第一章晶体结构介绍
第一章晶体的结构
求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等
第一章-金属的晶体结构(共118张PPT)可修改全文
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
材料科学基础第一章晶体结构(三单质晶体结构)
Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
配位数 12;8(8+6);12 致密度 0.74;0.68; 0.74
配位数(CN):晶体结构中 任一原子周围最近且等距离 的原子数。 致密度(K):晶体结构中 原子体积占总体积的百分数。 K=nv/V。
linear density
<100>
a
2 1 2
1
aa
a
2 1 2
1
aa
<110>
2a
2
1 2
0.7
2a a
2a
2
1 2
1
1.4
2a a
<111>
3a
2
1 2
1
1.16
3a a
3a
2
1 2
0.58
3a a
案例讨论:工程上大量使用低碳钢渗碳件,试分析材 料的渗碳行为与哪些因素有关? 晶格常数? 结构类型? 致密度?....?
1.4单质晶体结构
同种元素组成的晶体称为单质晶体。 一、金属晶体的结构 二、非金属元素单质的晶体结构
一、金属晶体的结构
香港国际机场 案例讨论:工程上大量使用钢铁材料,钢和铁在 性能上差别较大,各有优势,设想这种差别的来 源。
一、金属晶体的结构
1.常见金属晶体结构
典型金属的晶体结构是最简单的晶体结构。由于金属键的性质, 使典型金属的晶体具有高对称性,高密度的特点。常见的典型金属晶 体是面心立方、体心立方和密排六方三种晶体,其晶胞结构如图1-10 所示。另外,有些金属由于其键的性质发生变化,常含有一定成分的 共价键,会呈现一些不常见的结构。锡是A4型结构(与金刚石相似), 锑是A7型结构等。
第一章 晶体结构
1.点对称操作
点对称操作:对称操作前后空间中至少保持一个不动的点的操作.
(1)n度旋转对称 2 n度旋转对称轴:晶体绕旋转 后仍能复原的轴. n 晶体只具有1、2、3、4、6度对称轴. (2)中心反演 中心反演的对称元素是一个点,中心反演操作用i表示. i操作作用 于(x,y,z)使之变换为(-x,-y,-z). 目录
(3)镜像(m,对称素为面) 镜像操作常用m表示,镜像的操作的对称元素是平面. 若选z=0为对称面,该操作使点(x,y,z)变换为(x,y,-z) (4)n度旋转反演对称 该操作由n度旋转对称和中心反演两个操作组成.晶体先绕一固定轴 旋转 2 n后,再经过中心反演,晶体能与自身重合.该轴称为n度旋 转反演轴. 晶体n度旋转反演对称中n只能取1,2,3,4,6中的数值,通常用 n 表示n度旋转反演轴. 注: a.1度旋转反演对称与中心反演i实质是同一操作. b. 2度旋转反演对称与镜像m实质是同一操作.
a
ak
a1 a 2 a j
a3
目录
ai
a-Fe的晶体结构
固体物理学原胞的体积: 3.面心立方(fcc)结构
Ω a1 (a2 a3 ) a
3
2
每个晶胞包含4个 格点.基矢为:
a a1 ( j k ) 2 a a2 ( k i ) 2 a a3 (i j ) 2
abc
900
5.四角系: a b c 900 (正方晶系) 6.六角晶系: 900 1200
abc
7.立方晶系: 900
abc
简立方(12),体心立方(13), 面心立方(14) 目录
晶体结构
晶体结构和布拉菲格子的区别
晶体结构和布拉菲格子的区别
基矢 原胞 晶胞(单胞)
初基元胞 点阵的基本 平移矢量。
有多种取法。
12面体
14面体
布拉伐格子 晶向 晶面
标志?
