(完整)初三数学概率初步单元测试题及答案,推荐文档
人教版九年级上册数学概率初步单元测试含答案解析
《第25章概率初步》一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:1001 1000 1004 1003 1000被调查人数n999 998 1002 1002 1000满意人数m满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定不会发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很小的事件在一次实验中也会发生,故A错误;B、可能性很小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性很小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D都是不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】理解概念是解决这类基础题的主要方法.注意确定事件包括必然事件和不可能事件.4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(2013•汕头模拟)中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定【考点】概率公式.【分析】先计算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,所以概率是.故选D.【点评】用到的知识点为:概率=所求情况数与总情况数之比.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【考点】利用频率估计概率.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件就是可能发生,也可能不发生的事件.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,直接利用概率公式求解即可求得答案.【解答】解:∵掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .【考点】概率公式.【分析】分别用所求的情况与总情况的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,(2,﹣(4,(5,3)3)3)3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情况,计算出和是奇数的情况个数,利用概率公式进行计算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情况,故点数和是奇数的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:1001 1000 1004 1003 1000被调查人数n满意人数999 998 1002 1002 1000m满意频率0.998 0.998 0.998 0.9991.000(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估计概率.【分析】(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(2005•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)这个游戏对双方不公平.∵P (拼成电灯)=;P (拼成小人)=;P (拼成房子)=;P (拼成小山)=,∴杨华平均每次得分为(分);季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2008•贵阳)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6 ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= 0.6 ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【考点】利用频率估计概率.【专题】图表型.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
人教版九年级上册数学《概率初步》单元测试题(含答案)
基础知识1、下列事件属于必然事件的是( )A.掷一枚硬币,正面朝上;B.a 是实数,a ≥0;C.某运动员跳高的最好成绩是2.01米D.从车间刚生产的产品中任意抽取一个,是次品.2、有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A.32B.21C.41D.31 3、把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( ) A.21 B.31 C.41 D 51. 4、两个正四面体骰子的各面上分别标有数字1,2,3,4,如果同时抛掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为_________.5、随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 .6、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n __________. 提升练习7、下列事件中是必然事件的为( )A .有两边及一角对应相等的三角形全等B .方程x 2﹣x+1=0有两个不等实根C .面积之比为1:4的正方形的周长之比也是1:4D .圆的切线垂直于过切点的半径8、在20XX ﹣20XXNBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小9、有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为( ) A.31 B. 21 C.32 D. 65 10、将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为a b c 、、,则a b c 、、正好是直角三角形三边长的概率是( )A .1216B .172C . 112D .13611、下列说法中正确的个数是( )①不可能事件发生的概率为0; ②一个对象在实验中出现的次数越多,频率就越大; ③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A .1B .2C .3D .412、一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的一半的概率是( ) A.61 B.31 C.21 D.32 13、如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( ) A.3217 B .21 C .3617 D .3817 14、从1,2,3,4中任取一个数作为十位数的数,再从2,3,4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是__________.15、在一个不透明的口袋里有标号为1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出5号球的概率相同;②有放回的连续摸10次,则一定摸出2号球两次;③有放回的连续摸4次,则摸出四个球标号数字之和可能是20.其中正确的序号是_____________.(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率.16、第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.中考真题17、(2014•聊城)下列说法中不正确的是( )A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是618、(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A.91 B.31 C.21 D.32 19、(2014•临沂)从1、2、3、4中任取两个不同的数,其乘积大于4的概率是( ) A .61 B .31 C .21 D .32 20、(2014年. 南充)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A 、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B 组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax ﹣y=5的解,求a 的值;(2)求甲、乙随机抽取一次的数恰好是方程ax ﹣y=5的解的概率.(请用树形图或列表法求解).第二十五章概率初步单元测试参考答案牌面数字之和为:5,6,7,5,7,8,6,7,9,7,9,8,∴偶数为:4个,得到偶数的概率为:124=31,。
人教版数学九年级上学期《概率初步》单元检测附答案
故选A.
[点睛]本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
[答案]B
[解析]
分析:
详解:根据题意可得共有6种情况:①k=-1,m=1;②k=1,m=-1;③k=-1,m=2;④k=2,m=-1;⑤k=1,m=2;⑥k=2,m=1;符合题意的有①和③,则P(不经过第二象限)= ,故选B.
A. B. C. D.
[答案]D
[解析]
试题分析:好人牌有六张,共有9张牌,所以抽到好人牌的概率是 ,故选D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
A.7B.6C.5D.4
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
4.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( )
A. B. C. D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
6.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )
最新人教版初中数学九年级数学上册第五单元《概率初步》测试题(包含答案解析)
一、选择题1.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2022年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.在一只装有5个红球的袋中摸出1球,一定是红球2.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是()A.12B.13C.23D.143.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误4.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.12B.13C.23D.165.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上6.某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.847.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.158.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.1109.某校学生小明每天上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()A.13B.23C.49D.5910.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.11611.下列说法正确的是().A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上12.下列事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A.0个B.1个C.2个D.3个二、填空题13.在一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是_____.14.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是________.15.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是_____.16.如图所示的转盘分成8等份,若自由转动转盘一次,停止后,指针落在阴影区域内的概率是_______.17.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.18.一个不透明的口袋中装有3个红球和5个黄球,它们除颜色外,其他都相同,往口袋中再放入x个红球和y个黄球,若从口袋中随机摸出一个红球的概率是14,则y与x之间的函数表达式是_______.19.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.20.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.三、解答题21.我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:等级A(优秀)B(良好)C(合格)D(不合格)人数200400280(2)扇形统计图中“A”部分所对应的圆心角的度数是;(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为人;(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.23.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.24.小亮与小明做掷骰子(质地均匀的正方体,6个面上的点数分别为1,2,3,4,5,6)的试验,(1)他们共做了50次试验,试验结果如下:①填空:试验中,“朝上的点数为1”的频率是.②小亮说:“根据试验,出现朝上的点数为1的概率最大”他的说法正确吗?