实验一 磁化率测定
磁化率测定实验报告

磁化率测定实验报告磁化率测定实验报告引言:磁化率是描述物质对外加磁场响应程度的物理量,是研究物质磁性的重要参数之一。
本实验旨在通过测定不同物质的磁化率,探究它们的磁性特性,并分析实验结果。
实验仪器与方法:本实验使用的仪器有磁化率测定仪、恒温槽和样品。
首先,我们将待测样品放置在磁化率测定仪中,并将其与电源、计算机等设备连接。
然后,将样品置于恒温槽中,通过控制恒温槽的温度,使样品保持在相同的温度下进行测量。
最后,通过磁化率测定仪测量样品在不同磁场下的磁化强度,从而计算出磁化率。
实验结果与分析:在实验中,我们选取了铁、铜和铝作为样品进行测量。
通过对实验数据的处理,我们得到了它们在不同磁场下的磁化强度和磁化率。
首先,我们观察到铁在外加磁场下表现出明显的磁性,其磁化强度随磁场的增加而增加。
这是因为铁具有较高的磁导率,能够在外加磁场的作用下形成较强的磁化。
通过计算,我们得到了铁的磁化率为XX。
其次,铜在外加磁场下的磁化强度较小,几乎可以忽略不计。
这是因为铜是一种非磁性材料,其自由电子无法在外加磁场的作用下形成磁化。
因此,铜的磁化率接近于零。
最后,我们发现铝在外加磁场下的磁化强度相对较弱,但仍然存在一定的磁化效应。
这是因为铝具有一定的磁导率,能够在外加磁场的作用下产生一定程度的磁化。
通过计算,我们得到了铝的磁化率为XX。
综上所述,不同物质的磁化率不同,这与它们的磁性特性密切相关。
具有较高磁导率的物质如铁,能够在外加磁场的作用下形成较强的磁化,其磁化率较高;而非磁性材料如铜,无法在外加磁场的作用下形成磁化,其磁化率接近于零。
结论:通过磁化率测定实验,我们得到了不同物质的磁化率数据,并分析了其磁性特性。
实验结果表明,磁化率是描述物质磁性的重要参数,能够用于研究物质的磁性行为。
不同物质的磁化率差异较大,这与它们的磁导率和磁性特性密切相关。
进一步研究可以探究不同温度、不同材料组成对磁化率的影响,以及磁化率与其他物理量之间的关系。
磁化率测定-学生用

物理化学实验—磁化率测定一实验目的1. 测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
2. 掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
二实验原理1. 摩尔磁化率和分子磁矩物质在外磁场作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场,则物质内部的磁感应强度等于B = B 0 + B´ = μ0H + B´(1)式中B 0为外磁场的磁感应强度;为B´为物质磁化产生的附加磁感应强;μ0为真空磁导率,其数值等于4π×10-7 N·A -2。
物质被磁化的程度用体积磁化率χ表示,它为无因次量,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。
与附加磁场强度和外磁场强度的比值有关:B´= χμ0H (2)化学上常用质量磁化率m χ和摩尔磁化率M χ来表示物质的磁性质,它与χ 的关系为ρχχ=m (3) ρχχχ⋅=⋅=M M m M (4) 式中 M 、ρ分别为物质的摩尔质量与密度。
m χ的单位是m 3·kg -1,M χ的单位是m 3·mol -1。
物质的原子、分子或离子在外磁场作用下的磁化现象有三种情况。
第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩µm = 0,物质本身并不呈现磁性。
但由于它内部的电子轨道运动,在外磁场作用下会产生拉摩进动,感应出一个与外磁场方向相反的感应磁矩(诱导磁矩),其磁化强度与外磁场强度成正比,并随外磁场的消失而消失,这类物质称为反(或逆)磁性物质,其M χ<0,如 Hg 、Cu 、Bi 等。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,具有永久磁矩m μ≠ 0。
但由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值为零。
但在外磁场作用下一方面永久磁矩会顺着外磁场方向排列,其磁化方与外磁场方向相同,其磁化强度与外磁场强度成正比;另一方面物质内部的电子轨道运动也会产生拉摩进动,感应出一个与外磁场方向相反的感应磁矩。
实验一磁化率的测定

磁化率的测定实验报告1. 实验目的1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。
1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。
2. 实验原理 2.1 磁化率物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H ′ 与外磁场强度 H 之和称为该物质的磁感应强度 B ,即B = H + H′ (1)H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。
还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′ / H )高达10 4,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。
物质的磁化可用磁化强度I 来描述,H ′ =4πI 。
对于非铁磁性物质,I 与外磁场强度H 成正比I = KH (2)式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。
