点线面位置关系例题与练习(含答案)

合集下载

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题

高三数学点线面的位置关系试题1.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是()A.①③B.②④C.①④D.②③【答案】C【解析】对于①,由于两条平行线中的一条直线与一个平面垂直,则另一条直线也与该平面垂直,因此①是正确的;对于②,分别位于两个平行平面内的两条直线必没有公共点,但它们不一定平行,因此②是错误的;对于③,直线n可能位于平面α内,此时结论显然不成立,因此③是错误的;对于④,由m⊥α且α∥β得m⊥β,又m∥n,则n⊥β,因此④是正确的.故选C.2.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则B.若,,则C.若,,则D.若,,则【答案】B【解析】若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.【考点】空间直线和平面的位置关系.3.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:(1)EF//平面MNCB;(2)平面MAC平面BND.【答案】(1) (2)见解析【解析】(1)取的中点,连接,欲证平面,只要证只要证四边形是平行四边形即可,事实上,由于分别是的中点,易知另一方面又有 ,所以FG与ME平行且相等,四边形是平行四边形,问题得证.(2) 连接、,欲证平面,只要证平面,即证与平面内的两条相交直线、都垂直;由菱形易知;另外,由平面平面及矩形易证平面,进而有,所以问题得证.试题解析:证明:(1)取的中点,连接,因为且,又因为、分别为、的中点,且, 2分所以与平行且相等,所以四边形是平行四边形,所以, 4分又平面,平面,所以平面 6分(2)连接、,因为四边形是矩形,所以,又因为平面平面所以平面 8分所以因为四边形是菱形,所以因为,所以平面 10分又因为平面所以平面 12分【考点】1、直线与平面平行的判定;2、直线与平面及平面与平面垂直的判定与性质.4.已知三棱柱的侧棱在下底面的射影与平行,若与底面所成角为,且,则的余弦值为()A.B.C.D.【答案】C【解析】由三余弦公式得.又,所以.【考点】空间几何体及空间的角.5.设a、b为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且b⊥α,则a∥b;③若a∥α且a∥β,则α∥β;④若a⊥α且a⊥β,则α∥β.其中为真命题的是________.(填序号)【答案】②④【解析】①错,a∥α,b∥α,直线a与b可能相交、平行或异面;③错,若α∩β=l,a∥l,aα,aβ,则a∥α,a∥β.6.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.【答案】2【解析】若α、β换为直线a、b,则命题化为“a∥b,且a⊥γb⊥γ”,此命题为真命题;若α、γ换为直线a、b,则命题化为“a∥β,且a⊥b b⊥β”,此命题为假命题;若β、γ换为直线a、b,则命题化为“a∥α,且b⊥αa⊥b”,此命题为真命题,故真命题共2个.7.如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?【答案】(1)见解析(2)当BM=1时【解析】(1)证明:连结CE交AD于O,连结OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.OF平面ADF,C1E平面ADF,所以C1E∥平面ADF.(2)解:当BM=1时,平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,由于B1B⊥平面ABC,BB1平面B1BCC1,所以平面B1BCC1⊥平面ABC.由于AB=AC,D是BC中点,所以AD⊥BC.又平面B1BCC1∩平面ABC=BC,所以AD⊥平面B1BCC1.而CM平面B1BCC1,于是AD⊥CM.因为BM=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,所以CM⊥DF.DF与AD相交,所以CM⊥平面ADF.CM⊥平面CAM,所以平面CAM⊥平面ADF.当BM=1时,平面CAM⊥平面ADF.8.如图PA⊥圆O所在平面,AB是圆O的直径,C是圆O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的是________.(填序号)【答案】①②④【解析】①AE平面PAC,BC⊥AC,BC⊥PA AE⊥BC,故①正确,②AE⊥PB,AF⊥PB,EF⊥PB,故②正确,③若AF⊥BC AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误,由①可知④正确.9.如图,PA⊥正方形ABCD,下列结论中不正确的是()A.PB⊥CB B.PD⊥CDC.PD⊥BD D.PA⊥BD【答案】C【解析】由CB⊥BA,CB⊥PA,PA∩BA=A,知CB⊥平面PAB,故CB⊥PB,即A正确;同理B正确;由条件易知D正确.10.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.【答案】(1)见解析(2)【解析】(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(2)∵VE-BCC1=VABC-A1B1C1=VA1-BCC1,∴BE=BA1,即A1E=A1B.连接OB,在Rt△A1OB中,A1O⊥OB,A1O=,BO=1,故A1B=2,则A1E的长度为.11.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列为真命题的是()A.若α⊥β,m⊥α,则m∥βB.若α⊥γ,β⊥γ,则α∥βC.若m⊥α,n∥m,则n⊥αD.若m∥α,n∥α,则m∥n【答案】C【解析】举反例,对于A,可能mβ;对于B,α,β可能相交;对于D,m,n可能相交或异面.12.设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:①若m⊥n,m⊥α,n⊄α则n∥α;②若α⊥β,则α∩β=m,n⊂α,n⊥m,则n⊥β;③若m⊥n,m∥α,n∥β,则α⊥β;④若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中,所有真命题的序号是________.【答案】①②【解析】③错误,α,β相交或平行;④错误,n与m可以垂直,不妨令n=α∩β,则在β内存在m⊥n.13.已知α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.其中是平面α∥平面β的充分条件的为________(填上所有符号要求的序号).【答案】①④【解析】①正确,此时必有α∥β;②错误,因为此时两平面平行或相交均可;③错误,当两直线a,b在两平面内分别与两平面的交线平行即可;④正确,由于α∥β,经过直线α的平面与平面β交于a′,则a∥a′,即a′∥α,又b∥α,因为a,b为异面直线,故a′,b为相交直线,由面面平行的判定定理可知α∥β,综上可知①④是平面α∥平面β的充分条件.14.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.上述命题中,所有真命题的序号是________.【答案】④【解析】若a∥α,a∥β,则α∥β或α与β相交,即命题①不正确;若a⊥α,a⊥β,则α∥β,即命题②不正确;若a∥α,b∥α,则a∥b或a与b相交或a与b异面,即命题③不正确;若a⊥α,b⊥α,则a∥b,即命题④正确,综上可得真命题的序号为④.15.正方形与梯形所在平面互相垂直,,,点在线段上且不与重合。

07点线面的位置关系

07点线面的位置关系

第七讲 立体几何—点线面的位置关系【知识要点归纳】1. 平面图形知识总结2. 立体图形总结3. 总结线线的位置关系4. 总结线面的位置关系5. 总结面面的位置关系【经典例题】例1:(07广东高考)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )例2:请根据三视图,还原图形,并求体积 (1)(09山东高考改)侧(左)视图俯视图(2)(07山东高考改)(3)(07宁夏高考改)例3:某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( )A. 22B. 32C. 4D. 52例4:在长方体ABCD —A 1B 1C 1D 1中,哪些棱与AA 1平行?异面?垂直?例5:在长方体ABCD —A 1B 1C 1D 1的中,哪些面与AB 平行?垂直?正视图侧视图俯视图例6:判断下列说法是否正确?(1)若,m n α⊥∥β,αβ⊥,则m n ⊥(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行 (3)垂直于同一直线的两条直线相互平行 (4)若αα//,//,n n m m 则⊂(5)如果m n m ,,αα⊄⊂、α//,n n 那么是异面直线 (6)若平面α内有不共线三点到平面β的距离相等,则βα// (7)若βαγβγα//,,则⊥⊥(8)若m 、n 与α所成的角相等,则n ∥m例7:已知一个平面α,那么对于空间内的任意一条直线a ,在平面α内一定存在一条直线b ,使得a 与b ( )A. 平行B. 相交C. 异面D. 垂直【课堂练习】1.将装有水的长方体的水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽的水形成的几何体是( ) A.棱柱 B.棱台 C.棱柱与棱锥组合体 D.不能确定2.若P 是两条异面直线,l m 外的任意一点,则( ) A .过点P 有且仅有一条直线与,l m 都平行 B .过点P 有且仅有一条直线与,l m 都垂直C .过点P 有且仅有一条直线与,l m 都相交D .过点P 有且仅有一条直线与,l m 都异面3.(09浙江理)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .4.(09宁夏海南理)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )A .B .C .D .5.长方体1111ABCD A B C D −中,5,3,41===BB BC AB ,一只蚂蚁从点A 出发沿表面爬行到点1C ,求蚂蚁爬行的最短路线的长.答案:1.A 2.B 3.18 4. 5. 74。

高中数学必修2 第二章 点线面位置关系(A卷)

高中数学必修2 第二章 点线面位置关系(A卷)

