMAT 中只有程序中定义的数组和变量能够进行新旧变量更替,如果另定义更新变量必须特别声明存储特性,否则子程序不会保存上一步变量数值.编程中还应避免除零问题.为保证程序编制思路的可靠性,笔者在进行混凝土本构模型开发之前,首先编制了理想弹塑性材料的VUMAT ,并与ABAQUS 自带理想弹塑性模型进行对比,得到的结果基本一致.4算例验证为充分验证模型的有效性,笔者分别对不同加载制度下的钢筋混凝土柱滞回性能进行计算分析.试件情况见文献[14],构造和配筋如图4所682沈阳建筑大学学报(自然科学版)第27卷示.各试件的加载规则见表1,其中试件SP1与SP2为笔者构造的加载制度,SP3与SP4则为文献[14]中的试件TP74和TP77.材料参数取值见表2.图4钢筋混凝土柱试件Fig.4Reinforced concrete column specimens表1算例加载制度Table 1Loading pattern of example试件编号加载图示加载规则轴力/kN备注SP1-轴向往复加载SP20无轴压单向往复侧推SP3160有轴压单向往复侧推SP4160有轴压双向往复侧推表2材料基本参数Table 2Basic parameters of materials参数项屈服强度/MPa 屈服应变泊松比弹性模量/104MPa 混凝土29.660.0020.252钢筋3570.00170.320由于采用显式动力方法进行拟静力分析,必须减小惯性力对整个构件的影响.采取的措施是降低加载速率和减小计算时步,这样可以使加速度趋近于很小,从而忽略惯性力影响.图5为计算所得试件SP1在轴向往复拉压时,ABAQUS 计算输出的角部混凝土纤维受压应力应变曲线(压为负).该曲线符合笔者所给出混凝土的本构模型,表明笔者编制的材料本构子程序是正确的.图6为试件SP2计算所得的水平加载滞回曲线.可以看出无轴压时构件的滞回曲线呈梭形,且较为饱满,属于典型的受弯构件滞回性能[15].而且对试验的“超前指向”现象也有所表现,即加载曲线并不指向前一循环的开始卸载点,而是指向前一循环的开始卸载点位移更大的一点.图5试件SP1角部混凝土纤维的应力应变关系Fig.5Stress-strain relationship of corner concrete fiber of specimenSP1图6试件SP2计算所得滞回曲线Fig.6Calculated hysteresis curve of specimen SP2图7、8分别为试件SP3的试验实测与计算所得滞回曲线,二者对比可以发现在加载初期0 20mm 时实验曲线与计算曲线基本一致,只是峰值点处计算值略小,这可能是对于混凝土受箍筋第27卷王强等:用于ABAQUS 显式分析梁单元的混凝土单轴本构模型683约束使得强度提高考虑不足.在后期加载20 60mm 时,计算所得滞回曲线较为丰满.造成此现象的原因主要是没有考虑钢筋的滑移,特别是加载后期实际构件已产生滑移,而计算模型并没有表现出来.而且采用的钢筋本构模型为线性强化模型,与真实钢筋的本构关系有一定误差,耗能能力更强一些,所以导致计算所得的滞回曲线比试验所得的曲线要饱满一些.对于试验结果中的“超前指向”现象,计算结果同样能够予以较好的描述.此外由图8与图6对比可以看出轴压力的存在使得构件极限承载力略有提高,而滞回曲线产生捏拢现象.图7试件SP3实测滞回曲线Fig.7Hysteresis curve of specimenSP3图8试件SP3计算所得滞回曲线Fig.8Calculated hysteresis curve of specimen SP3图9、10分别为试件SP4的实验与计算结果.由计算结果可以看出,当方向1保持位移恒定,方向2的加载使得方向1产生荷载跌落现象,反之亦然,这在试验曲线中有相应的体现.可以认为计算模型能够较好地反映钢筋混凝土柱的双向弯曲耦合性能.计算所得滞回曲线仍较试验曲线丰满,计算峰值略低于实验值.图9SP4试验滞回曲线Fig.9Hysteresis curve ofSP4图10SP4计算滞回曲线Fig.10Calculated hysteresis curve of SP4684沈阳建筑大学学报(自然科学版)第27卷5结论(1)笔者建立的模型可以正确反映轴力对钢筋混凝土构件滞回性能的影响,能够较好地模拟钢筋混凝土柱的双向弯曲耦合性能以及滞回曲线中的超前指向与捏拢现象,可以用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,能够满足空间框架结构动力弹塑性分析的需求.(2)采用箱型截面等效代替考虑钢筋混凝土杆件中的钢筋,有效地解决了杆件采用梁单元模型时难以考虑钢筋作用的问题.(3)由于采用的模型未考虑钢筋的滑移,对整个结果的精确性有一定的影响,有待于进一步研究.参考文献:[1]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报,2005(7):1003-1008.(Qin Conglü,Zhang Aihui.Non linear time historyanalysis based on section fiber model[J].Journal ofZhejiang University(Engineering Science),2005(7):1003-1008.)[2]Li Kangning.3-D Analysis of RC f rame-w al l building damaged in the1995hyogoken-nanbu earth-quake[C]//Process of the12th World Conference onEarthquake Engineering,New Zealand:Auckland,2000.[3]Mazzoni S,Mckenna F,Scott M H,et al.Opensees command language manual[R].PEER,Berkeley:U-niversity of California,2004.[4]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟[J].工程力学,2007(12):76-81.(Wang Xunliu,Lu Xinzheng,Ye Lieping.Numericalsimulation for the hysteresis behavior of RC columnsunder cyclic loads[J]Engineering Mechanics,2007,24(12):76-81.)