在化学中常用 单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是ρχ/m K = (3)ρχ/MK M = (4)式中,ρ和M 分别是物质的密度和摩尔质量。
由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3•g -1和cm 3•mol -1 。
磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 。
2.2 分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。
但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。
其M χ就等于反磁化率反χ,且M χ< 0。
在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。
在外磁场中,永久磁矩顺着外磁场方向排列, 产生顺磁性。
顺磁性物质的摩尔磁化率M χ是摩尔顺磁化率与摩尔反磁化率之和,即反顺χχχ+=M (5)通常顺χ比反χ大约1~3个数量级,所以这类物质总表现出顺磁性,其0>M χ。
磁化率的测定实验报告.doc

磁化率的测定实验报告.doc实验名称:磁化率的测定实验实验目的:了解磁化率的概念和测量方法,掌握测量原理及技术方法,并通过实验数据分析磁化率的影响因素。
实验仪器:磁场计、磁铁、铁氧体样品、毫伏表、恒流源、万用表。
实验原理:当物体受到外部磁场时,磁场的强度会对物体内部磁性物质的磁化度产生影响,磁化率是材料所具有的对磁场响应的能力,是表征物质磁性的基本物理量。
实验步骤:1.将铁氧体样品置于恒定的磁场中,调节磁场强度为 1.20 T,打开直流恒流源,通过样品产生一定的磁通量,记录相应的磁场强度值和电流值,测量样品长度为 10 cm,宽度为2.5 cm,厚度为 1.5 cm ,并记录样品的质量值为 200 g。
2.在 ch2 端接上毫伏表,将万用表的正负极分别接到直流电流源的输出端口和恒流源的输入端口,通过万用表测量工作电流的大小,依次将工作电流从 0.1A 逐渐增大至1.0 A,逐个记录电流值和相应的示数值并记录。
3.重复步骤 2,将磁场强度值调整为 0.80T,0.60T,0.40T,0.20T,并按照相同的操作测量数据并记录。
4. 根据测定结果计算磁化率的大小,并分析其影响因素。
实验结果与分析:1. 磁场强度和工作电流的关系:| B/T | I/A ||-----|-----||1.20 | 1.00||0.80 | 0.67||0.60 | 0.50||0.40 | 0.35||0.20 | 0.17|从上表可以发现,在磁场强度相同的情况下,随着工作电流的增大,示数值会逐渐增大,但是当工作电流过大时,示数值会出现下降现象,即在某一电流处磁场饱和,磁场增加无法改变示数值,因为当磁化度饱和时,样品的磁化率值已经达到最大值,磁场改变不会再使该数值发生变化。
2. 不同磁场下的磁化率大小:从上表可以看出,当磁场大小一定时,磁化率随着工作电流的增大而增大,因为随着磁场大小的增大,内部磁性物质的磁化度也会随之增大,样品的磁化率也相应增大。
磁化率的测定_实验报告

2012级有机化学实验设计性实验报告题目:磁化率的测定报告作者:专业名称:化学教育行政班级:学生学号:指导老师:实验时间:2014年10月14日提交时间:2014年10月23日一、实验目的1.掌握古埃(Gouy)法测定磁化率的原理和方法。
2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。
二、实验原理1、磁化率物质在外磁场作用下,物质会被磁化产生一附加磁场。
物质的磁感应强度等于(16.1)式中B0为外磁场的磁感应强度;B′为附加磁感应强度;H为外磁场强度;μ为真空磁导率,其数值等于4π×10-7N/A2。
物质的磁化可用磁化强度M来描述,M也是矢量,它与磁场强度成正比。
(16.2)式中Z为物质的体积磁化率。
在化学上常用质量磁化率χm或摩尔磁化率χM来表示物质的磁性质。
(16.3)(16.4)式中ρ、M分别是物质的密度和摩尔质量。
2)分子磁矩与磁化率物质的磁性与组成物质的原子,离子或分子的微观结构有关,当原子、离子或分子的两个自旋状态电子数不相等,即有未成对电子时,物质就具有永久磁矩。
由于热运动,永久磁矩的指向各个方向的机会相同,所以该磁矩的统计值等于零。
在外磁场作用下,具有永久磁矩的原子,离子或分子除了其永久磁矩会顺着外磁场的方向排列。
(其磁化方向与外磁场相同,磁化强度与外磁场强度成正比),表观为顺磁性外,还由于它内部的电子轨道运动有感应的磁矩,其方向与外磁场相反,表观为逆磁性,此类物质的摩尔磁化率χM是摩尔顺磁化率χ和摩尔逆磁顺的和。
化率χ逆对于顺磁性物质,χ顺>>∣χ逆∣,可作近似处理,χM=χ顺。
对于逆磁性,所以它的χM=χ逆。
物质,则只有χ逆第三种情况是物质被磁化的强度与外磁场强度不存在正比关系,而是随着外磁场强度的增加而剧烈增加,当外磁场消失后,它们的附加磁场,并不立即随之消失,这种物质称为铁磁性物质。
磁化率是物质的宏观性质,分子磁矩是物质的微观性质,用统计力学的方法可以得到摩尔顺磁化率χ和分子永久磁矩μm间的关系顺(16.6)式中N为阿佛加德罗常数;K为波尔兹曼常数;T为绝对温度。
磁化率的测定[实验报告]
![磁化率的测定[实验报告]](https://img.taocdn.com/s3/m/786d535227d3240c8447ef55.png)
磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。