高中数学必修2 第二章点线面位置关系(A卷)试卷一、选择题(共20题;共88分)1.若三个平面两两相交,则它们的交线条数是()A.1B.2C.1或3D.3【答案】C【考点】平面的公理及应用,点线面关系【解析】三个平面两两相交,类似于三条直线两两相交,它们的交线有1条或3条.2.如图所示,平面α∩β=l,A、B∈α,C∈β,且,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M【答案】D【考点】平面概念及表示,平面的公理及应用【解析】∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.3.若a,b是异面直线,且a∥平面α,则b与α的位置关系是()A.b∥αB.相交C.b⊂αD.以上三种情况都有可能【答案】D【考点】异面直线,点线面关系【解析】如图所示,三种情况都有可能,故选D.4.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D【答案】D【考点】线线平行的判定与性质,线面平行的判定与性质【解析】∵A1B1∥DC,A1B1=DC,∴四边形A1B1CD是平行四边形,∴A1D∥B1C,∵A1D⊄平面AB1C,B1C⊂平面AB1C,∴A1D∥平面AB1C,故选D.5.下列命题中正确的是()A.一个平面内两条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内的无数多条直线都平行于另一平面,那么这两个平面平行【答案】B【考点】线线平行的判定与性质,面面平行的判定与性质【解析】如果一个平面内任何一条直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,所以B正确.6.已知m,n是两条直线,α,β是两个平面,有以下命题:①m,n相交且都在平面α,β外,mα,mβ,nα,nβ,则αβ;②若mα,mβ,则αβ;③若mα,nβ,m n,则αβ.其中正确命题的个数是()A.0B.1C.2D.3【答案】B【考点】面面平行的判定与性质【解析】设m∩n=P,记m与n确定的平面为γ.由题意知:γα,γβ,则αβ.故①正确.②、③均错误.7.在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a b的是()A.a⊂α,b⊂β,αβB.aα,b⊂αC.a⊥α,b⊥αD.a⊥α,b⊂α【答案】C【考点】垂直关系综合【解析】对于A,若a⊂α,b⊂β,αβ,则a与b没有公共点,即a与b平行或异面;对于B,若aα,b⊂α,则a与b没有公共点,即a与b平行或异面;对于C,若a⊥α,b⊥α,由线面垂直的性质定理,可得a b;对于D,若a⊥α,b⊂α,则由线面垂直的定义可得a⊥b,故选C.8.空间四边形ABCD的四边相等,则它的两条对角线AC,BD的关系是()A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交【答案】C【考点】线面垂直的判定与性质【解析】取BD的中点O,连接AO,CO,则BD⊥AO,BD⊥CO,∴BD⊥平面AOC,∴BD⊥AC,又BD,AC异面,故选C.9.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部【答案】A【考点】线面垂直的判定与性质,面面垂直的判定与性质【解析】在四面体ABCD中,已知AB⊥AC,BD⊥AC,AB∩BD=B,∴AC⊥平面ABD.又∵AC⊂平面ABC,∴平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,D在面ABC内的射影H必在AB上.故选A.10.已知直线a,b与平面α,β,γ,能使α⊥β的条件是()A.α⊥γ,β⊥γB.α∩β=a,b⊥a,b⊂βC.aβ,aαD.a⊥β,aα【答案】D【考点】面面垂直的判定与性质,垂直关系综合【解析】α⊥γ,β⊥γ⇒α与β相交或平行,故A不正确;∵α∩β=a,b⊥a,b⊂β,∴b不一定垂直于α,∴α不一定垂直于β,故B不正确;aβ,aα⇒α与β相交或平行,故C不正确;∵a⊥β,aα,∴α中一定有一条直线垂直于β,∴α⊥β,故D正确.11.如图,在正方形ABCD中,E、F分别是BC、CD的中点,AC∩EF=G.现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体P-AEF中必有()A.AP⊥平面PEFB.AG⊥平面PEFC.EP⊥平面AEFD.PG⊥平面AEF【答案】A【考点】线面垂直的判定与性质【解析】如图所示,∵AP⊥PE,AP⊥PF,PE∩PF=P.∴AP⊥平面PEF.故选A.12.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E【答案】C【考点】线线垂直的判定与性质,线面垂直的判定与性质【解析】由已知AC=AB,E为BC的中点,得AE⊥BC.又∵BC∥B1C1,∴AE⊥B1C1,C正确.13.若两条异面直线所成的角为θ,则θ的取值范围是()A.0°<θ<90°B.0°<θ≤90°C.0°≤θ<90°D.0°≤θ≤90°【答案】B【考点】异面直线所成的角【解析】异面直线是空间中不在任一平面内的直线.设a,b是空间中两条异面直线,在空间任取一点O,过点O作直线a′∥a,b′∥b,则a′,b′所成的锐角或直角θ即为异面直线a,b所成的角,其范围为0°<θ≤90°.14.有下列四个命题:①过三点确定一个平面;②矩形是平面图形;③三条直线两两相交则确定一个平面;④两个相交平面把空间分成四个区域.其中错误命题的序号是()A.①和②B.①和③C.②和④D.②和③【答案】B【考点】平面概念及表示,平面的公理及应用【解析】由于过不共面的三点才能确定一个平面,故①不对;矩形的两对边平行可以确定一个平面,故矩形是平面图形,②正确;由于三条直线两两相交包括三线过一点,故三条直线两两相交则确定一个平面不正确,③不对;两个相交平面把空间分为四个区域是正确的命题,故④正确.综上,错误命题的序号是①③.故选B.15.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是()①②③④⑤⑥.A.④⑥B.②③⑥C.②③⑤⑥D.②③【答案】C【考点】线线平行的判定与性质,线面平行的判定与性质,面面平行的判定与性质,平行关系综合【解析】由公理4及平行平面的传递性知①④正确,举反例知②③⑤⑥不正确;②中a,b可以相交,还可以异面;③中α,β可以相交;⑤中a可以在α内;⑥中a可以在α内.16.如图,在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,,求AD与BC 所成角的大小( )A.45°B.30°C.60°D.90°【答案】C【考点】异面直线所成的角【解析】如图,取BD的中点G,连接GE,GF.∵BE=EA,BG=GD,∴GE AD,,∵DF=FC,DG=GB,∴GF BC,∴∠EGF(或其补交)是异面直线AD与BC所成的角.在△GEF中,GE=1,GF=1,(如图),取EF的中点O,连接GO,则,∴∴∴,∴异面直线AD与BC所成的角是.17.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA =AB,SB=BC,求二面角E-BD-C的大小()A.45°B.30°C.60°D.90°【答案】C【考点】二面角【解析】∵E为SC的中点,且SB=BC.∴BE⊥SC,又DE⊥SC,BE∩DE=E.∴SC⊥平面BDE.∴BD⊥SC.又SA⊥平面ABC,可得SA⊥BD又SC∩SA=S,∴BD⊥平面SAC,从而BD⊥AC,BD⊥DE.∴∠EDC为二面角E-BD-C的平面角.设SA=AB=1.在△ABC中,AB⊥BC,∴SB=BC=,AC=,∴SC=2.∵在Rt△SAC中,∠DCS=30°,∴∠EDC=60°,即二面角E-BD-C的大小为60°.18.已知四面体A-BCD的棱长都相等,Q是AD的中点,则CQ与平面DBC所成的角的正弦值是()A.B.C.D.【答案】C【考点】直线与平面所成的角【解析】过点A作AO⊥平面BCD,连接OD,OB,OC,可知O是△BCD的中心.作QP⊥OD,如图所示.∵QP∥AO,∴QP⊥平面BCD.连接CP,则∠QCP即为所求的角.设四面体的棱长为a,∵在正△ACD中,Q是AD的中点,∴,∵QP∥AO,Q是AD的中点,∴,即.19.如图,已知E,F分别是菱形ABCD中边BC,CD的中点,EF与AC交于点O,点P在平面ABCD之外,M是线段PA上一动点,若PC平面MEF,试求PM∶MA的值()A.B.C.D.【答案】B【考点】线面平行的判定与性质【解析】如图,连接BD交AC于点O1,连接OM.∵PC平面MEF,平面PAC∩平面MEF=OM,∴PC OM,∴.在菱形ABCD中,∵E,F分别是边BC,CD的中点,∴,又,∴,∴.20.如果二面角α-l-β的平面角是锐角,点P到α,β和棱l的距离分别为、4和,则二面角α-l-β的大小是()A.15°B.75°C.45°D.75°或15°【答案】D【考点】空间距离,二面角【解析】如图1是点P在二面角α-l-β的内部,图2是点P在二面角α-l-β的外部.∵PA⊥α,∴PA⊥l.∵AC⊥l,∴l⊥平面PAC.同理,l⊥平面PBC.而平面PAC∩平面PBC=PC,∴平面PAC与平面PBC应重合,即A、C、B、P在同一平面内,则∠ACB是二面角α-l-β的平面角.在Rt△APC中,,∴∠ACP=30°.在Rt△BPC中,,∴∠BCP=45°.故∠ACB=30°+45°=75°或∠ACB=45°-30°=15°.即二面角α-l-β的大小为75°或15°.二、解答题(共1题;共12分)21.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD =2,PA=2.求:(1).三角形PCD的面积( )A.B.C.D.【答案】A【考点】垂直关系综合【解析】因为PA⊥底面ABCD,所以PA⊥CD.又AD⊥CD,所以CD⊥平面PAD,从而CD⊥PD.因为,CD=2,所以三角形PCD的面积为.(2).异面直线BC与AE所成的角的大小()A.45°B.30°C.60°D.90°【答案】A【考点】异面直线所成的角【解析】如图,取PB中点F,连接EF,AF,则EF BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.在△AEF中,由EF=,AF=,AE=2知△AEF是等腰直角三角形,所以∠AEF=45°.因此,异面直线BC与AE所成的角的大小是45°.。

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

高中数学必修2第二章点、线、面的位置关系知识点+习题+答案

D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。

叫做垂足。

的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。

符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。

符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。

所成的角。

2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。

三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。

空间点、直线、平面之间的位置关系(习题及答案)

空间点、直线、平面之间的位置关系(习题及答案)

空间点、直线、平面之间的位置关系(习题)1.判断正误,正确的打“√”,错误的打“×”(1)有三个公共点的两个平面必重合.()(2)空间中两条平行直线确定一个平面.()(3)空间两两相交的三条直线确定一个平面.()(4)三角形是平面图形.()(5)平行四边形、梯形、四边形都是平面图形.()(6)两组对边分别相等的四边形是平行四边形.()(7)垂直于同一直线的两直线平行.()(8)一条直线和两平行线中的一条相交,也必和另一条相交.()2.已知α,β为平面,A,B,M,N 为点,a 为直线,下列理解错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂β B.M∈α,M∈β,N∈α,N∈β⇒α∩β= 直线MN C.M∈α,M∈β,α∩β=l⇒M∈l D.A,B,M∈α,A,B,M∈β,且A,B,M 不共线⇒α,β 重合3.l1,l2,l3 是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3 C.l1∥l2∥l3⇒l1,l2,l3 共面D.l1,l2,l3 共点⇒l1,l2,l3 共面4.已知a,b,c 为三条不重合的直线,α,β为两个不重合的平面,有下列命题:①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.其中正确的是()A.①②B.①C.②④D.③④15.如图,在空间四边形ABCD 中,AB,BC,CD 的中点分别是P,Q,R,且PQ=2,QR=所成的角为(),PR=3,则异面直线AC 和BD A.90°B.60°C.45°D.30°第5 题图第6 题图6.如图,正方体ABCD-A1B1C1D1 两个面上成异面关系的两条对角线所成的角为()A.60°B.90°C.60°或90°D.30°7.如图,在正方体ABCD-A1B1C1D1 中,AA1=AB=4,AD=2,E,F,G 分别是DD1,AB,CC1 的中点,则直线A1E,FG 所夹的角为.8.将正方体的纸盒展开(如图),则直线AB,CD 在原正方体中所成的角为.59.如图,在空间四边形ABCD 中,E,F,G,H 分别为AB,BC,CD,DA 的中点,若AC=BD=a,且AC 与BD 所成的角为60°,则四边形EFGH 的面积是.10.如图,在正方体ABCD-A1B1C1D1 中,E,F 分别是AA1,CC1的中点,求证:四边形BFD1E 是平行四边形.11.如图,在正方体ABCD-A′B′C′D′中,求:(1)AA′和C′D′所成角的大小;(2)AA′和B′C所成角的大小;(3)A′B和B′C 所成角的大小.12.如图,△ABC 在平面α外,直线AB∩平面α=P,直线AC∩平面α=Q,直线BC∩平面α=R,求证:P,Q,R 三点共线.【参考答案】1. × √ × √ × × × ×2. B3. B4. B5. A6. C7. 90°8. 60°9.3a2 810. 略11. (1)90°;(2)45°;(3)60°12. 略。

