专题4追击和相遇问题教学案
高中物理追击和相遇问题专题学案教案资料

高中物理追击和相遇问题专题学案收集于网络,如有侵权请联系管理员删除专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v1= v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?法一根据匀变速运动规律求解法二利用相对运动求解法三极值法法四图象法(二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1=v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
专题4追击和相遇问题教学案

专题4:追击和相遇问题一、目标⑴体会分析比较复杂的物理问题的方法⑵能灵活应用运动学公式和推论解决有关问题二、知识点追击和相遇问题的分析方法:1、选择同一参照物,分析物体的运动性质。
2、分析运动物体之间的时间关系、位移关系、.....等.,并利用..........速度关系....、.距离的变化这些关系列出方程。
追击问题中常用的条件:1、速度小的加速..追速度大的匀速运动的物体,在追上之前,两个物体速度相等时,有最大距离。
2、速度大的减速..追速度小的匀速运动的物体,在追不上的情况下,两个物体速度相等时,有最小距离。
即必须在此之前追上,否则就不能追上。
3、两个物体相遇时必须处于同一位置,它们的位移一定存在某种联系。
4、匀速运动的物体追赶运减速运动的物体,要判断是在停止运动前追上,还是在停止运动后追上。
三、课堂练习1、汽车正以10m/s的速度在平直公路上前进,发现正前方有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车至少应在距离自行车多远时关闭油门,做加速度为6m/s2的匀减速直线运动,汽车才不至于撞上自行车?2、在平直公路上,一辆摩托车从静止出发,追赶在正前方100m处正以v0=10m/s的速度匀速前进的卡车。
若摩托车的最大速度为v m=20m/s,现要求摩托车在120s内追上卡车,求摩托车的加速度应满足什么条件?3、一车处于静止状态,车后距车x0=25m处有一个人,当车以1m/s2的加速度起动时,人以6m/s的速度匀速追车,人能否追上车?若追不上,人车之间最小距离是多少?4、高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上的时间。
5、甲、乙两物体在同一直线上以10m/s的速度向同一方向运动,甲在前,乙在后,它们相距16m。
某时刻甲以2m/s2的加速度做匀减速运动,求经过多长时间乙追上甲?若它们之间的距离36m,则经过多长时间乙能追上甲?6、火车以30m/s的速度向前行驶,司机突然发现在其前方同一轨道上距离100m处有另一列火车,它正以20m/s的速度沿同一方向匀速运动,于是司机立即让火车做匀减速直线运动。
相遇、追及问题教学设计

相遇、追及问题教学设计教学目标1.知识与能力会画物体运动图,能分析不同类型的相遇、追及问题中的位移和速度关系,列出方程,解决问题。
2.过程与方法通过活动引导学生积极参与、合作探究,使学生进一步掌握解决追及与相遇问题的方法步骤。
3.情感态度与价值观让学生感受到物理与生活息息相关,增加其对物理学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。
教学重点找到相遇、追及问题中的等量关系,列出方程。
教学难点寻找相遇、追及问题中的等量关系。
教学过程师生活动设计意图一.观看猎豹追羚羊和汽车追尾视频,导入新课。
观看视频提出问题思考问题激发学生学习兴趣二.例题分析,掌握新知(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。
思考1.匀加速追匀速,追上的条件是什么?观看图片总结结论:当两物体在同一时刻到达同一位置时,则表示追上。
思考2.在追赶的过程中,两者之间的距离如何变化?结合V-t图像,总结:在匀加速直线运动追赶匀速直线运动中,当两物体速度相等时,有最大距离。
学生思考,教师点拨培养学生分析问题解决问题的能力例1:一辆执勤的警车停在公路边。
当警员发现从他旁边以v0=8m/s的速度匀速行驶的货车有违章行为时,立即前去追赶。
警车以加速度a=2m/s2做匀加速运动。
试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?总结解追及、相遇问题的思路:1.根据对两物体运动过程的分析,画出两物体运动的示意图;2.根据两物体的运动性质,分别列出两个物体的速度和位移方程,注意要将两物体运动时间的关系反映在方程中;3.由运动示意图找出两物体位移间的关联方程,这是关键;4.联立方程求解,并对结果进行简单分析.三、变式练习,巩固新知1.一辆值勤的警车停在公路边,当警员发现从他旁边以v0=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0=2.5 s,警车发动起来,以加速度a=2 m/s2做匀加速运动.试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?(二)避免相撞问题思考1:在躲避的过程中,两者之间的距离如何变化?思考2:在躲避的过程中,如何保证两者不相撞?安排学生讲解教师总结点拨。
追及和相遇问题专题教案