物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。
化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。
χm的单位为m3·mol -1。
物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。
当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。
如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如Hg, Cu, Bi等。
它的χm称为反磁磁化率,用χ反表示,且χ反<0。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。
这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn, Cr,Pt等,表现出的顺磁磁化率用χ顺表示。
但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。
与反磁磁化率χ反之和。
因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0。
第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。
这种物质称为铁磁性物质。
对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。
磁化率测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。
物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。
化学上常用摩尔磁化率χm表示磁化程度,它与χ的关系为式中M、ρ分别为物质的摩尔质量与密度。
χm的单位为m3·mol -1。
物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm=0。
当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。
如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如Hg, Cu, Bi等。
它的χm称为反磁磁化率,用χ反表示,且χ反<0。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm≠0。
这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn,Cr, Pt等,表现出的顺磁磁化率用χ顺表示。
但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺。
与反磁磁化率χ反之和。
因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零,即χm>0。
第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。
这种物质称为铁磁性物质。
对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩µm关系可由居里-郎之万公式表示:式中L为阿伏加德罗常数(6.022 ×1023mol-1),、k为玻尔兹曼常数(1.3806×10-23J·K-1),µ0为真空磁导率(4π×10-7N·A-2,T为热力学温度。
磁化率的测定(实验报告)

磁化率的测定1.实验目的1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
1.2掌握古埃掌握古埃(Gouy)(Gouy)(Gouy)磁天平测定磁化率的原理和方法。
磁天平测定磁化率的原理和方法。
2.实验原理2.1摩尔磁化率和分子磁矩物质在外磁场H 0作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。
物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。
化学上常用摩尔磁化率χm 表示磁化程度,它与χ的关系为式中M 、ρ分别为物质的摩尔质量与密度。
χm 的单位为m 3·mol -1。
物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,µm =0。
当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。
如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如Hg ,Cu ,Bi 等。
它的χm 称为反磁磁化率,用χ反表示,且χ反<0。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩µm ≠0。
这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn ,Cr ,Pt 等,表现出的顺磁磁化率用χ顺表示。
但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm 是顺磁磁化率χ顺。
与反磁磁化率χ反之和。
因|χ顺|»|χ反|,所以对于顺磁性物质,可以认为χm =χ顺,其值大于零,即χm >0。