为什么?(2)两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜,小亮与小明谁获胜的可能性大?试说明理由.25.2019年5月,某校八年级部分同学参加了学校首届“中国诗词大会”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)请把条形图补充完整.(2)扇形统计图中,m=______.(3)某班要从B等级中的小明和小刚中选一人参加复赛,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.26.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据随机事件和必然事件定义一一判定即可,必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】解:A. 打开电视机,正在播放动画片,可能发生,也可能不发生,是随机事件,故此项错误;B. 2022年世界杯德国队一定能夺得冠军,可能发生,也可能不发生,是随机事件,故此项错误;C. 某彩票中奖率是1%,买100张一定会中奖,可能发生,也可能不发生,是随机事件,故此项错误;D. 在一只装有5个红球的袋中摸出1球,一定是红球,一定发生,所以是必然事件.故选:D.【点睛】该题考查的是对必然事件的概念的理解;必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.B解析:B【分析】根据题意画出树状图,得出所有可能数和所求情况数,根据概率公式即可得答案.【详解】根据题意画出树状图:∵事件发生的所有可能性为12种;抽到的汉字恰为相反意义的事件为4种;∴抽到的汉字恰为相反意义的概率是:412=13,故选:B.【点睛】本题考查列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数的比;正确画出树状图,熟练掌握概率公式是解题关键.3.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.【点睛】本题考查概率的相关概念.不确定事件是可能发生也可能不发生的事件.正确理解随机事件、不确定事件的概念是解决本题的关键.4.C解析:C【解析】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是46=23;故选C.5.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B【分析】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B .【点睛】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.7.C解析:C【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%, ∴4144x =+, 解得:12x =,经检验,12x =是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.8.A解析:A【分析】画树状图(用A 、B 、C 表示三本小说,a 、b 表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A 、B 、C 表示三本小说,a 、b 表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6, ∴从中随机抽取2本都是小说的概率=620=310. 故选:A .【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键. 9.D解析:D【分析】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为13,遇到黄灯的概率为19,即可求出他遇到绿灯的概率. 【详解】∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为13,遇到黄灯的概率为19, ∴遇到绿灯的概率为1﹣13﹣19=59; 故选:D .【点睛】此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率A m P n(). 10.C解析:C【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:1P ;12故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 11.D解析:D【分析】根据概率的意义对各选项进行逐一分析即可.【详解】解:A、投掷一枚质地均匀的硬币1000次,正面朝上的次数不一定是500次,故A错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故B错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故C错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故D正确.故选:D.【点睛】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.12.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可.【详解】(1)如果a、b都是实数,那么a+b=b+a,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件;(3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误;(4)射击1次,中靶,是随机事件.故随机事件的个数有2个.故选:C.【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题13.【分析】先画树状图展示所有20种等可能的结果数再找出两次都摸到红球的结果数然后根据概率公式求解【详解】解:画树状图为:共有20种等可能的结果数其中两次都摸到红球的结果数为6种所以两次都摸到红球的概率解析:3 10【分析】先画树状图展示所有20种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有20种等可能的结果数,其中两次都摸到红球的结果数为6种,所以两次都摸到红球的概率=620=310.故答案为3 10.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据题意列举出所有情况让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率【详解】设第一道关口的四个门分别为第二道关口的两个门分别为列表得:由表格得共有8种等可能的结果而一次能走出迷宫的解析:1 8【分析】根据题意,列举出所有情况,让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率.【详解】设第一道关口的四个门分别为1234,,,A A A A ,第二道关口的两个门分别为12,B B ,列表得:由表格得,共有8种等可能的结果,而一次能走出迷宫的只有1种,所以P(一次就能走出迷宫)=18, 故答案为:18. 【点睛】本题考查了概率公式的应用,解题的关键是理解题意.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】利用列表法或树状图法列举出所有可能出现的结果数进而求出该事件发生的概率【详解】解:利用列表法可以得出所有可能的结果:∴P (两名同学是一男一女)=【点睛】考查等可能事件发生的概率用列表法或树状解析:23【分析】利用列表法或树状图法列举出所有可能出现的结果数,进而求出该事件发生的概率. 【详解】解:利用列表法可以得出所有可能的结果:∴P (两名同学是一男一女)=4263, 【点睛】考查等可能事件发生的概率,用列表法或树状图法列举出等可能出现的结果数是正确解答的关键,同时注意每一种结果出现的可能性一定要均等.16.【分析】用阴影部分的份数除以总份数即可得【详解】解:由图可知自由转动转盘一次停止后指针落在阴影区域的概率是故答案为:【点睛】本题考查了概率公式解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现解析:58【分析】用阴影部分的份数除以总份数即可得. 【详解】解:由图可知自由转动转盘一次,停止后,指针落在阴影区域的概率是58, 故答案为:58. 【点睛】本题考查了概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.17.【解析】分析:设勾为2k 则股为3k 弦为k 由此求出大正方形面积和阴影区域面积由此能求出针尖落在阴影区域的概率详解:设勾为2k 则股为3k 弦为k ∴大正方形面积S=k×k=13k2中间小正方形的面积S′=( 解析:1213【解析】分析:设勾为2k ,则股为3k ,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k ,则股为3k , ∴大正方形面积2, 中间小正方形的面积S′=(3−2)k•(3−2)k=k 2, 故阴影部分的面积为:13 k 2-k 2=12 k 2∴针尖落在阴影区域的概率为:2212121313k k =. 故答案为1213. 点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.18.【分析】根据题意直接利用概率公式求解可得:继而求得答案【详解】根据题意得:整理得:则y 与x 之间的函数关系式为:故答案为:【点睛】此题考查了根据概率公式求概率用到的知识点为:概率=所求情况数与总情况数解析:34y x =+ 【分析】根据题意,直接利用概率公式求解可得:31354x x y +=+++,继而求得答案.【详解】 根据题意得:31354x x y +=+++,整理得:34y x =+, 则y 与x 之间的函数关系式为: 34y x =+. 故答案为:34y x =+. 【点睛】此题考查了根据概率公式求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】列举出所有情况根据概率公式即可得到小明获胜的概率【详解】共9种情况和为奇数的情况数有5种小明获胜的概率为故答案为:【点睛】本题考查了列表格或画树状图求概率正确画出树状图是解答本题的关键解析:59【分析】列举出所有情况,根据概率公式即可得到小明获胜的概率. 【详解】共9种情况,和为奇数的情况数有5种,小明获胜的概率为59. 故答案为:59.【点睛】本题考查了列表格或画树状图求概率.正确画出树状图是解答本题的关键.20.【分析】直接利用概率公式求解即可【详解】解:共有3个盒子有自己写的纸条的有1个所以每人摸出一张甲恰好摸到自己的卡片的概率为故答案为:【点睛】考查了概率公式解题的关键是牢记概率公式难度不大解析:13【分析】直接利用概率公式求解即可. 【详解】解:共有3个盒子,有自己写的纸条的有1个, 所以每人摸出一张,甲恰好摸到自己的卡片的概率为13, 故答案为:13. 【点睛】考查了概率公式,解题的关键是牢记概率公式,难度不大.三、解答题21.(1)120,见解析;(2)72°;(3)44000;(4)1 2【分析】(1)由B级的人数和对应的百分比可求出总人数,再乘以对应的百分比,即可求出D对应的人数.(2)求出扇形统计图中“A”部分所占的百分比,再乘以360即可求出所对应的圆心角的度数.(3)由样本估计总体的方法,求出样本中测试成绩合格以上(含合格)的百分比,再乘以总人数即可解答.(4)列表得出所有可能的情况,然后找出符合要求的情况数,再利用概率公式进行求解即可.【详解】(1)400÷40%=1000,1000×12%=120;补全表格如下:200÷1000×360°=72°,故答案为:36°;(3)估计测试成绩合格以上(含合格)的人数为:(200+280+400)÷1000×50000=44000人,故答案为:44000;(4)列表如下∴P(抽到1男1女)=101202.【点睛】本题考查了统计表,扇形统计图,用样本估计总体,列表法或树形图法求概率,弄清题意,准确识图(表),找到有用的信息是解题的关键.22.(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为105 126.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.1 2【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=4182.考点:1.画树状图或列表法;2.概率.24.(1)①0.2;②不正确,因为在一次试验中频率并不一定等于概率,只有当试验次数很大时,频率才趋近于概率;(2)小亮获胜的可能性大,理由见解析;【分析】(1)①根据概率计算即可;②根据概率和频率的不同判断即可;(2)根据列表法计算即可;【详解】(1)①1010==0.2 10+9+6+9+8+850;②不正确,因为在一次试验中频率并不一定等于概率,只有当试验次数很大时,频率才趋近于概率.(2)小亮获胜的可能性大,理由如下.列表如下:。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)
人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。
除了颜色外,它们都一样。
如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。
c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。
b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。
B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。
转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。
如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。
d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。
10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。
c.d。
人教版数学九年级上册《概率初步》单元测试卷(附答案)
