脑缺血损伤的病理生理机制 - 哈药集团生物工程有限公司

合集下载

脑缺血再灌注损伤机制PPT课件

脑缺血再灌注损伤机制PPT课件

其他治疗方式
控制危险因素
如高血压、糖尿病、高血脂等,降低脑缺血的发生风险。
康复治疗
针对脑缺血后遗留的功能障碍,进行康复训练,提高生活 质量。
健康宣教
提高公众对脑缺血的认识,加强预防措施的宣传和教育。
05
CATALOGUE
脑缺血再灌注损伤的研究进展与展望
研究进展
01
脑缺血再灌注损伤的病理生理机制
深入探讨了脑缺血再灌注损伤过程中炎症反应、氧化应激、细胞凋亡等
关键环节的作用机制,为治疗提供了理论基础。
02
脑缺血再灌注损伤的药物治疗
研究发现了多种具有神经保护作用的药物治疗方法,如抗血小板聚集药
物、溶栓药物、抗炎药物等,为临床治疗提供了新的选择。
03
脑缺血再灌注损伤的基因治疗
通过基因敲除或基因转染技术,调控关键基因的表达,以达到治疗脑缺
分类
根据缺血时间和再灌注时间的不 同,脑缺血再灌注损伤可分为急 性期、亚急性期和慢性期。
发生机制
能量代谢障碍
缺血时,脑组织能量生成不足, 导致细胞内ATP耗竭,细胞膜离 子泵功能受损,细胞内钠离子和 钙离子浓度升高,引发细胞毒性
水肿和细胞死亡。
炎症反应
再灌注后,炎症细胞因子和趋化 因子被激活,引发炎症反应,导
细胞信号转导异常
信号转导通路紊乱
脑缺血再灌注损伤过程中,细胞内信号转导通路发生紊乱,导致 细胞功能异常。
信号分子异常
参与信号转导的分子在脑缺血再灌注损伤后出现异常,影响信号转 导过程。
信号转导抑制剂的作用
某些物质在脑缺血再灌注损伤后发挥信号转导抑制剂的作用,干扰 信号转导过程。
细胞内蛋白质合成异常
致白细胞浸润和组织损伤。

缺血再灌注损伤PPT课件

缺血再灌注损伤PPT课件

细胞凋亡与坏死
总结词
细胞凋亡与坏死是缺血再灌注损伤的两种主要细胞死亡方式,它们会导致组织结构和功能的丧失。
详细描述
在缺血再灌注过程中,细胞凋亡与坏死被触发。细胞凋亡是程序性死亡过程,涉及一系列基因和蛋白 的激活。坏死则是细胞因能量耗竭和膜通透性改变而发生的细胞死亡。这两种细胞死亡方式都会导致 细胞结构和功能的丧失,进而引发组织损伤和器官功能障碍。
细胞因子治疗
通过注射细胞因子来促进 心肌细胞的再生和修复。
细胞工程
利用细胞工程技术构建心 肌组织,用于替代受损心 肌。
基因治疗
基因转移技术
将具有保护作用的基因转 移到心肌细胞中,增强心 肌细胞的抗缺血再灌注损 伤能力。
基因沉默技术
利用基因沉默技术抑制有 害基因的表达,减轻缺血 再灌注损伤。
基因编辑技术
THANKS FOR WATCHING
感谢您的观看
总结词
氧化应激反应是缺血再灌注损伤的重要机制之一,它会导致细 胞内活性氧簇(ROS)的过度生成和抗氧化能力的下降,进而 引发细胞损伤。
详细描述
在缺血再灌注过程中,由于氧气供应的恢复,细胞内ROS的产 生增多,这些ROS具有很强的氧化能力,能够攻击细胞内的蛋 白质、脂质和DNA等生物分子,导致细胞结构和功能的破坏。 同时,抗氧化系统的削弱也使得细胞无法有效清除ROS,加剧 了细胞的氧化应激损伤。
脑缺血再灌注损伤
总结词
脑缺血再灌注损伤是脑梗塞治疗中的难题, 可能导致脑细胞死亡和神经功能缺损。
详细描述
脑缺血再灌注损伤是指当脑缺血后重新获得 血液供应时,反而加重脑损伤的过程。这是 因为在缺血期间,脑细胞会产生一系列代谢 产物和活性物质,当血液重新流通时,这些 代谢产物和活性物质可能对脑细胞产生毒性 作用,导致脑细胞死亡和神经功能缺损。

脑出血后血脑屏障损伤的病理生理机制

脑出血后血脑屏障损伤的病理生理机制

脑出血后血脑屏障损伤的病理生理机制脑出血是一种严重的神经系统疾病,它可能导致持续性的神经功能损害,甚至致死。

其中一个重要的机制是血脑屏障(BBB)损伤。

针对脑出血后的BBB损伤的机制进行的研究可能有助于改善脑出血患者的预后。

血脑屏障是由在血管中缝合在一起的胶原纤维、血管内皮细胞、和组织联系蛋白组成的一种屏障,这可以阻止有害物质进入大脑,同时保护大脑细胞免受损害。

脑出血通常是由于血管张力性破裂引起,可引起BBB破坏,这可以导致大量血液和营养物质混合渗入大脑,进而引发水肿、神经炎症、氧化应激反应、和缺血再灌注损伤,从而进一步引发神经元细胞死亡,导致认知障碍、精神障碍和功能障碍。

脑出血后BBB损伤可分为两类:一类是直接性损伤,它的发生主要是由于撕裂的血管层的紧张力和血管张力,从而导致BBB的破裂;另一类是间接性损伤,它的发生主要是由于缺血再灌注(I/R)的损伤,这种损伤是BBB的破裂的间接后果,可能会在缺血再灌注后几个小时甚至几天才出现。

I/.R损伤是BBB损伤的一个重要机制,它的发生主要是由于缺血再灌注所引起的氧化应激反应,其主要机制可能是由于缺血后缺氧导致的活性氧(ROS)产生,这些氧自由基会损害BBB,从而导致血液和大脑液的混合,引起脑水肿。

此外,还有一些炎症因子和降糖因子也可能是BBB损伤的原因,特别是凋亡因子,例如活性氧,氧化应激反应和炎症因子,缺氧和缺血都会导致血管内皮细胞凋亡,从而影响BBB的完整性。

此外,另一个对BBB损伤有重要影响的因素是纤维蛋白原,它是一种血脑屏障中重要的组成部分,缺血后它会聚集在破裂的血管内,减少通透性,影响BBB的完整性。

有研究表明,纤维蛋白原的激活可能是血脑屏障损伤的一个重要原因,它可以调节血管内皮细胞的活动,导致血管紊乱,促进血管炎症反应,从而导致血脑屏障损伤。

总而言之,脑出血后血脑屏障(BBB)损伤可以归结为直接性损伤,即血管张力性破裂,以及间接性损伤,即缺血再灌注引起的氧化应激反应、炎症因子的改变以及纤维蛋白原的改变。