互质的整数(h1h2h3)-----晶面指数
若以单胞的棱a,b,c为坐标系对应的指数(h1h2h3)----miller index
33 23
13
32 22 12
31
33 11
21 31 13;32 12 32 0
11
23 21 21 0
同样若沿Z轴作对称操作-转动900
0 1 0 A 1 0 0
0 0 1
A1A
22
0
0
11
0
13
11
0
0
22
13
0
0 31 33
31 0 33
7晶系14种Bravais Lattice介绍
可以证明,由于对称性的要求,共有14种Bravais Lattice, 分为7个晶系(点阵只有7种点群)。 对称操作群{D/t} D--点(宏观)对称操作; t--平移对称操作. 点阵点群-------{D/t=0}7个7个晶系 点阵空间群-------{D/t}14个14 lattices
绪论
������ 固体物理是研究固体的结构和其组成粒子之间的相互作用 及运动规律,以阐明其性能和用途的学科。
固体的分类 晶体(晶态):原子按一定的周期规则排列的固体(长程有序)。 非晶体(非晶态):原子排列没有明确的周期性(短程有序)。
晶体结构.01
1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。
第一章晶体结构
第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。
布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。
布喇菲点阵是晶体结构周期性的数学抽象。
点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。
初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。
布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。
对一个给定的布喇菲点阵,初级矢量可以有多种取法。
2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。
初基晶胞必定正好包含布喇菲点阵的一个阵点。
对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。
3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。
惯用晶胞可以是初基的或非初基的。
惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。
其中,n 是惯用晶胞所包含的阵点数。
确定惯用晶胞几何尺寸的数字叫做点阵常数。
4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。
维格纳—赛兹晶胞是初基晶胞。
5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。
理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。
这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。
将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。
固体物理课件 第一章 晶体结构
晶面指数(122)
a
c b
(100)
(110)
(111)
在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。
在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)
金刚石
c
c
面心立方
钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。
第一章晶体结构解析
r0
4r0
3a
a 2r0
a
△=0.31r0
注:体心立方晶格一个平面内的原子球并不是最紧密排列。
1.3 密堆积结构
六角密排结构(hcp) (Be,Mg,Zn,Ti,Cd,Zr等)
立方密排(面心立方fcc) (Cu,Ag,Au,Pb,Ni,γ-Fe,Al等)
1、 密堆积结构的主要特征
• 特点:每两个球均相切,且每个球与六个球相 切;三个球心构成等边三角形;每个球周围有 六个空隙。
a2 =a/2(
i Βιβλιοθήκη j k )a3=a/2( i j k )
3、维格纳—赛兹原胞
• 定义:以某一格点为中心,作它与最近邻、次近邻等格
点的垂直平分面,由这些面所围成的封闭多面体称维格 纳—赛兹原胞,也满足原胞的要求,而且每个维格纳— 赛兹原胞只含有一个格点并位于原胞的中心,故其外形
的对称性高于平行六面体原胞。
结构特征
结构图示
(1) 两个面心结构套构 (四条体对角线的 四分之一处加一个C 原子);
(2) 配位数为4。
1.5 化合物晶体结构
(1)NaCl结构 特征:
似简立方结构,每一 行上Na离子与Cl离 子相间排列。 举例:
LiF,LiCl,NaF,NaBr,KCl, KBr,AgCl,MgO,CaO,Sr O,BaO等等
▪ 配位数为6; ▪ 立方体边长a定
义为晶格常数。
a 简立方
1.2 体心立方晶格
• 在简立方结构的体心处 加上一个原子球。 a
• 结构特征:原子球占据 8个顶角和体心位置, 配位数为8。
体心立方
典型晶体:碱金属(Li,Na,K,Rb,Cs); 过渡金属(α-Fe,Cr,Mo,W)等。
第一章 晶体结构
第一章 晶体结构本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。
然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。