第三种,第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,物质被磁化的强度随着外磁场强度的增加而剧烈增强,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不而且在外磁场消失后其磁性并不消失。
磁化率的测定

实验一磁化率的测定【实验目的】①掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。
②通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并判断d 电子的排布情况和配位体场的强弱。
【实验原理】(1)物质的磁性物质在磁场中被磁化,在外磁场强度H的作用下产生附加磁场,该物质内部的磁感应强度B为:B=H+4πI=H+4πκH①式中,I称为体积磁化强度,物理意义是单位体积的磁矩。
式中的κ=I/H称为物质的体积磁化率。
I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。
χm=κM/ρ称为摩尔磁化率(M是物质的摩尔质量)。
这些数据都可以从实验测得,是宏观磁性物质。
在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。
不少文献中按宏观磁性物质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。
其中,顺磁性物质的χm>0而反磁性物质的χm <0。
(2)古埃法(Gouy)测定磁化率古埃法是一种简便的测量方法,主要用在顺磁测量。
简单的装置包括磁场和测力装置两部分。
调节电流大小,磁头间距离大小,可以控制磁场强度大小。
测力装置可以用分析天平。
为了测量不同温度的数据,要使用变温、恒温和测温装置。
样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。
样品在磁场中受到一个作用力。
d F=κHA d H式中,A表示圆柱玻璃管的截面积。
样品在空气中称量,必须考虑空气修正,即d F=(κ-κ0)Ha d Hκ0表示空气的体积磁化率,整个样品的受力是积分问题:F =∫(κ-κ0)HA d H =1/2(κ-κ0)A (H 2-H 02) ②因H 0<<H ,且忽略κ0,则F =1/2κAH 2 ③式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。
F =(△m 样-△m 空) g ④式中,△m 样为样品管加样品在有磁场和无磁场时的质量差;△m 空为空样品管在有场和无磁场时的质量差;g 为重力加速度。
磁化率的测定

磁化率的测定一.实验目的:用古埃磁天平测定硫酸亚铁、亚铁氰化钾和铁氰化钾的磁化率,并计算其不成对电子数。
二.实验原理:古埃(Gouy)磁天平的特点是结构简单,灵敏度高。
用古埃磁天平法测量物质的磁化率,从而可求得永久磁矩和未成对电子数,这对研究物质结构具有重要意义。
用古埃磁天平测定物质的磁化率时,将装有样品的圆柱形玻璃管悬挂在分析天平的一个臂上,使样品底部处于电磁铁两极的中心,即处于磁场强度最大的区域,样品的顶端离磁场中心较远,磁场强度很弱,整个样品处于一个非均匀的磁场中。
由于沿样品轴心方向z 存在一磁场梯度z H ∂∂,故样品沿z 方向受到磁力dF 的作用 dz zH AH dF ∂∂=κ 式中:κ——体积磁化率A ——柱形样品的截面积对顺磁性物质,作用力指向场强最大的方向,反磁性物质则指向场强最弱的方向中。
若不考虑样品管周围介质和的影响,积分得到作用在整个样品管上的力为:A H F 221κ= 当样品受到磁场的作用力时,天平的另一臂上加减砝码使之平衡,设ΔW 为施加磁场前后的质量差,则W g A H F ∆==221κ 式中:g 为重力加速度。
又样品质量hA m ρ=, ρ、h 为柱形样品管的密度和高度。
由于质量磁化率g x 和摩尔磁化率M x 的定义,ρκ=g x ρκM x M ⋅= 因此可得: 22mH Whg x g ∆=22mHWhgM x M ∆= 一般用已知磁化率的物质校正磁天平。
当待测样品和校正用样品在同一样品管中的填装高度相同并且在同一场强下进行测量,由可得待测样品的摩尔磁化率为:22101021,2,M m m W W W W x x g M ⋅⋅∆-∆∆-∆⋅= 0W ∆、2W ∆、1W ∆——分别为空样品管、待测样品、校正样品施加磁场前后的质量变化;2m 、1m ——待测样品和校正样品的质量;2M ——待测样品的摩尔质量。
三.仪器与试剂:古埃磁天平一套(由自动加码分析天平和磁场强度大于3000G 的永久磁铁组成)也可采用电磁铁;样品管(内径约6mm 的玻璃管)3支。
磁化率的测定实验报告

一、实验目的1. 理解并掌握古埃磁天平测定物质磁化率的实验原理。
2. 学会使用古埃磁天平进行实验操作,提高实验技能。
3. 通过测定不同物质的磁化率,了解其磁性质,为后续研究提供数据支持。
二、实验原理磁化率是指物质在外加磁场作用下,其磁化程度的大小。
磁化率分为顺磁化率和抗磁化率。
顺磁化率表示物质在外加磁场作用下,磁矩增强的程度;抗磁化率表示物质在外加磁场作用下,磁矩减弱的程度。
本实验采用古埃磁天平测定物质的磁化率。
古埃磁天平是一种利用磁力平衡原理的精密仪器,通过比较待测物质和已知磁化率物质的磁力,计算出待测物质的磁化率。
三、实验仪器与试剂1. 实验仪器:古埃磁天平、电子天平、磁铁、砝码、样品管、样品(如FeSO4·7H2O、CoCl2·6H2O等)。
2. 实验试剂:蒸馏水。
四、实验步骤1. 将样品管洗净、烘干,并用电子天平称量其质量,记录为m1。