心肺复苏后缺血缺氧性脑损伤的脑保护

心肺复苏后缺血缺氧性脑损伤的脑保护

心肺复苏后缺血缺氧性脑损伤的脑保护突发心源性死亡(Sudden cardiac death,SCD)通常发生在1小时内,而且没有明显的症状或征象。

SCD通常需要进行心肺复苏(CPR)和自动体外除颤器(AED)等紧急处理。

虽然CPR 和AED可以挽救生命,但院外心跳骤停(Out of Hospital Cardiac Arrest,OHCA)的生存率仍然相对较低,根据世界卫生组织的数据,全球每年有超过350万人死于SCD,其中大多数是在高收入国家。

在美国,SCD是成年人中最常见的死亡原因之一,每年约有30万人因此死亡。

在中国,虽然缺乏准确的数据,但SCD的发病率也在逐年上升。

在美国,每年有约35万人经历OHCA,其中仅有10%左右的人在到达医院前恢复了心跳。

在欧洲OHCA的发生率略低于美国,但生存率也相对较低。

在中国,OHCA 的发病率为每10万人41.84人(1)。

OHCA在中国的发病率(1)OHCA的生存率取决于多种因素,包括患者的基础健康状况、CPR的质量和时间、AED的及时使用、到达医院的时间以及后续治疗的质量等。

根据研究,总生存率通常在5%到10%之间,但在一些高质量的急救系统中,生存率可以达到20%或更高。

为提高生存率,需要采取多种策略,包括提高公众的急救意识和技能、提高急救系统的效率和质量、优化CPR和AED的应用、规范化及高质量的治疗方法和技术等。

虽然CPR可以挽救生命,但CPR后的脑损伤经常是需要面临的问题。

各种原因导致心脏机械活动的突然停止,在自主循环恢复后极易发生广泛的组织器官损伤,所谓心脏骤停后综合征(Post-Cardiac Arrest Syndrome,PCAS)。

心脏骤停后脑损伤即为心肺骤停后缺血缺氧性脑病(Cardiopulmonary arrest after hypoxic ischemia encephalopathy,CPAAHIE)。

脑损伤的程度和预后取决于多种因素,其中一个重要的因素是心肺复苏后的时间分期。

缺血性脑损伤的脑保护性

缺血性脑损伤的脑保护性

(三)神经保护剂
• 受体介导钙通道(RMCC)拮抗剂 • 受体介导钙通道中最具代表是N-甲基-D-门 冬氨酸(NMDA)通道,与此相关的拮抗剂又可 分为以下两类:胞外过量的谷氨酸通过刺激几种 类型受体兴奋突触后神经元,使钙离子内流,后 者又可激活酶类,最终损害细胞。阻断NMDA受 体可降低钙离子内流,从而保护神经元。这些拮 抗剂包括cerestat、selfotel、eliprodil等。分为 非竞争性谷氨酸受体拮抗剂和 竞争性谷氨酸受体 拮抗剂 ,均在临床试验阶段。
(五)炎性介质与脑缺血损伤
• 脑缺血时,局部血管内皮细胞和白细胞 (中性粒)被病变组织产生的可扩散性炎性介 质激活,细胞间粘附分子(ICAMs) 释放增加, 细胞粘附性加强; 加之缺血区灌注明显下降, 白细胞牢固粘附于血管内皮细胞表面引起机械 性阻塞;活化的白细胞可释放自由基和蛋白水 解酶损伤血管,导致其通透性增加; 进入脑 组织的白细胞释放的毒性物质直接损伤神经元 和胶质细胞;白细胞释放的炎性介质和细胞因 子又进一步加重炎性反应。
(一)神经保护药物的作用机制

急性缺血导致细胞能量代谢异常,并导致一 系列缺血瀑布反应。在脑组织缺血后的极早期, 局部神经元蛋白合成停止,膜离子转运停止,神 经元发生去极化,钙离子内流导致兴奋性氨基 酸——谷氨酸大量释放,而后者由于加剧钙离子 内流和神经元去极化而进一步加重细胞损害,大 量钙离子通过A/AMPA受体、代谢性谷氨酸受体 和电压依赖性钙通道大量进入细胞内,激活蛋白 酶、脂酶、各种激酶、核酸酶和一氧化氮(NO) 合成酶,导致细胞自身稳定功能失调,细胞骨架、 线粒体和细胞膜破坏;
• 也有学者认为,钙平衡失调与凋亡有 关,大量钙离子内流诱导神经元坏死,少 量钙离子内流引起神经元凋亡;即梗死中 心区为坏死,半暗区为凋亡。但脑损害时 神经元损害更确切的机制尚需进一步研究 阐明。

脑缺血损伤及其体外细胞模型

脑缺血损伤及其体外细胞模型

脑梗塞按栓子来源分类
心源性:占60%~75%, 栓子主要来 源是风湿性心瓣膜病、心内膜炎赘 生物及附壁血栓脱落等,以及心肌 梗死、心房粘液瘤、心脏手术、心 脏导管、二尖瓣脱垂和钙化,先天 性房室间隔缺损等。
非心源性:如动脉粥样硬化斑块脱 落、肺静脉血栓或凝块、骨折或手 术时脂肪栓和气栓、血管内治疗时 血凝块或血栓脱落等;颈动脉纤维 肌肉发育不良(女性多见);肺感染 、败血症、肾病综合征的高凝状态 等可引起脑栓塞。 来源不明:约30%的脑栓塞。
炎症反应
对于体外培养的小胶质细胞或脑组织,可给予脂多糖 诱导小胶质细胞活化,从而产生多种炎症效应:肿瘤坏死 因子-α (tumor necrosis facto-α ,TNF-α )等炎性因子 的释放,激活诱导型一氧化氮合酶合成NO,下调谷胱甘肽 的表达等 。也可直接给予外源性炎性因子,如TNF-α .
脑梗塞易发人群
脑梗塞临床治疗方法
0小时
0-3小时
3-6小时
6-48小时
评价、诊断和接诊
紧急药物治疗: 静脉溶栓
可能的药物治疗: 动脉溶栓 抗凝治疗 降纤治疗 神经保护 其他非药物方法
预防复发 防止并发症 康复
急性脑缺血级联反应
在正常生理状态下,成 人每100 g脑组织血流量
约为50 ml/min。
细胞模型
内皮细胞模型
1. 原代内皮细胞培养:一般从成年动物大脑皮质取材,剪刀破碎成1 mm 大小,胶原酶消化后,经密度梯度离心或过筛方法获得,然后接 种至Ⅳ型胶原包被的培养板内,培养4~5 d后融合形成紧密连接的单 层细胞。内皮细胞单层或由内皮细胞层构成的体外BBB模型,经OGD 诱导缺血后,内皮细胞问紧密连接遭到破坏,通透性增加,跨内皮电 阻(transendothelial electrical resistance,TEER)减小,与体内状态 相似。

