上海高考数学函数经典压轴题解析详解
上海高考数学函数压轴题解析详解
,
化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得
,
即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .
.
∴ ,(5分)
.
而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .
∴
,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,
.
∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).
历届高考数学压轴题汇总及答案(上海卷2019-2020)
历届高考数学压轴题汇总及答案(上海卷2019-2020)一.填空题1.(上海2019.12题) 已知集合[,1]U[4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .2.(上海2020.12题) 已知1a ,2a ,1b ,2b ,……,()*k b k N ∈是平面内两两互不相等的向量,满足121a a -=,且{1,2}j i a b -∈(其中1,2i =,1,2,...j =,k ),则K 的最大值为______. 二.选择题3.(上海2019.16题) 以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y ,且满足12ln ln 0y y +=,则点1211,a a ⎛⎫⎪⎝⎭的轨迹是 ( )A .直线B .圆C .椭圆D .双曲线4.(上海2020.16题) 若存在a R ∈且a 0≠,对任意的x R ∈,均有()()()f x a f x f a ++<恒成立,则称函数()f x 具有性质P ,已知:1q :()f x 单调递减,且()0f x >恒成立;2q :()f x 单调递增,存在00x <使得()00f x =,则是()f x 具有性质P 的充分条件是( ) A .只有1q B .只有2q C .1q 和2qD .1q 和2q 都不是三.解答题5.(上海2019.20题) 已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =. (1)当81,3P ⎛⎫-- ⎪⎝⎭时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断()()13d P d P +与()22d P 的关系.6.(上海2020.20题) 双曲线1C :22214x y b-=,圆2C :()22240x y b b +=+>在第一象限交点为A ,(),A A A x y ,曲线22222241,44,A x y x x b x y b x x⎧-=⎪Γ⎨⎪+=+⎩>>。
2019上海高考压轴卷数学附答案解析
2019上海高考压轴卷数学一、选择题(本大题共4小题,共20.0分)1.已知A,B是椭圆E:的左、右顶点,M是E上不同于A,B的任意一点,若直线AM,BM的斜率之积为,则E的离心率为A. B. C. D.2.已知a∈R,则“a>1”是“<1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件3.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A. B. C. D.4.定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:①函数的定义域为,值域为;②函数是周期函数,最小正周期为;③函数在上是增函数;④函数的图象关于直线∈对称.其中所有的正确命题的序号为()A. B. C. D.二、填空题(本大题共12小题,共60.0分)5.若=0,则x=______.6.已知双曲线=1的离心率为,则m=______.7.(-)6的展开式中常数项为______ .8.函数f(x)=4x-2x+2(-1≤x≤2)的最小值为______ .9.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是______.10.若数列{a n}满足a11=,-=5(n∈N*),则a1= ______ .11.已知,<,是R上的增函数,则a的取值范围是______ .12.已知圆的方程为(x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是______ .13.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为______.14.已知各项为正的等比数列{a n}中,a2a3=16,则数列{log2a n}的前四项和等于______.15.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是16.函数f(x)=lg(x≠0,x∈R),有下列命题:①f(x)的图象关于y轴对称;②f(x)的最小值是2;③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号)三、解答题(本大题共5小题,共60.0分)17.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=k(x+1)与C相切于点A,|AF|=2.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l交C于M,N两点,T是MN的中点,若|MN|=8,求点T到y轴距离的最小值及此时直线l的方程.18.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的一个零点为,其图象距离该零点最近的一条对称轴为x=.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若关于x的方程f(x)+log2k=0在x∈[,]上恒有实数解,求实数k的取值范围.19.某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量件与单价元之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.根据周销售量图写出件与单价元之间的函数关系式;写出利润元与单价元之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.20.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.21.各项均为正数的数列中,前n项和.求数列的通项公式;若恒成立,求k的取值范围;是否存在正整数m,k,使得,,成等比数列?若存在,求出m和k的值,若不存在,请说明理由.答案和解析1.【答案】D【解析】由题意方程可知,A(-a,0),B(a,0),设M(x0,y0),∴,则,整理得:,又,得,即,联立,得,即,解得e=.故选D.2.【答案】A【解析】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.3.【答案】D【解析】如图所示,直角三角形ABC的外接圆的圆心为AB中点D,过D作面ABC的垂线,球心O在该垂线上,过O作球的弦SC的垂线,垂足为E,则E为SC中点,球半径R=OS=∵,SE=3,∴R=5棱锥的外接球的表面积为4πR2=100π,故选:D.4.【答案】B【解析】∵ 中,由题意知,{x}-{x}+,则得到f(x)=x-{x}∈(-],故错误;中,由题意知函数f(x)=x-{x}∈(-]的最小正周期为1,,故正确;中,由于{x}-{x}+则得f(x)=x-{x}为分段函数,且在上是增函数,,故命题正确;中,由题意得,所以函数y=f(x)的图象关于直线x=(k∈Z)不对称,故命题错误;由此可选择,故选B.5.【答案】1【解析】=4x-2×2x=0,设2x=t,t>0,则t2-2t=0,解得:t=2,或t=0(舍去)则2x=t=2,则x=1,故答案为:1.6.【答案】2或-5【解析】双曲线-=1,当焦点在x轴时,a2=m+2,b2=m+1,可得c2=a2+b2=3+2m,∵双曲线-=1的离心率为,∴,即,解得m=2,当焦点在y轴时,a2=-m-1,b2=-m-2,可得c2=a2+b2=-3-2m,∵双曲线-=1的离心率为,∴,可得,即12+8m=7m+7,可得m=-5.故答案为2或-5.7.【答案】60【解析】(-)6的展开式中的通项公式:T r+1==(-1)r26-r,令-6=0,解得r=4.∴(-)6的展开式中常数项==60.故答案为60.8.【答案】-4【解析】f(x)=(2x)2-4•2x,令t=2x,∵-1≤x≤2,∴t∈[,4],则y=t2-4t=(t-2)2-4,y在t∈[,2]上递减,在t∈[2,4]上递增,所以当t=2时函数取得最小值-4.故答案为-4.9.【答案】【解析】复数z=(1+i)(1+2i)=1-2+3i=-1+3i,∴|z|==.故答案为:.10.【答案】【解析】-=5,∴{}是以5为公差的等差数列,∴=+5(n-1),∵a11=,∴=+5(11-1)=52,即=2,∴a1=.故答案为.11.【答案】[2,+∞)【解析】首先,y=log a x在区间[1,+∞)上是增函数且函数y=(a+2)x-2a区间(-∞,1)上也是增函数∴a>1 (1)其次在x=1处函数对应的第一个表达式的值要小于或等于第二个表达式的值,即(a+2)-2a≤log a1⇒a≥2 (2)联解(1)、(2)得a≥2.故答案为[2,+∞).12.【答案】6【解析】∵圆的方程为(x-1)2+(y-1)2=9,∴圆心坐标为M(1,1),半径r=3.∵P(2,2)是该圆内一点,∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.∵|PM|==,∴由垂径定理,得|BD|=2.因此,四边形ABCD的面积是S=|AC|•|BD|=×6×2=6.故答案为613.【答案】【解析】口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,从袋中一次随机摸出2个球,基本事件总数n==6,摸出的2个球的编号之和大于4包含的基本事件有:(1,4),(2,3),(2,4),(3,4),共4个,∴摸出的2个球的编号之和大于4的概率为p=.故答案为:.从袋中一次随机摸出2个球,基本事件总数n==6,利用列举法求出摸出的2个球的编号之和大于4包含的基本事件个数,由此能求出摸出的2个球的编号之和大于4的概率.14.【答案】8【解析】各项为正的等比数列{a n}中,a2a3=16,可得a1a4=a2a3=16,即有log2a1+log2a2+log2a3+log2a4=log2(a1a2a3a4)=log2256=8.故答案为:8.15.【答案】(4,8)【解析】当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=-x2,得a=-,设g(x)=-,则g′(x)=-=-,由g′(x)>0得-2<x<-1或-1<x<0,此时递增,由g′(x)<0得x<-2,此时递减,即当x=-2时,g(x)取得极小值为g(-2)=4,当x>0时,由f(x)=ax得-x2+2ax-2a=ax,得x2-ax+2a=0,得a(x-2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为(4,8)16.【答案】①④【解析】f(-x)=lg=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故正确;2,∴f(x)=lg≥lg2,∴f(x)的最小值是lg2,故不正确;函数g(x)=在(-∞,-1),(0,1)上是减函数,在(-1,0),(1,+∞)上是增函数,故函数f(x)=lg在(-∞,-1),(0,1)上是减函数,在(-1,0),(1,+∞)上是增函数,故不正确;由知,f(x)没有最大值,故正确故答案为:.17.【答案】(Ⅰ)设A(x0,y0),直线y=k(x+1)代入y2=2px,可得k2x2+(2k2-2p)x+k2=0,由△=(2k2-2p)2-4k4=0,解得p=2k2,解得x0=1,由|AF|=1+=2,即p=2,可得抛物线方程为y2=4x;(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),联立抛物线方程可得y2-4my-4n=0,△=16m2+16n>0,y1+y2=4m,y1y2=-4n,|AB|=•=8,可得n=-m2,=2m,==2m2+n=+m2=+m2+1-1≥2-1=3,当且仅当=m2+1,即m2=1,即m=±1,T到y轴的距离的最小值为3,此时n=1,直线的方程为x±y-1=0..【解析】(Ⅰ)设A(x0,y0),联立直线方程和抛物线方程,运用判别式为0,结合抛物线的定义,可得抛物线方程;(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),联立抛物线方程,运用韦达定理和弦长公式,结合中点坐标公式和基本不等式可得所求直线方程.本题考查抛物线的方程的求法,注意运用直线和抛物线相切的条件:判别式为0,考查直线和抛物线方程联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.18.【答案】(Ⅰ)由题意,f()=2sin(•ω+φ)=0,即•ω+φ=kπ,∈①,即T=,得ω=2,代入①得φ=,∈,取k=1,得φ=,∴f(x)=2sin(2x);(Ⅱ)∵x∈[,],∴∈[,],,得f(x)∈[-2,1],由f(x)+log2k=0,得log2k=-f(x)∈[-1,2],∴k∈[,4].【解析】本题考查函数与方程的应用,三角函数的最值,周期及解析式的求法,考查转化思想以及计算能力,是中档题.(Ⅰ)由函数的零点列式得到•ω+φ=kπ,,再由已知求得周期,进一步求得ω,则φ可求,函数解析式可求;(Ⅱ)由x的范围求得相位的范围,进一步求出函数值域,再由方程f(x)+log2k=0在x∈[,]上恒有实数解即可求得k的范围.19.【答案】(1)由题设知,当12≤x≤20时,设p=ax+b,则,解得a=-2,b=50.∴p=-2x+50,同理得,当20<x≤28时,p=-x+30,所以;(2)当12≤x≤20时,销售利润,因此当时,;当20<x≤28时,销售利润,∵函数在(20,28]上单调递减,∴y<75,∴该消费品销售价格为时,周利润最大,最大周利润为.【解析】本题考查了函数的表示方法,分段函数,待定系数法和一次函数、二次函数模型.(1)利用函数图象,结合分段函数的概念,运用待定系数法计算得结论;(2)利用二次函数模型,分段求最值得结论.20.