人教版数学九年级上学期《概率初步》单元测试【考试时间:90分钟分数:120分】一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 13.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 310.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.16.有些事情我们事先能肯定它一定不会发生叫________事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?23.不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有个,蓝球有个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.24.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.26.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得点为试开成功;方法二:可以用张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在之间产生一个随机数,若产生的是,则表示试开成功.你认为上述解法对吗?为什么?27.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.28. 端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.答案与解析一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A、掷一次骰子,向上的一面是6点是随机事件,故A错误;B、打开电视机,正在转播足球比赛是随机事件,故B错误;C、地球上,向上抛的篮球会下落是必然事件,故C错误;D、从只有红球的袋子中,摸出1个白球是不可能事件,故D正确;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 1【答案】B【解析】【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.【答案】C【解析】小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个【答案】A【解析】根据概率的定义,,解得n=10.考点:概率的计算点评:此题主要考查了求概率的问题,用到的知识点为:概率=所求情况与总情况数之比,得到所求的情况数是解决本题的关键.5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】列表得:1 2 31 1+1=2 2+1=3 3+1=42 1+2=3 2+2=4 3+2=53 1+3=4 2+3=5 3+3=6∴一共存在9种情况,数字之和等于4的有3种情况,∴随意从每组牌中各抽一张,数字之和等于4的概率是,故选:B.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.【答案】B【解析】【分析】可以认为分三次取球,第一次有10种可以选择,因而有10种情况,第二次剩余9个球,则第二次有9种情况可以选择,第三次有8种情况,因而可以得到三次取球得到的取法的种数,同理求得三次都是红球的取法,利用概率公式即可求解.【详解】任意取出3个球的情况有:10×9×8=720种;第一次取到红球的情况有7种,则取第二次,两次都是红球的情况有7×6种,第三次取球,三次都是红球的情况有7×6×5=210种.则这3个球都是红球的概率是.故选:B.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为【答案】C【解析】【分析】列举出所有情况,再把各选项事件的概率计算出来,加以比较即可.【详解】共有36种情况.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知:点数之和为11的概率为,而不是,所以选项C不正确,故选:C.【点睛】本题考查了可能性大小以及概率求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.【答案】B【解析】将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 3【答案】D【解析】试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖【答案】D【解析】【分析】根据必然事件,随机事件,概率的定义进行判断.【详解】A、在一定条件下必出现的现象叫必然事件,说法正确,故本选项错误;B、不可能事件发生的概率为0,说法正确,故本选项错误;C、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,说法正确,故本选项错误;D、某种彩票中是随机事件,买100张该种彩票不一定会中奖,说法错误,故本选项正确.故选:D.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.【答案】从中任意摸出一个球是红球【解析】【分析】根据随机事件的概率是大于0小于1来设计即可.【详解】一种不透明的袋子中装有2个红球和3个白球,从中任意摸出一个球是红球;故答案为:从中任意摸出一个球是红球.【点睛】此题考查了模拟实验,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.【答案】【解析】【分析】让剩余黑球的个数除以剩余球的总数即为所求的概率.【详解】袋中有2个红球,3个白球和5个黑球,共10球,则每次摸出一只小球不放回,在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是:.故答案为:.【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.【答案】(1). 随机(2). 0(3). 1【解析】【分析】天阴了就会下雨是________事件,其发生的可能性在________到________之间.【详解】天阴了就会下雨是随机0事件,其发生的可能性在0到1之间.故答案是:随机;0;1.【点睛】本题考查了随机事件的定义,掌握随机事件就是可能发生也可能不发生的事件.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)==.故答案为:.考点:列表法与树状图法;概率公式.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.【答案】.【解析】试题分析:根据概率的求法,求出总人数17人,再求出男生的人数与总人数的比值就是其发生的概率.故答案是.考点:概率.106144216.有些事情我们事先能肯定它一定不会发生叫________事件.【答案】不可能【解析】【分析】根据不可能事件的定义直接解答即可.【详解】有些事情我们事先能肯定它一定不会发生叫不可能事件,故答案为:不可能.【点睛】本题考查了不可能事件的定义:不可能事件是指在一定条件下,一定不发生的事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).【答案】后【解析】【分析】根据相应概率判断即可.【详解】明天下雨的概率为80%大于后天下雨的概率为30%,运动会应选在下雨概率小的日子.故答案为:后.【点睛】本题考查了概率,解题的关键是理解概率是反映事件的可能性大小的量.18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)【答案】④【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.根据题意可知:①买10万张彩票一定不中奖,错误;②买30万张彩票一定中奖,错误;③买30万张彩票一定不中奖,错误;④买30万张彩票可能会中奖,正确.故答案为④.【点睛】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.【答案】【解析】【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解分式方程即可求得答案.【详解】根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.【答案】2000【解析】【分析】带标记鱼的频率近似等于概率.利用概率求出鱼塘中鱼的总数即可.【详解】设池中有x条鱼,带标记的鱼的概率近似等于,解得x=2000,故鱼塘中约有2000条鱼.故答案为:2000【点睛】本题考查利用频率估算概率,得到带标记的鱼的概率是解题关键.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.【答案】此游戏对小明有利.【解析】【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【详解】如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,故此游戏对小明有利.【点睛】本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【答案】解:(1)画树状图得:∵共有12种等可能结果,甲得1分的情况有6种,∴P(甲得1分)。
人教版九年级上册数学《概率初步》单元测试卷(含答案)
人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。
市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。
人教版初中数学九年级数学上册第五单元《概率初步》测试题(有答案解析)
一、选择题1.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数2.如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.2πB.2πC.12πD.2π3.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.124.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果0.900.850.820.840.820.82保留两位小数)A .0.90B .0.82C .0.85D .0.845.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有( )A .6个B .16个C .18个D .24个6.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是( ) A .25个B .24个C .20个D .16个7.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( ) A .19B .13C .12D .798.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .1169.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .2310.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为( ) A .12B .13C .23D .1611.下列事件:①篮球队员在罚球线上投篮一次,未投中;②翻开八年级数学课本,恰好翻到第28页;③任取两个正整数,其和大于1;④长为3,5,9的三条线段能围成一个三角形.其中确定事件有( ) A .1个B .2个C .3个D .4个12.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD为平行四边形的概率为()A.13B.12C.23D.56二、填空题13.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y=ax2+bx+1中a、b的值,恰好使得该二次函数当x>2时,y随x的增大而增大的概率是_____.14.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.15.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为______.16.如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.17.从1.2.3.4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为____18.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________.(2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。
数学九年级上学期《概率初步》单元综合检测卷附答案
小明提出下面的改进方案:由第三个人来转动上面的两个转盘,如果两个转盘都转出了红色,则甲赢,否则乙赢,请你帮小明设计一种替代试验的方法,并写出试验的步骤.
答案与解析
一、选择题(共10小题,每小题3分,共30分)
1.以下说法正确的是()
A.在同一年出生的400人中至少有两人的生日相同
B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
4.一个电子元件接在 之间形成通路的概率是 ,至少需要()个这样的电子元件并联接到 之间,才能保证 间成为通路的概率不低于 .
A. B. C. D.
5.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )
A. B. C. D.
6.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()
随机地从箱子里取出 个球,则取出红球的概率是多少?
小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出 个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.
22.甲和乙玩一种游戏:从装有大小相同的 个红球和一个黄球的袋子中,任意摸出 球,如果摸到黄球,甲得 分;如果摸到红球,乙得 分.