2必修二-点线面之间的位置关系测试题-含答案-1130

2必修二-点线面之间的位置关系测试题-含答案-1130

第二章点、直线、平面之间的位置关系一、选择题1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1(第2题)D.异面直线AD与CB1角为60°3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90°B.60°C.45°D.30°8.下列说法中不正确的....是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是().A.4 B.3 C. 2 D.110.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°]C.[30°,60°] D.[30°,120°]二、填空题11.已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为.12.P是△ABC所在平面 α 外一点,过P作PO⊥平面 α,垂足是O,连PA,PB,PC.(1)若PA=PB=PC,则O为△ABC的心;(2)PA⊥PB,PA⊥PC,PC⊥PB,则O是△ABC的心;(3)若点P到三边AB,BC,CA的距离相等,则O是△ABC的心;(4)若PA=PB=PC,∠C=90º,则O是AB边的点;(5)若PA=PB=PC,AB=AC,则点O在△ABC的线上.13.如图,在正三角形ABC中,D,E,F分别为各J边的中点,G,H,I,J分别为AF,AD,BE,DE的中点,将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为.14.直线l与平面α 所成角为30°,l∩α=A,直线m∈α,则m与l所成角的取值范围是.15.棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为.16.直二面角 α-l-β 的棱上有一点A,在平面 α,β 内各有一条射线AB,AC与l成45°,AB⊂α,AC⊂β,则∠BAC=.三、解答题17.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.(1)求证:BC⊥AD;(2)若点D到平面ABC的距离等于3,求二面角A-BC-D的正弦值;(第17题) (3)设二面角A-BC-D的大小为θ,猜想θ 为何值时,四面体A-BCD的体积最大.(不要求证明)18.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:平面EDB ⊥平面EBC ;(2)求二面角E -DB -C 的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.(提示:延长 BA ,CD 相交于点 E ,则直线 SE 是所求二面角的棱.20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在 AA 1 上取一点 P ,过 P 作棱柱的截面,使 AA 1 垂直于这个截面.)(第20题)答案:DDDDB BCDBA11.313212S S S . 12.外,垂,内,中,BC 边的垂直平分. 13.60°.14.[30°,90°]. 15.36. 16.60°或120°.三、解答题17.证明:(1)取BC 中点O ,连结AO ,DO .∵△ABC ,△BCD 都是边长为4的正三角形,(第18题)∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O ,∴BC ⊥平面AOD .又AD ⊂平面AOD ,∴BC ⊥AD . (第17题)解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =θ,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO ,∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3.又DO =23BD =23,在Rt △DEO 中,sin θ=DO DE =23,故二面角A -BC -D 的正弦值为23.(3)当 θ=90°时,四面体ABCD 的体积最大.18.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC . 在长方体ABC D -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD ⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -D B -C 的平面角.利用平面几何知识可得OF =51, (第18题) 又OE =1,所以,tan ∠EFO =5.19*.解:(1)直角梯形ABCD 的面积是M底面=AB AD BC ⋅)(+21=43=1221+1⨯,∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41.(2)如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱.∵AD ∥BC ,BC =2AD ,∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角.∵SB =22+AB SA =2,BC =1,BC ⊥SB ,∴tan ∠BSC =22=SB BC ,(第19题) 即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P作截面PQR,使AA1⊥截面PQR,AA1∥CC1,∴截面PQR⊥侧面BB1C1C,过P作PO⊥QR于O,则PO⊥侧面BB1C1C,且PO=6.1·QR·PO·AA1∴V 斜=S△PQR·AA1=21·PO·QR·BB1=21×10×6=2=30.(第20题)第二章点、直线、平面之间的位置关系参考答案及解析A组一、选择题1.D 解析:命题②有反例,如图中平面 α∩平面 β=直线n,l⊂α,m⊂β,且l∥n,m⊥n,则m⊥l,显然平面 α 不垂直平面β, (第1题)故②是假命题;命题①显然也是假命题,2.D解析:异面直线AD与CB1角为45°.3.D解析:在①、④的条件下,m,n的位置关系不确定.4.D解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D.5.B解析:学会用长方体模型分析问题,A1A有无数点在平面ABCD外,但AA1与平面ABCD相交,①不正确;A1B1∥平面ABCD,显然A1B1不平行于BD,②不正确;A1B1∥AB,A1B1∥平面ABCD,但AB⊂平面ABCD内,③不正确;l与平面α平行,则l与 α 无公共点,l与平面 α 内的所有直线都没有公共点,④正确,应选B.(第5题)6.B 解析:设平面 α 过l 1,且 l 2∥α,则 l 1上一定点 P 与 l 2 确定一平面 β ,β 与 α 的交线l 3∥l 2,且 l 3 过点 P . 又过点 P 与 l 2 平行的直线只有一条,即 l 3 有唯一性,所以经过 l 1 和 l 3 的平面是唯一的,即过 l 1 且平行于 l 2 的平面是唯一的.7.C 解析:当三棱锥D -ABC 体积最大时,平面DAC ⊥ABC ,取AC 的中点O ,则△DBO 是等腰直角三角形,即∠DBO =45°. 8.D 解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B 解析:因为①②④正确,故选B .10.A 解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c 所成角的范围为[30°,90°] . 二、填空题 11.313212S S S .解析:设三条侧棱长为 a ,b ,c .则 21ab =S 1,21bc =S 2,21ca =S 3 三式相乘:∴ 81a 2 b 2 c 2=S 1S 2S 3,∴ abc =23212S S S .∵ 三侧棱两两垂直, ∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:(1)由三角形全等可证得 O 为△ABC 的外心; (2)由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心;(3)由直线和平面垂直的判定定理可证得,O 为△ABC 的内心;(4)由三角形全等可证得,O 为 AB 边的中点;(5)由(1)知,O 在 BC 边的垂直平分线上,或说 O 在∠BAC 的平分线上. 13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°. 14.[30°,90°].解析:直线l 与平面 α 所成的30°的角为m 与l 所成角的最小值,当m 在 α 内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°. 15.36.解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36.16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:(1)取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD , ∴BC⊥AD . (第17题)解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =θ,则过点D 作DE ⊥AD ,垂足为E . ∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3. 又DO =23BD =23,在Rt △DEO 中,sin θ=DODE =23,故二面角A -BC -D 的正弦值为23.(3)当 θ=90°时,四面体ABCD 的体积最大.18.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABC D -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD ⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -D B -C 的平面角.利用平面几何知识可得OF =51,(第18题)又OE =1,所以,tan ∠EFO =5.19*.解:(1)直角梯形ABCD 的面积是M底面=AB AD BC ⋅)(+21=43=1221+1⨯,∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41. (2)如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱.∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角.∵SB =22+AB SA =2,BC =1,BC ⊥SB ,∴tan ∠BSC =22=SB BC ,(第19题)即所求二面角的正切值为22.20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6. ∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1=21·PO ·QR ·BB 1=21×10×6 =30.(第20题)。

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

高考数学专题复习八8.2空间点、线、面的位置关系-模拟练习题(附答案)