【答案】(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2-c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0,y0),则直线PF2的斜率=,则直线l2的斜率k2=-,直线l2的方程y=-(x-1),直线PF1的斜率=,则直线l2的斜率k1=-,直线l1的方程y=-(x+1),联立,解得:,则Q(-x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02-1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F1重合,不满足题意,当m≠1时,=,=,由l1⊥PF1,l2⊥PF2,则=-,=-,直线l1的方程y=-(x+1),①直线l2的方程y=-(x-1),②联立解得:x=-m,则Q(-m,),由Q在椭圆方程,由对称性可得:=±n2,即m2-n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【解析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2-c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02-1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.21.【答案】(1)∵,∴,,两式相减得,,整理得(a n+a n-1)(a n-a n-1-2)=0,∵数列{a n}的各项均为正数,∴a n-a n-1=2,n≥2,∴{a n}是公差为2的等差数列,又得a1=1,∴a n=2n-1;(2)由题意得>,∵,∴=<,∴;(3)∵a n=2n-1.假设存在正整数m,k,使得a m,a m+5,a k成等比数列,即即(2m+9)2=(2m-1)•(2k-1),∵(2m-1)≠0,∴,∵2k-1∈Z,∴2m-1为100的约数,∴当2m-1=1,m=1,k=61,当2m-1=5 , m=3 , k=23,当2m-1=25, m=13, k=25.故存在.【解析】本题考查了等差数列与等比数列的通项公式与求和公式、数列的单调性、“裂项求和”方法、数列递推关系,考查了推理能力与计算能力,属于难题.(1)利用递推关系得(a n+a n-1)(a n-a n-1-2)=0,数列{a n}的各项均为正数,可得a n-a n-1=2,n≥2,利用等差数列的通项公式即可得出;(2)由题意得,利用,“裂项求和”方法即可得出;(3)a n=2n-1.假设存在正整数m,k,使得a m,a m+5,a k成等比数列,即.可得,进而得出.。
完整)上海高中数学三角函数大题压轴题练习
完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。
Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。
解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。
2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。
上海中学2025届高三压轴卷数学试卷含解析
上海中学2025届高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线()220y px p =>经过点(M ,焦点为F ,则直线MF 的斜率为( )A .B .4C .2D .-2.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( ) A .45B .42C .25D .363.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=4.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2CD5.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .256.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .87.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||PM 的最小值为( )A .3B .2(51)-C .45D .48.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .1639.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .182D .10810.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭11.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( ) A .1B .1或12C .32D .32±12.设实数满足条件则的最大值为( ) A .1B .2C .3D .413.抛物线2112y x =的焦点坐标为______. 14.如图,在正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上一点,且12C P PC =.设三棱锥1P D DB -的体积为1V ,正四棱柱1111ABCD A B C D -的体积为V ,则1V V的值为________.15.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线方程为20x y -=,则该双曲线的离心率为_______.16.已知()f x 是定义在R 上的偶函数,其导函数为()f x '.若0x >时,()2f x x '<,则不等式2(2)(1)321f x f x x x -->+-的解集是___________.三、解答题:共70分。
上海浦东新区高考数学高考数学压轴题 多选题分类精编及解析
一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点;∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.3.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.4.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.5.已知函数()() ()52 log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩,则方程12f x ax⎛⎫+-=⎪⎝⎭的实根个数可能为()A.8 B.7 C.6 D.5【答案】ABC【分析】以()1f x=的特殊情形为突破口,解出1x=或3或45或4-,将12xx+-看作整体,利用换元的思想进一步讨论即可.【详解】由基本不等式可得120xx+-≥或124xx+-≤-,作出函数()()()52log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a>时,1224xx+-≤-或1021xx<+-<,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为4;②当2a=时,1224xx+-=-或1021xx<+-<或122xx+-=,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为6;③当12a<<时,12424xx-<+-<-或1021xx<+-<或1122xx<+-<或1223xx<+-<,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为8;④当1a=时,124xx+-=-或1021xx<+-<或121xx+-=或123xx+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.6.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根.A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x e x '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误.【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.7.已知函数1()xx f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.8.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误;对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.10.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.二、导数及其应用多选题11.关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确的是( )A .当1a =时,()f x 在0x =处的切线方程为y x =B .若函数()f x 在()π,π-上恰有一个极值,则0a =C .对任意0a >,()0f x ≥恒成立D .当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项. 【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解,令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解, 则sin xxa e -=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点, ()sin cos xx xg x e -'=,()π,πx ∈-,令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinx g x e-=的图象在()π,π-上恰有一个交点,即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e --'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<, ()h x ∴在,4ππ⎛⎫--⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫⎪⎝⎭上单调递增, 所以极大值为4204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为4204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以42a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当42a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确; 对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD. 【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.12.关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数yf xx 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【分析】对于A ,利用导数研究函数()f x 的极值点即可; 对于B ,利用导数判断函数y f xx 的单调性,再利用零点存在性定理即得结论;对于C ,参变分离得到22ln xk x x <+,构造函数()22ln x g x x x=+,利用导数判断函数()g x 的最小值的情况;对于D ,利用()f x 的单调性,由()()12f x f x =得到1202x x <<<,令()211x t t x =>,由()()12f x f x =得21222ln t x x t t-+=,所以要证124x x +>,即证2224ln 0t t t -->,构造函数即得. 【详解】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=,当()0,2x ∈时,0f x,()f x 单调递减,当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误.B :()2ln y f x x x x x=-=+-,22221210x x y x x x -+'=-+-=-<,所以函数在0,上单调递减.又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<,所以函数yf xx 有且只有1个零点,故B 正确.C :若()f x kx >,即2ln x kx x +>,则22ln x k x x <+.令()22ln x g x x x=+,则()34ln x x xg x x-+-'=.令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增,当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错误. D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =,由()()12f x f x =,得121222ln ln x x x x +=+, ∴211222ln ln x x x x -=-,即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t -=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >, ∴证2224ln 0t t t -->.令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->,∴124x x +>,故D 正确. 故选:BD . 【点睛】关键点点睛:利用导数研究函数的单调性、极值点,结合零点存在性定理判断A 、B 的正误;应用参变分离,构造函数,并结合导数判断函数的最值;由函数单调性,应用换元法并构造函数,结合分析法、导数证明D 选项结论.13.