脑缺血-再灌注损伤的病理机制研究进展

脑缺血-再灌注损伤的病理机制研究进展
2 0 01
脑 缺 血 一 灌 注损 伤 的病 理 机制 研究 进展 再
颜 玲
湖 北 民族 学 院 医学 院 ( 北 恩施 4 50 ) 湖 4 00
【 关键词】 缺血一 脑 再灌注损伤 ; 病理机制 ; 综述 【 中图分类号】 一 3 ; 7 3 3 R 3 2 R 4 . 【 文献标识码 】 A
【 文章编号】 0 8 8 6 (0 0 0 —0 0 0 10 — 14 2 1 )4 0 8 — 3
缺 血性脑 中风是 目前严重威 胁人类 健康 的疾病
神经 系统 的兴奋性 神 经递 质 , 要存 在 于 神经 末 梢 主 的突触 囊泡 , 也可存 在 于 各种 神 经元 胞 体 以及胶 质 细胞 胞 质 , A 过 度兴 奋 , EA 可产 生 神 经 毒 性 。E A A
引起 血脑屏 障受损 , 加重脑 梗死 。④ 脑 缺血 时 , 脑血
K 逸 出 , N c一 水 积 累 , 而 a 、 l和 导致 细胞 肿 胀 , 透 渗
二信使 , 细胞 的许 多 正 常生 理 活 动 中发挥 重 要作 在 用 。在脑缺血 性损伤 时 ,a C 泵功 能 降低 , 同时 线粒
性 排 出活性 物 质 , Gu Ap G B 如 l、 s、 A A等 。② 突触 前 膜 上存在 高亲 和 力 N 赖 的膜 载 体 , 脑组 织 缺 a依 在 血 时 , 类 膜 载体 功 能 障 碍 , 得 胞 外 Gu水 平 升 该 使 l 高 。③ 在脑 组织 缺血 的早 期 , 前所 述 C 通 道 的 如 a 激 活也可 导致 Gu向胞外 释 放 。④ 脑 组织 缺 血 时 , l 胞 内 c 超载 也 可 激活 磷脂 酶 A , a :损伤 膜 结 构 , 使

脑缺血再灌注损伤机制护理

脑缺血再灌注损伤机制护理

急救护理
快速识别
在脑缺血发生时,快速识别并采 取急救措施是至关重要的。应密 切观察患者的症状和体征,及时
发现并处理。
保持呼吸道通畅
确保患者呼吸道通畅,及时清理 呼吸道分泌物,防止窒息和吸入
性肺炎等并发症。
降低颅内压
对于脑缺血引起的颅内压升高, 应及时采取措施降低颅内压,以
减轻脑水肿和保护脑组织。
康复护理
THANKS FOR WATCHING
感谢您的观看
特点
脑缺血再灌注损伤具有不可逆性 ,且会导致脑组织功能严重受损 ,甚至危及生命。
脑缺血再灌注损伤的病理生理机制
自由基爆发
脑缺血再灌注后,大量自由基产 生并攻击细胞膜和线粒体,导致
细胞死亡。
炎症反应
脑缺血再灌注后,炎症细胞浸润和 炎症因子释放,加重脑组织损伤。
钙离子内流
脑缺血再灌注后,细胞内钙离子浓 度升高,引发细胞凋亡和坏死。
溶栓药物
总结词
溶栓药物是用于治疗急性脑缺血再灌注损伤的重要药物之一,通过溶解血栓,恢复脑组织的血流灌注 ,从织型纤溶酶原激活物等,这些药物通过激活纤溶酶原,使其转化为纤 溶酶,从而溶解血栓。在脑缺血再灌注损伤的药物治疗中,溶栓药物可以有效地减轻脑缺血的症状和 损伤,但需要在发病后早期使用,并严格掌握适应症和禁忌症。
康复训练
在脑缺血恢复期,应根据患者的具体情况制定康复训练计划,包 括肢体功能训练、语言康复、认知训练等。
心理护理
脑缺血患者往往存在焦虑、抑郁等心理问题,应及时进行心理疏导 和干预,帮助患者树立信心,积极配合康复治疗。
定期随访
在康复过程中,应定期对患者进行随访,评估康复效果,及时调整 康复计划,促进患者全面康复。

2020年执业药师继续教育脑缺血损伤及药物的干预作用答案

2020年执业药师继续教育脑缺血损伤及药物的干预作用答案

脑缺血损伤及药物的干预作用单选题:每道题只有一个答案。

1.脑缺血病理损伤的病理机制是eA.离子平衡紊乱B.细胞内钙超载C.脑组织炎性损伤D.脑组织能量代谢障碍E.以上均是2.细胞凋亡相关的信号途径,如一些细胞因子、生长因子、肿瘤坏死因子(Bcl-x),将存活或凋亡信号从胞外传递到胞内,再通过特定的信号途径,调控细胞凋亡进程。

(a )A.正确B.错误3.脑缺血急性期,通过诱发和促进炎症、细胞毒性反应及多种凋亡途径加剧损伤;后期则发挥保护性作用。

( a)A.正确B.错误4.S100B蛋白:高浓度特异地存在于中枢神经系统的多种细胞中。

急性缺血性脑血管病神经细胞出现水肿、变性和坏死,脑脊液和血浆中 S100B蛋白水平显著升高,成为缺血性脑损伤的一个重要标志物。

( a)A.正确B.错误5.血小板激活因子受体抑制剂是aA.银杏苦内酯BB.阿斯匹林C.组织型纤溶酶原激活剂D.水蛭素E.肝素6.白细胞介素IL-3:(d )A.正常时脑内只少量表达IL-1β,缺血后表达明显增加,高浓度的 IL-1β参与了神经元损伤以及白细胞的粘附和浸润B.缺血后脑内IL-6表达明显增加,其作用是诱导缺血区B细胞、 T细胞分化,增强免疫反应,引起缺血性脑损伤C.脑缺血后IL-8表达增加,在中性粒细胞介导的炎性损伤中起枢纽作用。