8.2空间点、线、面的位置关系基础篇考点一点、线、面的位置关系1.(2023届福建厦门联考,5)如图,在三棱柱ABC-A1B1C1中,△A1B1C1是正三角形,E是BC的中点,则下列叙述中正确的是()1与B1E是异面直线1与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°答案C2.(2019课标Ⅱ,7,5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案B3.(2021安徽江南十校一模,7)设a、b为两条直线,则a∥b的充要条件是()A.a、b与同一个平面所成角相等B.a、b垂直于同一条直线C.a、b平行于同一个平面D.a、b垂直于同一个平面答案D4.(2022甘肃二诊,6)正方体上的点M,N,P,Q是其所在棱的中点,则下列各图中直线MN与直线PQ是异面直线的是()ABCD答案B5.(2023届广西桂林月考二,9)已知三条不同的直线a,b,c,平面α,β,下列说法正确的是()A.命题p:经过一个平面上一点有且只有一个平面与已知平面垂直.命题p是真命题B.已知直线a∥b,b∥c,则a∥cC.命题q:已知a∥α,b∥α,则a∥b.命题q是真命题D.已知a⊥b,b⊥c,a∥α,c∥β,则α∥β答案B6.(2023届黑龙江部分学校联考,4)一个封闭的正方体容器ABCD-A1B1C1D1,P,Q,R分别是AB,BC和C1D1的中点,由于某种原因,P,Q,R处各有一个小洞,当此容器内存水的表面恰好经过这三个小洞时,容器中水的上表面的形状是() A.三角形 B.四边形 C.五边形 D.六边形答案D7.(2022皖南八校三模,15)三棱锥A-BCD中,AB=CD=1,过线段BC中点E作平面EFGH与直线AB、CD都平行,且分别交BD、AD、AC于F、G、H,则四边形EFGH的周长为.答案2考点二异面直线所成的角1.(2018课标Ⅱ,9,5分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()答案C2.(2022江西赣州二模,8)在正四棱锥P-ABCD中,点E是棱PD的中点.若直线PB与直线CE则P B的值为()A.1B.2C.2D.22答案C3.(2022黑龙江模拟,8)如图,某圆锥SO的轴截面SAC是等边三角形,点B是底面圆周上的一点,且∠BOC=60°,点M是SA的中点,则异面直线AB与CM所成角的余弦值是()A.13 C.34答案C4.(2023届河南焦作调研一,11)已知圆柱的轴截面是边长为2的正方形,AB和CD分别是该圆柱上、下底面的一条直径,若四面体ABCD则异面直线AB与CD所成角的余弦值为()C.12D.13答案D综合篇考法一点、线、面位置关系的判定及其应用1.(2023届昆明一中双测二,4)在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E,F分别为棱A1B1,B1C1的中点,经过E,F,O三点的平面与正方体相交所成的截面为() A.梯形 B.平行四边形C.矩形D.正方形答案A2.(2022黑龙江大庆实验中学月考,11)给出下列命题:①若△ABC的三条边所在直线分别交平面α于P,Q,R三点,则P,Q,R三点共线;②若直线a,b是异面直线,直线b,c是异面直线,则直线a,c是异面直线;③若三条直线a,b,c两两平行且分别交直线l于A,B,C三点,则这四条直线共面;④对于三条直线a,b,c,若a⊥c,b⊥c,则a∥b.其中所有真命题的序号是() A.①② B.①③ C.③④ D.②④答案B3.(2019课标Ⅲ,8,5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B4.(2023届山西大同联考一,10)如图,在四棱柱ABCD-A1B1C1D1中,AB=AD=AA1=1,AD⊥AA1,AD⊥AB,∠A1AB=60°,M,N分别是棱AB和BC的中点,则下列说法中不正确的是()A.A1,C1,M,N四点共面B.B1N与AB共面C.AD⊥平面ABB1A1D.A1M⊥平面ABCD答案B5.(2021内蒙古赤峰2月月考,16)如图,在棱长为2的正方体中,点M、N在棱AB、BC上,且AM=BN=1,P在棱AA1上,α为过M、N、P三点的平面,则下列说法正确的是.①存在无数个点P,使面α与正方体的截面为五边形;②当A1P=1时,面α与正方体的截面面积为33;③只有一个点P,使面α与正方体的截面为四边形;④当面α交棱CC1于点H时,PM、HN、BB1三条直线交于一点.答案①②④6.(2020新高考Ⅰ,16,5分)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为.答案2π2考法二异面直线所成的角的求解1.(2023届贵阳开学测试,12)在长方体ABCD-A1B1C1D1中,AA1=2AB=2AD=4,点E在棱CC1上,且C1E=2CE,点F在正方形ABCD内.若直线A1F与BB1所成的角等于直线EF与BB1所成的角,则AF的最小值是() A.322 B.32 C.924 D.922答案A2.(2022安徽黄山第二次质检,10)已知四棱锥P-ABCD中,底面ABCD是梯形,AD∥BC,BC=AB=PA=2AD=2,PB=3,AC与BD交于M点,PN=2ND,连接MN,则异面直线MN与AB所成角的余弦值为()A.-18B.23 D.34答案D3.(2021东北三省四市联考,8)长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=43.过BC的平面分别交线段AA1,DD1于M、N两点,四边形BCNM为正方形,则异面直线D1M与BD所成角的余弦值为()A.14142114C.14435答案D4.(2018课标Ⅱ,9,5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为() A.1556C.52答案C5.(2022四川攀枝花联考(三),10)如图,直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是BC,A1B1的中点,下列说法中正确的是()A.DE⊥B1C1B.A1C∥平面B1DE1与DE是相交直线D.异面直线B1D与A1C1所成角的余弦值为5答案D6.(2022太原一模,15)已知在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB=2,若三棱锥的外接球体积为43π,则异面直线PB与AC所成角的余弦值为.答案12。

点线面位置关系练习(有详细答案)

点线面位置关系练习(有详细答案)

【空间中的平行问题】(1)直线与平面平行的判定及其性质①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

(线线平行→线面平行)②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(线面平行→线线平行)(2)平面与平面平行的判定及其性质两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行) ③垂直于同一条直线的两个平面平行两个平面平行的性质定理:①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)【空间中的垂直问题】(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

【空间角问题】(1)直线与直线所成的角①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

点线面位置关系例题与练习(含答案)

点线面位置关系例题与练习(含答案)

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。

1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线;1.4异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法.2.直线与平面的位置关系: 包含,相交,平行3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

点线面位置关系小题附答案详解

点线面位置关系小题附答案详解

2.下列命题中,错误的是:AA .平行于同一条直线的两个平面平行.B .平行于同一个平面的两个平面平行.C .一个平面与两个平行平面相交,交线平行.D .一条直线与两个平行平面中的一个相交,则必与另一个平面相交.4.如图所示,用符号语言可表达为AA .α∩β=m ,n ⊂α,m ∩n =AB .α∩β=m ,n ∈α,m ∩n =AC .α∩β=m ,n ⊂α,A ⊂m ,A ⊂ nD .α∩β=m ,n ∈α,A ∈m ,A ∈ n5.给出下列四个命题:A ① 若两条直线和第三条直线所成的角相等,则这两条直线互相平行.② 若两条直线都与第三条直线垂直,则这两条直线互相平行.③ 若两条直线都与第三条直线平行,则这条直线互相平行.④ 若两条直线都与同一平面平行,则这条直线互相平行. 其中正确的命题的个数是:A .1个B .2个C .3个D .4个9.下列命题中正确的是(其中a 、b 、c 为不相重合的直线,α为平面) B①若b ∥a ,c ∥a ,则b ∥c②若b ⊥a ,c ⊥a ,则b ∥c ③若a ∥α,b ∥α,则a ∥b④若a ⊥α,b ⊥α,则a ∥b A .①、②、③、④B .①,④C .①D .④12.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若γα⊥,γβ⊥,则//αβ;②若α⊂m ,α⊂n ,//m β,//n β,则//αβ;③若//αβ,α⊂l ,则//l β; ④若l =βα ,m =γβ ,n =αγ ,//l γ,则//m n 。

其中真命题的个数是 BA .1B .2C .3D . 4βαA n m。

高一数学点线面的位置关系试题答案及解析

高一数学点线面的位置关系试题答案及解析

高一数学点线面的位置关系试题答案及解析1.设是两条不同的直线,是一个平面,则下列命题不正确的是()A.若,,则B.若,∥,则C.若,,则∥D.若∥,∥,则∥【答案】D.【解析】A:根据线面垂直的定义,可知A正确;B:利用线面垂直的判定,可知B正确;C:根据垂直同一平面的两直线平行可知C正确;D:与的位置关系也有可能是相交或异面,∴D错误.【考点】空间中直线与平面的位置关系.2.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.3.若m,n是两条不重合的直线,,,是三个两两不重合的平面,给出下列四个命题:①若则;②若则;③若则;④若m,n是异面直线,则.其中真命题是()A.①和④B.①和③C.③和④D.①和②【答案】A【解析】对于①,因为由m⊥α,m⊥β,可得出α∥β,故命题正确;对于②,若α⊥γ,β⊥γ,则α与β可能相交,也可能平行,故②错误;对于③若α∩β=a,m⊂α,n⊂β,m∥a,n∥a,∴m∥n,故③错;对于④,若α∩β=a,则因为m⊂α,m∥β,n⊂β,n∥α,所以m∥a,n∥a,∴m∥n,这与m、n是异面直线矛盾,故结论正确;故答案为:A.【考点】1.命题的真假判断与应用;2.平面与平面之间的位置关系.4.如图,三角形ABC是直角三角形,ACB=,PA平面ABC,此图形中有____________个直角三角形.【答案】4【解析】已知,平面,所以面,,均为直角,所以共4个直角三角形.【考点】线面垂直与线线垂直的关系5.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系6.正三棱柱中,,,D、E分别是、的中点,(1)求证:面⊥面BCD;(2)求直线与平面BCD所成的角.【答案】(1)见解析;(2).【解析】(1)易证⊥面,可得面⊥面;(2)面面于,过A作于点O,则面于O,连接BO,即为所求二面角的一个平面角,.(1)在正三棱柱中,有,所以面,可得面⊥面;(2)面面于DF,过A作AO⊥DF于点O,则AO⊥面BCD于O,连接BO,即为所求二面角的一个平面角,.【考点】线面垂直的判定定理,面面垂直的判定定理,二面角.7.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题8.如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:(3)求SC与底面ABCD所成角的正切值。

高二数学点线面的位置关系试题答案及解析

高二数学点线面的位置关系试题答案及解析

高二数学点线面的位置关系试题答案及解析1.如图,在直三棱柱中,,,分别为和的中点.(1)求证:平面;(5分)(2)求三棱锥的体积.(7分)【答案】(1)详见解析;(2).【解析】(1)这是常规题,只要在平面寻找到一条直线与平行即可,通常是通过再取中点构造中位线和平行四边形来达到证题目的,这题就是如此;(2)经常是通过体积计算来考查等积变换思想,三棱锥的体积,关键是三棱椎的高,直接求有难度,可通过变换顶点达到有利于求高的目的,这里就是转化为求三棱锥的体积来实现的.试题解析:(1)取边中点,连、,则,且,所以四边形是平行四边形,,且平面,平面. 5分(2)在等腰三角形中,易知⊥,又,∴平面由(1),平面又,,. 12分【考点】1.立体几何中线面位置关系的证明;2.几何体的体积计算,3.等积变换的思想.2.如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且(1)求证:平面平面;(2)若,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】解题思路:(1)作出辅助线,利用线面垂直的判定定理证明即可;(2)合理转化三棱锥的顶点和底面,利用体积法求所求的点到平面的距离.规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及点到平面的距离问题,往往转化三棱锥的顶点,利用体积法求距离.试题解析:(1)取中点,连接,则面,,(2)设点到平面的距离,,【考点】1.空间中垂直的判定;2.点到平面的距离.3.如图所示,正三棱锥中,分别是的中点,为上任意一点,则直线与所成的角的大小是 ( )A.B.C.D.随点的变化而变化.【答案】B【解析】连接,因为为正三棱锥,所以,则有,所以,即直线与所成的角的大小是.【考点】(1)线面垂直的判定与性质应用;(2)线线角.4.设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是(). A.若,,则B.若,,则C.若,,则D.若,,,则【答案】B.【解析】对于A选项,可能m与相交或平行,对于选项B,由于,则在内一定有一直线设为与平行,又,则,又,根据面面垂直的判定定理,可知,故B选项正确,对于C选项,可能有,对于D选项,可能与相交.【考点】线面间的位置关系5.如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,,.(1)求证:平面⊥平面;(2)求点C到平面的距离;(3)求PC与平面PAD所成的角的正弦值。

点线面关系知识总结和练习题(答案)

点线面关系知识总结和练习题(答案)

//a α//a b点线面位置关系复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。

(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂= 二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。