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.14.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+- C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增;对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)15.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.16.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e e x xxf x -=-的定义域为{}|0x x ≠,且()()sin sin x x x xx xf x f x e e e e ----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1xxx f x e e-=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.17.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x ='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.18.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin x f x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e 442f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝-⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立,所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=, ()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z ,在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()π,-+∞不存在零点,故D 错误.故选:AC. 【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.19.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点.故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.20.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x ---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*)。
历届高考数学压轴题汇总及答案(上海卷)
历届高考数学压轴题汇总及答案(上海卷2017-2018)一.填空题1.(上海2017.12题)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ),则Ω中所有这样的P 为 .2.(上海2018.12题已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 。
二.选择题3、(上海2017.16题)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =,则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个4.(上海2018.16题)设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,的可能取值只能是( )D.01f ()三.解答题5、(上海2017.20题)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P在第一象限,且||OP =P 的坐标;(2)设83,55P ⎛⎫⎪⎝⎭,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.6.(上海2018.20题)(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点0(2)F ,,直线:l x t =,曲线:(0,y 0)x t ≤≤≥,l 与x 轴交于点A ,与τ交于点B P Q ,、分别是曲线τ与线段AB 上的动点。
2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)
压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。
上海市2021年高考数学压轴卷含解析
上海市2021年高考数学压轴卷(含解析)第I 卷(选择题)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{|13}A x x =-<<,{1,2,3,4}B =,则AB =____.2.若复数z 满足(34)|(2)(12)|i z i i -=+-(其中i 为虚数单位),则z 的虚部是___________.3.行列式123456789中,6的代数余子式的值是______. 4.已知球的体积为36π,则该球大圆的面积等于______.5.在262()x x+的二项展开式中,常数项等于____.6.已知向量||||||1a b c ===,若12a b ⋅=,且c xa yb =+,则x y +的最大值为____. 7.若1sin 3α=,则cos(2)πα-=____. 8.函数()2log 1y x m =-+的反函数的图象经过点()1,3,则实数m =______.9.设F 为双曲线()222:10y x b bΓ-=>的右焦点,O 为坐标原点,P 、Q 是以OF 为直径的圆与双曲线Γ渐近线的两个交点.若PQ OF =,则b =___________. 10.从以下七个函数:221,,,2,log ,sin ,cos x y x y y x y y x y x y x x=======中选取两个函数记为()f x 和()g x ,构成函数()()()F x f x g x =+,若()F x 的图像如图所示,则()F x =____.11.小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 12.已知1a 、2a 与1b 、2b 是4个不同的实数,若关于x 的方程121||||||+x a x a x b -+-=-2||x b -的解集A 不是无限集,则集合A 中元素的个数构成的集合为___________.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设(0,),(0,)a b ∞∞∈+∈+,则a b <“”是“11a b -<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件14.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π; 37;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为455. A .1个B .2个C .3个D .4个15.在ABC 中,若2sin A =,则cos 2cos B C +的取值范围是( ) A .(0,1] B .(0,1](2,5]C .3(0,1](2,5]2D .以上答案都不对16.已知定义在R 上的函数()f x 是奇函数,且满足()()3f x f x +=,()13f =-,数列{}n a 满足2n n S a n =+(其中n S 为{}n a 的前n 项和),则()()56f a f a +=( ) A .3-B .2-C .3D .2三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.将边长为1的正方形11AAO O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小. 18.已知函数1()lg()f x a x=+(1)设1()f x -是()f x 的反函数,当1a =时,解不等式11()2f x -<; (2)若关于x 的方程2()lg()0f x x +=的解集中恰好有一个元素,求实数a 的值;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过lg 2,求a 的取值范围.19.对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.20.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠.当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.21.若数列{}n a 满足11n na a λλ+≤≤(1λ>,且λ为实常数),*n ∈N ,则称数列{}n a 为()B λ数列.(1)若数列{}n a 的前三项依次为12a =,2a x =,39a =,且{}n a 为(3)B 数列,求实数x 的取值范围;(2)已知{}n a 是公比为(1)≠q q 的等比数列,且10a >,记21321||||||n n n T a a a a a a +=-+-++-.若存在数列{}n a 为(4)B 数列,使得1lim0n nn nT tT T +→∞-≤成立,求实数t 的取值范围;(3)记无穷等差数列{}n a 的首项为1a ,公差为d ,证明:“110da λ≤≤-”是“{}n a 为()B λ数列”的充要条件.2021上海市高考压轴卷数学参考答案1.【答案】{1,2} 【解析】解:{}|13A x x =-<<,{}1,2,3,4B =,∴{1,2}AB =.故答案为:{1,2}. 【点睛】集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验. 2.【答案】45【解析】由题意,复数z 满足(34)|(2)(12)|i z i i -=+-, 可得()()()43534|(2)(12)|343434343455i i i i z i i i i i -⨯++-====+---+,所以复数z 的虚部为45. 故答案为:45. 3.【答案】6【解析】由题意,可得6的代数余子式2312(1827)678A =-=-⨯-⨯=.故答案为6. 【点睛】本题主要考查了三阶行列式的代数余子式的定义,考查行列式的展开,属于基础题. 4.【答案】9π【解析】因为球的体积为36π,设球的半径为r ,则34363r ππ=,解得:3r =, 因为球的大圆即是过球心的截面圆, 因此大圆的面积为29S r ππ==. 故答案为:9π. 【点睛】本题主要考查球的相关计算,熟记球的体积公式,以及圆的面积公式即可,属于基础题型. 5.【答案】240【解析】解:在622 x x ⎛⎫+ ⎪⎝⎭的二项展开式中,通项公式为 123162r r r r T C x -+=⋅⋅, 令1230r -=,求得4r =,可得展开式的常数项为 4462240C ⋅=,故答案为:240. 【点睛】方法点睛:求二项展开式的某一项,一般利用二项展开式的通项研究求解.6.【解析】解:∵||||a b =,且12a b ⋅=, ∴a 与b 的夹角为60︒, 设(1,0)a =,则13(,2b =, ∵c xa yb =+,∴12c x y y ⎛⎫=+ ⎪ ⎪⎝⎭,又||1c =,∴221122x y y ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得221x xy y ++=,∴22()()14x y x y xy ++-=,当且仅当x y ==时,等号成立,∴233x y+.故答案为:3. 7.【答案】79-【解析】因为1sin 3α=, 所以()2227cos(2)cos 212sin 12sin 199παααα-=-=--=-+=-+=-. 故答案为: 79- 8.【答案】2 【分析】由反函数的图象经过点()1,3,得原函数的图象经过点()3,1,代入解出答案即可. 【详解】解:因为函数()2log 1y x m =-+的反函数的图象经过点()1,3 所以函数()2log 1y x m =-+的图象经过点()3,1 所以()21log 31m =-+,解得2m = 故答案为2. 【点睛】本题考查了函数与反函数图像的关系,属于基础题. 9.【答案】1【解析】由已知PQ OF =可得(,)22c cp ,又点p 在渐近线b y x a = 上,22c b ca b a ∴=⋅⇒= 又1a = ,1b ∴= 10.【答案】2sin x x +【解析】由图象可知,函数()F x 的定义域为R ,故排除1y x=,2log y x =, 又由()F x 的图象过定点(0,1),由函数()F x 图象,可得当0x >时,()1F x >且为增函数, 当0x <时, ()F x 大于0与小于0交替出现,若()2F x x x =+时,此时函数()F x 的图象不过定点(0,1),因为2xy =过(0,1),且当0x >时,1y >,当0x <时,01y <<,若包含cos y x =,当0x =时,1y =,2cos xy x =+不满足过点(0,1),若包含y x =,此时函数()2xF x x =+不满足0x <时,()F x 大于0与小于0交替出现,若包含2yx ,此时函数()22x F x x =+不满足0x <时,()F x 大于0与小于0交替出现,所以只有()2sin xF x x =+满足条件. 故答案为:2sin x x +. 11.【答案】1115【解析】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111512.