追及问题和相遇问题专题学习目标:1.知道两种问题的各种处理方法2.能归纳两种问题的临界条件3.理解数学方法和图象法在处理物体问题中的重要性课时安排:1课时教学过程追及问题的实质就是:当两物体在同一直线上运动,分析讨论两物体在同一时刻是否能达到同一空间位置的问题.在分析追及问题时,必须明确以下几点:一个条件,两个关系,三种解题方法.1. 一个条件即两物体的速度相等,它往往是追上追不上(两物体间距离有极值(最大值,最小值))的的临界条件,也是分析判断此类问题的切入点.2.两个关系即两物体运动的时间关系和位移关系.(1)若两物体同时开始运动则运动时间相等,若不同时开始运动则应找出时间关系.(2)若两物体从同一位置开始运动则追上的位移关系是s1=s2;若开始运动时两物体相距s0,则追上的位移关系是s1-s2=s03.三种解题方法解这类问题一般可用物理分析法,数学极值法,图象法.(1)物理分析法 基本的解题思路是:①分别对两物体研究②画出运动过程示意图③列出位移方程④找出时间关系速度关系,位移关系⑤解出结果,必要时进行讨论.例1. 甲物体作匀速直线运动的速度是5m/s ,经过乙物体时,乙物体从静止开始以1m/s 2的加速度追赶甲物体,求:①乙在追上甲之前,经过多长时间甲乙相距最远?此距离是多少?②什么时候乙追上甲?此时乙物体的速度是多少?解析:①乙物体运动后速度由零逐渐增大,而甲的速度不变,在乙的速度小于甲物体的速度前,二者间的距离将越来越大,一旦乙的速度超过甲物体的速度时两物体间的距离就将缩小,因此当两物体的速度相等时,两物体相距最远.因此有:甲乙乙v t a v == ∴s 5s 15a v t ===乙甲t v x 甲甲= 2at 21x =乙 由位移关系:乙甲x x x -=∆ 带入数据得Δx =12.5m②设经过t1时间乙追上甲,此时甲乙的位移相等. 则121t v at 21甲= s 10a v 2t 1==∴甲s /m 10at v 1==乙 (2)数学极值法运用物理规律将物理问题转化成数学问题,通过函数运算得出结果.上题也可以用数学极值法求解.解析:①设乙在追上甲之前经t时间两物体相距最远.乙甲x x x -=∆=2at 21t v -甲=5t-0.5t2 由二次函数求极值公式知:当s 5a2b t ==时Δs最大,代入数据得Δx =12.5m ②同物理分析法②(3)图象法①甲乙的v-t图像如图所示,根据速度图像的物理意义,图像与坐标轴所围面积表示位移的大小由图像可看出:在乙追上甲之前的t 时刻,两物体的速度相等,甲的位移(矩形面积)与乙的位移(三角形的面积)之差(画斜线部分)达最大,所以:甲乙乙v t a v == ∴s 5s 15a v t ===乙甲乙甲s s x -=∆=S 矩形-S 三角形 =12.5m②由图像可知:在t 时刻后,由甲与乙的速度图线所围三角形的面积与阴影三角形的面积相等时,两物体的位移相等(即追上),所以由图可得:乙追上甲时,t '=2t=10s , 10v 2v ==甲乙m/s 点评:(1)追和被追两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。
追及相遇教案