§1.1晶体的周期性一、晶体结构的周期性1.周期性的定义从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。
晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。
(非晶态固体不具备结构的周期性。
非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。
2.晶格 格点和点阵晶格:晶体中微粒重心,做周期性的排列所组成的骨架,微粒重心所处的位置称为晶格的格点(或结点)。
格点的总体称为点阵。
整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。
每个平移的距离称为周期。
在某一特定方向上有一定周期,在不同方向上周期不一定相同。
晶体通常被认为具有周期性和对称性,其中周期性最为本质。
对称性其实质是来源于周期性。
故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。
3.平移矢量和晶胞据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。
则→1a ,→2a ,→3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体⑵任何两个晶胞的对应点上,晶体的物理性质相同,即:()⎪⎭⎫⎝⎛+++=→→→332211anananrQrQ其中→r为晶胞中任一点的位置矢量。
第一章 晶体结构
19
1.3 对称性和布拉维格子的分类
二 基本对称操作
1 i,Cn,σ (m)
2 n度旋转 ─ 反演轴
绕μ轴旋转
2π后再进行中心反演:
n
1,2,3,,4, i, m 八种独立的对称操作。
宏观上看,晶体是有限的,描述晶体宏观对称性 不包含平移对称操作;但从微观上看,晶体是无 限的,为描述晶体结构的对称性,应加上平移对 称操作。
衍射斑点(峰) ↔ 晶格中的一族晶面 倒格子 ↔ 正格子 点子 ↔ 晶面
斑点分布 ↔ 晶格基矢 → 晶体结构
25
1.4 倒格子/倒易点阵
一 定义
设布拉维格子的基矢为:av1 ,av2 , av3
由
v Rl
=
l1av1
+
l2av2
+
l3av3 决定的格子称为正格子
(direct lattice),
满足
2vπ Gh
4 两点阵位矢的关系
v Rn
•
v Gh
=
2πm
m为整数
利用
aavvii
• •
v bvj bj
= =
2π 0
i= j i≠ j
( ) Rv n •Gvh = (l1av1 + l2av2 + l3av3 )•
v h1b1
+
v h2b2
+
v h3b3
= l1h1 • 2π + l2h2 • 2π + l3h3 • 2π
按坐标系的性质,晶体可划分为七大晶 系,每一晶系有一种或数种特征性的布拉 维原胞,共有14种布拉维原胞:
三斜(简单三斜) 单斜(简单、底心) 正交(简单、底心、体心、面心) 四方(简单、体心) 三角 六角 立方(简单、体心、面心)
第一章晶体结构(一结晶学基础知识)精选全文完整版
2. 晶体结构与空间点阵
晶体格子:把晶体中相邻质点的中心用直线联起来 构成的空间格架即晶体格子,简称晶格。
结点:质点的中心位置称为晶格的结点。 晶体点阵:由这些结点构成的空间总体称为晶体点
阵(空间格子或空间点阵)。结点又叫阵点。点阵 中结点仅有几何意义,并不真正代表任何质点。如 图1-1所示.
晶向族:晶体中原子排列周期相同的所有晶向为一个 晶向族,用〈uvw〉表示。 同一晶向族中不同晶向的指数,数字组成相同。 已知一个晶向指数后,对u、v、w进行排列组合, 就可得出此晶向族所有晶向的指数。如〈111〉晶向 族的8个晶向指数代表8个不同的晶向;〈110〉晶向 族的12个晶向指数代表12个不同的晶向。
图1-2 晶胞坐标及晶胞参数
4.晶系与点阵类型
晶格特征参数确定之后,晶胞和由它表示的晶格也随之确定, 方法是将该晶胞沿三维方向平行堆积即构成晶格。
空间点阵中所有阵点的周围环境都是相同的,或者说,所有阵 点都具有等同的晶体学位置。布拉菲(Bravais)依据晶格特征参数 之间关系的不同,把所有晶体的空间点阵划归为7类,即7个晶系, 见表1-1。按照阵点(结点)在空间排列方式不同,有的只在晶胞的 顶点,有的还占据上下底面的面心,各面的面心或晶胞的体心等位 置,7个晶系共包括14种点阵,称为布拉菲点阵(Bravais lattice )。
晶向:点阵可在任何方向上分解为相互平行的直线组, 位于一条直线上的结点构成一个晶向。
2.六方晶系的晶面指数和晶向指数 3.晶向与晶面的关系
1.晶面、晶向及其表征
晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样 的结点平面称为晶面。 晶面上的结点,在空间构成一个二维点阵。 同一取向上的晶面,不仅相互平行、间距相等,而且结点的分 布也相同。不同取向的结点平面其特征各异。 任何一个取向的一系列平行晶面,都可以包含晶体中所有的质 点。
晶体结构
§1.1 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。
定义:
各晶体是由一些基元(或格点)按一定规则, 周期重
复排列而成。任一格点的位矢均可以写成形式
Ra为n3 基 n矢1a1, n。2为Ra其2n 布中n拉3a,3菲、格子、的取n格1整矢n数2,,n或3 称、正、格矢a。1
3、金刚石结构( diamond ):
碳的同素异构体。 经琢磨后的金刚石又称钻石。 无色透明、有光泽、折光力极强,最硬的物质。
金刚石结构是复式晶格结构,基元中有两个碳原子A、B, 布拉菲格子是面心立方。
或可视为两个面心立方子晶格,沿体对角线平移1/4 体对角 线长度套构而成,如图所示.