(2)判定定理:////a b a b a b Pββαα⊂⊂⋂= //αβ(3)其他方法:a a αβ⊥⊥ //αβ;////a γβγ//αβ2.性质定理://a bαβγαγβ⋂=⋂= 三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。

(2)判定方法 ① 用定义.② 判定定理:a ba cbc A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥//a b a b αα⊄⊂//a α//a b//a b(3)性质 ①a b αα⊥⊂ a b ⊥②a b αα⊥⊥ 四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。

(2)判定定理a a αβ⊂⊥ αβ⊥(3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥ αβ⊥② l P P A A αβαβαβ⊥⋂=∈⊥垂足为 A l ∈④ l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直 练习巩固:一、选择题1.设 α,β为两个不同的平面,l ,m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若 α∥β,则l ∥m ;②若l ⊥m ,则 α⊥β.那么( ).A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题2.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1角为60° 3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ;④m ∥α,n ⊥β 且 α⊥β,则m ∥n .(第2题)A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90°B.60°C.45°D.30°8.下列说法中不正确的....是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直A .4B .3C .2D .110.异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的范围为( ). A .[30°,90°] B .[60°,90°] C .[30°,60°] D .[30°,120°]二、填空题11.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为 .12.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .13.直线l 与平面 α 所成角为30°,l ∩α=A ,直线m ∈α,则m 与l 所成角的取值范围是 .14.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .三、解答题15.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. (1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;(3)设二面角A -BC -D 的大小为 θ,猜想 θ 为何值时,四面体A -BCD 的体积最大.(不要求证明)16. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.J(第12题)答案: 一、选择题1.D 解析:命题②有反例,如图中平面 α∩平面 β=直线n ,l ⊂α,m ⊂β,且l ∥n ,m ⊥n ,则m ⊥l ,显然平面 α 不垂直平面 β, (第1题) 故②是假命题;命题①显然也是假命题, 2.D 解析:异面直线AD 与CB 1角为45°.3.D 解析:在①、④的条件下,m ,n 的位置关系不确定.4.D 解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D . 5.B 解析:学会用长方体模型分析问题,A 1A 有无数点在平面ABCD 外,但AA 1与平面ABCD 相交,①不正确;A 1B 1∥平面ABCD ,显然A 1B 1不平行于BD ,②不正确;A 1B 1∥AB ,A 1B 1∥平面ABCD ,但AB ⊂平面ABCD 内,③不正确;l 与平面α平行,则l 与 α 无公共点,l 与平面 α 内的所有直线都没有公共点,④正确,应选B . (第5题)6.B 解析:设平面 α 过l 1,且 l 2∥α,则 l 1上一定点 P 与 l 2 确定一平面 β ,β 与 α 的交线l 3∥l 2,且 l 3 过点 P . 又过点 P 与 l 2 平行的直线只有一条,即 l 3 有唯一性,所以经过 l 1 和 l 3 的平面是唯一的,即过 l 1 且平行于 l 2 的平面是唯一的.7.C 解析:当三棱锥D -ABC 体积最大时,平面DAC ⊥ABC ,取AC 的中点O ,则△DBO 是等腰直角三角形,即∠DBO =45°.8.D 解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B 解析:因为①②④正确,故选B .10.A 解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c所成角的范围为[30°,90°] .二、填空题 11.313212S S S .解析:设三条侧棱长为 a ,b ,c .则21ab =S 1,21bc =S 2,21ca =S 3 三式相乘: ∴81a 2 b 2 c 2=S 1S 2S 3,∴ abc =23212S S S .∵ 三侧棱两两垂直,∴ V =31abc ·21=313212S S S .12.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°.13.[30°,90°].解析:直线l 与平面 α 所成的30°的角为m 与l 所成角的最小值,当m 在 α 内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°.14.36.解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36. 三、解答题15.证明:(1)取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD ,∴BC ⊥AD . (第17题)解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =θ,则过点D 作DE ⊥AD ,垂足为E . ∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3. 又DO =23BD =23, 在Rt △DEO 中,sin θ=DODE =23,故二面角A -BC -D 的正弦值为23. (3)当 θ=90°时,四面体ABCD 的体积最大.16.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABC D -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD ⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -D B -C 的平面角.利用平面几何知识可得OF =51,又OE =1,所以,tan ∠EFO =5.。

点线面的位置关系-距离解析版

点线面的位置关系-距离解析版

绝密★启用前点线面的位置关系-距离考卷立体几何注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.三棱柱111ABC A B C -中,1AA 与AC 、AB 所成角均为60 ,90BAC ∠=,且11AB AC AA ===,则三棱锥1A ABC -的体积为( )(A )(B (C )(D【答案】C【解析】试题分析:连接1AC ,由已知得11,A AC A AB ∆∆ 为正三角形,BAC ∆ 为等腰直角三角形,所以有111A A AB AC == 所以1A 在底面ABC ∆ 上的射影是等腰直角BAC ∆的外心,即为BC 中点,取BC 中点O ,连接1,A O A O 在直角1A O A ∆ 中,,又 ,所以1A1BCB1CA O试卷第2页,总13页考点:棱柱概念,棱锥的体积,线面垂直及点到平面的距离.2.一个球面上有三个点A 、B 、C ,若2==AC AB ,,球心到平面ABC 的距离为1,则球的表面积为( )A. π3B. π4C. π8D. π12 【答案】D 【解析】试题分析:由“∠BAC=90°,AB=AC=2,”得到BC 即为A 、B 、C 三点所在圆的直径,取BC 的中点M ,连接OM ,则OM 即为球心到平面ABC 的距离,在Rt △OMB 中,OM=1,,即可求球的半径,然后求出球的表面积. 解:如图所示:取BC 的中点M ,则球面上A 、B 、C 三点所在的圆即为⊙M ,连接OM ,则OM 即为球心到平面ABC 的距离,在Rt △OMB 中,OM=1,4π2=12π.故选D .考点:点到平面的距离点评:本题考查球的有关计算问题,点到平面的距离,体积的求法,是基础题. 3.在棱长为a 的正方体1111D C B A ABCD -中,M 是AB 的中点,则点C 到平面DM A 1的距离为( )A B C D 【答案】A【解析】试题分析:利用等体积法求距离,由11C A DM A CDM V V --=得11A DM CDM S d S AA =,代数得考点:求点到面的距离点评:求点面距可直接做垂线求垂线段长度或用等体积法转化为求棱锥的高4.如图,直三棱柱111ABC A B C -侧面11AA B B 是边长为5的正方形,AB BC ⊥,AC 与1BC 成60 角,则AC 长 ( )A .13 B .10 C 【答案】D【解析】因为A 1C 1//AC,所以1160ACB ∠=,设BC=x,则11A BC ∆中,5,所以22211111112cos 60A B C B AC C B AC =+-⋅2222(25)(25)2550,5x x x x =+-+=+=∴=.解本小题的关键是掌握线线角的求法及解三角形的知识。