【答案】{1}【解析】转化为12()||||f x x a x a =-+-和12()||||g x x b x b =-+-图像交点, 为了简化问题,我们可以研究|||1|||||x x x a x b +-=-+-,21,0()11,0121,1x x f x x x x x x -+<⎧⎪=+-=≤≤⎨⎪->⎩,设a b <,2,(),2,x a b x a g x x a x b b a a x b x a b x b -++<⎧⎪=-+-=-≤≤⎨⎪-->⎩,设(0,1)A ,(1,1)B ,(,)C a b a -,(,)D b b a -, ①由图像易知,1个交点容易得到, 如1,22a b ==时,可求得唯一一个交点为53(,)42而0个交点和2个交点都是不可能的. ②假设有0个交点,由题意|1|||2||AC b a k a --=>,|1|||2|1|BD b a k b --=>-,∴||1|1|2a b a <--,|1|1|1|2b b a -<--,∴|||1|1|1||1|a b b a b a -+<----,而由三角不等式,|||1||1|1|1||1||1|a b b a b a b a b a ---+≥=------,故矛盾,∴不可能有0个交点; ③假设有2个交点,1(2,0)AC b a k a --=∈-,1(0,2)1BD b a k b --=∈-, ∴112a b a ->--,1112b b a ->--,∴111b a b a -->--,明显矛盾,∴不可能有2个交点.其他0个交点和2个交点的情况均可化归为以上两类.综上所述,解集A 不是无限集时,集合A 的元素个数只有1个. 故答案为:{}1. 【点睛】关键点点睛:本题的关键是将方程的解的个数转化为两个函数图像的交点个数,其中两个分段函数可以用特值法固定一个,再讨论另一个函数的情况. 13.【答案】C【解析】若a b <“”,则根据不等式性质,两边同时减去1,不等式符号不变,所以, a b <“”成立,则“11a b -<-”成立,充分性成立; “11a b -<-”成立,根据不等式性质,两边同时加上1,不等式符号不变,所以,“11a b -<-”成立,则a b <“”成立,必要性成立; 所以,a b <“”是“11a b -<-”的充要条件 故选C 14.【答案】B 【解析】①点M 是母线的中点, ∴截面的半径2r,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确, 故选B . 【点睛】本题通过对多个命题真假的判断,综合考查圆锥的性质、椭圆的性质、双曲线的性质,抛物线的方程与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. 15.【答案】B【解析】由题意,在ABC 中,若sin A = 因为(0,)A π∈,可得4A π=或34A π=, 当4A π=时,可得34B C π+=,则34B C π=-,可得3cos cos()sin()4224B C C C C C C ππ+=-=+=+, 因为3(0,)4C π∈,所以(,)44C πππ+∈,所以sin()(0,1]4C π+∈; 当34A π=时,可得4B C π+=,则4B C π=-,可得cos cos())422B C C C C C C πϕ+=-=+=+, 其中tan 3ϕ=,设())g x x ϕ=+在区间[0,]2πϕ-上单调递增,在[,]24ππϕ-上单调递减,又由()02()24g g π=>=,()2g πϕ-=,所以()g x ∈)C ϕ+∈,综上可得,cos B C +的取值范围是(0,1](2,5].故选:B. 【点睛】解答与三角函数有关的范围问题的求解策略:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解. 16.【答案】C【解析】对任意的n *∈N ,2n n S a n =+. 当1n =时,11121a S a ==+,解得11a =-; 当2n ≥时,由2n n S a n =+可得1121n n S a n --=+-,上述两式作差得1221n n n a a a -=-+,即121n n a a -=-,所以,()1121n n a a --=-, 所以,数列{}1n a -是首项为112a -=-为首项,以2为公比的等比数列,所以,11222n n n a --=-⋅=-,即12nn a =-,531a ∴=-,663a =-,因为函数()f x 是定义在R 上的奇函数,则()00f =, 函数()f x 满足()()3f x f x +=,()13f =-,所以,()()()()5313113f a f f f =-=-=-=,()()()66300f a f f =-==, 因此,()()563f a f a +=. 故选:C 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.17.【答案】4π.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =. 由11A B 的长为π3,可知1113π∠A O B =.11111111111sin 2SA O AB =O A ⋅O B ⋅∠O B =,1111111V 312C O A B Sh -O A B =⋅=(2)设过点1B 的母线与下底面交于点B ,则11//BB AA , 所以1C ∠B B 或其补角为直线1C B 与1AA 所成的角.由AC 长为2π3,可知2π3C ∠AO =, 又111π3∠AOB =∠A O B =,所以π3C ∠OB =,从而C OB 为等边三角形,得1C B =. 因为1B B ⊥平面C AO ,所以1C B B ⊥B .在1C B B 中,因为1π2C ∠B B =,1C B =,11B B =,所以1π4C ∠B B =, 从而直线1C B 与1AA 所成的角的大小为π4.【考点】几何体的体积、空间角【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.18.【答案】(1)(,0)(lg3,)-∞+∞;(2)0a =或14a =-;(3)23a ≥.【解析】(1)因为()1()lg y f x x a -==+,所以110y x a -+=,所以101y x a=-,所以11()10x f x a-=-,当1a =时,11011()12xf x -=-<,故解集为(,0)(lg3,)-∞+∞; (2)方程2()lg()0f x x +=即()2lg 0ax x +=,即21ax x +=的解集中恰好有一个元素,当0a =时,1x =,符合题意, 当0a ≠时,140a ∆=+=,解得14a =-, 综上所述,0a =或14a =-; (3)当0a >时,设120x x <<,则1211a a x x +>+,1211lg lg a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上单调递减,所以函数()f x 在区间[,1]t t +上的最大值与最小值为(),(1)f t f t +, 所以11()(1)lg lg lg 21f t f t a a t t ⎛⎫⎛⎫-+=+-+ ⎪⎪+⎝⎭⎝⎭, 所以1211(1)ta t t t t -≥-=++设1t r -=,则102r ≤≤,21(1)(1)(2)32t r r t t r r r r -==+---+,当0r =时,2032rr r =-+,当102r <≤时,212323r r r r r=-++-, 因为2y r r =+在上递减,所以219422r r +≥+=,所以211229323332r r r r r =≤=-++--, 所以实数a 的取值范围是23a ≥. 【点睛】关键点睛:(1)解题关键在于利用反函数定义,得到11011()12x f x -=-<,进而用单调性解不等式;(2)解题关键在于利用二次函数性质进行求解;(3)解题关键在于得出()f x 的单调性后,分类讨论,并利用均值不等式求解;本题难度属于中档题 19.【答案】(1)证明见解析 (2)k ≥(3)存在,4T ≥【解析】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=, 因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭ ⎪≥= ⎪⎪⎝⎭.(3)设函数()11f x x x x =+--+是“T 同比不减函数”,()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立, 所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立.(Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-, 所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立, 所以T 的取值范围是[)4,+∞. 【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.20.【答案】(1)答案见解析;(2)存在,m =.【解析】(1)如图1,设(,)M x y ,00(,)A x y ,则由DM m DA =,(0m >且1)m ≠ 可得0x x =,0y m y =,所以0x x =,01y y m=① , 因为A 点在单位圆上运动,所以22001x y +=② ,将①式代入②式即得所求曲线C 的方程为2221y x m+=(0m >且1)m ≠,因为(0,1)(1,)m ∈+∞,所以当01m <<时,201m <<,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(,; 当1m 时,21m >,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,. (2)存在,理由如下:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --,1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎨+=⎩两式相减可得 222221212()()0m x x y y -+-=,③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠,于是由③式可得212121212()()()()y y y y m x x x x -+=--+,④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+, 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+, 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得2m =, 故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.【点睛】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.21.【答案】(1)[3,6];(2)(1,)+∞;(3)证明见解析.【解析】(1)因为{}n a 为B (3)数列,所以1133n na a +, 则13321933xx⎧⎪⎪⎨⎪⎪⎩,解得36x , 即x 的取值范围是[3,6];(2)由数列{}n a 为B (4)数列,可得1114n na q a +=<或14q <, 当114q <时,由10a >,111(1)0n n n a a a q q -+-=-<,所以11||n n n n a a a a ++-=-. 则12231111(1)n n n n n T a a a a a a a a a q ++=-+-+⋯+-=-=-,所以11()lim lim 101nn n nn n n T tT t q t q t T q +→∞→∞----==--,即1t ; 当14q <时,由10a >,111(1)0n n n a a a q q -+-=->,所以11||n n n n a a a a ++-=-.则21321111(1)n n n n n T a a a a a a a a a q ++=-+-+⋯+-=-=-,所以11()1lim lim lim 0111nnn n n n n n n ntq t T tT q t q tq q t T q q+→∞→∞→∞------+===---,即t q ,所以1t >, 则t 的取值范围是(1,)+∞; (3)先证充分性.因为11da λ-,所以10a ≠,{}n a 为等差数列, 所以当0d =时,10n a a =≠,此时11n na a +=, 由1λ>,所以111n na a λλ+=成立,所以{}n a 为()B λ数列; 当0d ≠时,1111111(1)111(1)(1)(1)1n n a a nd a n d d d a a a n d a n d a n dn d+++-+===+=++-+-+-+-, 因为101d a λ-,所以111a dλ-,所以1110(1)(1)11a n n dλλ---++-, 即有1(1)11(1)(1)1n na n a n λλ+-+--+,因为1λ>,所以(1)1(1)(1)(1)1(1)(1)1(1)(1)1n n n n λλλλλ-+--+-+=--+--+11111111(1)(1)1111n n λλλλλ-=+=++=--+-+--, 所以111n na a λλ+恒成立,所以{}n a 为()B λ数列, 综上可得,{}n a 为()B λ数列;再证必要性.因为{}n a 为()B λ数列,所以11n na a λλ+恒成立,所以10a ≠, 当0d =时,11da λ-显然成立; 当0d ≠时,因为110n n a a λ+>,所以{}n a 的每一项同号,所以1a 与d 也同号, 所以10da ,因为11n n a a λλ+恒成立,所以1n =时,211a a λλ成立, 因为{}n a 为等差数列,21a a d =+,211111a a d d a a a +==+, 所以111d a λλ+,即为111da λλ--,101d a λ-, 综上可得,“101da λ-”是“{}n a 为B ()λ数列”的充要条件. 【点睛】关键点睛:解答本题的关键是第3小问,证明“101da λ-”是“{}n a 为B ()λ数列”的充要条件,先证明充分性,利用不等式证明111n na a λλ+恒成立,所以{}n a 为()B λ数列;再证明必要性,证明11da λ-成立.。
上海市第一中学2023届高考压轴卷数学试卷含解析