2. 将样品管放入古埃磁天平的样品盘,调整天平平衡。
3. 将磁铁放在样品管上方,调整磁铁位置,使天平失去平衡。
4. 读取天平指针的读数,记录为m2。
5. 将样品管放入样品盘中,调整磁铁位置,使天平恢复平衡。
6. 读取天平指针的读数,记录为m3。
7. 重复步骤4-6,共进行3次实验,取平均值。
8. 计算样品的磁化率。
五、实验数据与结果1. 样品管质量:m1 = 5.0000 g2. 空管电流:I0 = 0.0150 A3. 装入样品后的电流:I1 = 0.0290 A4. 重复实验的电流值:I2 = 0.0290 A,I3 = 0.0290 A5. 样品磁化率:χ = (I1 - I0) / (m1 10^-3) = 0.0140六、实验结果分析根据实验结果,样品的磁化率为0.0140,说明该样品具有顺磁性。
结合样品的化学性质,可以推断其可能含有未成对电子。
七、实验总结通过本次实验,我们掌握了古埃磁天平测定物质磁化率的原理和操作方法,提高了实验技能。
磁化率实验报告

华南师范大学实验报告基础化学实验结构化学实验学生姓名:学号:年级班级:专业:实验项目:磁化率的测定实验时间:实验评分:一、【实验目的】1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。
2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。
二、【实验原理】(1)物质的磁性物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。
这时该物质内部的磁感应强度B为:B=H+4πI= H+4πκH (1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。
式中κ=I/H称为物质的体积磁化率。
I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。
χm=Κm/ρ称为摩尔磁化率。
这些数据是宏观磁化率。
在顺磁、反磁性研究中常用到χ和χm,帖磁性研究中常用到I、σ。
不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反磁性物质几类。
其中,χm<0,这类物质称为反磁性物质;χm>0,这类物质称为顺磁性物质。
(2)古埃法(Gouy)测定磁化率古埃法是一种简便的测量方法,主要用在顺磁测量。
简单的装置包括磁场和测力装置两部分。
调节电流大小,磁头间距离大小,可以控制磁场强度大小。
测力装置可以用分析天平。
为了测量不同温度的数据,要使用变温、恒温和测温装置。
样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。
样品在磁场中受到一个作用力。
df=κHAdH式中,A表示圆柱玻璃管的截面积。
样品在空气中称重,必须考虑空气修正,即dF=(κ-κ)HAdHκ0表示空气的体积磁化率,整个样品的受力是积分问题:F=)()(21d )(202000H H A H HA HH --=-⎰κκκκ (2) 因H 0<<H,且可忽略κ0,则F=221AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。
磁化率的测定实验报告

磁化率的测定实验报告一、实验目的。
本实验旨在通过测定不同材料的磁化率,探究材料在外加磁场下的磁化特性,并通过实验数据的分析,掌握磁化率的测定方法。
二、实验原理。
磁化率是描述材料在外界磁场作用下磁化程度的物理量,通常用符号χ表示。
在外界磁场作用下,材料会产生磁化,其磁化强度与外界磁场强度成正比,即M=χH,其中M为材料的磁化强度,H为外界磁场强度。
根据这一关系,可以通过测定材料在不同外界磁场下的磁化强度,从而计算出磁化率。
三、实验仪器与材料。
1. 电磁铁。
2. 磁场强度计。
3. 不同材料样品(如铁、铜、铝等)。
4. 电源。
5. 实验台。
四、实验步骤。
1. 将电磁铁置于实验台上,并接通电源,调节电流大小,使得电磁铁产生不同的磁场强度。
2. 将磁场强度计放置在电磁铁产生的磁场中,测定不同磁场强度下的磁场强度值。
3. 将不同材料样品放置在电磁铁产生的磁场中,测定不同磁场强度下材料的磁化强度。
4. 根据实验数据,计算出不同材料的磁化率。
五、实验数据与分析。
通过实验测得不同材料在不同磁场强度下的磁化强度数据,利用公式M=χH,可以计算出不同材料的磁化率。
通过数据分析,可以发现不同材料的磁化率大小不同,反映了材料在外界磁场下的磁化特性。
例如,铁具有较大的磁化率,表明其在外界磁场下容易被磁化,而铜、铝等非磁性材料的磁化率较小。
六、实验结论。
通过本实验的测定与分析,我们掌握了磁化率的测定方法,并了解了不同材料在外界磁场下的磁化特性。
磁化率的大小反映了材料对外界磁场的响应程度,对于材料的选用与应用具有一定的指导意义。
七、实验总结。
本实验通过测定不同材料的磁化率,深入了解了材料在外界磁场下的磁化特性,为进一步研究材料的磁性质提供了重要的实验基础。
同时,实验过程中我们也发现了一些问题,如在测定过程中需注意排除外界干扰因素,提高测量精度等。
八、参考文献。
1. 王明. 固体物理学. 北京,高等教育出版社,2008.2. 张三,李四. 材料科学导论. 上海,上海科学技术出版社,2010.九、致谢。
设计实验 磁化率的测定

设计实验:磁化率测定武汉大学 化学与分子科学学院一、实验目的1. 掌握古埃 (Gouy)磁天平测定磁化率的原理和方法。
2. 探究样品高度、磁场强度对磁化率的测定造成的影响。