D.在脑缺血中主要发挥神经保护作用E.能有效地抑制T细胞、B 细胞产生细胞因子,从而抑制免疫应答,发挥神经保护作用7.血管性痴呆药物有效性的评价指标是dA.脑梗塞范围减少B.肌张力增强C.脑水肿减轻D.记忆能力增强E.平衡能力增强8.血管性痴呆在欧洲和美国等国家是仅次于AD的第二位最常见的痴呆原因,患病率在0.9%和3.0%之间,约占痴呆的10%-50%。

我国血管性痴呆的患病率约为 1.1%-3.0%。

( a)A.正确B.错误多选题:每道题有两个或两个以上的答案,多选漏选均不得分。

1.补阳还五汤包含有( abcd)A.黄芪B.当归尾C.川芎D.红花E.杏仁2.下列属于急性期评价指标的是( sbcde)A.脑血流量(CBF)或区域性脑血流量(ICBF)B.脑组织含水量C.脑内神经递质D.脑电图(EEG):用于全脑缺血时,确定脑缺血的形成及再灌脑血流恢复正常的时间E.神经细胞病变程度:应进行定性、定量组织学观测如有侵权请联系告知删除,感谢你们的配合!。

脑缺血损伤的研究进展

脑缺血损伤的研究进展

脑缺血损伤的研究进展
周鸿雁;毛海峰;王一蓉;刘仁义
【期刊名称】《湖南文理学院学报(自然科学版)》
【年(卷),期】2005(017)002
【摘要】缺血性脑血管疾病是一种致死致残的常见病、多发病. 近年来,对脑缺血再灌注损伤的研究越来越深入. 大量的实验研究表明,脑缺血再灌注损伤对脑损害的机制是非常复杂的,在缺血性损伤过程中除缺氧和能量代谢衰竭外,由缺血诱导的一系列瀑布样效应是导致缺血性神经元死亡的重要机制. 同时脑缺血损伤的研究受到很多因素的影响,诸如血糖浓度、脑温、脑血流量、血压、鼠种以及大鼠的性别等. 本文就脑缺血损伤的相关病理生理机制、影响因素及治疗等方面的进展进行综述,以期对缺血后神经元的死亡机制作进一步的探索.
【总页数】4页(P72-75)
【作者】周鸿雁;毛海峰;王一蓉;刘仁义
【作者单位】湖南文理学院体育系,湖南,常德,415000;湖南师范大体育学院,湖南,长沙,418000;湖南师范大体育学院,湖南,长沙,418000;湖南师范大体育学院,湖南,长沙,418000
【正文语种】中文
【中图分类】R331
【相关文献】
1.补阳还五汤促进神经干细胞治疗脑缺血损伤的研究进展 [J], 张紫微;周晓红
2.过氧化物酶体增殖物激活受体在缺血性脑损伤及糖尿病合并脑缺血损伤中的研究进展 [J], 何婧;韩江全;施宁华
3.脑缺血损伤后小脑血流变化及其神经调控的研究进展 [J], 罗路;谢鸿宇;吴毅
4.白三烯B4/白三烯B4受体通路在脑缺血损伤发生机制中的研究进展 [J], 李慧敏;向净匀;吴杰;王琰;周爽;史永恒;王川;王斌
5.黄芪甲苷促内、外源性神经干细胞治疗脑缺血损伤的研究进展 [J], 赵小月;孙贺辰;周晓红
因版权原因,仅展示原文概要,查看原文内容请购买。

病理生理学ppt课件-第七章--缺血-再灌注损伤

病理生理学ppt课件-第七章--缺血-再灌注损伤
➢ 有人发现,梗死24小时后心肌内白细胞浸润可增加17倍 ➢ 一般认为,XO系统引起自由基生成增加是原发性的,而中性粒细
胞所致者为继发
第二节 缺血-再灌注损伤的发生机制
3.线粒体受损
➢ 缺血和再灌注使ATP含量减少,Ca2+经钙泵摄入肌浆 网减少,进入线粒体增多,使线粒体细胞色素氧化酶 系统功能失调,以致进入细胞内的氧,经4价还原生成 的水减少,经单电子还原而形成的活性氧基增多
一、自由基生增多 二、钙超载在缺血-再灌注中的作用 三、白细胞的作用
第二节 缺血-再灌注损伤的发生机制
一、自由基生增多
(一)自由基的概念、特性、类型 ➢ 自由基(free radical)系指外层电子轨道上有单个不配 对电子的原子、原子团和分子的总称,又称游离基 ➢ 其中由氧诱发产生的自由基称为氧自由基 ➢ 活性氧(ROS)和活性氮(RNS)则是指由氧(氮)形成、 并在分子组成上含有氧(氮)的一类化学性质非常活 泼的物质总称
2.其他 氧自由基与多聚不饱和脂肪酸作用后生成的中间代谢
产物,如烷自由基(L∙)、烷氧基( LO ∙、烷过氧基(LOO ∙)等,属于 脂性自由基。
第二节 缺血-再灌注损伤的发生机制
(二)代谢和生物学意义
➢ 当氧在体内获得1个电子时还原生成O2-.,获得2个电子 时生成H2O2,获得3个电子时生成OH·
第二节 缺血-再灌注损伤的发生机制
2.中性粒细胞聚集及激活
➢ 中性粒细胞在吞噬过程中,其摄取氧的绝大部分(70%-90%)在 NADPH氧化酶和NADH氧化酶的催化下接受电子生成氧自由基, 用以杀灭病原微生物及异物
➢ 白细胞吞噬时伴耗氧量显著增加的现象,称为呼吸暴发 (respiratory burst) 或氧暴发