2023年高考数学模拟试卷 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b ca b +++=+,若c 为最大边,则a b c +的取值范围是( )A.1⎛ ⎝⎭ B.( C.1⎛ ⎝⎦ D. 2.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .43.已知非零向量a ,b 满足||a b |=|,则“22a b a b+=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:4.已知命题:p 若1a <,则21a <,则下列说法正确的是( )A .命题p 是真命题B .命题p 的逆命题是真命题C .命题p 的否命题是“若1a <,则21a ≥” D .命题p 的逆否命题是“若21a ≥,则1a <”5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A .35B .710C .45D .9106.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2e B .4e CD7.已知R 为实数集,{}2|10A x x =-≤,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,则()A B =R( )A .{|10}x x -<≤B .{|01}x x <≤C .{|10}x x -≤≤D .{|101}x x x -≤≤=或8.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C、圆2C 上的动点,P为x 轴上的动点,则PN PM-的最大值是( )A .254+B .9C .7D .252+9.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( ) A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦ B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭ C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦ D .9,2ln 2⎛⎫+∞ ⎪⎝⎭ 10.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .111.设点(,0)A t ,P 为曲线xy e =上动点,若点A ,P 间距离的最小值为6,则实数t 的值为( )A .5B .52C .ln 222+ D .ln 322+12.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]二、填空题:本题共4小题,每小题5分,共20分。
上海高考数学(函数)经典压轴题解析详解
上海高考数学压轴题系列训练含答案及解析详解1. (本小题满分12分) 已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ³ a , 证明证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) 解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] , ∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分(2)由上知:当x > a>0时, f n ( x ) = xn – ( x + a)n是关于x 的减函数, ∴ 当n ³ a 时, 有:(n + 1 )n – ( n + 1 + a)n £ n n– ( n + a)n. 2分 又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] , ∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n– ( n + a )( n + a)n – 1 ] 2分 ( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n , ∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分) 已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v Î[–1,1],都有|f (u) – f (v) | ≤ | u –v | . (1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件?是否满足题设条件?(2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +Î-ìí-Îî,是否满足题设条件?,是否满足题设条件?解:解: (1) 若u ,v Î [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,取u = 43Î[–1,1],v = 21Î[–1,1], 则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |,所以p( x)不满足题设条件. (2)分三种情况讨论:)分三种情况讨论:10. 若u ,v Î [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件;,满足题设条件; 20. 若u ,v Î [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;,满足题设条件; 30. 若u Î[–1,0],v Î[0,1],则:,则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u Î[0,1],v Î[–1,0], 同理可证满足题设条件. 综合上述得g(x)满足条件. 3. (本小题满分14分) 已知点P ( t , y )在函数f ( x ) = 1x x +(x ¹ –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c ¹ 0 ). (1) 求证:| ac | ³ 4; (2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t ÎR, t ¹–1, ∴ ⊿ = (–c 22a)22– 16c 22 = c 44a 22– 16c 22³ 0 , ∵ c ¹ 0, ∴c 2a 2 ³ 16 , ∴| ac | ³ 4. (2) 由 f ( x ) = 1 – 1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1– 1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 , ∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x ³ 0时,f ( x )单调递增. 法2. 由f ` ( x ) = 2)1x (1+> 0 得x ¹–1, ∴x > –1时,f ( x )单调递增. (3)(仅理科做)∵f ( x )在x > –1时单调递增,| c | ³|a |4> 0 , ∴f (| c | ) ³ f (|a |4) = 1|a |4|a |4+= 4|a |4+ f ( | a | ) + f ( | c | ) = 1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称.)对称. (1) 求f (x)的表达式;的表达式;(2) 试在函数f f (x)(x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间2,2éù-ëû上;上;(3) 若+212(13),(N )23nnn n n nx y n --==Î,求证:4()().3n n f x f y -< 解:(1)31().3f x x x =-…………………………5分(2)()20,0,2,3æö-ç÷ç÷èø或()20,0,2,.3æö-ç÷ç÷èø…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分5.(本小题满分13分)分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ¹则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ì+=ïïíï+=ïî ………………………………………………………3分由(1)-(2)可得1.3MN QN k k ·=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ×=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.xy x y =- (10)分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=¹此即为所求的轨迹方程.………………13分6.(本小题满分12分)分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=×PB PA(1)求点P 的轨迹方程;的轨迹方程;(2)已知点F (0,1),是否存在实数l 使得0)(2=+×FP FB FA l 若存在,?若存在,求出求出l 的值,若不存在,请说明理由. 解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ¹由,42y x =得:2'x y =2,221x k x k PB PA ==\ 4,,021-=\^\=×x x PB PA PB PA ………………………………3分直线P A 的方程是:)(241121x x x x y -=-即42211x x x y -= ①同理,直线PB 的方程是:42222x xx y -=②由①②得:ïîïíìÎ-==+=),(,142212121R x x x x y x x x∴点P 的轨迹方程是).(1R x y Î-=……………………………………6分 (2)由(1)得:),14,(211-=x x FA ),14,(222-=x x FB )1,2(21-+xx P4),2,2(2121-=-+=x x xx FP 42)14)(14(2221222121x x x x x x FB FA +--=--+=× …………………………10分2444)()(22212212++=++=x x x x FP所以0)(2=+×FP FB FA故存在l =1使得0)(2=+×FP FB FA l …………………………………………12分 解法(二):(1)∵直线P A 、PB 与抛物线相切,且,0=×PB PA ∴直线P A 、PB 的斜率均存在且不为0,且,PB PA ^ 设P A 的直线方程是)0,,(¹Î+=k R m k m kx y由îíì=+=y x m k x y 42得:0442=--m kx x016162=+=D \m k 即2k m -=…………………………3分即直线P A 的方程是:2k k x y -= 同理可得直线PB 的方程是:211kx k y --= 由ïîïíì--=-=2211k x k y k k x y 得:ïîïíì-=Î-=11y R k k x 故点P 的轨迹方程是).(1R x y Î-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )11,2(),1,2(22--=-=kk FB k k FA )2,1(--=kk FP)1(2)11)(1(42222kk k k FB FA +--=--+-=×………………………………10分)1(24)1()(2222kk k k FP ++=+-=故存在l =1使得0)(2=+×FP FB FA l …………………………………………12分 7.(本小题满分14分)分)设函数x axxx f ln 1)(+-=在),1[+¥上是增函数. (1) 求正实数a 的取值范围;的取值范围;(2) 设1,0>>a b ,求证:.ln 1bb a b b a b a +<+<+ 解:(1)01)(2'³-=axax x f 对),1[+¥Îx 恒成立,恒成立, xa 1³\对),1[+¥Îx 恒成立恒成立又11£x1³\a 为所求.…………………………4分 (2)取b ba x +=,1,0,1>+\>>b b a b a ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+¥上是增函数,上是增函数,0)1()(=>+\f b b a f0ln 1>+++×+-\bb a bb a a bb a 即ba b ba +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G∴)(x G 在),1(+¥上是增函数且在0x x =处连续,又01)1(>=G∴当1>x 时,0)1()(>>G x G∴x x ln > 即b b a b ba +>+ln综上所述,.ln 1b b a b b a b a +<+<+………………………………………………14分8.(本小题满分12分) 如图,直角坐标系xOy 中,一直角三角形ABC ,90C Ð= ,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC !的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.两点.(1) 求双曲线E 的方程;的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E相交于不同于双曲线顶点的两点M 、N ,且MP PN l=,问在x 轴上是否存在定xyDO CAB点G ,使()BC GM GN l^- ?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.请说明理由.解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =. ∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ì-=ï+=-íï-=î(3分)解之得1a =,∴2,3c b ==. ∴双曲线E 的方程为2213y x -=. (5分)分)(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN l ^-.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN l = ,得120y y l +=.即12y y l =-① (6分)分)∵(4,0)BC =,1212(,)GM GN x t x t y y l l l l -=--+-, ∴()BC GM GN l^- 12()x t x t l Û-=-. 即12()ky m t ky m t l +-=+-. ② (8分)分)把①代入②,得把①代入②,得12122()()0ky y m t y y +-+= ③(9分)分)把x m ky -=代入2213y x -=并整理得并整理得222(31)63(1)0k y kmy m -++-=其中2310k -¹且0D >,即213k ¹且2231k m +>. 212122263(1),3131km m y y y y k k --+==--. (10xyDO CAB NBCOyxGMP(m 1C C C n n n nn a a a ++++11p p ++1211n n p p 1p +)())êú222(1)(1)2(1)2(1)k n kk k n k n kp p p p ---++×--…212(1)12(1)(1)nnkn k p p p p --+--222(1)121n nnkn k p p p p -+--+n n…。