二、实验原理1. 摩尔磁化率和分子磁矩物质在外磁场作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:H'=4πxH (1)H'为附加磁场强度,H 外磁场强度,x 为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度.化学上常用摩尔磁化率 χm 表示磁化程度,它与χ的关系为X m = xM/ρ (2)式中M 、ρ 分别为物质的摩尔质量与密度.X m 的单位为m 3mol -1 . 物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩μm = 0.当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩.如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反.这种物质称为反磁性物质,如Hg 、Cu 、Bi 等.称为反磁磁化率,用X 反表示,且X<0.第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩μm ≠ 0.这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn 、Cr 、Pt 等,表现出的顺磁磁化率用 X 顺表示.第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失.这种物质称为铁磁性物质.对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ m 关系可由居里-郎之万公式表示:X 顺=Lμ0μm 2 /(3kT) (3)式中L 为阿伏加德罗常数(6.022×1023mol -1)k 为玻尔兹曼常数(1.380 6×10−23J •K −1)μ0为真空磁导率(4 π×107N •A 2),T 为热力学温度.式(3)可作为由实验测定磁化率来研究物质内部结构的依据.分子磁矩μm 由分子内未配对电子数n 决定,其关系如下:μm =μB [ n (n+2)]1/2 (4)式中μB 为玻尔磁子,是磁矩的自然单位.μB = 9.274 ×1024 J •T -1(T 为磁感应强度的单位,即特斯拉).求得n 值后可以进一步判断有关络合物分子的配键类型.例如,Fe2+离子在自由离子状态下的外层电子结构为3d 64s 04p 0.如以它作为中心离子与6个H 2O 配位体形成[Fe (H 2O)6] 2+络离子,是电价络合物.其中Fe 2+离子仍然保持原自由离子状态下的电子层结构,此时n = 4.见图所示:Fe 2+在自由离子状态下的外层电子结构如果Fe 2+离子与6个CN − 离子配位体形成[Fe (CN)6]4−络离子,则是共价络合物.这时其中Fe2+离子的外电子层结构发生变化,n = 0.见图所示:Fe2+外层电子结构的重排显然,其中6个空轨道形成d 2sp 3的6个杂化轨道,它们能接受6个CN −-1离子中的6对孤对电子,形成共价配键. 2. 摩尔磁化率的测定本实验用古埃磁天平测定物质的摩尔磁化率 χm ,测定原理如图所示.一个截面积为A 的样品管,装入高度为h 、质量为m 的样品后,放入非均匀磁场中.样品管底部位于磁场强度最大之处,即磁极中心线上,此处磁场强度为 H .样品最高处磁场强度为零.前已述及,对于顺磁性物质,此时产生的附加磁场与原磁场同向,即物质内磁场强度增大,在磁场中受到吸引力.设 χ0为空气的体积磁化率,可以证明,样品管内样品受到的力为:F=0.5*mX m H 2μ0/M*h (5)在磁天平法中利用精度为0.1 mg 的电子天平间接测量F 值.设Δm 0为空样品管在有磁场和无磁场时的称量值的变化,Δm 为装样品后在有磁场和无磁场时的称量值的变化,则()B 2m 0ghM m 0m 2X m ÷÷∆-∆⨯=μ (6)磁场强度H 可由特斯拉计或CT5高斯计测量.应该注意,特斯拉计测量的实际上是磁感应强度B ,单位为T (特斯拉),1T=104高斯.磁场强度H 可由关系式计算得到.三、仪器与试剂古埃磁天平一台(磁天平,电子天平,励磁电源); 平底软质玻璃样品管一支;装样品工具一套(包括研钵、牛角匙、小漏斗、竹针、棉签、玻璃棒等); 刻度尺一支;摩尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O(分析纯); 铁氰化钾K 3Fe(CN)6(分析纯)。
磁化率测定的实验报告

磁化率测定的实验报告一、实验目的1、掌握古埃(Gouy)法测定磁化率的原理和方法。
2、测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子的配键类型。
二、实验原理1、磁化率物质在外磁场作用下被磁化的程度用磁化率来表示。
磁化率是一个无量纲的量,它反映了物质被磁化的难易程度。
物质的磁化率可以分为顺磁性、抗磁性和铁磁性三种类型。
顺磁性物质的分子中存在未成对电子,这些电子在外磁场作用下会产生顺磁矩,使物质表现出顺磁性。
顺磁性物质的磁化率为正值,且数值较小。
抗磁性物质的分子中不存在未成对电子,在外磁场作用下会产生与外磁场方向相反的诱导磁矩,使物质表现出抗磁性。
抗磁性物质的磁化率为负值,且数值很小。
铁磁性物质在较强的外磁场作用下能被强烈磁化,其磁化率很大,并且与外磁场强度有关。
2、古埃法测定磁化率本实验采用古埃法测定物质的磁化率。
将样品装在一个圆柱形的玻璃管中,悬挂在两磁极之间,使样品管的轴线与磁场方向平行。
在不均匀磁场中,样品受到一个作用力,这个作用力可以通过测量样品管在磁场中的重量变化来确定。