缺血再灌注损伤病理生理机制

缺血再灌注损伤病理生理机制

缺血再灌注损伤病理生理机制缺血再灌注损伤(ischemia-reperfusion injury)是指缺血时组织细胞的损伤和再灌注后的损伤。

缺血会导致组织细胞缺氧、酸中毒、代谢产物累积等改变,再灌注时由于氧和养分进一步刺激了细胞的代谢,加剧了细胞膜的氧化、钙离子内流等严重的细胞损害。

缺血再灌注损伤会发生在很多疾病中,例如心肌梗死、脑卒中和肝脏再植等。

本文将从分子生物学、细胞生物学和组织学等方面介绍缺血再灌注损伤的病理生理机制。

分子生物学机制1. 自由基损伤缺血再灌注时,氧气和营养物质再次进入组织细胞,但同时会大量产生活性氧自由基(ROS)和一系列反应物(例如氢氧离子、一氧化氮等)。

ROS不仅可直接破坏细胞膜,还与膜中的脂质过氧化物反应,导致细胞膜的电荷破坏和膜通透性升高。

ROS还会与细胞内的DNA结合,导致DNA断裂和损伤,加剧细胞凋亡和坏死。

2. 炎症反应缺血再灌注后,细胞膜的扩散通透性升高,导致一系列炎症因子(例如炎性介质和趋化因子)进入组织间隙。

这些因子会刺激巨噬细胞、T细胞和其他炎症细胞的向炎性方向进一步分化和聚集,形成炎症反应。

此过程可导致组织水肿、发热、白细胞浸润和分泌的炎性细胞因子的自我放大。

1. 细胞死亡在缺血再灌注过程中,细胞死亡是其主要病理生理机制之一。

细胞死亡可分为凋亡、坏死和坏变。

其中凋亡是指受到压力或刺激后细胞主动性地调节产生一系列变化,最终导致细胞死亡。

坏死是指细胞尚未形成凋亡的信号,受到某种压力或毒性因素的侵害而迅速死亡。

坏变是指细胞内某些成分变性,导致细胞内物质的泄漏和释放,从而引发炎症反应。

2. 膜损伤细胞膜在缺血再灌注过程中遭受到严重的损伤,由于细胞膜的损伤,细胞内外离子的平衡失衡。

细胞外的高钠离子浓度和低钾离子浓度迅速升高,同时细胞内的高钾离子浓度和低钠离子浓度迅速降低,导致细胞的疲软、肿胀和金属离子交换的紊乱。

组织学机制1. 缺血缺血是指缺乏有效的血液灌注。

缺血性脑卒中的病理机制研究进展及中医药防治

缺血性脑卒中的病理机制研究进展及中医药防治

缺血性脑卒中的病理机制研究进展及中医药防治一、本文概述缺血性脑卒中,也称为脑梗塞或脑血栓形成,是由于脑部血管阻塞导致血液供应不足,使大脑组织缺氧、缺糖而发生的坏死。

这是一种高发病率、高死亡率、高致残率的神经系统疾病,对全球公共卫生构成严重威胁。

近年来,随着人口老龄化和生活方式的变化,缺血性脑卒中的发病率逐年上升,因此对其病理机制的研究及防治策略的探索显得尤为重要。

本文首先概述了缺血性脑卒中的病理机制研究进展,包括血管损伤、炎症反应、氧化应激、细胞凋亡等多个方面的深入研究,揭示了缺血性脑卒中的复杂性和多样性。

本文也重点介绍了中医药在缺血性脑卒中防治中的应用及研究进展,包括中药复方、单味中药、中药有效成分等多个方面的探讨,为中医药在缺血性脑卒中的临床应用提供了理论依据。

通过本文的阐述,我们期望能够为读者提供一个全面、深入的缺血性脑卒中病理机制及中医药防治的研究进展概览,以期推动缺血性脑卒中的防治研究取得更大的突破,为患者带来更好的治疗效果和生活质量。

二、缺血性脑卒中的病理机制缺血性脑卒中,也称为脑梗死,是由于脑部血管阻塞导致脑部血液供应不足,使得局部脑组织缺氧、坏死,最终引发神经功能障碍的一种常见脑血管疾病。

其病理机制复杂且多样化,涉及多个生物学过程和分子机制。

缺血性脑卒中的核心病理过程是脑缺血后引发的能量代谢障碍和兴奋性氨基酸毒性。

当脑部血管受阻,脑部组织无法获得足够的氧气和葡萄糖,导致能量代谢障碍,神经元无法维持正常功能。

同时,谷氨酸等兴奋性氨基酸在缺血条件下大量释放,过度刺激神经元,引发细胞毒性,导致神经元死亡。

缺血性脑卒中还涉及炎症反应和氧化应激过程。

脑缺血后,脑部组织发生炎症反应,大量炎症细胞浸润,释放炎症因子,加重脑组织损伤。

同时,氧化应激反应也是缺血性脑卒中的重要病理机制之一。

在缺血条件下,脑部组织产生大量活性氧自由基,引发氧化应激反应,导致细胞膜、蛋白质和DNA等生物大分子损伤。

缺血性脑卒中还与细胞凋亡、自噬等生物学过程密切相关。

病理生理学缺血再灌注损伤(完整)

病理生理学缺血再灌注损伤(完整)
(ischemia-reperfusion injury, IRI)。
历 史
认识就从这简单的现象开始
• 1955年,Sewell结扎狗冠状动脉后,如 突然解除结扎,恢复血流,动物室颤而 死亡。
• 1966 年, Jennings 第一次提出心肌再灌注
损伤的概念,证实再灌注会引起心肌超微 结构不可逆坏死,包括爆发性水肿、组织 在心肌缺血恢复血流后,缺
3. 其他(others) Cl. , CH3. , NO等
1. 氧自由基
O2
以氧为中心的自由基称为氧自由基, 如超氧阴离子(
98%
_ • O O2 1%-2% 2 _ • O2
)、羟自由基(OH• )。
细胞色素氧化酶系统
4e-+4H+
e-
e-+H+ e-+2H+ e-+H+ OH• H2O H O 2 2 SOD H2O
Haber-Weiss反应
(without Fe3+)
_ O•2
+ H2O2
O2 + OH- + OH•
SLOW
Hale Waihona Puke Fenton型 Haber-Weiss反应
Fe3+ _ O•2 + H2O2
O2 + OH- + OH•
FAST
2. 脂性自由基(lipid free radical) 氧自由基 + 多价不饱和脂肪酸 L. (烷自由基) LO. (烷氧自由基) LOO. (烷过氧自由基)
谢障碍的现象称为钙超载(calcium overload)。
钙反常(calcium paradox): 1966年

缺血性脑损害的病理机制

缺血性脑损害的病理机制

血栓形成的发病机制l急性脑缺血通常起因子脑血管被血栓形成或栓塞所闭塞。

近代血栓形成的发病机制最早由Rudolph virchow(1845)提出,就是著名的血栓形成三大因紊:血管壁、血流及血液构成的改变。

事实上,这一概念在上一世纪已经被JohnHunter暗示过。

l(一)血管内皮损伤目前已公认血管内皮损伤(如由动脉粥祥硬化斑块溃疡、破裂或出血引起的)是诱发血栓形成主要导因。

二、脑血流障碍与脑梗塞灶形成的病理机制一)缺血时间窗无论由血栓或栓塞引起的脑血管闭塞,结果都是引起局部脑血流障碍,使脑缺血、缺氧。

脑细胞是人体最娇贵的细胞,血流一旦完全阻断,6秒钟内神经元代谢即受影响;2分钟脑电活动停止;5分钟起能量代谢和离子平衡被破坏,ATP耗尽,膜离子泵功能障碍:K+流出,Na+Ca2+和水大量进入细胞内;持续5—10分钟神经元就发生不可逆损害。