上海高考数学压轴题50道(有答案-精品)
2 0 11高考压轴题目选(5 0题)1 .(函数)设/(x) = ^ + log2(x+^?+i),则对任意实数。
力,膈+论0”是5o)+y0)NO” 的M件。
2.(函数)设/(X,y)=G/2x-41y,41x+ 72y)为定义在平面上的函数,且以={(歪),)尸+ y2<Kx>0t y>0},令5 = {/(x,y)|(x,y)e 则3所覆盖的面积为3.(函数)老师在黑板上写出了若干个慕函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数3 (2)在(T»,+oo)上是增函数;<3)函数图像经过原点。
小明统计了一T,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幕函数共有个。
4 .(函数)已知定义在R上的奇函数,(对,满足/(x-4)= -/(x)且在区间[0,2止是増函数,若方程f(x>m(m>0)在区间[-8,8]上有四个不同的根如巧,与,则+ X4 = .5.(函数)已知函数/(对=吏三3*1).在区间(0』上是诚函数,则实数a的a —1取值范围是6.(函数)方程2*-1=0的解可视为函数年"的图像与函数尸地图像交点的X 横坐标,若*4=0的各个实根药,z, 3W4)所对应的点("勻(2-X' 1,2,•••,*)均在直线尸*的同侧,则实数a的取值范围是(函数)如图放置的边长为1的正方形PABC 沿x 轴滚 动。
设顶点P (x, y )的轨迹方程是y = /(x ),则/(x ) 的最小正周期为 ; V = /(X )在其两个相邻零 点间的图像与X 轴所围区域的面积为 O(三角函数)已知 /(x) = sinLx+^(®>0), 有最小值,无最大值,则9.(三角函数)已知函数/(x ) = sin^tyx+^j + sin^<yx-^j-2cos 2^, xeR (其 中刃>0),若对任意的a&R,函数v = /(x ), xe (a t 。
上海高考数学(函数)经典压轴习题解析详解
欢迎阅读上海高考数学压轴题系列训练含答案及解析详解1.(本小题满分12分)已知常数a>0,n 为正整数,f n (x)=x n –(x+a)n (x>0)是关于x 的函数. (1)判定函数f n (x)的单调性,并证明你的结论. (2)对任意n ?a,证明f`n+1(n+1)<(n+1)f n `(n) n –1n –1n –1n –1解:(1)若u,v ?[–1,1],|p(u)–p(v)|=|u 2–v 2|=|(u+v)(u –v)|,取u=43?[–1,1],v=21?[–1,1],则|p(u)–p(v)|=|(u+v)(u –v)|=45|u –v|>|u –v|, 所以p(x)不满足题设条件. (2)分三种情况讨论:10.若u,v ?[–1,0],则|g(u)–g(v)|=|(1+u)–(1+v)|=|u –v|,满足题设条件; 20.若u,v ?[0,1],则|g(u)–g(v)|=|(1–u)–(1–v)|=|v –u|,满足题设条件; 30.若u ?[–1,0],v ?[0,1],则:|g(u)–g(v)|=|(1–u)–(1+v)|=|–u –v|=|v+u|≤|v –u|=|u –v|,满足题设条件; 40若u ?[0,1],v ?[–1,0],同理可证满足题设条件.综合上述得g(x)满足条件. 3.(本小题满分14分)(3)(仅理科做)∵f(x)在x>–1时单调递增,|c|?|a |>0, ∴f(|c|)?f(|a |4)=1|a |4|a |4+=4|a |4+f(|a|)+f(|c|)=1|a ||a |++4|a |4+>4|a ||a |++4|a |4+=1. 即f(|a|)+f(|c|)>1.4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x=-1时,f(x)取得极大值23,并且函数y=f(x+1)的图象关于点(-1,0)对称.(1) 求f(x)的表达式;221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………………………………………………………3分由(1)-(2)可得1.3MN QN k k ∙=-………………………………6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-……10分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分由①②得:⎪⎩⎨∈-==),(,142121R x x x x y ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x ),14,(222-=x x )1,2(21-+xx P42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅…………………………10分所以0)(2=+⋅故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y(1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分(2)取b b a x +=,1,0,1>+∴>>bba b a , 一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,即b a b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G求出所有这样定点的坐标;若不存在,请说明理由.解:(1)设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)xx解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分)(2)设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.1y λ=-GM GN λ-(BC GM GN λ⊥-12(ky m t ky m λ+-=+-2226(1)6()03131k m km m t k k ---=--,化简得kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2n n n n nn na a a f n S ++++=.(1)求n a ; (2)试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); 2C na a ++(1)np +(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->.∴(1)f n +<1()2p f n p+,(*n ∈N ).(8分) (3)由(2)知1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)(2222n np p p p f n f n f n f p pp p-++++<-<-<<=. 111(21)222p p p f n p p p ⎛⎫⎛⎫+++++-+++ ⎪ ⎪⎝⎭⎝⎭…2,,21n -时,1)n+⎣⎦分)。
上海高考压轴卷数学Word版含解析
绝密★启封前KS5U2018上海高考压轴卷数学I1.1.若集合A={﹣1,0,1,2},B={x|x+1>0},则A∩B=.2.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a= .3.不等式2x2﹣x﹣1>0的解集是________.4.如图是某一几何体的三视图,则这个几何体的体积为.5.设i|z|= .6.已知P是抛物线y2=4x上的动点,F是抛物线的焦点,则线段PF的中点轨迹方程是.7.底面ABC(不包括端点).8.若f(x)=(x﹣1)2(x≤1),则其反函数f﹣1(x)= .9.某企业有甲、乙两个研发小组,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.10.已知首项为1公差为2的等差数列{a n},其前n项和为S n= .11.已知函数y=Asin(A>0,ω>0,|φ|≤π函数取得最小值﹣22,由上面的条件可知,该函数的解析式为.12.数列{2n﹣1}的前n项1,3,7,…,2n﹣1n∈N*),从集合A n中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为T k(若只取一个数,规定乘积为此数本身),记S n=T1+T2+…+T n,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出S n= .13.关于x、y D=0是该方程组有解的( ) A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分也非必要条件14.数列{a n}满足:a1a2a1a2+a2a3+…+a n a n+1=na1a n+1对任何的正整数n都成立,则)A.5032 B.5044 C.5048 D.505015.某工厂今年年初贷款a万元,年利率为r(按复利计算),从今年末起,每年年末偿还固定数量金额,5年内还清,则每年应还金额为()万元.A BC D16.(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B、C两点,过B作AC的垂线交x轴于点D,若点D到直线BC的距离小于)A.(0,1) B.(1,+∞)C.(0D+∞)三.解答题(解答应写出文字说明、证明过程或演算步骤。
2020届上海市高三高考压轴卷数学试题(解析版)
2020上海市高考压轴卷数学一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1.若集合{}|A x y x R ==∈,{}|1,B x x x R =≤∈,则A B =________.【答案】{}1 【解析】 【分析】求出A 中x 的范围确定出A ,求出B 中不等式的解集确定出B ,找出两集合的交集即可. 【详解】解:由A中y =10x -,解得:1x ,即{|1}Ax x ,由B 中不等式变形得:11x -,即{|11}B x x =-, 则{1}A B ⋂=, 故答案为:{1}.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题. 2.函数()lg 2cos 21y x =-的定义域是______.【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 【解析】 【分析】根据负数不能开偶次方根和对数的真数大于零求解. 【详解】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33,66x k x k k Z ππππ-≤≤⎧⎪⎨-<<+∈⎪⎩, 解得536x π-≤<-或66x ππ-<<或536x π<≤. 故答案为:553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦【点睛】本题主要考查函数定义域的求法以及一元二次不等式,三角不等式的解法,还考查了运算求解的能力,属于中档题.3.已知i 为虚数单位,复数z 满足11zi z-=+,则z ________. 【答案】1 【解析】 【分析】利用复数的四则运算求出z ,再求其模.【详解】因为11zi z-=+,所以21(1)1(1)1(1)(1)i i z z i z i i i i ---=+⇒===-++-,则||1z ==. 故答案为:1.【点睛】本题考查复数的四则运算,考查复数模的运算,属于基础题.4.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012nna n S -=-,则1a =___ 【答案】1- 【解析】 【分析】利用行列式定义,得到n a 与n S 的关系,赋值1n =,即可求出结果.【详解】由01110111(2)1021212nn n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-. 【点睛】本题主要考查行列式定义的应用.5.从总体中抽取6个样本:4,5,6,10,7,4,则总体方差的点估计值为________.【答案】133【解析】 【分析】先算出6个样本数据的平均数,然后再利用方差公式计算即可. 【详解】6个样本的平均数456107466x +++++==,所以方差22222221[(46)(56)(66)(106)(76)(46)]6s =-+-+-+-+-+-261363==. 故答案为:133【点睛】本题主要考查方差的计算,考查学生的运算能力,是一道容易题.6.已知双曲线与椭圆221166x y +=有相同的焦点,且双曲线的渐进线方程为12y x =±,则此双曲线方程为_________【答案】22182y x -=【解析】【分析】根据双曲线的渐进线方程为12y x =±,设双曲线222214x y b b-=,计算椭圆焦点为(),根据双曲线焦点公式得到答案.【详解】221166x y +=的焦点为:()双曲线的渐进线方程为12y x =±,则设双曲线方程为:222214x y b b-=,焦点为()故2224102b b b +=∴= ,双曲线方程为22182y x -=故答案为22182y x -=【点睛】本题考查了求双曲线方程,根据渐近线设双曲线为222214x y b b-=是解题的关键.7.已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.。
上海市2020年高考数学压轴卷(含解析)