追及和相遇问题教学目标:1.能灵活运用匀变速直线运动的位移速度公式2.能处置追及相遇问题。
判定追上的条件,及相距最近,最远时的条件。
教学重点:常见的几种相遇问题教学难点:判定可否被追上教学方式:分析法推理法一、新课教学一、追及问题1、追及问题中二者速度大小与二者距离转变的关系。
甲物体追赶前方的乙物体,假设甲的速度大于乙的速度,那么二者之间的距离。
假设甲的速度小于乙的速度,那么二者之间的距离。
假设一段时刻内二者速度相等,那么二者之间的距离。
例:一小汽车从静止开始以3m/s2的加速度启动,恰有一自行车以6m/s的速度从车边匀速驶过,(1)试定性分析汽车从开动后至追上自行车前两车间的距离随时刻转变的情形。
(2)汽车在追上自行车前通过量长时刻后二者距离最远?此刻距离是多少?分析:汽车追自行车先距离愈来愈大后距离愈来愈小直到追上汽车在追上自行车前通过2S钟二者距离最远。
解法一、利用二次函数极值法求解设通过时刻t 汽车和自行车之间的距离Δx,Δx=x自-x汽=v自t-at2/2=6t-3t2/2二次函数求极值的条件可知:当t=-b/2a=6/3=2s 时,两车之间的距离有极大值,且Δx m=6×2-3×22/2=6m解法二、利用分析法求解当汽车的速度与自行车的速度相等时,两车之间的距离最大。
由上述分析可知当两车之间的距离最大时有v汽=at=v自∴ t=v自 /a=6/3=2s∵Δx m=x自-x汽∴Δx m=v自t-at2/2=6×2-3×22/2=6m解法三、利用图象求解当t=t0 时矩形与三角形的面积之差最大。
Δx m=6t0/2 (1)因为汽车的速度图线的斜率等于汽车的加速度大小∴a=6/t0∴ t0=6/a=6/3=2s(2)由上面(1)、(2)两式可得Δx m=6m(3)何时追上自行车?此刻汽车的速度是多少?v自t =at2/26×t=3×t2/2t=4sv汽=at=3×4 =12m/s例2.车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,可否追上?如追不上,求人、车间的最小距离。
追击相遇学案

追及与相遇问题学案学习目标:会用匀变速直线运动的规律解决与汽车行驶安全有关的问题1.追及两物体在同一直线上运动,往往涉及追击、相遇、或避免碰撞问题。
解答此类问题的关键条件是:两物体能否同时到达同一位置。
基本思路是:①画出运动示意图②画出运动示意图③列位移方程④找出时间关系、速度关系、位移关系然后解出结果。
第一类:速度大者减速(如匀减速)追速度小者(如匀速):删除以同一位置出发为例这样,是否从同一位置出发都成立了①当两者速度相等时,若追者的位置仍小于被追者的位置,则永远追不上,此时两者间有最小距离。
②若两者速度相等时,位置也相同,则恰能追上,也是避免碰撞的临界条件。
③若两者位置相同时,追者的速度仍大于被追者的速度,则追者还有一次追上被追者的机会,期间速度相等时两者间距离有一个较大值。
第二类:速度小者加速(如初速度为0的匀加速直线运动)追速度大者(如匀速运动)①当两者速度相等时有最大距离②两者位置相同时,则追上。
2. 相遇①同向运动的两物体追上即相遇②相向运动的物体,当各自发生的位移的绝对值的和等于开始时两物体间的距离时即相遇。
解题的基本思路是:①根据对两物体运动过程的分析,画出物体的运动示意图;②根据两物体的运动性质,分别列出两个物体的位移方程。
注意要将两物体运动时间的关系反映在方程中。
③由运动示意图找出两物体位移间关联方程。
④联立方程求解。
方法:解析法、图象法、极值法等。
分析“追及”“相遇”问题时:一定要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如“两物体距离最大、最小,恰好追上或恰好追不上等”。
两个关系是时间关系和位移关系讨论下列情况中,两物体相遇时的位移关系同地出发:位移相等异地出发: 同向运动 S 甲—S 乙=S0相向运动 S 甲+S 乙=S0当V 后<V 前 两物体距离不断增大当V 后>V 前 两物体距离不断减小【典型例题】【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?分析:汽车匀加速追匀速的自行车,汽车速度小于自行车,一定——追上(填能或不能)开始:V 汽<V 自行车,所以两车距离不断——(填增大或缩小)当V 汽=V 自行车时,两车距离有最大值此后V 汽>V 自行车,两车距离不断——直至追上(填增大或缩小)法一:物理分析法汽车在追及自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大.设经时间t 两车之间的距离最大.则v 汽=at =v 自 t =v 自a =63 s =2 s Δs m =s 自-s 汽=v 自t -12at 2 =6×2 m -12×3×22 m =6 m 法二:数学分析法 设经过时间t 汽车和自行车之间的距离Δs ,则 Δs =s 自-s 汽=v 自t -12at 2=6t -32t 2=-32(t -2)2+6 当t =2 s 时两车之间的距离有最大值Δs m ,且Δs m =6 m.【例2】:在平直的公路上,卡车与同向行驶的汽车同时经过A点,卡车以V=4m/s 的速度做匀速运动,汽车以V0=10m/s加速度a=0.25m/s2做匀减速直线运动,求(1)经过多长时间卡车追上汽车?(2)若二者开始相距L,汽车在卡车后面,两车能相遇两次,则L应满足什么条件?第一问分析:开始时,V汽<V卡两车距离不断——(填增大或缩小)当V汽=V卡两者距离有最大值。
高中三年级上学期物理《追击和相遇问题》教学设计