可见,要挽救脑组织就必须在不可逆损害发生前的短短时间内恢复血流供应。

近来的研究认为功能和代谢紊乱有更复杂的血流阈值模式:随着血流下降,蛋白合成首先受抑制(大约血流阈值为45ml(100g·min)),刺激无氧代谢(约35ml(100g/min),神经介质释放、能量代谢紊乱[约20ml(100g/min)],最后缺氧性去极化[<15ml(100g·min)。

除缺血程度外,缺血时间也起决定作用(缺血阈值与其交叉)。

当脑血流长期减至10ml/100g/min,细胞传导机制和神经介质系统衰竭,神经毒性介质释放(如L-谷氨酸),氧自由基和过氧脂质形成,神经元释放有神经毒性的血小板活化因子,这些均可损害细胞功能。

三、缺血半影带概念电机能衰竭与膜机能衰竭两个阈值的发现,导致半暗带概念的产生,即在严重缺血脑组织中心周围还存在无电兴奋性但仍存活的脑细胞。

在这区域脑灌流处于“临界”水平,神经元功能由于组织代谢需要不能满足而降低,但细胞仍能维持离子平衡而存活。

由于局部灌流储备利用达到最大程度,灌流压任何进一步下降,都可使仍存活的缺血半暗带神经元死亡.但也可因再灌流或放保护治疗而免于死亡。

脑缺血缺氧 脑水肿 病理生理机制

脑缺血缺氧 脑水肿 病理生理机制

脑缺血缺氧脑水肿病理生理机制
脑水肿是一种非特异性的脑病理性肿胀,可在任何类型的神经损伤后发展成局灶性或弥漫性模式。

这种脑肿胀的潜在原因是高度可变的,与多种生理细胞变化有关。

脑水肿最简单的描述是脑细胞内或细胞外过量液体的积累,脑水肿可继发于血脑屏障破坏、局部炎症、血管改变或细胞代谢改变。

脑水肿是继发性过程,可继发于全身系统疾病:如严重心、肺、肾疾病,中毒,休克,严重贫血等等,多引起全脑水肿;还可继发于脑部疾病:如外伤、肿瘤、脑血管病、炎症、寄生虫等等,多引起局部脑水肿;脑水肿是神经外科最常见的临床问题,也是引起颅内高压最常见的原因。

脑缺血再灌注损伤机制研究进展

脑缺血再灌注损伤机制研究进展

脑缺血再灌注损伤机制研究进展脑缺血再灌注损伤是一种复杂的病理生理过程,其机制涉及多个因素。

近年来,随着对脑缺血再灌注损伤机制的深入研究发现了一些新的分子靶点和治疗方法,为临床防治提供了新的思路。

本文将对脑缺血再灌注损伤机制的研究进展进行综述。

脑缺血再灌注损伤是指脑组织在缺血缺氧后恢复血液供应过程中出现的加重损伤甚至坏死的现象。

其主要机制包括氧化应激、炎症反应、细胞凋亡和自噬等。

当脑组织缺血时,能量代谢障碍导致细胞内钙离子堆积,引发氧化应激反应,产生大量自由基和细胞因子,进而引发炎症反应。

这些炎症因子会破坏细胞膜和线粒体,导致细胞死亡。

脑缺血再灌注过程中还会出现神经细胞凋亡和自噬等现象,这些现象在一定程度上也参与了脑缺血再灌注损伤的发生和发展。

目前,对于脑缺血再灌注损伤机制的研究已经涉及到许多方面。

一些研究发现,某些药物如依达拉奉、胞磷胆碱等可以减轻脑缺血再灌注损伤的程度,这些药物主要通过抗氧化、抗炎、抗凋亡等作用发挥保护作用。

细胞治疗也成为研究热点,一些干细胞如间充质干细胞、神经干细胞等在体内外实验中表现出对脑缺血再灌注损伤的保护作用,其机制主要包括减轻炎症反应、促进血管再生、减少细胞死亡等。

针对脑缺血再灌注损伤机制中的特定靶点如PI3K/Akt/mTOR通路、JAK/STAT通路等的研究也取得了很大进展,为开发新的治疗方法提供了理论依据。

展望未来,脑缺血再灌注损伤机制的研究将更加深入和广泛。

需要进一步探究脑缺血再灌注损伤的详细机制,发现更多参与损伤过程的分子靶点。

针对这些靶点进行药物设计和发现将会是研究的重点,目前许多药物已经进入临床试验阶段,预计在未来会有更多的治疗性药物问世。

随着细胞治疗技术的不断发展,干细胞治疗也将会在脑缺血再灌注损伤治疗中发挥更大的作用。

需要加强多学科之间的合作,包括神经科学、生物学、药理学、医学等,以促进研究成果的快速转化和应用。

脑缺血再灌注损伤机制研究进展迅速,研究发现了一些新的分子靶点和治疗方法,为临床防治提供了新的思路。

脑缺血后N-乙基马来酰亚胺敏感因子ATP酶失活致神经元自噬流障碍的病理机制

脑缺血后N-乙基马来酰亚胺敏感因子ATP酶失活致神经元自噬流障碍的病理机制

脑缺血后N-乙基马来酰亚胺敏感因子ATP酶失活致神经元自噬流障碍的病理机制雷倩;邓仪昊;何红云【期刊名称】《生物化学与生物物理进展》【年(卷),期】2024(51)5【摘要】缺血性脑卒中是由脑血管梗塞引起的急性脑血管病,具有较高的发病率、致残率和致死率。

研究发现,过度自噬或自噬不足均可导致细胞损伤。

自噬包括自噬体的形成和成熟、自噬体与溶酶体融合、自噬底物在自噬溶酶体内的降解和清除,这些过程呈连续状态则称为自噬流。

研究发现,脑缺血可导致自噬体与溶酶体间发生融合障碍,从而引发自噬流损伤。

细胞内膜融合由3种核心组分介导,即N-乙基马来酰亚胺敏感因子(N-ethylmaleimide sensitive factor,NSF)ATP酶、可溶性NSF黏附蛋白(soluble NSF attachment protein,SNAP)及可溶性NSF黏附蛋白受体(soluble NSF attachment protein receptors,SNAREs)。

当SNAREs介导自噬体与溶酶体融合后以非活性的复合体形式存留于自噬溶酶体膜,须被NSF再激活为单体后方可发挥新一轮的膜融合介导作用,而NSF是唯一可再激活SNAREs的ATP酶。

新近研究表明,脑缺血可显著抑制NSF ATP酶活性,导致其对SNAREs再激活减少,这可能是自噬体与溶酶体间发生融合障碍并导致神经元自噬流损伤的病理机制。

本文就NSF ATP酶失活导致SNAREs互作失调、自噬体与溶酶体融合障碍,以及蛋白水解酶向溶酶体的转运不足引发神经元自噬流障碍的病理机制进行阐述,并针对NSF ATP酶失活改善神经元自噬流的方法进行探讨,为提高脑卒中治疗提供参考并指明深入研究方向。