金刚石晶体的配位数是4, 这4个碳原子构成一个 正四面体,碳-碳键角为109º28´。
基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。
可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
具有金刚石结构的晶体有: 金刚石、元素半导体Si、Ge ,灰锡等。
4、闪锌矿(立方ZnS)结构:( cubic zinc sulfide )
与金刚石结构类似,金刚石的基元是化学性质相同的两个 原子A、B ,而闪锌矿结构的基元是两个不相同的原子.
闪锌矿结构也可视为是两个不同原子的面心立方子晶格, 沿体对角线平移1/4 体对角线长度套构而成.
例如,简立方晶格的几个晶列如图所示。
第一章晶体结构
NaCl结构
每个原胞中含两个或多 个原子,且原子不等价
复式晶格
简单晶格
举例 简立方晶格, 体心立方晶格, 面心立方晶格等
特征:每个原胞中只含一 个原子,且所有原子等价
复式晶格
举例 金刚石, 六方密排, 闪锌矿结构等 特征:每个原胞中含两个 或多个原子,且原子不等 价
复式晶格与简单晶格结构有何联系?
• 1.4金刚石结构(Diamond) • 1.5化合物的晶格结构(NaCl,CsCl,C……)
基本概念
晶格(lattice)是指晶体中原子排列的具体形式。
具有不同晶格是指原子规则排列的形式不同;
具有相同晶格是指原子排列形式相同而原子 间距不同。
1.1 简立方晶格
结构特征
原子球占据立方 体的8个顶点; 配位数为6; 立方体边长a定 义为晶格常数。
3、 六角密排与立方密排密堆结构图示
• 第一步:将全同小球 平铺成密排面(A 层); 第二步:第二层密排 面的球心对准A层的 球隙,即B层; A 第三步:第三层密排 B 面放在B层的球隙上, 可形成两种不同的晶 格,即六角密排和立 方密排结构。 六角密排
•
•
立方密排(面心 立方)(A-B-C)
(-A-B-)
•
S原子 Zn原子
§1-2晶格的周期性(periodicity)
主要内容
• (一)原胞与基矢(primitive cell and unit vitor) • (二)晶胞(crystal unit cell) • (三)简单晶格与复杂晶格(crystal lattice) • (四)布拉伐格子(Bravais lattice)
的对称性高于平行六面体原胞。
(二)晶胞(晶格学单胞 crystal unit cell) 1、定义:晶体学通常选取较大的周期单元来研
第一章 晶体结构
面心立方密排方式
间隙(Interstice):
四、八面体间隙(tetrahedral and octahedral interstice) fcc,hcp 间隙为正多面体,且八面体和四面体间隙相互独立 bcc间隙不是正多面体,四面体间隙包含于八面体间隙之中
五.晶面与晶向
1.晶面:同处一个结点面内的所有阵点构成的阵点面。
简单晶胞(初级晶胞):只在平行六面体每个顶角上有一阵点; 复杂晶胞:除在顶角外,在体心、面心或底心上也有阵点。
4.晶体结构的分类
(1)七个晶系:立方、正方、正交、三方、
六方、单斜、三斜
(2)14种布拉菲格子 (3)32种点群(point group)
点群—晶体中所有点对称元素的集合。根据晶体外 形对称性,共有32种点群。
B b
A a
等效晶面族{h k l}中的晶面数:
a)hkl三个数不等,且都≠0,则此晶面族中有3!×4=24组; 如{123} b)hkl有两个数字相等 且都≠0,则有:(3!/2!)×4=12组; 如{112} c)hkl三个数相等,则有:(3!/3!)×4=4组; 如{111} d)hkl有一个为0,应除以2,则有(3!/2)×4=12组; 如{120} 有二个为0,应除以22,则有(3!/2!22)×4=3组; 如{100}
立方晶系
d hkl
d hkl
a h k l
2 2 2
正交晶系
1 h k l a b c
2 2 2
六方晶系
d hkl
1 4 h hk k l 2 3 a c
2 2 2 2
立方晶系:
3.晶向(晶列):阵点连线的指向。相互平行的阵点
晶体的结构
富勒
克罗托受建筑学家理查德· 巴克明斯特· 富勒设计的美国万国博 览馆球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构, 因此将其命名为buckminster fullerene(巴克明斯特· 富勒烯,简称 富勒烯)。
惠特尼美国艺术博物馆
富勒烯是一系列纯碳组成的原子簇的总称。它们是由非 平面的五元环、六元环等构成的封闭式空心球形或椭球形 结构的共轭烯。
准晶体:
准晶体是一种介于晶体和非晶体之间的固体。准晶体具有 完全有序的结构,然而又不具有晶体所应有的平移对称性,因 而可以具有晶体所不允许的宏观对称性。 1984年Shechtman(谢切 曼)等人用快速冷却方法 制备了Al4Mn准晶体—— 其电子衍射斑具有明显的 五次对称性(五重旋转对 称)但并无平移周期性的 合金相,称为准晶体。 晶体中不存在五重旋 转对称轴。
第二章 (二)晶体中原子靠什么力结合在一起? 晶体的结合 (三)绝对温度(0K)下原子是不动的,加热后, 原子在平衡态下振动。 第三章
晶格振动和晶体热力 学性质 Nhomakorabea(四)缺陷对晶体性质的影响。
第四章
晶体的缺陷
(五)晶体中电子的行为——能带理论。 第五、六章
§1.1 晶体的共性
(一) 晶体结构
固体
晶体 单晶体
配位数: 12
(四) 立方密排(面心立方堆积) 原子球排列之二 ABCABC…—— 面心立方晶格
B层原子球排列
C层原子球排列
原子球排列 —— ABC ABC ABC …… 面心立方晶格结构晶体
Cu、Ag、Au、Al
晶胞中原子数目: 4。 在体心立方晶胞中,每 个角上的原子在晶格中同 时属于8个相邻的晶胞, 每个角上的原子属于一个 晶胞1/8。面上一个原子属 于两个晶胞,每个面上的 原子属于一个晶胞1/2 。 致密度: 0.74 配位数: 12
第01章 晶体结构
1、体心立方晶格
① 体心立方晶格的晶胞(见右图)是由 八个原子构成的立方体,并在其立方 体的中心还有一个原子 ② 因其晶格常数 a=b=c ,通常只用常数 a 表示。由图可见,这种晶胞在其立方 体对角线方向上的原子是彼此紧密相 接触排列着的,则立方体对角线的长 度为31/2a,由该对角线长度31/2a上所分 布的原子数目(共2个),可计算出其 原子半径的尺寸r= 31/2a /4。 ③ 在体心立方晶胞中,因每个顶点上的 原子是同时属于周围八个晶胞所共有, 实际上每个体心立方晶胞中仅包含有: 1/8×8+1=2个原子。 ④ 属于这种晶格的金属有铁(<912℃, α-Fe) 、 铬 ( Cr ) 、 钼 ( Mo ) 、 钨 (w)、钒(V)等。
4 3 2 a 3 4 体心立方致密度= =68% 3 a
3
1.晶格的致密度及配位数