追击和相遇问题一.教学目标1.能熟练应用“一个条件,两个关系”来处理追及相遇问题中的常见问题;2.能描述追及相遇问题中的运动变化过程及速度相等时的关键状态;3.了解初始条件对所研究问题的影响,体会量变引起质变的哲学思想。
二.教学重难点1.应用“一个条件,两个关系”来处理追及相遇问题;2.能抓住速度相等时的关键状态来突破问题。
三.教学过程1.解决追击和相遇问题的基本思路(1)分析物体的运动过程(2)作出运动示意图(3)找出两物体的位移关系和时间关系(4)列出对应方程求解2.两类常见的问题(1)求临界:距离最大、距离最小、是否追上例题1:一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s 的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s ,警车发动起来,以加速度2m/s 2做匀加速运动,试问:警车追上货车之前两车之间的最大距离是多少。
总结:若A 物体追B 物体,假设每一个物体有三种运动状态:匀速、匀加速、匀减速,则共有9种组合。
其中有三种是一定能追上(例如:匀加速追匀速、匀减速;匀速追匀减速):假设A 物体的速度较小,速度相等时会出现最大距离差最大距离。
警车 货车 2.5s t 解析:设从警车开始启动到与货车速度相等所用时间为。
4s j h a t v t ==由:,可得:;20h 136m 2j x x v t a t x ∆=∆=由:+-,得:AS 0 t t Ba.两物体速度相等列方程b.由位置关系求相差的距离剩下6种不一定能追上:以匀速的A 物体追匀加速的B 物体为例,a 、开始若v A< v B ,距离越来越大,一定追不上b 、开始若v A> v B ,当速度相等时可能出现三种位置关系(如图): 追不上,但是此时是最小距离差;刚好不想撞的临界;在速度相等前已经相遇。
2.求何时相遇例题2:A 、B 两物体在同一直线上运动,当它们相距 S 0=7m 时,A 以v A =16m/s 的速度向右做匀速运动,而物体B 此时速度v B =10m/s 向右,以加速度a =-2m/s 2做匀减速运动,则经过多长时间A 追上B ?变式:A 、B 两物体在同一直线下运动,当它们相距 S 0=7m 时,A 以v A =4m/s 的速度向右做匀速运动,而物体B 此时速度v B =10m/s 向右,以加速度a =-2m/s 2做匀减速运动,则经过多长时间A 追上B ?A S 0B A B S 0 t tA t 解析:设B 两物体相遇所用时间为,2A 0B A 0B 1,21sx S x v t S v t at t ==+-=由:+,即 得:2A 0B A 0B 1,27s x S x v t S v t at t ==+-=由:+,即 得:7s >5st =A t 解析:设B 两物体相遇所用时间为,B B B s v t a 解析:物体停止运动所需要时间==5,B s B 25m,2B v x t ==在5内物体运动的距离为A A B 0A A B ,8s v t x S t =+=则物体追上物体可得。
教案 追及和相遇问题