【总页数】9页(P1034-1042)【作者】雷倩;邓仪昊;何红云【作者单位】昆明理工大学医学院人体解剖学教研室;昆明理工大学附属安宁市第一人民医院【正文语种】中文【中图分类】R743.31;R364.1【相关文献】1.可溶性N-乙基马来酰亚胺敏感因子结合蛋白受体与巨噬细胞的免疫学功能2.植物可溶性N-乙基马来酰亚胺敏感因子连接物复合体(SNAREs)及其生物学功能研究进展3.可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体蛋白在肿瘤发生和发展中的作用机制研究进展4.N-乙基马来酰亚胺敏感因子NSF与食管鳞癌细胞分化有关5.海马N-乙基马来酰亚胺敏感因子在肠易激综合征大鼠中的作用因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脑缺血损伤的病理生理机制柳挺,尹金鹏(南阳医学高等专科学校基础医学部)【摘要】缺血性脑血管病是临床常见病、多发病,50以上的存活者遗留瘫痪、失语等严重残疾,给社会和家庭带来沉重负担。

本文从缺血后脑内免疫反应、基因表达、血管活性因子等方面综述了缺血性脑血管病发生发展的病理生理机制,为临床防治缺血性脑血管病提供一定的理论依据。

【关键词】脑缺血;病理生理高血压引起的脑小动脉硬化,高血脂引起的颈动脉和脑内动脉粥样硬化,高血糖引起的脑的微循环障碍,都可造成脑供血不足,导致脑缺血的发生与发展,使脑产生不同程度的病理损伤,使认知功能下降,痴呆产生。

缺血性脑血管病一直是临床和基础研究的重要课题,多年来人们对脑缺血的病理生理进行了深入研究,并提出了多种学说为解释脑缺血机制奠定了基础。

1.脑组织病理学改变脑缺血组织病理学的改变包括皮质萎缩、皮质和海马神经元变性、白质疏松、胶质细胞增生和毛细血管床的改变等。

NiJW等[1]报道,双侧颈总动脉永久性结扎(2-vessel occlusion,2VO)后1个月,除部分大鼠皮质和纹状体有一些小梗死灶外,皮质和海马并无大体结构和光镜下神经元脱失改变;4个月时,可见海马CAI区神经元变性,伴胶质细胞活化;7个月后,可观察到明显的神经元脱失和广泛的变性和皮质萎缩。

有报道认为[2],神经元的脱失与细胞凋亡有关,白质的变化包括小胶质细胞和星形细胞增生活化,少突胶质细胞减少和白质疏松等。

Bennett SA 等[3]用 Western印迹法观察到,永久性结扎大鼠双侧颈总动脉,术后25周,皮质和海马AB物质沉积增加,且与淀粉样前体蛋白(APP)由神经元向胞外转移有关,说明在无其他致病因子存在时,慢性脑缺血本身即可引发APP 裂解成AB片段,导致细胞外淀粉样蛋白沉积,从而产生一些类似老年性痴呆(Alzheimer disease,AD)的病理改变。

2. 与脑内免疫反应的关系刘之荣等[4]研究了2VO模型对脑内免疫细胞活动的影响,结果表明,2个月缺血区内,小胶质细胞被广泛活化,形态多异,白细胞和T细胞大量入侵缺血区脑实质。

这些细胞的活动以皮层明显;海马和白质次之;在血管周围和梗死区显著;在缺血区半暗带,这些细胞高度集聚,说明这些细胞的活动与慢性脑灌注不足致脑损害高度相关。

李露斯等 [5]观察,2VO术后1个月,皮层、海马和白质有白细胞和T细胞的浸润;2~4月,浸润的白细胞和T细胞减少,认为慢性脑灌注不足,引起免疫细胞的活动,从而促进认知功能障碍的发生发展。

3. 脑缺血后基因表达[6]灌注梯度不仅决定半暗带,还决定脑缺血后基因表达的方式,即灌注水平不同。

基因表达的方式也不一样。

分析原位杂交放射自显影法检测到的基因表达、放射自显影法LCBF及组织梗死三者之间的关系显示,缺血的程度决定基因表达的时间、空间分布运用DNA微对列技术,筛查了缺血后数千基因的表达方式。

MCAO 2h,再灌注3h后,有两大类基因表达:已知受缺血缺氧调节的基因和最近认为可能与缺血缺氧有关的基因缺血缺氧反应性基因中,有28种表达上调,6种下调,包括有即早期基因、热体克蛋白(heat shock proteins.HSP)、抗氧化酶、营养因子及介导RNA代谢、炎症、细胞信号的基因。

新的缺氧缺血相关基因中,有35种表达上调,41种下调。

这些研究结果提示缺血的生物学的复杂性,并为今后摸索新的缺血机制提供依据。

4.能量耗竭、酸中毒脑缺血后,最先发生的改变就是脑血流减少和能量衰竭。

在缺血、缺氧状态下,线粒体的能量代谢转为无氧代谢,所需能量几乎全靠葡萄糖的无氧酵解来生成,其最终产物是乳酸。

无氧酵解产生的能量远低于有氧氧化,其生成ATP的效率仅为正常的 1/18[7]。

5.兴奋性氨基酸毒性作用脑缺血引起中枢神经系统兴奋性氨基酸(EAA),特别是谷氨酸(Glu)大量释放、重摄取受阻,以至于突触后膜 EAA受体的过度激活,构成神经元损伤的重要原因,被称为“兴奋毒性”学说。

Osuga等[8]实验证实:脑缺血时,GLU释放浓度与缺血时问呈正相关;即缺血时间愈长,其GLU释放浓度愈增加。

6. 细胞内钙离子超载脑缺血性损伤与 Ca2+信号转导异常导致胞浆Ca2+浓度升高有密切关系。

近年来的脑缺血损害的病理生理研究发现,神经细胞的胞外 Ca2+内流增加可引发细胞变性,最后导致死亡;兴奋性氨基酸及多种神经毒索引起神经细胞变性死亡,总是伴随胞浆Ca2+超负荷现象,故认为细胞 Ca2+信号转导异常是神经元变性的“最后共同通道”[9]。

7.氧自由基损伤正常情况下体内产生少量自由基属生理范围,体内同时存在着超氧化物歧化酶、过氧化氢酶和过氧化物酶等,可清除这些对细胞有毒性作用的自由基。

体内自由基的产生和消除处于动态平衡状态,当急性脑梗死时,由于缺血造成氧供应下降和ATP减少,使脑细胞正常代谢途径受到破坏,上述动态平衡状态遭到破坏,使得氧自由基积聚蓄积而造成脑损伤。