设样品管的横截面积为 S,样品的高度为 l,样品的质量为 m,磁场强度为 H,磁场梯度为 dH/dz,则样品所受到的作用力为:F =(m/ρ)·(dM/dz)其中,ρ 为样品的密度,M 为样品的磁化强度。
磁化强度 M 与磁化率χ 之间的关系为:M =χH将 M =χH 代入上式,可得:F =(m/ρ)·χ·(dH/dz)当样品管在磁场中时,会受到一个向上的力,使得样品管的重量减轻。
测量样品管在有磁场和无磁场时的重量变化ΔW,即可计算出磁化率χ。
三、实验仪器和试剂1、仪器古埃磁天平(包括磁场、磁极、样品管支架、电光天平)、软质玻璃样品管、研钵、角匙、小漏斗。
2、试剂莫尔氏盐((NH₄)₂SO₄·FeSO₄·6H₂O),分析纯;FeSO₄·7H₂O,分析纯;K₄Fe(CN)₆·3H₂O,分析纯。
磁化率的测定

磁化率的测定1. 实验目的(1)掌握古埃(Gouy)法测定磁化率的原理和方法;(2)测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。
2.实验原理2.1 磁化率物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H ′与外磁场强度H 之和称为该物质的磁感应强度B ,即B = H + H ′ (1)H ′与H 方向相同的叫顺磁性物质,相反的叫反磁性物质。
还有一类物质如铁、钴、镍及其合金,H ′比H 大得多(H ′/H )高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。
物质的磁化可用磁化强度I 来描述,H ′=4πI 。
对于非铁磁性物质,I 与外磁场强度H 成正比I = KH (2)式中,K 为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。
在化学中常用单位质量磁化率m χ或摩尔磁化率M χ表示物质的磁性质,它的定义是χm = K/ρ (3) χM = MK/ρ (4)式中,ρ和M 分别是物质的密度和摩尔质量。
由于K 是无量纲的量,所以m χ和M χ的单位分别是cm 3·g -1和cm 3·mol -1。
磁感应强度SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G 2.2 分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。
但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会产生一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。
其A 就等于反磁化率B ,且C 。
在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。
在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。
顺磁性物质的摩尔磁化率A 是摩尔顺磁化率与摩尔反磁化率之和,即M χ= χ顺+χ反 (5)通常χ顺比χ反大约1-3个数量级,所以这类物质总是表现出顺磁性,其M χ >0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 磁化率测定
一 实验目的
1. 测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。
2. 掌握磁天平测定磁化率的原理和方法。
二 实验原理
1.测定磁化率
磁天平如图1所示。
将样品管悬挂在天平上,样品管底部处于磁场强度最大的区域(H ),管顶端则位于场强最弱(甚至为零)的区域(H 0)。
整个样品管处于不均匀磁场中。
图1 古埃磁天平示意图
1-磁铁;2-样品管
在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。
则
()2M 2WH
ghM W W χ空管样品空管∆-∆=+ 式中,M χ为摩尔磁化率(m 3·mol −1);ΔW 空管+样品为样品管加样品后在施加磁场前后的质量差(克),即)(H W W 空管空管=Δ)(0空管W -;ΔW 空管为空样品管在施加磁场前后的质量差(克),即
)()(0Δ样品+空管样品+空管样品+空管W H W W -=;g 为重力加速度(9.8 N·
kg −1),即;h 为样品高度(m);M 为样品的摩尔质量(kg·mol −1);W 为样品的质量(克)。
磁场强度H 可用“特斯拉计”测量,或用已知磁化率的标准物质进行间接测量。
例如用莫尔氏盐来标定磁场强度,莫尔氏盐的摩尔磁化率B M χ与热力学温度T 的关系为:
)(1041
9500139--⋅⨯⨯⨯+=mol m M T B M πχ 式中,M 为莫尔氏盐的摩尔质量(kg·mol −1);T 为热力学温度(K)。
2. 分子磁矩与摩尔磁化率
物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩,即0=m μ,n=0。
但由于内部电子的轨道运动,在外磁场作用下会产生拉摩进动,感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。
其χM 就等于反磁化率χ反,且χM <0。
在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。
在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。
B M m βT χμ•≈7797.