习题三: 习题三:两个物理 A、B 从同一地点同时出发,沿同一直线运 动,其速度图像如图所示,由图像可知,A、B 出发后将相遇 几次?除此之外,你还能由图像提出什么问题?你能解决这 些问题吗?
追
相遇问题
课
解:追 、相遇的 : 解追 、相遇问题的 路 : 追 、相遇问题时 的几个问题
在匀变速运动的位移表达式中有时间的二次方, 我们可列出位移方程,利用二次函数求极值的方 法求解,有时也可借助 v-t 图象求解。 习题一: 习题一:两辆完全相同的汽车,沿水平平直路一前一 后匀速行驶,速度均为 v0,若前车突然以恒定的加速 度刹车,在它刚停住时,后车以前车刹车时的加速度 开始刹车,已知前车在刹车过程中所行的距离为 x, 若要保证两辆车在上述情况中不相撞,则两车在匀速 行驶时保持的距离至少应为( ) A.x B.2x C.3x D.4x
3. 分析追及、相遇问题时要注意 分析追及、 ⑴分析问题时,一定要注意抓住一个条件两个关系。 一个条件是:两物体速度相等时满足临界条 件,如两物体的距离是最大还是最小及是否恰好 追上等。 两个关系是:时间关系和位移关系。 时间关系是指两物体运动时间是否相等,两 物体是同时运动还是一先一后等;而位移关系是 指两物体同地运动还是一前一后运动等,其中通 过画运动示意图找到两物体间位移关系就是解题 的突破口,因此在学习中一定要养成画草图分析 问题的良好习惯,对帮助我们理解题意,启迪思 维大有裨益。 ⑵若被追赶的物体做匀减速运动,一定要注意,追上 前该物体是否停止运动。 ⑶仔细审题,注意抓住题目中的关键字眼,充分挖掘 题目中的隐含条件,如“刚好”“恰好”“最多”“至 、 、 、 少”等,往往对应一个临界状态,满足相应的临界条 件。
相遇与追及问题教学设计

相遇、追及问题教学设计教学目标 1.知识与能力: 会画线段图,能分析不同类型的相遇、追及问题中的相等关系,列出一元一次方程解应用题。
2.过程与方法:通过数学活动引导学生积极参与、合作探究, 使学生进一步掌握用一元一次方程解决实际问题的方法步骤。
3.情感态度与价值观: 让学生感受到数学与生活息息相关,增加其对数学学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。
教学重点 找到相遇、追及问题中的等量关系,列出一元一次方程。
教学难点寻找相遇、追及问题中的等量关系。
教学过程(师生活动)一.创设情境,导入新课。
1、A 、B 两车分别从相距S 千米的甲、乙两地同时出发,相向而行,两车会相遇吗?2、如果两车相遇,则相遇时两车所走的路程与A 、B 两地的距离有什么关系?3、如果两车同向而行,B 车先出发a 小时,在什么情况下两车能相遇?为什么?4、如果A 车能追上B 车,你能画出线段图吗?二.例题分析,掌握新知例1、、A 、B 两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。
(1)若两车同时相向而行,请问B 车行了多长时间后与A 车相遇?A 的路程+B 的路程=相距路程解:设B 走x 小时后与A 车相遇,根据题意列方程得50x+30x=240解得 x=3答:行走3小时后两车相遇。
(2) 若两车同时出发,相向而行,请问行走多长时间后两车相距80米?A 的路程+B 的路程+80米=相距路程 A 的路程+B 的路程-80米=相距路程解:设行走x 小时后两车相距80米,①相遇前相距80米50x+30x+80=240解得 x=2 A B 体育馆教学楼 A B 甲 乙 80米 A B 80米甲乙②相遇后相距80米50x+30x-80=240解得 x=4答:行走2小时/4小时后两人相距80千米。
(1)若两车同时出发,同向而行,请问行走多长时间后A追上B?A B甲乙A的路程-B的路程=相距路程解:设行走x小时后A追上B,根据题意列方程得50x-30x=240解得 x=12答:行走12小时后A追上B。
高三总复习专题追击相遇问题导学案