新人教版九年级数学上册《概率初步》单元测试卷及答案
新人教版九年级数学上册《概率初步》单元测试卷及答案一、选择题1、“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件 B.随机事件 C.确定事件 D.不可能事件2、下列四种说法中不正确的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法;B.“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C.“打开电视机,正在播放少儿节目”是随机事件;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.3、小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.4、一个事件的概率不可能是()A.0 B. C.1 D.5、下列事件是必然事件的是()A.通常加热100℃时,水沸腾 B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和为360° D.经过信号灯时,遇到红灯6、一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为()A.在袋中放入1个白球 B.在袋中放入1个白球、2个红球C.在袋中取出1个红球 D.在袋中放入2个白球、1个红球7、在下列事件中,是必然事件的是()A.买一张电影票,座位号一定是偶数 B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落 D.阴天就一定会下雨8、读大学的小慧准备网购一双鞋子,在登录支付宝的时候忘记了自己的密码,她只记得密码的前五位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A. B. C. D.9、九(1)班男生参加体育加试,经抽签分为①②③三个小组,已知小明不在①组,小华不在③组,那么小明与小华分在同一组的概率是()A. B. C. D.10、从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx 的图象经过第二、四象限的概率是( )A. B. C. D.二、填空题11、给出四个事件:①连续2次抛掷1枚质地均匀的硬币,2次都出现“正面朝上”;②发射一颗炮弹,命中目标;③在标准大气压下,水在1℃时结冰;④一个实心铁块丢入水中,铁块浮起,其中随机事件有_________.12、从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是____.13、学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是_________.14、在-1,0,,,π,0.10110中任取一个数,取到无理数的概率是__________.15、甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是_________.16、一个不透明口袋里有黑球、白球各一个,除颜色外均相同,每次取出一个球,然后放回口袋里,小亮取了5次都是白球,当他第6次取时,取到白球的概率是______.17、如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.18、有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,随机抽取1张,则取出的数是无理数的概率是_______.19、某班甲、乙、丙三位同学被选中参加即将举行的学校运动会100米比赛,预赛分为A、B、两组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是______.20、如图,在4×4的方格中,A、B、C、D、E、F分别位于格点上,以点A、点B为顶点,再从C、D、E、F四点中任取一点作为第三个顶点画三角形,则所画三角形为等腰三角形的概率是________.三、解答题21、一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球;(2)搅匀后从中任意摸出2个球,2个都是白球.22、八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.23、一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.()请直接写出袋子中白球的个数.()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)24、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.25、一只不透明的袋子中装有1个白球,2个黄球和3个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出1个球,(1)会出现哪些可能的结果?(2)事先能确定摸出的一定是红球吗?(3)你认为摸到哪种颜色的球的概率最大?(4)怎样改变袋子中白球、黄球、红球的个数,使摸到这些颜色的球的概率相等?26、为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).(1)体育所占的百分比是_______,选择其他的人数是________(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?27、我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了名同学,其中女生共有 ___名;(2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.参考答案1、B2、A3、A4、D5、A6、B7、C8、C9、C10、D11、①②12、.13、14、.15、16、17、18、0.419、0.520、.21、(1);(2).22、(1)40(2)15%(3)23、(1)袋子中白球有2个;(2).24、(1);(2)从袋中取出黑球的个数为2个.25、(1)白、黄、红三种;(2)不能;(3)红球;(4)袋子中白球、黄球、红球的个数相同26、 40 8人(2);(3)200名27、(1)20,11;(2)补图见解析;(3)【解析】1、根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.点睛:本题比较简单,主要考查了随机事件,解决此类题目,要学会关注身边的事物,并用数学的方法和思想去分析、看待、解决问题.2、分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据随机事件、必然事件、不可能事件,可得答案.详解:A.为了解一种灯泡的使用寿命,调查具有破坏性,宜采用抽样调查的方法,A错误;B.“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B正确;C.“打开电视机,正在播放少儿节目”是随机事件,故C正确;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,故D正确;故选:A.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查;随机事件是可能发生也可能不发生的事件,必然事件是一定发生的事件,不可能事件是一定不发生的事件.3、试题解析:分别记小明、小华选择“打扫社区卫生”为事件,小明、小华选择“参加社会调查”为事件,则两人的选择结果共有这四种等可能的情况,其中符合条件的只有这一种情况,故两人同时选择“参加社会调查”的概率为 .所以本题应选A.4、一个事件的概率不可能是.故选D.点睛:事件A 发生的概率0≤P(A)≤1.5、A选项:通常加热到100℃时,水沸腾是必然事件,故本选项正确;B选项:篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项错误;C选项:度量三角形内角和,结果是360°是不可能事件,故本选项错误;D选项:经过信号灯时,遇到红灯是随机事件,故本选项错误.故选A.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、分析:根据概率公式,分别求出各选项中摸到白球与摸到红球的概率即可求解.详解:A、在袋中放入1个白球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;B、在袋中放入1个白球、2个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项符合题意;C、在袋中取出1个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;D、在袋中放入2个白球、1个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;故选B.点睛:本题考查了概率公式:概率=所求情况数与总情况数之比,熟练掌握概率的计算公式是解答本题的关键.7、根据必然事件指在一定条件下一定发生的事件,利用这个定义即可判定.解:A. 买一张电影票,座位号一定是偶数,是随机事件;B. 随时打开电视机,正在播新闻,是随机事件;C. 通常情况下,抛出的篮球会下落,是必然事件;D. 阴天就一定会下雨,是随机事件.故选C.8、排列这三个数字为:512,521,251,215,125,152,共6种可能,符合条件可能只有1种,因此第一次就输入正确密码的概率为:.故选C.9、分析:画出树状图得出所有等可能结果,再根据概率公式计算可得.详解:画树状图如下:由树状图可知,共有4种等可能结果,其中小明与小华分在同一组的只有1种,所以小明与小华分在同一组的概率为,故选:C.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10、根据题意画树状图为:共有6种可能的情况,而正比例函数的图像经过二、四象限的条件是k<0,因此符合的有4种可能,因此符合条件的概率为:.故选D.点睛:此题主要考查了树状图或列表法求概率,解题时根据抽取两数求积k的值,然后根据正比例函数图像经过的象限判断出k的范围,然后求符合条件的概率即可.11、分析:根据随机事件是可能发生也可能不发生的事件,然后根据事件发生的可能性判断即可.详解:①连续2次抛掷1枚质地均匀的硬币,2次都出现“正面朝上”,有可能发生,也可能不发生,是随机事件;②发射一颗炮弹,命中目标,有可能发生,也可能不发生,是随机事件;③在标准大气压下,水在1℃时结冰,一定不发生,是不可能事件;④一个实心铁块丢入水中,铁块浮起,是不可能事件.故答案为:①②.点睛:此题主要考查了随机事件的辨别,关键是利用自己对生活实际问题的认识.12、试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为:.13、试题分析:根据题意可得所有可能出现的情况有:小明,小红;小明,小华;小红,小华三种情况,则符合题意的只有1种,故概率为.14、共有6个实数,其中无理数有2个,所以取到无理数的概率是.故本题应填.15、试题分析:甲、乙、丙三人随意排成一列拍照,共6种情况,即甲、乙、丙;乙、甲、丙;甲、丙、乙;乙、丙、甲;丙、甲、乙;丙、乙、甲;甲排在中间的有2种情况,故其概率是=,故答案为:.点睛:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、分析:根据题意,明确袋子中始终有两个小球,当摸任何一次白球和黑球出现的概率都一样,求解即可.