a
的取值范围是
______.
3n (2)n
lim
8.计算: n
3n1 2n
_________.
9.某微信群中四人同时抢 3 个红包(金额不同),假设每人抢到的几率相同且每人最多抢
一个,则其中甲、乙都抢到红包的概率为 _____.
S
10.向量集合
a a x, y, x, y R
,对于任意 , S ,以及任意 0,1,都有
9
x1
x2
2 6
,
x2
x3
2
4 6
13 故答案为: 3
x2 y2 1 6.【答案】 8 2
【解析】
x2 y2 1
16 6 的焦点为:
10, 0
双曲线的渐进线方程为
y
1 2
x
,则设双曲线方程为:
x2 4b2
y2 b2
1
,焦点为
10, 0
故 4b2 b2 10b2 2
x2 y2 ,双曲线方程为 8 2
1
x2 y2 1 故答案为: 8 2
17.正四棱锥 P ABCD 的底面正方形边长是 3, O 是在底面上的射影, PO 6 , Q 是
AC 上的一点,过 Q 且与 PA 、 BD 都平行的截面为五边形 EFGHL .
(1)在图中作出截面 EFGHL ,并写出作图过程;
(2)求该截面面积的最大值.
18.在 ABC 中,内角 A, B, C 所对的边长分别是 a, b, c .
得 a1(a1 2) 1 0 ,解得 a1 1 。
13 5.【答案】 3
【解析】
x 4 5 6 10 7 4 6
6 个样本的平均数
6
2019年上海市高考压轴卷数学试题(解析版)
2019上海高考压轴卷数学一、选择题(本大题共4小题,共20.0分)1.已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为()A. 3B. 3C. 23D. 3【答案】D【解析】【分析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,利用斜率公式以及直线,AM BM 的斜率之积为49-列式并化简得:2022049y x a =-- ,①,再根据M 在椭圆上可得2202220y b x a a =-- ,②,联立①②可解得. 【详解】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+- 则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,① 又2200221x y a b+=,得2222002()b y a x a =-,即2202220y b x a a =--,② 联立①②,得2249b a -=-,即22249a c a -=,解得e =. 故选D .【点睛】本题考查了斜率公式,椭圆的几何性质,属中档题.2.已知R a ∈,则“1a >”是“11a<”( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】 “a>1”⇒“11a <”,“11a <”⇒“a>1或a <0”,由此能求出结果. 【详解】a∈R ,则“a >1”⇒“11a <”, “11a <”⇒“a>1或a <0”, ∴“a>1”是“11a<”的充分非必要条件. 故选:A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3.已知三棱锥S ABC -,ABC △是直角三角形,其斜边8AB =,SC ⊥平面ABC ,6SC =,则三棱锥的外接球的表面积为( )A. 100πB. 68πC. 72πD. 64π 【答案】A【解析】如图所示,直角三角形ABC 的外接圆的圆心为AB 的中点D ,过D 作面ABC 的垂线,球心O 在该垂线上,过O 作球的弦SC 的垂线,垂足为E ,则E 为SC 的中点,球半径R OS =114,3,522CD AB SE SC R ====∴=,棱锥的外接球的表面积为24100R ππ=,故选A. 【方法点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.4.定义:若整数m 满足:1122m x m -<≤+,称m 为离实数x 最近的整数,记作{}x m =.给出函数(){}f x x x =-的四个命题:①函数()f x 的定义域为R ,值域为11,22⎛⎫- ⎪⎝⎭; ②函数()f x 是周期函数,最小正周期为1;③函数()f x 在11,22⎛⎫- ⎪⎝⎭上是增函数; ④函数()f x 的图象关于直线()2k x k Z =∈对称. 其中所有的正确命题的序号为()A. ①③B. ②③C. ①②④D. ①②③【答案】B【解析】【分析】①中,根据题意易得11(){}(,]22f x x x =-∈-,故①错误; ②中,由(1)()f x f x +=可知小正周期为1,故②正确, ③中,()f x 在11(,]22-和13(,)22上是增函数, 故命题③正确, ④中,()()f k x f x -≠, 故命题④错误. 【详解】∵①中,显然(){}f x x x =- 的定义域为R,由题意知,11{}{}22x x x -<≤+,则得到(){}f x x x =-11(,]22∈-,故①错误; ②中,由题意知:(1)(1){1}1{}1f x x x x x +=+-+=+--={}()x x f x -=,所以(){}f x x x =-的最小正周期为1,,故②正确;③中,由于11{}{}22x x x -<≤+,则得(){}f x x x =-为分段函数,且在1113,,,2222⎛⎤⎛⎫- ⎪⎥⎝⎦⎝⎭上是增函数,,故命题③正确;④中,由题意得,()(){}(){}()f k x k x k x x x f x -=---=---=-()f x ≠所以函数y =f (x )的图象关于直线x =2k (k ∈Z )不对称,故命题④错误; 由此可选择②③,故选B .【点睛】本题考查了函数的值域,周期性,对称轴,属难题.二、填空题(本大题共12小题,共60.0分)5.若42021xx =,则x =___ 【答案】1【解析】4221xx =422022,1x x x x -⋅=∴==6.已知双曲线22121x y m m -=++m = ______. 【答案】2或5-【解析】 双曲线22121x y m m -=++,当焦点在x 轴时,a 2=m+2,b 2=m+1,可得c 2=a 2+b 2=3+2m ,双曲线22121x y m m -=++的离心率为2,所以327224m m m +=∴=+ 当焦点在y 轴时,a 2=-m-1,b 2=-m-2,可得c 2=a 2+b 2=-3-2m ,所以327514m m m --=∴=--- 故答案为2或-5. 点睛:本题考查双曲线的简单性质的应用,考查计算能力,因为没有指出焦点在哪个轴上,所以讨论两种情况,要抓住双曲线方程的特征得出22,a b ,2c 即可得解7.62(x -的展开式中常数项为______ .【答案】60【解析】【分析】先求出展开式的通项公式,再令x 的指数为0,解出r ,进而可求出常数项.【详解】62(x 的展开式中的通项公式:366621662()((1)2r r r r r r r r T C C x x ---+==-. 令32r -6=0,解得r =4.∴62(x的展开式中常数项为:4246(1)2C -⨯=60. 故答案为60.【点睛】本题考查了二项式定理,属基础题.8.函数2()42x x f x +=- (12)x -≤≤的最小值为______ .【答案】-4【解析】分析】 换元,令2x t =,则1[,4]2t ∈,24y t t =-,再利用二次函数的单调性可求最小值. 【详解】2()(2)42x x f x =-⋅ ,令2x t =, 因为12x -≤≤ ,所以1[,4]2t ∈,则224(2)4y t t t =-=--, y 在1[,2]2t ∈上递减,在[2,4]t ∈上递增, 所以当t =2时函数取得最小值-4.故答案为-4.【点睛】本题考查了二次函数在闭区间上的最值,属中档题.9.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z|==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭复数为a bi -.【10.若数列{a n }满足a 11=152,11n a +-1na =5(n ∈N *),则a 1=______ . 【答案】12【解析】【分析】 根据111n na a +-5=,可得1{}n a 是以5为公差的等差数列,由等差数列的通项公式可得. 【详解】因为111n na a +-5=,所以1{}n a 是以5为公差的等差数列, 所以1115(1)n n a a =+-, 所以111115(111)a a =+-, 所以111115052502a a =-=-=, 所以112a =. 【点睛】本题考查了等差数列的通项公式,属基础题.11.已知()()()()2211a a x a x f x log x x ⎧+-⎪=⎨≥⎪⎩,<,是R 上的增函数,则a 的取值范围是______ . 【答案】[2,+∞)【解析】【分析】因为分段函数为R 上的增函数,所以分段函数在两段上也是增函数,且1x < 时的函数值恒小于等于1x ≥ 时的函数值.【详解】首先,y =log a x 在区间[1,+∞)上是增函数且函数(2)2y a x a =+-在区间(-∞,1)上也是增函数∴a >1 ①其次在x =1处函数对应的第一个表达式的值要小于或等于第二个表达式的值,即(a +2)-2a ≤log a 1⇒a ≥2 ②联解(1)、(2)得a ≥2.故答案为[2,+∞).【点睛】本题考查了分段函数的单调性,属中档题.12.已知圆的方程为(x -1)2+(y -1)2=9,P (2,2)是该圆内一点,过点P 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是______ .【答案】【解析】【分析】因为经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦,根据垂径定理可求得最短弦长,由此可求得四边形的面积.【详解】∵圆的方程为(x -1)2+(y -1)2=9,∴圆心坐标为M (1,1),半径r =3.∵P (2,2)是该圆内一点,∴经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC 是经过P 点的直径,BD 是与AC 垂直的弦.∵|PM =∴由垂径定理,得|BD .因此,四边形ABCD 的面积是S =12|AC |•|BD |=12.故答案 【点睛】本题考查了圆中的垂径定理,属中档题.13.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________. 【答案】23【解析】从袋中一次随机摸出2个球,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) 6种基本事件,其中摸出的2个球的编号之和大于4的事件为 (1,4),(2,3),(2,4),(3,4),四种基本事件数,因此概率为4263=14.已知各项为正数的等比数列{}n a 中,2316a a =,则数列{}2log n a 的前四项和等于_____.【答案】8.【解析】各项为正的等比数列{a n }中,a 2a 3=16,可得a 1a 4=a 2a 3=16,即有log 2a 1+log 2a 2+log 2a 3+log 2a 4=log 2(a 1a 2a 3a 4)=log 2256=8.故答案为:8.点睛:这个题目考查是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海高考数学压轴题系列训练含答案及解析详解1. (本小题满分12分)已知常数a > 0, n为正整数,fn( x ) = x n– ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数fn( x )的单调性,并证明你的结论.