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)高中数学《点线面的位置关系》专题训练30题(含解析)1.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x 轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.2.如图,四边形为矩形,且平面,,为的中点.(1)求证:;(2)求三棱锥的体积;(3)探究在上是否存在点,使得平面,并说明理由.【答案】(1)见解析;(2);(3)见解析.【解析】【分析】(1)连结,由几何体的空间结构可证得,利用线面垂直的定义可知.(2)由(1)知为腰长为1的等腰直角三角形,结合题意转化顶点可得.(3)在上存在中点,使得.取的中点,连结.易证得四边形EGHC是平行四边形,所以EG//CH,结合线面平行的判断定理可知EG//平面PCD.【详解】(1)连结,∵为的中点, ,∴为等腰直角三角形,则,同理可得,∴,∴,又,且,∴,?又∵,∴,又,∴.(2)由(1)知为腰长为1的等腰直角三角形,∴,而是三棱锥的高,∴.(3)在上存在中点,使得.理由如下:取的中点,连结.∵是的中点,∴,且,?又因为E为BC的中点,且四边形ABCD为矩形,所以EC//AD,且EC=AD,所以EC//GH,且EC=GH,所以四边形EGHC是平行四边形,所以EG//CH,又EG平面PCD,CH平面PCD,所以EG//平面PCD.【点睛】本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.3.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.【详解】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.如图,在三棱锥中,平面平面,,,若为的中点.(1)证明:平面;(2)求异面直线和所成角;(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.【答案】(1)证明见解析;(2)(3).【解析】【分析】(1)先证明平面平面,再证明平面;(2)分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,利用向量法求异面直线和所成角;(3)设,,利用向量法得到,解方程即得t的值和的长.【详解】(1)∵,,∴,∵平面平面,平面平面,平面,∴平面.(2)∵,,∴,,如图,分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,∵,,,,∴,,∵,∴异面直线和所成角为.(3)设为平面的法向量,∵,,∴,即,设,,∴,设与平面所成角为,∵,∴,,,,(舍),,∴的长为.【点睛】本题主要考查空间直线和平面位置关系的证明,考查异面直线所成的角和线面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,在三棱锥中,,,为的中点.?(1)证明:平面;?(2)若点在棱上,且,求点到平面的距离.【答案】(1)详见解析(2).【解析】【详解】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM 的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM= ,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【答案】(1)见解析;(2).【解析】【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.【详解】(1)连接,,分别为,中点?为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)在菱形中,为中点,所以,根据题意有,,因为棱柱为直棱柱,所以有平面,所以,所以,设点C到平面的距离为,根据题意有,则有,解得,所以点C到平面的距离为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.7.如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.(1)证明:直线平面;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】【详解】试题分析:(1)取的中点,连结,,由题意证得∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:,,然后利用空间向量的相关结论可求得二面角的余弦值为.试题解析:(1)取中点,连结,.因为为的中点,所以,,由得,又所以.四边形为平行四边形,.又,,故(2)由已知得,以A为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系A-xyz,则则,,,,,则因为BM与底面ABCD所成的角为45°,而是底面ABC D的法向量,所以,即(x-1)2+y2-z2=0又M在棱PC上,设由①,②得所以M,从而设是平面ABM的法向量,则所以可取.于是因此二面角M-AB-D的余弦值为点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与互补或相等,故有|cosθ|=|cos<m,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.8.如图,在四棱锥P?ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.【答案】(1)见解析;(2).【解析】【详解】(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用长方体的性质,可以知道侧面,利用线面垂直的性质可以证明出,这样可以利用线面垂直的判定定理,证明出平面;(2)以点坐标原点,以分别为轴,建立空间直角坐标系,设正方形的边长为,,求出相应点的坐标,利用,可以求出之间的关系,分别求出平面、平面的法向量,利用空间向量的数量积公式求出二面角的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角的正弦值.【详解】证明(1)因为是长方体,所以侧面,而平面,所以又,,平面,因此平面;(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,,因为,所以,所以,,设是平面的法向量,所以,设是平面的法向量,所以,二面角的余弦值的绝对值为,所以二面角的正弦值为.【点睛】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.10.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,,由平面知识可知,,由相似比可求出,再根据四棱锥的体积公式即可求出.【详解】(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)[方法一]:相似三角形法由(1)可知.于是,故.因为,所以,即.故四棱锥的体积.[方法二]:平面直角坐标系垂直垂直法?由(2)知,所以.建立如图所示的平面直角坐标系,设.因为,所以,,,.从而.所以,即.下同方法一.[方法三]【最优解】:空间直角坐标系法?建立如图所示的空间直角坐标系,设,所以,,,,.所以,,.所以.所以,即.下同方法一.[方法四]:空间向量法?由,得.所以.即.又底面,在平面内,因此,所以.所以,由于四边形是矩形,根据数量积的几何意义,得,即.所以,即.下同方法一.【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.11.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN ,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1 AMN所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.【详解】(1)分别为,的中点,,又,,在中,为中点,则,又侧面为矩形,,,,由,平面,平面,又,且平面,平面,平面,又平面,且平面平面,,又平面,平面,平面,平面平面.(2)[方法一]:几何法如图,过O作的平行线分别交于点,联结,由于平面,平面,,平面,面,所以平面平面.又因平面平面,平面平面,所以.因为,,,所以面.又因,所以面,所以与平面所成的角为.令,则,由于O为的中心,故.在中,,由勾股定理得.所以.由于,直线与平面所成角的正弦值也为.[方法二]【最优解】:几何法因为平面,平面平面,所以.因为,所以四边形为平行四边形.由(Ⅰ)知平面,则为平面的垂线.所以在平面的射影为.从而与所成角的正弦值即为所求.在梯形中,设,过E 作,垂足为G,则.在直角三角形中,.[方法三]:向量法由(Ⅰ)知,平面,则为平面的法向量.因为平面,平面,且平面平面,所以.由(Ⅰ)知,即四边形为平行四边形,则.因为O为正的中心,故.由面面平行的性质得,所以四边形为等腰梯形.由P,N为等腰梯形两底的中点,得,则.设直线与平面所成角为,,则.所以直线与平面所成角的正弦值.[方法四]:基底法不妨设,则在直角中,.以向量为基底,从而,,.,,则,.所以.由(Ⅰ)知平面,所以向量为平面的法向量.设直线与平面所成角,则.故直线与平面所成角的正弦值为.【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法;方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.12.如图,长方体ABCD–A1B1C1D1的底ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.【答案】(1)见详解;(2)18【解析】【分析】(1)先由长方体得,平面,得到,再由,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为,根据题中条件求出;再取中点,连结,证明平面,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体中,平面;平面,所以,又,,且平面,平面,所以平面;?(2)设长方体侧棱长为,则,由(1)可得;所以,即,又,所以,即,解得;取中点,连结,因为,则;所以平面,所以四棱锥的体积为.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.13.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)方法一:连接、,证明出四边形为平行四边形,进而可证得点在平面内;(2)方法一:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角的正弦值.【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱上取点,使得,连接、、、,如图1所示.在长方体中,,所以四边形为平行四边形,则,而,所以,所以四边形为平行四边形,即有,同理可证四边形为平行四边形,,,因此点在平面内.[方法二]:空间向量共线定理以分别为x轴,y轴,z轴,建立空间直角坐标系,如图2所示.设,则.所以.故.所以,点在平面内.[方法三]:平面向量基本定理同方法二建系,并得,所以.故.所以点在平面内.[方法四]:根据题意,如图3,设.在平面内,因为,所以.延长交于G,平面,平面.,所以平面平面①.延长交于H,同理平面平面②.由①②得,平面平面.连接,根据相似三角形知识可得.在中,.同理,在中,.如图4,在中,.所以,即G,,H三点共线.因为平面,所以平面,得证.[方法五]:如图5,连接,则四边形为平行四边形,设与相交于点O,则O 为的中点.联结,由长方体知识知,体对角线交于一点,且为它们的中点,即,则经过点O,故点在平面内.(2)[方法一]【最优解】:坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,如图2.则、、、,,,,,设平面的一个法向量为,由,得取,得,则,设平面的一个法向量为,由,得,取,得,,则,,设二面角的平面角为,则,.因此,二面角的正弦值为.[方法二]:定义法在中,,即,所以.在中,,如图6,设的中点分别为M,N,连接,则,所以为二面角的平面角.?在中,.所以,则.[方法三]:向量法由题意得,由于,所以.如图7,在平面内作,垂足为G,则与的夹角即为二面角的大小.由,得.其中,,解得,.所以二面角的正弦值.[方法四]:三面角公式由题易得,.所以...设为二面角的平面角,由二面角的三个面角公式,得,所以.【整体点评】(1)方法一:通过证明直线,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出.14.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC =CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE =1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.15.如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(1)欲证,只需证明即可;(2)先证平面,再证平面平面;(3)取中点,连接,证明,则平面.【详解】(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴;(Ⅱ)∵底面为矩形,∴.∵平面平面,平面平面,平面,∴平面,又平面,∴.又,,、平面,平面,∵平面,∴平面平面;(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴,又平面,平面,∴平面.【点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.16.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P?ABC的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据已知可得,进而有≌,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,,是圆内接正三角形,,≌,,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,,解得,,在等腰直角三角形中,,在中,,三棱锥的体积为.?【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.17.如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.【答案】(1)证明见解析(2)存在,理由见解析【解析】【详解】分析:(1)先证,再证,进而完成证明.(2)判断出P为AM中点,,证明MC∥OP,然后进行证明即可.详解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D 的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM 中点,所以MC∥OP.MC平面PBD,OP平面PBD,所以MC∥平面PBD.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P为AM中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.18.四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若△面积为,求四棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取中点,由于平面为等边三角形,则,利用面面垂直的性质定理可推出底面ABCD,设,表示相关的长度,利用的面积为,求出四棱锥的体积.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】19.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.【答案】(I)见解析;(II)见解析;(III).【解析】【分析】(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接,易知,,又由,故,又因为平面,。