配位数:指晶格中任一原子周围所紧邻的最近且等距离的原子 数。配位数越大,原子排列也就越紧密。在体心立方晶格中, 以立方体中心的原子来看,与其最近邻等距离的原子数有8个, 所以体心立方晶格的配位数为8。面心立方晶格的配位数为12。 密排六方的配位数为12。
确定晶向指数的方法2
1. 建立坐标系 结点为原点,三棱 为方向,点阵常数为单位 ; 2. 在晶向上任两点的坐标(x1,y1,z1) (x2,y2,z2)。(若平移晶向或坐标, 让在第一点在原点则下一步更简 单); 3. 计算x2-x1 : y2-y1 : z2-z1 ; 4. 化成最小、整数比u:v:w ; 5. 放在方括号[uvw]中,不加逗号, 负号记 晶格模型
(C) 体心立方晶胞原子数
2、面心立方晶格
① 面心立方晶格的晶胞见右图也是由八个原 子构成的立方体,但在立方体的每一面的 中心还各有一个原子。 ② 在面心立方晶胞中,在每个面的对角线上 各原子彼此相互接触,其原子半径的尺寸 为r=21/2a/4。 ③ 因每一面心位置上的原于是同时属于两个 晶胞所共有,故每个面心立方晶胞中包含 有:1/8×8+1/2×6=4个原子。 ④ 属于这种晶格的金属有铝(Al)、铜(Cu )、镍(Ni)、铅(Pb)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面心立方晶格的 堆积方式
三、面心立方晶格(face-centered cubic — fcc)
堆积方式:ABC ABC ABC…… 是一种最紧密的排列方式,常称为立方密排晶格.
配位数:12
典型晶体: Au、Ag 、Cu、Al 、Ca
四、六角密排晶格(hexagonal closed-packed )
单晶体(人工半导体单晶、天然宝石等) 多晶体(金属、天然岩盐等) 玻璃、橡胶、塑料等
AlFeV, AlMn, AlFeCu
固体材料的宏观性质和各种微观 过程均与固体的微观结构有关.
晶体
晶体:组成固体的原子在微米量级以上排列是有序的
(称为长程有序),该固体称为晶体。
单晶:原子、分子在整个固体中排列 有序。 多晶:原子、分子在微米量级范围内排 列有序,整个晶体是由这些排列有序的 晶粒随机堆砌而成的。
配位数:每个原子都可作为体心原子, 分布在八个结点上的原子都是其最近邻 原子 — 配位数为8
典型晶体:
Li、Na、K、Rb、Cs、 Fe 等 Fe的体心立方晶格结构
三、面心立方晶格(face-centered cubic — fcc)
A
B
以ABC ABC ABC 方式堆积
A
C
面心立方晶格的典型 单元和原子密排面
金刚石由碳原子构成.
构成:由面心立方单元的中心到顶角 引8条对角线,在互不相邻的4条对角 线的中点处各加一个原子,就得到金 刚石结构。
一个碳原子和其它四个碳原 子构成一个正四面体。
配位数:4
金刚石晶格结构的 典型单元
五、金刚石晶格
1·特点:每个原子有4 个最近邻,它们正好在一个正 四面体的顶角位置
§1-3晶面、晶向和它们的标志
§1-4倒格子
§1-5晶体的宏观对称性 §1-6点群 §1-7晶格的对称性 §1-8晶体结构的实验确定
了解几个定义:
晶格: 晶体中原子排列的具体形式,称为晶体格子。
原子、原子间距不同,但有相同的排列规则,则这 些原子构成的晶体具有相同的晶格(如Au、Ag、 Cu 和Al, Ge 和Si, 等等)。
准晶体
准晶体:1984 年Shechtman等人用快速冷却方法制备的 AlMn准晶体。用XRD测得一种介于晶体和非晶体结构之 间的物质结构。
准晶体:介于晶体与非晶体之间,原子呈定向有序排 列,但不做周期性平移重复。具有局域五重对称轴!