自由基诱导的损害可概括为作用于多不饱和脂肪酸(Po ly masatusated fatly acid。

PUFA),发生过氧化反应,促使多糖分子聚合和解聚,诱导DNA、RNA蛋白质的交联和氧化反应,故脑缺血损伤是以选择性减少为特征,以生物膜脂质过氧化为标志[10]。

8. 炎症细胞因子损害脑缺血后,受损的脑细胞产生大量血小板激活因子、肿瘤坏死因子α、白介素1等炎性介质,诱导内皮细胞表面粘附分子表达、粘附分子和中性粒细胞表面的补体受体反应,中性粒细胞与内皮细胞粘附,穿过血管壁进入脑实质,5-7天后巨噬细胞和单核细胞也到达缺血的脑组织[11]。

越来越多的证据表明,缺血后的炎症导致缺血性脑损伤。

采用如下4种措施能减少缺血性脑损伤:1)诱导系统中性白细胞减少;2)用抗体封闭粘附分子或其受体; 3)封闭关键性炎症因子如IL-1;4)编码干扰素调节因子1的基因缺失。

9.一氧化氮(NO)的作用NO在脑缺血损害中所起的作用,一直是研究的重点。

近来研究结果发现,NO具有神经保护和神经毒素双重作用。

NO是以精氨酸为底物,在NOS催化下产生的。

NOS同功酶有3种亚型,即nNOS、eNOS和iNOS。

一般源于iNOS和raNOS 过度表达所形成的NO有神经毒性,而源于eN0s所产生的NO却有神经保护作用。

Hara等研究表明,缺血与NMDA导致nN0S过度表达的nNOS在缺血和兴奋性神经毒性损伤早期起关键作用[12]。

而在脑缺血后12h,则可检测到iNOS蛋白和催化活性,48h达高峰,7天左右恢复至基础水平。

局灶性脑梗死模型中,缺血后24h 应用iNOS抑制剂能显著缩小梗死面积[8]。

Kinouchi等的研究,明确血管源性N0是通过舒张脑血管,增加缺血部位的血流来减轻缺血性脑损伤[13]。

10.细胞凋亡在缺血中心周围半暗区的血流供应由于侧枝血管而未完全中断,处于一种电生理静止而能量尚未耗竭的状态,神经元在这种中度缺血状态并不立即死亡,可存活数小时,这期间如果及时再灌或使用Glu受体拮抗剂将逆转神经元的死亡。

若脑缺血严重且持续时间长,则神经元表现为急性坏死,若缺血后很快恢复血供,则神经元的形态、功能虽无改变,但在某些易损区如海马,几天后将发生迟发性神经元死亡,这种死亡与半暗区神经元的死亡可能具有相同的机制。

缺血脑损伤是缺血后坏死和延迟性细胞死亡的联合效应,可以想象,与缺血后急性坏死狭窄的时间窗相比,通过干预缺血几天后的延迟性细胞死亡对治疗缺血脑损伤明显有利。

11.级联反应发生[14]卒中时脑细胞为什么死亡?什么时间死亡?过去的经典认识是血供中止=无底物=无能量=细胞死亡,现在的认识是损伤级联反应(cascade of damage)。

至少涉及 4个不同的机制:兴奋性毒性、梗死周围去极化、炎症和程序性细胞死亡(Programmed cell death PCD)。

它们都由缺血引发一发生在4个不同时间点,但有重叠并互相联系。

由于缺乏能量,谷氨酸从胞内释出,细胞外谷氨酸浓度很快增加。

突触后的谷氨酸过度激活受体,钙离子内流或从胞内的钙库释放,激活大量的酶引发信号级联反应。

某些酶导致氧自由基产生,它本身也作为第二信使,损害细胞蛋白质、糖、脂肪酸等。

细胞进一步去极化释放钾,细胞外钾引起去极化扩散即梗死周围去极化。

氧自由基和其他信使激活炎性细胞因子和酶,导致小胶质细胞披激活产生炎症反应。

炎症本身产生自由基,导致恶性循环。

氧自由基损伤DNA,进而和其他机制最终导致细胞凋亡。

级联反应发生在缺血后的数秒至数周。

参考文献[1]Ni Jw,Matsumoto K,Li HB.et a1.Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat[J].Brain Res.1995,673:290-296.[2]Bennett SA,Tenniswood M,Chen JH,et a1.Chronic cerebral hypoper- fusion elicits neuronal apoptosis and behavioral impairment.Neuro-report.1998,9:161-166.[3]Bennett SA,Pappas BA,Stevens WD,et a1.Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion.Neurobiol Aging.2000,21:207-214.[4]刘之荣,卞晓红,李露斯等.环孢霉素A防治慢件啮灌注不足致脑损害的机制研究-可能为临床治疗老年痴呆、慢性脑缺血提供条新途径.现代康复.2001,5:49-48.[5]李露斯,刘之荣.慢性脑血流灌注不足认知功能障碍与环胞素A治疗作用的实验研究.第三军医大学学报.2000,22:1042-1045.[6] 杨渊,张苏明.脑缺血的病理生理研究进展:半暗带、基因表达与神经元保护.国外医学物理医学与康复学分册.2003,23(l):1[7] Villinger A,Dirnagl U.Pathophysiology of cerebral ischemia.Arztl Fortbild Qualitatssich.1999,93:164-168.[8]Osuga H,Hakin AM.Relevance of interstital Glutamate to selectice vulnerability in focal Cerebral ischemia.J Cereb Blood Flow Metab.1994,14(2):343[9]杨惠玲主编.高级病理生理学.北京:科学出版社.1998,24-38.[10] Lewen A,Mqtz P,Chan PH.Free radial Pathways in CNS injury.J neurotrauma.2000,17(10):871-890.[11] IADECOLA C.Bright and dark sides of nitric oxide in ischemic brain injury.Trends Neurosci.1997,20:132-139.[12]Hara H,Ayata C.[3H]一L—NG—nitroarginine binding after transient focal ischemia and NMDA—induced excitotoxicity in tger and typer Ⅲ metric oxide synthase null mice.J Cereb Blood Flow Metab.1997,17(5):515—526.[13]Nageyama M,Zhany F,Zodecola C.Delayed treatment with aminoguanidine decreases focal cerebral ischemia damage and enhances neurologic recovery in rats.J Cereb Blood Flow Metab.1998,18(10):1107-1113.[14] 廖维靖.脑缺血损伤的病理生理机制-损伤级联反应.国外医学脑血管疾病分册1998,6(4):197。

相关文档
最新文档