年级:高三学科:物理班级:学生姓名:制作人:不知名编号:2023-29专题强化课(一)追及、相遇问题
学习目标:理解追及和相遇的临界,并学会应用
预学案
1.追及相遇问题中的一个条件和两个关系
(1)一个条件:即两者速度相等,它往往是物体间能够追上、追不上或两者距离最大、最
小的临界条件,也是分析判断的切入点.
(2)两个关系:即时间关系和位移关系,这两个关系可通过画出运动示意图得到.
2. 追及、相遇问题常见情景
速度大者追速度小者
探究案
探究一:总复习大本12页角度1 典例6
探究二:总复习大本12页角度2 典例7
多维训练:13页1,2
检测案
1. 甲、乙两辆汽车从同一地点同时出发,沿同一方向行驶,它们运动的x
-t图像如图所示。
t
下列判断正确的是()
A.在4 s以前,乙车的速度比甲车的大
B.在4 s以后,乙车的加速度比甲车的大
C.在4 s时,甲、乙两车相距最远
D.在前4 s内,甲、乙两车的平均速度大小相等
2.a、b两物体同时从同一地点开始做匀变速直线运动,二者运动的v-t图象如图所示,下列说法正确的是()
A.a、b两物体运动方向相反
B.a物体的加速度小于b物体的加速度
C.t=1 s时两物体的间距等于t=3 s时两物体的间距
D.t=3 s时,a、b两物体相遇。
追击相遇问题高中物理教案

追击相遇问题高中物理教案
主题:追击相遇问题
教学目标:
1. 理解追击相遇问题的基本原理和解题方法。
2. 掌握计算追击相遇问题中速度、时间、距离等物理量的方法。
3. 提高学生解决实际问题的能力。
教学步骤:
一、导入(5分钟)
1. 引导学生回想日常生活中可能遇到过的类似问题,如两辆车相向而行相遇的问题。
2. 提出一个简单的追击相遇问题让学生思考,如:A、B两个人同时从同一起点出发,A 的速度为5m/s,B的速度为3m/s,如果B追A,时间过了多久会相遇?
二、讲解(15分钟)
1. 介绍追击相遇问题的基本原理,即两个物体相向而行时,它们之间的距离会逐渐减小,最终相遇。
2. 解释如何根据两个物体的速度和出发点的距离来计算它们相遇的时间。
3. 提供几个示例让学生跟随老师一起计算相遇时间。
三、练习(20分钟)
1. 让学生自行解决几个追击相遇问题,鼓励他们使用所学的方法进行计算。
2. 鼓励学生之间合作讨论,互相帮助解决较难的问题。
3. 教师巡视课堂,对学生的解答进行指导和纠正。
四、总结(10分钟)
1. 结合实际情况,总结解决追击相遇问题的方法。
2. 强调速度、时间、距离等物理量之间的关系,以及如何应用这些关系解决问题。
3. 鼓励学生将所学知识应用到实际生活中,提高解决问题的能力。
五、作业(5分钟)
1. 布置相关的练习题目作为作业,加深学生对追击相遇问题的理解和掌握。
2. 鼓励学生自主查找更多相关问题进行练习,提高解决问题的能力。
本教案可以根据具体情况适当调整和修改,以便更好地适应学生的学习需求和能力水平。
追击和相遇问题专题学案

直线运动中的追击和相遇问题 考点聚焦1、掌握追及及相遇问题的特点2、能熟练解决追及及相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :t a =t b +/-t 0 (2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时,两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
追击相遇问题高中物理教案5篇

追击相遇问题高中物理教案5篇追击相遇问题高中物理教案5篇作为一名人民教师,课堂教学是重要的工作之一,教学的心得体会可以总结在教学反思中,物理学专业本科生知识体系由知识体系和主要实践性教学环节两部分构成。
那么应当如何写教案呢?以下是小编为大家带来的初中物理教学教案7篇,欢迎大家参考。
追击相遇问题高中物理教案(篇1)培养差生非智力因素的途径是多方面的。
这里,仅介绍我对三种类型差生进行非智力因素培养的情况。
强化自制,控制自我。
统计资料表明,由于自我控制能力薄弱而成为差生的比例较大。
调查中,我发现他们的自我意识还是比较强的,有一定的评价别人和自我评价的能力。
例如,在他们的心目中,物理学得好的学生往往是学习成绩优秀,观察能力、实验能九思维能力、分析和解决物理问题的能力都很强的学生。
当问他们想不想向这个标准靠拢时,几乎都说心里想达到,但做起来太不容易。
他们之所以想的做的不能同步,是由于不能控制自己,容易受外界的干扰。
调查中还发现,这类学生的自我控制能力往往同兴趣、情感、意志等有关。
针对这类差生的特点,我做了以下一些转化工作。
1、激发差生的学习动机,提高学习物理的兴趣。
首先,根据物理的特点,引导差生正确认识学习物理的目的和社会意义,用所学的物理知识解决简单的实际问题,以激发差生的学习兴趣,从而强化内驱力,增强自制力。
其次,在教学中严格把好教材深度关,注意突破难点。
在习题教学中,重视物理过程的分析,并充分运用实验的优点,采用灵活新颖的教学方式,创设轻松愉快的教学气氛,使学生乐于学习。
2、锻炼差生的意志,增强学好物理的信心差生有一个显著的特点,就是情绪波动大,意志薄弱,缺乏毅力,害怕困难和挫折,这无疑影响了他们的学习,因为学习是一件充满困难和挫折的事情,物理又是一门较难学的学科。
因此,我注意引导他们把战胜困难,攻下难题当作一大乐事,让他们在合适的练习中磨练克服困难的意志,能搞到在情景中循序渐进,合理上升,产生向上攀登的情感。
追击与相遇问题教案