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析1.如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:①三棱锥A-D1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变:其中正确的命题有____ .(把所有正确命题的编号填在横线上)【答案】①③【解析】①,点到线的距离不变,点到面的距离不变,所以体积不变,②取特殊点,当点与重合时,线与面所成角的大小改变;③点变化,但二面角都是面与面所成的角,所以大小不变.故①③正确.【考点】1.几何体的体积;2.二面角的大小;3.线面角.2.如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有()A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【答案】A【解析】折成的四面体有AH⊥EH,AH⊥FH,∴AH⊥面HEF.3.直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)【答案】(1)见解析(2)【解析】解:(1)证法一:连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.证法二:取A′B′中点P,连接MP,NP.而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC. 又A′N=B′C′=1,故V-MNC=V N-A′MC=V N-A′BC=V A′-NBC=.A′解法二:V-MNC=V A′-NBC-V M-NBC=V A′-NBC=.A′4.如图,正方体ABCD-A′B′C′D′的棱长为4,动点E、F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积()A.与点E、F的位置有关B.与点Q的位置有关C.与点E、F、Q的位置都有关D.与点E、F、Q的位置均无关,是定值【答案】D【解析】因为V-EFQ=V Q-A′EF=×(×2×4)×4=,故三棱锥A′-EFQ的体积与点E、F、A′Q的位置均无关,是定值.5.如图是正方体的展开图,则在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】画出正方体,如图所示,易知,①②错误,③④正确.故选C.6.已知直线a,b异面, ,给出以下命题:①一定存在平行于a的平面使;②一定存在平行于a的平面使∥;③一定存在平行于a的平面使;④一定存在无数个平行于a的平面与b交于一定点.则其中论断正确的是( )A.①④B.②③C.①②③D.②③④【答案】D【解析】若直线不是异面垂直则不可能存在平行于a的平面使,所以①不正确;②③④正确;故选D.【考点】1.线面平行的位置关系.2.异面直线的概念.7.如图,ABCD是边长为2的正方形,,ED=1,//BD,且.(1)求证:BF//平面ACE;(2)求证:平面EAC平面BDEF;(3)求二面角B-AF-C的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)记与的交点为,连接,则可证,又面,面,故平面;(2)因⊥平面,得,又是正方形,所以,从而平面,又面,故平面平面;(3)过点作于点,连接,则可证为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;证明:(1)记与的交点为,连接,则所以,又,所以所以四边形是平行四边形所以,又面,面,故平面;(2)因⊥平面,所以,又是正方形,所以,因为面,面,所以平面,又面,故平面平面;(3)过点作于点,连接,因为,面所以面,因为面,所以因为所以面所以又所以面所以,即得为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;【考点】线面平行的判定;面面垂直的判定;二面角的求解.8.如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.(1)求证:平面ACFE;(2)当EM为何值时,AM//平面BDF?证明你的结论.【答案】(1)见解析;(2)当时,平面.【解析】(1)由已知可得四边形是等腰梯形,且,,得到.再根据平面平面,交线为,即得证.(2)在梯形中,设,连接,则,再根据,而,得到,确定得到四边形是平行四边形,从而,得证.(1)在梯形中,,,四边形是等腰梯形,且,,. 3分又平面平面,交线为,平面 . 6分(2)当时,平面, 7分在梯形中,设,连接,则,,而,, 9分,四边形是平行四边形,,又平面,平面平面. 12分【考点】立体几何平行关系、垂直关系.9.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F 是DC上的点且DF=AB,PH为△PAD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;(3)证明:EF⊥平面PAB.【答案】(1)见解析(2)(3)见解析【解析】(1)证明:因为PH为△PAD边上的高,所以PH⊥AD,又因为AB⊥平面PAD,平面PAD,所以AB⊥PH,又因为PH AD=H,所以PH⊥平面ABCD;(2)因为E是PB的中点,所以点E到平面BCF的距离等于点P到平面ABCD距离的一半,即=,又因为=,所以三棱锥E-BCF的体积为;(3)取PA的中点Q,连结EQ、DQ,则因为E是PB的中点,所以EQ∥AB且EQ=AB,又因为DF=AB且DF∥AB,所以EQ∥DF且EQ=DF,所以四边形EQDF是平行四边形,所以EF∥DQ,由(1)知AB⊥平面PAD,所以AB⊥DQ,又因为PD=AD,所以DQ⊥PA,因为PAAB=A,所以DQ⊥平面PAB,因为EF∥DQ,所以EF⊥平面PAB.【考点】本题考查空间线线、线面的平行与垂直的证明以及三棱锥体积的求解,考查同学们的空间想象能力、逻辑推理能力以及分析与解决问题的能力.10.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】如下图所示,在正方体中,直线和与底面所成的角均为,但是直线和相交,A选项错误;取、、、的中点、、、,则、、三点到平面的距离相等,但是平面与平面相交,B选项错误;平面,平面,但是直线与平面和平面的交线平行,C选项正确;平面和平面都与平面都垂直,但是平面和平面相交,D选项不正确,故选C.【考点】空间中点、线、面的位置关系11.设平面、,直线、,,,则“,”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由平面与平面平行的判定定理可知,若直线、是平面内两条相交直线,且有“,”,则有“”,当“”,若,,则有“,”,因此“,”是“”的必要不充分条件.选B.【考点】1.平面与平面平行的判定定理与性质;2.充分必要条件12.设m,n是平面内的两条不同直线,l是平面外的一条直线,则且是的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据线面垂直的判定,即直线垂直于面,需要直线垂直于面内相交额两条直线,故且,根据线面垂直的性质,直线垂直面,则垂直于面内的所有直线,故且,所以且是的必要不充分条件,故选B【考点】线面垂直的判断线面垂直的性质13.已知不重合的直线m、l和平面,且,.给出下列命题:①若,则;②若,则;③若,则;④若,则,其中正确命题的个数是()A.1B.2C.3D.4【答案】B【解析】因为,,所以,,又,所以,.①正确;因为,,所以或,又,所以或相交或互为异面直线. ②不正确;因为,,所以,又,所以,故③不正确,④正确.选.【考点】平行关系,垂直关系.14.如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.【答案】(1)(2)P(1,3,2)【解析】(1)如图,以A为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A1(0,2,2),B1(0,4,2),=(0,2,2),==(2,-2,0).cos〈,〉===-,故AA1与棱BC所成的角是.(2)P为棱B1C1中点,设=λ=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB的法向量为n1=(x,y,z),=(2λ,4-2λ,2),则故n1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉===,解得λ=,即P为棱B1C1中点,其坐标为P(1,3,2).15.如图,在四棱锥PABCD中,M、N分别是侧棱PA和底面BC边的中点,O是底面平行四边形ABCD的对角线AC的中点.求证:过O、M、N三点的平面与侧面PCD平行.【答案】见解析【解析】∵O、M分别是AC、PA的中点,连结OM,则OM∥PC.∵OM∥平面PCD,PC平面PCD,∴OM∥平面PCD.同理,知ON∥CD.∵ON∥平面PCD,CD平面PCD,∴ON∥平面PCD.又OM∩ON于O,∴OM、ON确定一个平面OMN.由两个平面平行的判定定理知平面OMN与平面PCD平行,即过O、M、N三点的平面与侧面PCD平行.16.如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:(1)直线FM∥平面A1EB;(2)平面A1FC⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】(1)取A1B中点N,连结NE、NM,则MN∥=BC,EF∥=BC,所以MN∥=FE,所以四边形MNEF为平行四边形,所以FM∥EN.又FM平面A1EB,EN∥平面A1EB,所以直线FM∥平面A1EB.(2)因为E、F分别为AB和AC的中点,所以A1F=FC,所以FM⊥A1C.同理,EN⊥A1B.由(1)知FM∥EN,所以FM⊥A1B.又A1C∩A1B=A1,所以FM⊥平面A1BC.因为FM平面A1FC,所以平面A1FC⊥平面A1BC17.由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.【答案】见解析【解析】学生错解:证明:因为O为△ABC的外心,所以OA=OB=OC,又因为PA=PB=PC,PO公用,所以△POA,△POB,△POC都全等,所以∠POA=∠POB=∠POC=90°,所以OP⊥α.审题引导:要记OP⊥α,需记OP垂直于α内两条相交的直线,由图形易知,可考虑证OP垂直于△ABC的两条边,注意到图中的等腰三角形PBC、OBC,不准找到证题途径.规范解答:证明:取BC的中点D,连结PD、OD,∵PB=PC,OB=OC,∴BC⊥PD,BC⊥OD,(5分)又PD平面POD,OD平面POD,且PD∩OD=D,∴BC⊥平面POD.(8分)∵PO平面POD,∴BC⊥PO.同理AB⊥PO.(12分)又AB、BC是α内的两条相交直线,∴PO⊥α.(14分)错解分析:上述解法中∠POA=∠POB=∠POC=90°,是对的,但它们为什么是直角呢?这里缺少必要的证明.18.如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1 C;(2)若AC=AA1,求证:MN⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】证明:(1)连结AC1,因为M为A1B与AB1的交点,所以M是AB1的中点.又N为棱B1C1的中点,所以MN∥AC1.又AC1平面AA1C1C,MN平面AA1C1C,所以MN∥平面AA1C1C.(2)由AC=AA1,则四边形AA1C1C是正方形,所以AC1⊥A1C.因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为BC平面ABC,所以CC1⊥BC.因为∠ACB=90°,所以AC⊥BC.因为CC1∩AC=C,所以BC⊥平面AA1C1C,所以BC⊥AC1.又AC1平面AA1C1C,MN∥AC1,所以MN⊥A1C,MN⊥BC.又BC∩A1C=C,所以MN⊥平面A1BC.19.如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;【答案】见解析【解析】(解法1)选取条件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.(解法2)选取条件②,∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(解法3)选取条件③,若平面PAB⊥平面ABC,∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.20.如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.【答案】(1)见解析(2)存在CP中点R【解析】(1)证法一:∵QA⊥平面ABCD,∴QA⊥CD,由四边形ABCD为正方形知DC⊥AD,又QA、AD为平面PDAQ内两条相交直线,∴CD⊥平面PDAQ,∴CD⊥PQ,在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.证法二:∵QA⊥平面ABCD,QA平面PDAQ,∴平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,∴DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.(2)存在CP中点R,使QR∥平面ABCD.证明如下:取CD中点T,连结QR、RT、AT,则RT∥DP,且RT=DP,又AQ∥DP,且AQ=DP,从而AQ∥RT,且AQ=RT,∴四边形AQRT为平行四边形,所以AT∥QR,∵QR平面ABCD,AT平面ABCD,∴QR∥平面ABCD.21.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确的结论有________个.【答案】4【解析】四边形ABCD适合(1),四面体ACB1D1适合(2),DB1C1D1适合(3),DA1C1D1适合(4),因此正确的结论有4个22.已知是两条不同的直线,是一个平面,且∥,则下列命题正确的是( ) A.若∥,则∥B.若∥,则∥C.若,则D.若,则【答案】D【解析】由∥,∥,可得或∥,不正确;由∥,∥,可得∥或,相交或,互为异面直线,不正确;由∥,,可得∥或,相交,不正确;由∥,,可得,正确.选.【考点】平行关系,垂直关系.【考点】二项式定理23.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.【答案】【解析】∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=AC=×2=.24.已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.【答案】①③【解析】α∥β⇒直线l⊥平面β,由于直线m⊂平面β,∴l⊥m故①正确;由l∥m,直线l⊥平面α可推出直线m⊥平面α,而直线m⊂平面β,∴α⊥β故③正确.25.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】选项A正确,因为SD垂直于底面ABCD,而AC⊂平面ABCD,所以AC⊥SD;再由四边形ABCD为正方形,所以AC⊥BD;而BD与SD相交,所以,AC⊥平面SBD,AC⊥SB.选项B正确,因为AB∥CD,而CD⊂平面SCD,AB⊄平面SCD,所以AB∥平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.26.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.【答案】(1)见解析(2)【解析】(1)由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PBC⊥平面PAC.(2)过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.在Rt△ABC中,因为AB=2,AC=1,所以BC=.因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).设平面BCP的法向量为n1=(x1,y1,z1),则所以不妨令y1=1,则n1=(0,1,-1).因为=(0,0,1),=(,-1,0),设平面ABP的法向量为n2=(x2,y2,z2),则所以不妨令x2=1,则n2=(1,,0).于是cos〈n1,n2〉==.由题图可判断二面角为锐角,所以二面角C-PB-A的余弦值为.27.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;【答案】(1)证明见解析;(2)证明:见解析.【解析】(1)由直线与平面平行的判定定理即得.(2)注意到在直角梯形ABCD中,过C作CE⊥AB于点E,四边形ADCE为矩形利用勾股定理计算三角形的边长,进一步得到再根据平面,即可得出平面.试题解析:(1)证明:,且平面,平面.∴∥平面. 5分(2)证明:在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形∴,又,在,所以,则,∴ 9分又∵平面,,∴平面 12分【考点】直线与平面平行,勾股定理,垂直关系.28.在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是()A.点的轨迹是一条线段B.与不可能平行C.与是异面直线D.【答案】B【解析】由已知可取的中点,的中点,连结,易证平面∥平面,故可知点的轨迹是一条线段,与是异面直线,A、C对;当点与重合时与平行,B不对;在上取点F,连结,可证为与平面所成的角,当点F在MN的中点时最大,此时,则,D对,故选B.【考点】1.直线与平面平行的性质与判断;2.直线和平面的夹角;3.空间两直线的位置关系29.如图所示,正方体的棱长为1, 分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为。

高中数学立体几何点线面位置关系精选题目(附答案)