详解:根据题意,明确袋子中始终有两个小球,第6次摸到白球的概率为.故答案为:.点睛:此题考查了概率.用到的知识点为:概率=所求情况数与总情况数之比.17、根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.18、解:一共有5个数,无理数有π,共2个,∴抽到写有无理数的卡片的概率是2÷5=0.4.故答案为:0.4.点睛:考查概率公式的应用;判断出无理数的个数是解决本题的易错点.19、画树形图如下:甲、乙二人分组情况共有4种等可能结果,其中两人在一组的有2种,∴P(甲、乙二人在一组)=.20、由勾股定理知,AD=BD=,ABD为等腰三角形;AB=BF,ABF为等腰三角;而AB=AC=,ABC为等腰三角形; BE=,AE=,AB,ADE不是等腰三角形,所以所画三角形为等腰三角形的概率是.21、试题分析:列举出所有的可能情况,计算概率即可;列举得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.试题解析:搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是白球”(记为事件A)的结果有2种,所以把2个白球分别记为白1,白2,搅匀后从中任意摸出2个球,所有可能出现的结果有:(白1,白2)、(白1,红)、(白2,红)、(白1,黄)、(白2,黄)、(红,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是白球”(记为事件B)的结果只有1种,所以22、试题分析:(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.试题解析:解:(1)∵喜欢散文的有10人,频率为0.25,∴m=10÷0.25=40;(2)在扇形统计图中,“其他”类所占的百分比为 ×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图.23、试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.24、试题分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:,继而求得答案.试题解析:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:;(2)设从袋中取出x个黑球,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,所以从袋中取出黑球的个数为2个.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.25、分析:(1)根据事情发生的可能性,注意判断即可;(2)根据红球的多少判断,只能确定出现的可能性较大;(3)根据红球的数量多,抽出的可能性就大;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.详解:(1)会出现:白、黄、红三种(2)不能确定摸出的球一定是红球;(3)由于红球数量最多,所以红球出现的概率最大;(4)袋子中白球、黄球、红球的个数相同时,三者的概率相等.点睛:此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.26、分析:(1)用单位“1”减去美术、音乐、其它所占的百分比即得体育所占的百分比;用喜欢音乐的人数4除以喜欢音乐的人数所占百分比即抽取学生总数,然后用所求总数乘以32%即可求喜欢其它的人数;(2)树状图和列表法均可,列出所有可能发生的情况数,用小丁和小李恰好都被选中的情况数除以总数即可;(3)利用样本估计总体的方法,用500×调查的25名学生中最喜欢体育运动的学生所占的百分比即可.详解:(1)如图,(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是小丁;选择美术类的3人分别是小李.小丁,,,小丁,,,,小丁,,小李,小李,小李小丁,小李由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是.(3)由(1)可知问卷中最喜欢体育运动的的学生占40%,得(名)所以该年级中最喜欢体育运动的学生约有200名.点睛:此题主要考查了条形统计图、扇形统计图、概率、样本估计总体思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.27、试题分析:(1)用A类学生的人数除以所占的百分比求出总人数,再根据C类学生所占百分比求出C类学生人数,减去男生人数即可得C类的女生人数,将A、B、C、D类的女生人数相加即可得;(2)根据(1)中求得的相关数据求出D类的男生数即可补全条形图;(3)用A表示男生,B表示女生,列表格,即可求出所选两位同学恰好是一位男同学和一位女同学的概率.试题解析:(1)总人数为:(1+2)÷15%=20(名),20×25%-3=2,所以女生共有:2+6+2+1=11(名),故答案为:20,11;(2)D类男生:20-11-1-4-3=1,补充条形统计图如图所示;(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:由上表可知所选两位同学恰好是一位男同学和一位女同学的概率为.。
人教版九年级上册数学《概率初步》单元测试(含答案)
A. B. C. D.
3.下列说法中正确的是()
A.不确定事件发生的概率是不确定的
B.事件发生的概率可以是任何小于 的正数
C.事件发生的概率可以等于事件不发生的概率
C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;
D,此试卷确实共24小题,所以是必然事件,故此选项正确.
故选D.
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
4.在“红桃 、红桃 、红桃 ”这三张扑克牌中任取一张,抽到“红桃 ”的概率是()
A.
B.
C.
D.
【答案】B
【解析】
【分析】
根据题意,共3张扑克牌,其中有1张为“红桃7”,根据概率的计算公式计算可得答案.
【详解】解:根据题意,共3张扑克牌,其中有1张为“红桃7”,则抽到“红桃7”的概率是 ,
故选B.
0.074
0.069
0.069
0.071
0 070
0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
12.在用模拟试验估计50名同学中有两个是同一天生日 概率中,将小球每次搅匀的目的是_________.
13.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是_______.
14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.
最新人教版初中数学九年级数学上册第五单元《概率初步》测试(含答案解析)
一、选择题1.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( ) A .15B .25C .35D .452.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球D .事先能确定摸到什么颜色的球3.某射击运动员在同一条件下的射击成绩记录如下: 射击次数 20801002004001000“射中九环以上”的次数 186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82A .0.90B .0.82C .0.85D .0.844.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .任意买一张电影票,座位号是2的倍数的概率C .从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D .从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率5.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是( ) A .23B .58C .38D .166.从2,3,4,5中任意选两个数,记作a 和b ,那么点()a b ,在函数2611y x x =-+图象上的概率是( ) A .12B .13C .14D .167.现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )A .19B .16C .23 D .138.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为( )A .12B .13C .23D .169.下列说法正确的是( )A .“穿十条马路连遇十次红灯”是不可能事件B .任意画一个三角形,其内角和是180°是必然事件C .某彩票中奖概率为1%,那么买100张彩票一定会中奖D .“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1210.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( ) A .15B .25C .310D .4511.下列事件属于不可能事件的是() A .太阳从东方升起 B .1+1>3 C .1分钟=60秒 D .下雨的同时有太阳12.数字“”中,数字“”出现的频率是( ) A .38B .12C .13D .49二、填空题13.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.14.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01) 每批粒数n 800 100012001400 1600 1800 2000发芽的频数m 76294811421331151817101902发芽的频率mn0.953 0.948 0.952 0.951 0.949 0.950 0.95115.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是____.16.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球是黑球的概率为14,那么袋中的红球有_________个. 17.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.18.四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________.19.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.20.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,定义点(),m n 在反比例函数ky x=上为事件k Q (44,k k -≤≤为整数),当k Q 的概率最大时,则k 的所有可能的值为__________.三、解答题21.为贯彻落实全市城乡“清爽行动”暨生活垃圾分类攻坚大会精神,积极创建垃圾分类示范单位,我校举行了一次“垃圾分类”模拟活动. 我们将常见的生活垃圾分为四类:可回收垃圾、厨余垃圾、有害垃圾、其他垃圾,且应分别投放于4种不同颜色的对应垃圾桶中. 若在这次模拟活动中,某位同学将两种不同类型的垃圾先后随意投放于2种不同颜色的垃圾桶.(1)请用列表或画树状图表示所有可能的结果数; (2)求这位同学将两种不同类型的垃圾都正确投放的概率.22.