选自行车为参照物,则从开始运动到两车相距最远过程中,以汽
车相对地面的运动方向为正方向,汽车相对此参照物的各个物理
量的分别为:v0=-6m/s,a=3m/s2,v=0
对汽车由公式 vv0 at
tvv0 0(6)2s
a
3
由v2 v02 2ax
xv2v0 20(6)2m6m 2a 23
以自行车为参照物, 公式中的各个量都 应是相对于自行车 的.注意:物理量的 正负号.
当t=t0两物体速度相等时: ①若Δx=x0,则恰能追及,且两 物体只能相遇一次。
这也是甲乙避碰的临界条件。
②若Δx<x0,则不能追及。 此时两物体最小距离为x0-Δx ③若Δx>x0,则相遇两次。 其中相遇时刻t1和t2由下列方程 求出:
x甲=x0+x乙
练习两辆完全相同的汽车,沿水平直路一前一后以相
2a1 21.5
x2=
v2 2
102
m =100 m
2a2 20.5
x=x1+x2=175 m 两车需在相隔175 m处刹车才不相碰.
2、考虑反应时间的避碰
例5.为了安全,在公路上行驶的汽车之间应保持必要的距离. 已知某高速公路的最高限速为120 km/h。假设前方车辆突 然停止,后车司机从发现这一情况开始,经操纵刹车到汽车 开始减速所经历的时间为(即反应时间)t=0.5 s,刹车时汽车加 速度为4 m/s2.则该段高速公路上汽车间应保持的最小距离 是多少
①t=t0以前,两物体间距离增 大
②t=t0时,两物体相距最 远为x0+Δx ③t=t0以后,甲物体比乙物体 快,两者间距减小
④只能相遇一次,相遇时刻 由方程求出:
x甲=x乙+x0
《追及与相遇问题》教学设计

《追及与相遇问题》教学设计
一、教学目标
1.掌握追及与相遇问题的分析方法。
2.学会运用物理公式解决追及与相遇问题。
3.培养学生的逻辑思维和问题解决能力。
二、教学重难点
1.重点:追及与相遇问题的分析和求解。
2.难点:判断追及与相遇的条件。
三、教学方法
讲授法、例题分析法、讨论法。
四、教学过程
1.导入
通过实际生活中的追及与相遇现象,引入课题。
2.问题分析
(1)分析追及与相遇问题的特点和类型。
(2)讲解判断追及与相遇的条件。
3.公式应用
运用物理公式解决追及与相遇问题,如位移公式、速度公式等。
4.例题讲解
通过典型例题,讲解追及与相遇问题的具体求解方法。
5.课堂讨论
组织学生讨论追及与相遇问题的实际应用和注意事项。
6.课堂小结
总结追及与相遇问题的分析方法和求解步骤。
7.作业布置
布置课后作业,包括不同类型的追及与相遇问题。
相遇、追及问题教案

相遇、追及问题一、追及问题1.速度小者追速度大者匀速追匀减速2.速度大者追速度小者次相遇,说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.考点1 追击问题求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题 过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA=υB ,得t 1=5 s .A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
追击相遇问题教案