第一章 晶体结构和衍射
§1-1 一些晶格的实例
§1-2晶体的周期性
绪论
一. 固体物理学的研究对象
固体物理研究固体及其组成粒子(原子、离子、电子) 之间相互作用与运动规律以阐明其性能与用途的学科。
物质: 粒子组成的物质、场
形态: 气体、液体、固体 (等离子体)
固体的结构:固体材料由大量原子(离子或分子) 按一定方式排列的结构 固体材料分类: 晶体 非晶体 准晶体 结构 性能
2·堆积方式:对角线上的原子 — A 面心立方位置上的原子 — B
金刚石晶格
A、B 两个面心 立方晶格套成
相对位移 = 对 角线的1/4
六、NaCl 晶体的结构:
堆积方式
NaCl晶格结构的 典型单元 配位数: 6
Na+ 和 Cl-本身构成面心立方 晶格; NaCl晶格 → Na+ 和 Cl- 的面 心立方晶格穿套而成(沿立方 体的棱平移1/2棱长.)
A
B
以AB AB AB 方式堆积 六角密排晶格的 堆积方式
六角密排晶格结 构的典型单元 上、下两个底面为A 层,中 间的三个原子为 B 层.
四、六角密排晶格(hexagonal closed-packed )
配位数为:12 典型晶体:Be、Mgd structure)
晶体内部结构的周期性可以借助于基元、 原胞、基矢和布拉菲格子等物理概念和术 语来描述。
C60晶体的典型单元(晶胞)
晶体基元是一个包含60个碳原子 的巴基球(buckyball)也称富勒 球(Fullereneball)
配位数:一个原子周围最近邻原子的数目。
致密度(or堆积系数):晶胞中原子所占体积与晶胞体 积之比.
注:配位数和致密度 ↑→ 原子堆积成晶格时愈紧密.
一、简单立方晶格(simple cubic - sc)
简单立 方晶格 正方排列 原子层A
AAA…
简单立方晶格典型单元
a
a 2r0
一、简单立方晶格(sc)
堆积方式:最简单的原子球规则排列形式, 但没有 实际的晶体具有此种结构.
配位数:每个原子的上下左右前后各有一个最近邻原 子 — 配位数为6
二、体心立方晶格(body-centered cubic — bcc)
体心立方晶格的 堆积方式 AB AB AB…
体心立方晶格的典型单元
二、体心立方晶格(body-centered cubic — bcc)
七、CsCl 晶体的结构:
CsCl晶格的典型单元
配位数: 8
CsCl 结构是由两个简立方格子 彼此沿立方体空间对角线位移1 /2 的长度套构而成。
八、闪锌矿(zinc blende) 晶体的结构
ZnS晶格的典型单元
配位数:4
立方系的硫化锌具有和金刚石类似 的结构,其中硫和锌分别组成面心 立方结构的子晶格而沿空间对角线 位移1/4 的长度套构而成。这样 的结构统称闪锌矿结构。
九、钙钛矿结构
钙钛矿结构是指钛酸钙(CaTiO3)的结构。
许多重要的介电晶体,例如,BaTiO3, PbZrO3, LiNbO3, LiTaO3等都属于这种类型的结构。
Ba、Ti 和OI、OII、 OIII 各自组成的简单 立方晶格(共5 个)套 构而成的
典型单元
§1-2晶格的周期性
晶格的共同特点是周期性。 ——看成是一个或一组(n个)原子以某种方 式在空间周期性重复平移的结果。
晶体(单晶)具有三个宏观特征:
1、有规则的几何外形,
晶体是一个凸多面体 晶面:构成晶体的表面 晶棱:晶面与晶面的交线
2、有确定的熔点 , 3、物理性质各向异性
非晶体
非晶体(非晶):原子排列不具有长程序。 但在仅比原子间距大一个量级10-9m的范围内原子排列 是有序的(称为短程有序-短程序)。
短程有序, 即近邻原子的数目和种类,近 邻原子之间的距离(键长)及近邻原子配 置的几何方位(键角)都与晶态材料相近。 特点:无固定熔点,各向同性