为弘扬我校核心文化——“坿”文化,积极培育学生“敢进取”的精神,我校举行一次数学探究实验. 在一个不透明的箱子里放有 n 个除颜色外其他完全相同的小球(数量不详),只知其中有5个红球.(1)若先从箱子里拿走 m 个红球,这时从箱子里随机摸出一个球是红球的事件为“随机事件”,则 m 的最大值为________.(2)若在原来的箱子里再加入3个红球后进行摸球实验,每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子,通过大量重复摸球实验后发现摸到红球的频率稳定在40%左右,你能估计 n 的值是多少吗?23.有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有2个完全相同的小球,分别标有数字1,2(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率; (2)你认为该游戏公平吗?请说明理由.24.某校为组织代表队参加区“学宪法、讲宪法”知识竞赛初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分)A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组: 9095x ≤<;E 组:95100x ≤<,并绘制出如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)参加初赛的选手共有名;扇形统计图中,E组对应的圆心角是 °(2)现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.25.如图,一个质地均匀的转盘分为A、B两个扇形区域,A区域的圆心角为120°(1)随意转动转盘一次,指针指在B区域的概率是多少.(2)随意转动两次转盘,指针第一次指在B区域,第二次指在A区域的概率是多少,用树状图或列表方法来说明理由.26.一个不透明的袋中装有2个红球、3个黑球和5个白球,它们除颜色外其余都相同.小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若小明摸到红球,则小明得10分;若小红摸到黑球,则小红得10分,这个游戏对双方公平吗?为什么?若不公平,怎样修改游戏规则,才能保证游戏公平?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据菱形的判定方法求解即可.【详解】=;根据有一组邻边相等的平行四边形是菱形,可判定ABCD是菱解::①AB BC形;⊥;根据有一个内角是直角的平行四边形是矩形,可判定ABCD是矩形;②AB BC③AD BC=;是ABCD本身具有的性质,无法判定ABCD是菱形;④AC BD⊥,根据对角线互相垂直的平行四边形是菱形,可判定ABCD是菱形;⑤AC BD=.根据对角线相等的平行四边形是矩形,可判定ABCD是矩形∴共有5种等可能结果,其中符合题意的有2种∴能判定ABCD是菱形的概率为25故选:B.【点睛】本题考查概率的计算及菱形的判定,掌握菱形的判定方法正确分析推理是解题关键.2.C解析:C【详解】∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为1011,摸出一个球是白球的概率为111,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选C.【点睛】可能性的大小.3.B解析:B【分析】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【点睛】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.4.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】A 、掷一枚硬币,出现正面朝上的概率为12,故此选项错误; B 、任意买一张电影票,座位号是2的倍数的概率不确定,但不一定是0.33,故此选项错误;C 、从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率221==0.334+263≈,故此选项正确; D 、从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率14;故此选项错误; 故选:C . 【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解,难度不大.5.C解析:C 【分析】根据题意列举出所有情况,看三只雏鸟中恰有2只雄鸟的情况数占总情况数的多少即可. 【详解】根据题意画图如下:共8种情况,三只雏鸟中恰有两只雄鸟有3种情况,所以概率为38.故选C .【点睛】此题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到三只雏鸟中恰有两只雄鸟的情况数是解决本题的关键.6.C解析:C 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点()a b ,在函数2611y x x =-+图象上的情况,再利用概率公式即可求得答案;【详解】 解:画树状图得:∵共有12种等可能的结果,点()a b ,在函数2611y x x =-+图象上的点为:(2,3)、(3,2)、(4,3)共3种,∴点()a b ,在函数2611y x x =-+图象上的概率31124P , 故答案为:C. 【点睛】本题主要考查了列表法与树状图法,概率公式,掌握列表法与树状图法,概率公式是解题的关键.7.A解析:A 【分析】列举出所有情况,看转盘停止后指针指向同种颜色区域的情况数占总情况数的多少即可. 【详解】 解:如图共9种情况,转盘停止后指针指向同种颜色区域的情况数是1, 所以概率为19. 故选A . 【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的易错点.8.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案. 【详解】 画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61=122.故答案为:12.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.B解析:B【分析】直接利用随机事件的定义以及确定事件的定义分别分析得出答案.【详解】A、“穿十条马路连遇十次红灯”是随机事件,错误;B、三角形内角和是180°,所以任意画一个三角形,其内角和是180°,是必然事件,是正确的;C、“彩票中奖概率为1%,那么买100张彩票不一定会中奖”是随机事件,故原选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是37,故原选项错误.故选:B.【点睛】此题主要考查了随机事件以及确定事件,正确把握定义是解题关键.10.C解析:C【分析】先判断出五种图形中哪些是中心对称图形,再利用列表法即可求得抽取两个都是中心对称图形的概率.【详解】五种图形中,属于中心对称图形的有:平行四边形、菱形、线段将等腰三角形、平行四边形、菱形、角、线段分别记作A,B,C,D,E列表可得CE,EC共6种抽取两个都是中心对称图形的概率是:63=P2010故选:C【点睛】本题考查了中心对称图形的识别和列表法求概率,把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性都相等,我们可以通过列举试验结果的方法,分析出随机事件的概率.11.B解析:B【分析】不可能事件就是一定不会发生的事件,依据定义即可判断.【详解】A.太阳从东方升起,是必然事件,故本选项错误;B. 1+1=2<3,故原选项是不能事件,故本选项正确;C. 1分钟=60秒,是必然事件,故本选项错误;D.下雨的同时有太阳,是随机事件,故本选项错误.故选:B.【点睛】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.A解析:A【分析】首先计算数字的总数,以及2出现的频数,根据频率公式:频率=频数÷总数即可求解.【详解】数字的总数是8,有3个数字“”,因而“”出现的频率是:38.故选:A.【点睛】本题考查了频数的计算公式,理解公式是关键.二、填空题13.【分析】先列表求出所有情况数然后再确定一男一女的情况数最后运用概率公式计算即可【详解】解:列表如下:男1 男2 女1 女2 女3 男1 (男1男2)(男1女1)(男1女2)(男1女3)解析:3 5【分析】先列表求出所有情况数,然后再确定一男一女的情况数,最后运用概率公式计算即可.【详解】解:列表如下:男1男2女1女2女3男1(男1,男2)(男1,女1)(男1,女2)(男1,女3)男2(男2,男1)(男2,女1)(男2,女2)(男2,女3)女1(女1,男1)(女1,男2)(女1,女2)(女1,女3)女2(女2,男1)(女2,男2)(女2,女1)(女2,女3)女3(女3,男1)(女3,男2)(女3,女1)(女3,女2)所以由概率公式可得选中一男一女的概率为123= 205.故答案为35.【点睛】本题主要考查了运用列表法求概率,正确的列表是解答本题的关键.14.【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.2100个【解析】因为摸到黑球的频率在07附近波动所以摸出黑球的概率为07再设出黑球的个数根据概率公式列方程解答即可解:设黑球的个数为x∵黑球的频率在07附近波动∴摸出黑球的概率为07即x/3000解析:2100个【解析】因为摸到黑球的频率在0.7附近波动,所以摸出黑球的概率为0.7,再设出黑球的个数,根据概率公式列方程解答即可.解:设黑球的个数为x,∵黑球的频率在0.7附近波动,∴摸出黑球的概率为0.7,即x/3000=0.7,解得x=2100个.大量反复试验时,某某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.16.9【分析】首先设袋中的黑球有x个根据题意得:解此分式方程即可求得答案【详解】解:设袋中的黑球有x个根据题意得:解得:x=3即袋中的黑球有3个所以红球个数:12-3=9(个)故答案为9【点睛】此题考查解析:9【分析】首先设袋中的黑球有x个,根据题意得:1124x=,解此分式方程即可求得答案.【详解】解:设袋中的黑球有x个,根据题意得:1 124x=,解得:x=3,即袋中的黑球有3个.所以红球个数:12-3=9(个)故答案为9.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】据已知条件证得△ABD ≌△AED 根据全等三角形的性质得到BD =ED 得出S △ABD =S △AEDS △BCD =S △DCE 推出S △ACD =S △ABC 根据概率公式可得的答案【详解】延长BD 交AC 于E ∵ 解析:12【分析】据已知条件证得△ABD ≌△AED ,根据全等三角形的性质得到BD =ED ,得出S △ABD =S △AED ,S △BCD =S △DCE ,推出S △ACD =12S △ABC ,根据概率公式可得的答案. 【详解】延长BD 交AC 于E ,∵AD 平分∠BAC , ∴∠BAD =∠EAD , ∵BD ⊥AD ,∴∠ADB =∠ADE =90°, 在△ABD 和△AED 中,ADB ADE AD ADBAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ), ∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,, ∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACD ABCSS=. 