高中数学立体几何点线面位置关系精选题目(附答案)
(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.
2.下列说法正确的是()
A.用一平面去截圆台,截面一定是圆面
B.在圆台的上、下底面圆周上各取一点,则两点的连线就是圆台的母线
C.圆台的任意两条母线延长后相交于同一点
A.36πB.64π
C.100πD.144π
解析:选A三棱锥ABCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三棱锥ABCD的外接球是同一个,且体对角线的长为球的直径,若设球的半径为R,则2R= =6,故R=3,∴外接球的表面积S=4πR2=36π,故选A.
三、空间点、线、面位置关系的判断与证明
(3)(2017·山东高考)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为________.
[解析]
(1)如图所示,该几何体的表面积S=1×1+ ×1×1×2+2× ×(1+2)×1+ × × =5+ ,故选A.
(2)①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,因为球的直径必过球心;③错误,必须是相邻的两个侧面.
4.一个几何体的三视图如图所示,则该几何体的表面积S为________.
解析:根据三视图,可知题中的几何体是由一个长方体挖去一个圆柱得到的,所以S=2×(4×1+3×1+4×3)+2π-2π=38.
答案:38
二、与球有关的问题
球的表面积与体积
(1)球的表面积公式S球=4πR2.
(2)球的体积公式V球= πR3.
(2)旋转体的表面积:
①S圆柱=2πrl+2πr2;
②S圆锥=πrl+πr2;
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 @1.空间直线的位置关系:相交,平行,异面平行线的传递公理:平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

异面直线定义:不同在任何一个平面内的两条直线——异面直线;异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) !1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒ 3.面面平行:①定义://αβαβ=∅⇒;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b ab O a b ααααβ⊂=⇒判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭\(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

符号表述:若任意,a α⊂都有l a ⊥,且l α⊄,则l α⊥.②判定:,a b a b O l l l al b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭③性质:(1),l a l a αα⊥⊂⇒⊥;(2),//a b a b αα⊥⊥⇒;面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥⇒∠-是二面角-的平面角范围:[0,180]AOB ∠∈︒︒②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 面面垂直(1)定义:若二面角l αβ--的平面角为90︒,则αβ⊥;~(2)判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭(3)性质:①若αβ⊥,二面角的一个平面角为MON ∠,则90MON ∠=︒;②a AB a a a ABαβββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭● 热点例析【例1】热点一 有关线面位置关系的组合判断若a ,b 是两条异面直线,α,β是两个不同平面,a ⊂α,b ⊂β,α∩β=l ,则( ). A .l 与a ,b 分别相交 B .l 与a ,b 都不相交C .l 至多与a ,b 中一条相交—D .l 至少与a ,b 中的一条相交解析:假设l 与a ,b 均不相交,则l ∥a ,l ∥b ,从而a ∥b 与a ,b 是异面直线矛盾,故l 至少与a ,b 中的一条相交.选D.热点二 线线、线面平行与垂直的证明【例2】如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .(1)方法一:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD . .又因为AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理得 BD 2=AD 2+AB 2-2AD ·AB cos 60°=3AD 2,所以AD 2+BD 2=AB 2.所以AD ⊥BD .又AD ∩D 1D =D , 所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,故AA 1⊥BD .方法二:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD (如图), 所以BD ⊥D 1D .取AB 的中点G ,连接DG (如图).—在△ABD 中,由AB =2AD 得AG =AD . 又∠BAD =60°,所以△ADG 为等边三角形,因此GD =GB , 故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°, 所以BD ⊥AD .!又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1,故AA 1⊥BD . (2)如图,连接AC ,A 1C 1.设AC ∩BD =E ,连接EA 1.因为四边形ABCD 为平行四边形,所以EC =12AC .由棱台定义及AB =2AD =2A 1B 1知A 1C 1∥EC 且A 1C 1=EC , 所以四边形A 1ECC 1为平行四边形.、因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1 平面A 1BD , 所以CC 1∥平面A 1BD .热点三 面面平行与垂直的证明【例3】在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =4,P 为平面ABCD 外一点,且PA =PB ,PD =PC ,N 为CD 的中点.(1)求证:平面PCD ⊥平面ABCD ;(2)在线段PC 上是否存在一点E 使得NE ∥平面ABP 若存在,说明理由并确定E 点的位置;若不存在,请说明理由. 《(1)证明:取AB 中点M ,连接PM ,PN ,MN , 则PM ⊥AB ,PN ⊥CD .C又ABCD 为直角梯形,AB ⊥BC ,∴MN ⊥AB . ∵PM ∩MN =M ,∴AB ⊥平面PMN . 又PN ⊂平面PMN ,∴AB ⊥PN .∵AB 与CD 相交,∴PN ⊥平面ABCD .又PN ⊂平面 PCD ,∴平面PCD ⊥平面ABCD .>(2)解:假设存在.在PC ,PB 上分别取点E ,F ,使BF =14BP ,CE =14CP ,连接EF ,MF ,NE ,则EF ∥BC 且可求得EF =34BC =3.∵MN =3且MN ∥BC ,∴EF ∥MN 且EF =MN . ∴四边形MNEF 为平行四边形,∴EN ∥FM . 又∵FM ⊂平面PAB ,∴在线段PC 上存在一点E 使得NE ∥平面ABP ,此时CE =14PC .热点四 折叠问题)例4如图所示,在直角梯形ABCP 中,AP ⊥221=AP PCD ∆⊥PD D EF G --EF 211⊂∴⊂EO ⊄∴EF CD 1GE 1PB CD EF ∴AB 1⋂EG //,,))(),,2,00.A (=.00⎩⎨⎧==⇒=y z x z n ⊥PD AD ⊥∴D CD PD =⋂⊥∴AD ∴DA DA()0,0,2()1,0,1=n .22222===∴D EF G --.450ABCD P -PA ABCD26PAD ABCD PAD ⊥BD AC ,O PA ABCD 2623PFO ∠PAD ABCD PFO ∆3tan ==∠FO PO PFO 3π=∠PFO PAD ABCD3πEO =//PD 21EOD ∠PDO ∆2522=+=PO OD PD 45=EO BD AO ⊥PO AO ⊥⊥AO PBD EO AO ⊥A CA CAOE ∆5102tan ==∠EO AO AEO 5102FO BC G PG H PG GH EH ,ABCD P -F AD G BC PG BC ⊥FG BC ⊥PFG BC 面⊥PBC PFG 面PG PF =3π=∠PFO PFG ∆PGFH ⊥PBC FH 面⊥FK HE //FK HE =HEKF FH KE //PBC KE 面⊥,m n γβα,,m ⊥αn //αnm ⊥αβ//βγ//m ⊥αm ⊥γm //αn //αm n //αγ⊥βγ⊥//αβ,,a b c222a b c ++22212a b c ++22222a b c ++22232a b c ++A BCD-AC ⊥,,,,30BCD BD DC BD DC AC a ABC ⊥==∠=C ABD55a 155a 35a 153a 1111ABCD A B C D -E 11A C CE AC BD 1A D 11A D P ABC -PH H ABC ABCD AC 21A CD B--12133323S ABC -a ,E F SC AB EF SA 090060045030,A B α4cm 6cm AB Mα0601226P ABC -4,8AB PA ==A ,PB PC D E ∆ADE1C (1)求证:BE =B 1E ;(2)若AA 1=A 1B 1,求平面A 1EC 与平面A 1B 1C 1所成二面角的大小.ACDOPEFGHK》3如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求证:AD ⊥PC ;(2)求三棱锥A -PDE 的体积;(3)在AC 上是否存在一点M ,使得PA ∥平面EDM 若存在,求出AM 的长;若不存在,请说明理由. {答案一、选择题1. A ③若m //α,n //α,则m n //,而同平行同一个平面的两条直线有三种位置关系 ④若αγ⊥,βγ⊥,则//αβ,而同垂直于同一个平面的两个平面也可以相交 2.C 设同一顶点的三条棱分别为,,x y z ,则222222222,,x y a y z b x z c +=+=+=得2222221()2x y z a b c ++=++=3.B 作等积变换A BCD C ABD V V --=4.B BD 垂直于CE 在平面ABCD 上的射影5.C BC PA BC AH ⊥⇒⊥ .6.C 取AC 的中点E ,取CD 的中点F ,1,,222EF BE BF ===cos 3EF BF θ==7.C 取SB 的中点G ,则2aGE GF ==,在△SFC 中,2EF a =,045EFG ∠= 二、填空题1.5cm 或1cm 分,A B 在平面的同侧和异侧两种情况2.48 每个表面有4个,共64⨯个;每个对角面有4个,共64⨯个3.090 垂直时最大4. 60 度5. 11 沿着PA 将正三棱锥P ABC -侧面展开,则',,,A D E A 共线,且'//AA BC·三、解答题:略1.证明:(1)连接BD ,MO .在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点. 又M 为PD 的中点,所以PB ∥MO . 因为PB ⊄平面ACM ,MO ⊂平面ACM , 所以PB ∥平面ACM .(2)因为∠ADC =45°,且AD =AC =1,%所以∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD . 而AC ∩PO =O ,所以AD ⊥平面PAC .2[解析] (1)取A 1C 1中点F ,作EG ⊥面AC 1于G ,⎭⎪⎬⎪⎫B 1F ∥EG B 1E ∥面AC 1⇒BE ∥FG ⇒B 1EGF 为平行四边形⇒FG ⊥A 1C 1⇒G 为A 1C 之中点.从而E 为BB 1之中点.∴BE =B 1E .(2)由(1)知G 为矩形ACC 1A 1的中心,过G 作直线平行于A 1C 1,交AA 1于点P ,交CC 1于Q 点,连结EP ,EQ ,则平面A 1B 1C 1∥平面PEQ ,即求平面AEC 与平面PEQ 所成的角,∵交线为EG ,∴其平面角为∠A 1GP ,因AA 1=A 1B 1,则ACC 1A 1为正方形,则∠A 1GP =45°.3.(1)证明:因为PD ⊥平面ABCD ,所以PD ⊥AD . 又因为四边形ABCD 是矩形,所以AD ⊥CD . 因为PD ∩CD =D ,所以AD ⊥平面PCD . 又因为PC ⊂平面PCD ,所以AD ⊥PC . (2)解:由(1)知AD ⊥平面PCD , 所以AD 是三棱锥A -PDE 的高.因为E 为PC 的中点,且PD =DC =4,所以S △PDE =12S △PDC =12×⎝ ⎛⎭⎪⎫12×4×4=4. 又AD =2,所以V A -PDE =13AD ·S △PDE =13×2×4=83.(3)解:取AC 的中点M ,连接EM ,DM ,因为E 为PC 的中点,M 是AC 的中点, 所以EM ∥PA .又因为EM ⊂平面DEM ,PA ⊄平面EDM ,所以PA ∥平面DEM .此时AM =12AC =12AD 2+DC 2=1222+42=5,即在AC 上存在一点M ,使得PA ∥平面EDM ,且AM 的长为 5.。

相关文档
最新文档