(2) 对任意n a , 证明f`n + 1 ( n + 1 ) < ( n + 1 )fn`(n)解: (1) fn`( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ fn( x )在(0,+∞)单调递减. 4分(2)由上知:当x > a>0时, fn( x ) = x n– ( x + a)n是关于x的减函数,∴当n a时, 有:(n + 1 )n–( n + 1 + a)n n n–( n + a)n. 2分又∴f`n + 1(x ) = ( n + 1 ) [x n –( x+ a )n ] ,∴f`n + 1( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n +1 )[ n n–( n + a)n] = ( n + 1 )[ n n–( n + a )( n + a)n – 1 ] 2分( n + 1 )fn`(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n– n( n + a)n – 1 ], 2分∵( n + a ) > n ,∴f`n + 1 ( n + 1 ) < ( n + 1 )fn`(n) .2分2. (本小题满分12分)已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v[–1,1],都有|f (u) – f (v) | ≤ | u –v | .(1) 判断函数p ( x ) = x 2– 1 是否满足题设条件(2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +∈-⎧⎨-∈⎩,是否满足题设条件解: (1) 若u ,v [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,取u = 43[–1,1],v = 21[–1,1],则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |,所以p( x)不满足题设条件. (2)分三种情况讨论:10. 若u ,v [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件;20. 若u ,v [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;30. 若u[–1,0],v[0,1],则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件;40 若u[0,1],v[–1,0], 同理可证满足题设条件.综合上述得g(x)满足条件. 3. (本小题满分14分)已知点P ( t , y )在函数f ( x ) = 1x x +(x –1)的图象上,且有t 2 – c 2at + 4c 2= 0 ( c 0 ). (1) 求证:| ac | 4;(2) 求证:在(–1,+∞)上f ( x )单调递增.(3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ tR, t –1,∴ ⊿ = (–c 2a)2– 16c 2= c 4a 2– 16c 20 , ∵ c 0, ∴c 2a 2 16 , ∴| ac | 4. (2) 由 f ( x ) = 1 –1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 ,∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x 0时,f ( x )单调递增.法2. 由f ` ( x ) =2)1x (1+> 0 得x –1, ∴x > –1时,f ( x )单调递增.(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c ||a |4> 0 , ∴f (| c | ) f (|a |4) = 1|a |4|a |4+= 4|a |4+f ( | a | ) + f ( | c | ) =1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称.(1) 求f (x)的表达式;(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间⎡⎣上;(3)若+213),(N )23n n n n n nx y n --==∈,求证:4()().3n n f x f y -< 解:(1)31().3f x x x =-…………………………5分(2)()0,0,3-⎭或()0,0,.3⎛ ⎝⎭…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分 5.(本小题满分13分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………………………………………………………3分由(1)-(2)可得1.3MN QN k k •=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x = 直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.xy x y =-……10分从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程 (13)分6.(本小题满分12分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅ (1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅λ若存在,求出λ的值,若不存在,请说明理由.解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ≠由,42y x =得:2'x y =4,,021-=∴⊥∴=⋅x x PB PA PB PA ………………………………3分直线PA 的方程是:)(241121x x x x y -=-即42211x x x y -= ①同理,直线PB 的方程是:42222x x x y -= ② 由①②得:⎪⎩⎪⎨⎧∈-==+=),(,142212121R x x x x y x x x∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x ),14,(222-=x x )1,2(21-+xx P42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅ …………………………10分所以0)(2=+⋅故存在λ=1使得0)(2=+⋅λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y 由⎩⎨⎧=+=yx m kx y 42得:0442=--m kx x 016162=+=∆∴m k 即2k m -=…………………………3分即直线PA 的方程是:2k kx y -= 同理可得直线PB 的方程是:211kx k y --= 由⎪⎩⎪⎨⎧--=-=2211k x k y k kx y 得:⎪⎩⎪⎨⎧-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )1(2)11)(1(42222kk k k +--=--+-=⋅………………………………10分故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 7.(本小题满分14分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数. (1) 求正实数a 的取值范围;(2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=ax ax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分(2)取b b a x +=,1,0,1>+∴>>bba b a , 一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,即ba b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln综上所述,.ln 1bba b b a b a +<+<+………………………………………………14分8.(本小题满分12分)如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC 的周长为12.若一双曲线E以B 、C 为焦点,且经过A 、D 两点.(1) 求双曲线E 的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥-若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.x解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分)(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=,得120y y λ+=.即12yy λ=- ① (6分)∵(4,0)BC =,1212(,)GM GN x t x t y y λλλλ-=--+-,∴()BC GM GN λ⊥-12()x t x t λ⇔-=-. 即12()ky m t ky m t λ+-=+-. ② (8分)把①代入②,得12122()()0ky y m t y y +-+=③ (9分)把x m ky -=代入2213y x -=并整理得其中2310k -≠且0∆>,即213k ≠且2231k m +>.212122263(1),3131km m y y y y k k --+==--. (10分)代入③,得2226(1)6()03131k m km m t k k ---=--,xx化简得 kmt k =. 当1t m=时,上式恒成立.因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2nn n n nn na a a f n S ++++=.(1) 求n a ; (2) 试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); (3) 求证:2111(21)()(1)(2)(21)112n p p n f n f f f n p p -⎡⎤⎛⎫++-+++--⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦,(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,① ∴11(1)n n p S p pa ++-=-.②②-①,得11(1)n n n p a pa pa ++-=-+,即1n n a pa +=.(3分)在①中令1n =,可得1a p =.∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =. (4分)(2) 由(1)可得(1)(1)11n n n p p p p S p p --==--. 12121C C C n n n n n a a a ++++1221C C C (1)(1)n nn n n n n p p p p p =++++=+=+.∴12121C C C ()2n n n n nn na a a f n S ++++=1(1)2(1)nn n p p p p -+=⋅-, (5分)(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<1()2p f n p+,(*n ∈N ). (8分)(3) 由(2)知 1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n 时,211111()(1)()(2)()(1)()2222n np p p p f n f n f n f p pp p-++++<-<-<<=. ∴221111(1)(2)(21)222n p p p f f f n p p p -⎛⎫⎛⎫++++++-+++ ⎪ ⎪⎝⎭⎝⎭2111112n p p p p -⎡⎤⎛⎫++=-⎢⎥⎪-⎢⎥⎝⎭⎣⎦,(10分)(当且仅当1n =时取等号).另一方面,当2n ,1,2,,21k n =-时,1p p -=∵22k n k n p p p -+,∴2222121(1)n k n k n n n p p p p p p ---+-+=-.∴12(1)()(2)2()2(1)nn n p p f k f n k f n p p -++-⋅=-,(当且仅当k n =时取等号).(13分)∴2121211111()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑∑∑.(当且仅当1n =时取等号).综上所述,2121111(21)()()112n n k p p n f n f k p p --=⎡⎤⎛⎫++--⎢⎥∑ ⎪-⎢⎥⎝⎭⎣⎦,(*n ∈N ).(14分)。