故答案为12. 【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.18.【分析】由四张质地大小背面完全相同的卡片上正面分别画有平行四边形矩形等腰三角形菱形四个图案平行四边形矩形菱形是中心对称图形等腰三角形是轴对称图形直接利用概率公式求解即可求得答案【详解】解:∵四张质地解析:34【分析】由四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.平行四边形、矩形、菱形是中心对称图形,等腰三角形是轴对称图形,直接利用概率公式求解即可求得答案. 【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.中心对称图形的是平行四边形、矩形、菱形, ∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34. 故答案为:34. 【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】由直线不过第二象限可得a >0b≤0画出树状图可得出所有可能的结果找出a >0b≤0的结果数利用概率公式即可得答案【详解】∵直线不过第二象限∴a >0b≤0画树状图如下:∵共有6种等可能的结果使得解析:13【分析】由直线y ax b =+不过第二象限可得a >0,b≤0,画出树状图可得出所有可能的结果,找出a >0,b≤0的结果数,利用概率公式即可得答案. 【详解】∵直线y ax b =+不过第二象限, ∴a >0,b≤0, 画树状图如下:∵共有6种等可能的结果,使得直线y ax b =+不过第二象限的结果有2种, ∴a b 、的取值使得直线y ax b =+不过第二象限的概率是26=13,故答案为:13【点睛】本题考查了一次函数的性质及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.±2【分析】首先根据题意列出表格然后根据表格求得k 取不同值时的概率比较大小即可确定k 的所有可能的值【详解】列表得:(1−2) (−1−2) (2−2) (−2−2) (12) (−12) (22)解析:±2. 【分析】首先根据题意列出表格,然后根据表格求得k 取不同值时的概率,比较大小即可确定k 的所有可能的值. 【详解】 列表得:∵若点(m ,n )在反比例函数ky x=上, 则k =mn ,∵P (k =−4)=21168=,P (k =−1)=21168=,P (k =−2)=41164=,P (k =1)=21168=,P (k =2)=41164=,P (k =4)=21168=,∴当Q k 的概率最大时,k =±2. 故答案为:±2. 【点睛】此题考查了列表法或树状图法求概率与反比例函数的性质.此题难度适中,解题时注意列表法与树状图法可以不重不漏的列出所有等可能的情况,然后根据概率公式求得概率.三、解答题21.(1)答案见解析;(2)112. 【分析】(1)根据题意画出树状图得出所有情况数即可;(2)根据(1)中的数据,求出概率即可. 【详解】解:(1)根据题意,画树状图得:由列表可知,一共有12种结果.(2)跟据(1)中的数据可知,正确的投放,只有一种,所以这位同学将两种不同类型的垃圾都正确投放的概率为112. 【点睛】考查用列树状图的方法解决概率问题,熟悉相关性质是解决本题的关键. 22.(1)4;(2)17. 【分析】(1)由随机事件的定义,即可求出m 的值;(2)根据利用频率估计概率得到摸到黄球的概率为40%,然后根据概率公式计算n 的值即可; 【详解】解:(1)∵从盒子里随机摸出一个球是红球的事件为“随机事件” ∴不透明的盒子中至少有一个红球, ∴m 的最大值=514-=, 故答案为:4; (2)解:由题意得530.43n +=+ 解之得:n=17;经检验,17n =是原分式方程的解. 【点睛】本题考查了利用频率估计概率,随机事件的定义,解题的关键是熟练掌握所学的知识,正确求出答案. 23.(1)12;(2)公平,理由见解析 【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平. 【详解】解:(1)画树状图得:∵共有6种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)=36=12,∴小颖参加比赛的概率为:12;(2)公平,∵P(小颖)=12,P(小亮)=12.∴P(小颖)=P(小亮),∴游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)40,54;(2)23.【分析】(1)用A组的人数除以它所占的百分比得到调查的总人数;然后用360°乘以E组所占的百分比得到扇形统计图中“E”所在扇形圆心角的度数;(2)通过树状图表示12种等可能的结果数,找出恰好选中一名男生和一名女生的结果数,然后根据概率公式求解.【详解】解:(1)参加初赛的选手的人数为8÷20%=40(人);扇形统计图中,E组对应的圆心角=360°×640=54°;故答案为40,54;(2)画树状图为:共有12种等可能的结果数,其中恰好选中一名男生和一名女生的结果数为8,所以恰好选中一名男生和一名女生的概率=82=123. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 25.(1)23;(2)29【分析】(1)算出B 所在的圆心角度数,进行计算即可; (2)将转盘分成三等分,列树状图计算即可; 【详解】(1)360120240︒-︒=︒, ∴24023603︒=︒, ∴指针指在B 区域的概率为23. (2)将转盘分成三等分,一共有三种等分区域,列树状图如下,一共有9种结果,其中第1次是B ,第2次是A 的有2种, ∴概率为:29. 【点睛】本题主要考查了列表法与树状图法求概率,准确画图计算是解题的关键. 26.不公平,理由见解析,把3个黑球改为放2个黑球,这样才能保证游戏公平 【分析】利用概率公式分别求出小明和小红获胜的概率,进而得出这个游戏对双方不公平,把3个黑球改为放2个黑球,这样摸到的红球和黑球的概率相等,这样才能保证游戏公平. 【详解】 解:不公平.∵不透明的袋中装有有2个红球、3个黑球和5个白球,小明摸到红球,得10分,若小红摸到黑球,则小红得10分,。
初三数学人教版九年级上册第25章概率初步单元训练题含答案
初三数学人教版九年级上册第25章概率初步单元训练题含答案1. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相反.从中恣意摸出一个球,那么是红球的概率为( C )A.16B.13C.12D.232. 以下说法中,正确的为( C )A .不太能够发作的事就一定不发作B .一件事情要么发作,要么不发作,所以它发作的概率为0.5C .买1张彩票的中奖概率为110000,那么买1张彩票中奖的能够性很小D .抛掷一枚硬币的前9次均出现了正面,那么第10次一定会出现反面3. 以下说法中,正确的选项是( A )A .不能够事情发作的概率为0B .随机事情发作的概率为12C .概率很小的事情不能够发作D .投掷一枚质地平均的硬币100次,正面朝上的次数一定为50次4.从区分标有-3,-2,-1,0,1,2,3的七张没有清楚差异的卡片中,随机抽取一张,所抽卡片上的数的相对值不小于2的概率是( D ) A.17 B.27 C.37 D.475.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( B )A.12B.13C.14D .0 6.在一个不透明的口袋里,装有仅颜色不同的黑球、白球假定干个.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不时重复.下表是活动中的一组数据,那么摸到白球的概率约是( C )A.0.4 B .0.5 C .0.6 D .0.77.在一个口袋中有4个完全相反的小球,把它们区分标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,那么两次摸出的小球的标号之和等于5的概率是( C )A.12B.13C.14D.158.如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自在转动两个转盘,当转盘中止转动后(假定指针指在边界处那么重转),两个转盘指针指向数字之和不超越4的概率是( D )A.56B.13C.23D.129.小红、小明在玩〝石头、剪刀、布〞游戏,小红给自己一个规则:不时不出〝石头〞.小红、小明获胜的概率区分是P 1,P 2,那么以下结论正确的选项是( A )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .P 1≤P 210.同时抛掷A ,B 两个平均的小立方体(每个面上区分标有数字1,2,3,4,5,6),朝上一面的数字区分为x ,y 并以此确定点P(x ,y),点P 落在抛物线y =-x 2+3x 上的概率为( A )A.118B.112C.19D.1611.有5张看上去无差异的卡片,下面区分写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( A ) A.310 B.320 C.720 D.71012.某同窗期中考试数学考了120分,那么他期末考试数学考120分是__随机__事情.(填〝肯定〞〝不能够〞或〝随机〞)13.在一个不透明的袋子中装有除颜色外其他均相反的7个小球,其中红球2个,黑球5个,假定再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,那么m 的值为__3__. 14.从〝线段、等边三角形、圆、矩形、正六边形〞这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是__45__. 15.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相反.小明从这个袋子中随机摸出一球,放回.经过屡次摸球实验后发现,摸到黄色球的频率动摇在15%左近,那么袋中黄色球能够有__6__个.16.不透明的布袋里有2个白色小汽车和2个白色小汽车(小汽车除颜色不同外,其他都相反),从布袋中随机摸出2个小汽车,那么摸出的2个小汽车颜色相反的概率是__13__. 17.学校图书馆有甲、乙两名同窗担任志愿者,他俩各自在周六、周日两天中恣意选择一天参与图书馆的公益活动,那么该图书馆恰恰周六、周日都有志愿者参与公益活动的概率是__12__. 18.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,可以使灯泡L 1,L 2同时发光的概率是__15__.19.有反面完全相反的9张卡片,正面区分写有1~9这九个数字,将它们洗匀后反面朝上放置,恣意抽出一张,记卡片上的数字为a ,那么数字a 使不等式组⎩⎪⎨⎪⎧x +12≥3,x<a有解的概率为__49__. 20.掷一个正方体骰子,观察向上一面的点数,求以下事情的概率:(1)点数为6;(2)点数小于3.解:(1)P(点数为6)=16(2)P(点数小于3)=26=1321.如图,某展览馆展厅东面有两个入口A ,B ,南面、西面、北面各有一个出口,小华任选一个入口进入展览大厅,观赏完毕前任选一个出口分开.(1)她从进入到分开共有多少种能够的结果?(要求画出树状图)(2)她从入口A 进入展厅并从北出口或西出口分开的概率是多少? 解:(1)画树状图(略),一切能够的结果有6种(2)她从入口A 进入展厅并从北出口或西出口分开的概率为P =26=1322.甲、乙两个不透明的口袋,甲口袋中装有3个区分标有数字1,2,3的小球,乙口袋中装有2个区分标有数字4,5的小球,它们的外形、大小完全相反,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字能够出现的一切结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种等能够状况,两个数字之和能被3整除的状况有2种,∴P(两个数字之和能被3整除)=26=1323.甲、乙两人停止摸牌游戏.现有三张外形大小完全相反的牌,正面区分标有数字2,3,5.将三张牌反面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记载数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相反数字的概率;(2)假定两人抽取的数字和为2的倍数,那么甲获胜;假定抽取的数字和为5的倍数,那么乙获胜.这个游戏公允吗?请用概率的知识加以解释. 解:(1)列表(略),共有9种结果,每种结果出现的能够性相反,其中两人抽取相反数字的结果有3种,所以两人抽取相反数字的概率为13(2)不公允,从(1)中可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公允。