式中,T为热力学温度(K);μm为分子永久磁矩;n为分子内未配对电子数;β
B
为玻尔磁子,是磁矩的自然单位(9.274 ×10−24 J·T-1)。
而顺磁性分子磁矩
m
μ可由分子内未配对电子数n 决定,其关系如下:
)
(2
+
=n
n
β
μ
B
m
求得n值后可以进一步判断有关络合物分子的配键类型。
三试剂与仪器
试剂:莫尔氏盐(NH
4)
2
SO
4
·FeSO
4
·6H
2
O,亚铁氰化钾K4Fe(CN)6·3H2O,硫酸亚铁(FeSO4·7H2O),
五水硫酸铜(CuSO4·5H2O )。
仪器:磁天平(包括磁极、励磁电源、电子天平等),玻璃样品管,装样品工具(包括研钵、角匙、小漏斗等)。
四实验步骤
1. 磁极中心磁场强度的测定
(1) 将特斯拉计探头放在磁铁的中心架上,取下保护套,未通电源时,将电流和特斯拉计调到最小,把探头平面垂直于磁场两极中心。
接通电源,调节“电流调节器”使电流增大至特斯拉计上示值为0.35T,记录此时电流值I。
以后每次测量都要控制在同一电流,使磁场强度相同。
在关闭电源前应先将特斯拉计示值调为零。
(2) 用莫尔氏盐标定取一支清洁干燥的空样品管悬挂在磁天平上,样品管应与磁极中心线平齐,注意样品管不要与磁极相触。
准确称取空管的质量W空管(0),然后接通电源,调节电流为I,使特斯拉计上示值为0.35T,记录加磁场后空管的称量值W空管(0.35T),继续稍微增加电流,然后又减小电流到I,称量使特斯拉计上示值为0.35T时空管的称量值W空管(0.35T),将励磁电流降为零时,断开电源开关,再称量一次空样品管质量W空管(0),取平均值求得无磁场时空管质量W空管(0)和有磁场时空管质量W空管(0.35T)。
取下样品管,将研钵研细的莫尔氏盐通过漏斗装入样品管,边装边在橡皮垫上碰击,使样品均匀填实,直至样品高度为14~15cm为宜,继续碰击至样品高度不变为止,用直尺测量样品高度h。
按前述方法称取W管+样品(0)和W管+样品(0.35T),测量完毕将莫尔氏盐倒回试剂瓶中。
2. 测定未知样品的摩尔磁化率χM
同法分别测定FeSO4·7H2O,CuSO4·5H2O和K4Fe(CN)6·3H2O的W空管(0)、W空管(0.35T)、W 空管+样品
(0)和W空管+样品(0.35T)。
五数据处理
1. 根据实验数据计算外加磁场强度H,并计算三个样品的摩尔磁化率χM、永久磁矩μm和未配对电子数n。
2. 根据μm和n讨论络合物中心离子最外层电子结构和配键类型。
六思考题
1. 为什么可用莫尔氏盐来标定磁场强度?
2. 样品的填充高度和密度以及在磁场中的位置有何要求?如果样品填充高度不够,对测量结果有何影响?。