[5]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.(Wang Jinchang,Chen Yekai.Application ofABAQUS in civil engineering[M].Hangzhou:Zhe-jiang University Press,2006.)[6]Navalurkar R K,Hsu C T.Fracture analysis of high strength concrete members[J].Journal of Materialsin Civil Engineering,2001,13(3):185-193.[7]Chung W,Sotelino E D.Nonlinear finite-element a-nalysis of composite steel girder bridges[J].Journalof Structural Engineering,2005,131(2):304-313.[8]Spacone E,Fillippou F C,Taucer F.Fiber beam-col-umn model for non-liner analysis of R/C frames[J].Journal of Earthquake Engineering and Structur-al Dynamics,1996,25:711-725.[9]庄茁,由小川,廖剑辉,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.(Zhuang Zhuo,You Xiaochuan,Liao Jianhui,et al.FEM analysis and application based on ABAQUS[M].Beijing:Tsinghua University Press,2009.)[10]王强,吕西林,雷淑忠.离散单元法在钢筋混凝土构件非线性分析的应用[J].沈阳建筑大学学报:自然科学版,2005(2):91-95.(Wang Qiang,Lu Xilin,Lei Shuzhong.Applicationof the DEM on the nonlinear analysis of reinforcedconcrete members[J].Journal of Shenyang JianzhuUniversity:Natural Science,2005(2):91-95.)[11]Scott B D,Park R,Priestley M J N.Stress-strain be-havior of concrete confined overlapping hoops at lowand high strain rates[J].ACI Journal,1982,79(1):13-27.[12]Légeron F,Paultre P.Uniaxial confinement model for normal and high-strength concrete columns[J].Jour-nal of Structural Engineering,2003,129(2):241-252.[13]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete[J].Journalof Structural Engineering,1988,114(8):1804-1825.[14]Kawashima K,Watanabe G,Hayakawa R.Seismic performance of RC bridge columns subjected to bi-lateral excitation[C]//Proc.35th joint meeting,pan-el on wind and seismic effects,Japan:Tsukuba Sci-ence City,2003.[15]张新培.钢筋混凝土抗震结构非线性分析[M].北京:科学出版社,2003.(Zhang Xinpei.Nonlinear seismic study on rein-forced concrete structures[M].Beijing:SciencePress,2003.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABQUS中的三种混凝土本构模型
ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。

低压力混凝土的本构关系包括:
Concrete Smeared cracking model (ABAQUS/Standard)
Concrete Brittle cracking model (ABAQUS/Explicit)
Concrete Damage plasticity model
高压力混凝土的本构关系:
Cap model
1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中
裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性
用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为
在进行参数定义式的Keywords:
*CONCRETE
*TENSION STIFFENING
*SHEAR RETENTION
*FAILURE RATIOS
2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :
适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。

在进行参数定义式的Keywords
*BRITTLE CRACKING,
*BRITTLE FAILURE,
*BRITTLE SHEAR
3、塑性损伤模型Concrete Damage plasticity model:
适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性
在进行参数定义式的Keywords:
*CONCRETE DAMAGED PLASTICITY
*CONCRETE TENSION STIFFENING
*CONCRETE COMPRESSION HARDENING
*CONCRETE TENSION DAMAGE
*CONCRETE COMPRESSION DAMAGE。

相关文档
最新文档