(word完整版)初三数学概率试题大全(含答案),推荐文档
试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16B.13C.14D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( ) A.12 B.14 C.16 D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是.528.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒.4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.910.在中考体育达标跳绳项目测试中,1min跳160次为达标.•小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2 511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
初三数学概率初步单元测试题及答案
概率初步单元测评附参考答案(时间:100分钟,满分:110分)班级:姓名:学号:得分:一、选择题(每题4分,共48分)1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A. B. C. D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B. C. D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A. B. C. D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A. B. C. D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( )A. B.C. D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A. B. C. D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A. B.C. D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A. B.C. D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A. B. C. D.二、填空题(每题4分,共24分)13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题(每题7分,共28分)19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.; 15. 16.6; 17. 18 18.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球 20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)。
(完整word版)九年级数学上概率初步测试题(含答案)
九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1。
下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2。
条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( ) A .20种 B 。
8种 C 。
5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( ) A .154 B.31 C 。
51 D.1524.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
5。
某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( ) A 。
1001 B 。
10001 C. 100001 D. 100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( )图1图2A.61 B.31 C 。
21 D.32 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15B .29C .14D .5188。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.
C. D. 9.四张完全相同的卡片上,分别画有圆、矩形、等边 三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )
A. B. C. D. 10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落 在黑色格中的概率是( )
20.一张椭圆形桌旁有六个座位,A、E、F 先坐在如图所示的座位上,B、C、D 三人随机坐 到其他三个座位,求 A 与 B 不相邻而座的概率.
21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字 上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所 指的两个数字作乘积. 请你:⑴列举(用列表或画树状图)所有可能得到的数字之积 ⑵求出数字之积为奇数的概率.
A. B. C.
D.
5.有 、7、8、9,若将这六张牌 背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是 3 的倍数的概率为( )
A. B. C. D. 6.一个袋子中有 4 个珠子,其中 2 个是红色,2 个蓝色,除颜色外其余特征均相同, 若在这个袋中任取 2 个珠子,都是红色的概率是( )
22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: ⑴用树状图表示出所有可能的寻宝情况; ⑵求在寻宝游戏中胜出的概率.
一、选择题
答案与解析
1.D 2.C 3.D 4.A 5.D 6.D 7.D 8.A 9.B 10.B 11.D
16.有五张卡片,每张卡片上分别写有 1,2,3,4,5,洗匀后从中任取一张,放回后 再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于 8 的概率为_______. 17.某口袋中有红色、黄色、蓝色玻璃共 72 个,小明通过多次摸球试验后,发现摸到 红球、黄球、蓝球的频率为 35%、25%和 40%,估计口袋中黄色玻璃球有 个. 18.口袋里有红、绿、黄三种颜色的球,其中红球 4 个,绿球 5 个,任意摸出一个绿球 的概率是 ,则摸出一个黄球的概率是_______. 三、解答题(每题 7 分,共 28 分) 19.一个口袋中有 10 个红球和若干个白球,请通过以下实验估计口袋中白球的个数, 从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共 摸 200 次,其中 50 次摸到红球.
A. B. C. D. 7.有 5 条线段的长分别为 2、4、6、8、10,从中任取三条能构成三角形的概率是( )
A. B. C. D. 8.一个均匀的立方体六个面上分别标有 1,2,3,4,5,6,下图是这个立方体表面的
A. B.
C. D. 11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )
A.
B.
C. D. 12.中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是 一种竞猜游戏,游戏规则如下:在 20 个商标中,有 5 个商标牌的背面注明了一定的奖金额, 其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会, 某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )
A. B. C. D.
二、填空题(每题 4 分,共 24 分) 13.“抛出的蓝球会下落”,这个事件是 事件.(填“确定”或“不确定”) 14.10 张卡片分别写有 0 至 9 十个数字,将它们放入纸箱后,任意摸出一张,则 P(摸 到数字 2)=______,P(摸到奇数)=_______. 15.一只布袋中有三种小球(除颜色外没有任何区别),分别是 2 个红球,3 个黄球和 5 个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续 9 次摸出的都是蓝球的情况下, 第 10 次摸出黄球的概率是_______.
12.B
二、填空题
13.确定 14. ; 15. 16.6; 17. 18 18.
三、解答题
19.设口袋中有 个白球,
,口袋中大约有 30 个白球 20.
进步之星概率初步单元测评
班级:
(时间:100 分钟,满分:110 分)
姓名:
学号:
得分:
一、选择题(每题 4 分,共 48 分) 1.下列事件是必然事件的是( ) A.明天天气是多云转晴 B.农历十五的晚上一定能看到圆月 C.打开电视机,正在播放广告 D.在同一月出生的 32 名学生,至少有两人的生日是同一天 2.下列说法中正确的是( ) A.可能性很小的事件在一次实验中一定不会发生 B.可能性很小的事件在一次实验中一定会发生 C.可能性很小的事件在一次实验中有可能发生 D.不可能事件在一次实验中也可能发生 3.下列模拟掷硬币的实验不正确的是( ) A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下 B.袋中装两个小球,分别标上 1 和 2,随机地摸,摸出 1 表示硬币正面朝上 C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上 D.将 1、2、3、4、5 分别写在 5 张纸上,并搓成团,每次随机地取一张,取到奇数号 表示硬币正面朝上 4.在 10000 张奖券中,有 200 张中奖,如果购买 1 张奖券中奖的概率是( )