深圳市第二高级中学2008___----2009___年度第一学期电子教案
一、导入新课
上节课我们学习了自由落体运动的速度、位移和时间之间的关系,本节课我们来怎么把它推广到普通的匀变速运动的公式。
(一)、匀变速直线运动速度
1.匀变速直线运动速度公式vt=v0+at
说明:(1)由加速度的定义式得vt=v0+at,该速度公式反映了匀变速直线运动的瞬时速度随时间变化的规律,式中v0是开始计时时的瞬时速度(初速度),vt是经时间t后的瞬时速度(末速度).
(2)速度公式中v0、vt、a都是矢量,在直线运动中,规定正方向后(常以v0的方向为正方向),都可用带正、负号的代数量表示,因此,对计算结果中的正、负,需根据正方向的规定加以说明,若经计算后vt>0,说明末速度与初速度同向;若a<0,表示加速度与v0反向.
(3)若初速度v0的方向规定为正方向,减速运动的速度公式可表示为vt=v0-at,当vt=0时,可求出运动的时间t=v0/a.
(4)若初速度v0=0,则vt=at,瞬时速度与时间成正比.
(5)利用vt=v0+at计算未知量时,若物体做减速运动,且加速度a已知,则代入公式计算时a应取负数.
师:前面我们已经学过匀速直线运动,知道做匀速直线运动的物体其位移x,速度v,时间t三者之间存在着关系式x vt
.这也是我们计算匀速直线运动位移的方法.现在
t
-
1 Array
/s
s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4:追击和相遇问题
一、目标
⑴体会分析比较复杂的物理问题的方法
⑵能灵活应用运动学公式和推论解决有关问题
二、知识点
追击和相遇问题的分析方法:
1、选择同一参照物,分析物体的运动性质。
2、分析运动物体之间的时间关系、位移关系、速度关系、距离的变化等
.....................,并利用这些关系列出方程。
追击问题中常用的条件:
1、速度小的加速
..追速度大的匀速运动的物体,在追上之前,两个物体速度相等时,有最大
距离。
2、速度大的减速
..追速度小的匀速运动的物体,在追不上的情况下,两个物体速度相等时,
有最小距离。
即必须在此之前追上,否则就不能追上。
3、两个物体相遇时必须处于同一位置,它们的位移一定存在某种联系。
4、匀速运动的物体追赶运减速运动的物体,要判断是在停止运动前追上,还是在停止运动
后追上。
三、课堂练习
1、汽车正以10m/s的速度在平直公路上前进,发现正前方有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车至少应在距离自行车多远时关闭油门,做加速度为6m/s2的匀减速直线运动,汽车才不至于撞上自行车?
2、在平直公路上,一辆摩托车从静止出发,追赶在正前方100m处正以v0=10m/s的速度匀速前进的卡车。
若摩托车的最大速度为v m=20m/s,现要求摩托车在120s内追上卡车,求摩托车的加速度应满足什么条件?
3、一车处于静止状态,车后距车x0=25m处有一个人,当车以1m/s2的加速度起动时,人以
6m/s的速度匀速追车,人能否追上车?若追不上,人车之间最小距离是多少?
4、高为h的电梯正以加速度a匀加速上升,忽然天花板上一螺钉脱落,求螺钉落到底板上
的时间。
5、甲、乙两物体在同一直线上以10m/s的速度向同一方向运动,甲在前,乙在后,它们相
距16m。
某时刻甲以2m/s2的加速度做匀减速运动,求经过多长时间乙追上甲?若它们之间
的距离36m,则经过多长时间乙能追上甲?
四、作业
1、质点乙由B点向东以10m/s的速度做匀速运动,同时质点甲从距乙12m远的西侧A点处以4m/s2的加速度向东做初速度为零的匀加速直线运动。
求:⑴当甲、乙速度相等时,甲
离乙多远?⑵甲追上乙需要多长时间?此时甲通过的位移是多大?
2、从同一抛出点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?
3、火车以30m/s的速度向前行驶,司机突然发现在其前方同一轨道上距离100m处有另一列火车,它正以20m/s的速度沿同一方向匀速运动,于是司机立即让火车做匀减速直线运动。
要使两车不致相撞,后面火车的加速度应满足什么条件?
五、提高题
1、小球1从高H处自由落下,同时小球2从其正下方以初速度v0竖直上抛,两球可在空中相遇。
试就下列两种情况讨论H的取值范围。
⑴在小球2上升过程两球在空中相遇;
⑵在小球2下降过程两球在空中相遇。