高考理科数学复习小题专项训练2 函数的图象与性质
2020年高考理科数学《函数的定义与性质》题型归纳与训练及答案解析
1例2.已知函数f(x)2x 2x a ,x[1, )■2020年高考理科数学《函数的定义与性质》题型归纳与训练【题型归纳】题型一求函数的定义域、值域A--------------------------------------- ------------------------------------------------------------例 1 ( 1)函数 f(x) —In C ,x 2 3x 2 . x 2 3x 4)的定义域为()xA.(, 4)[2,);B. ( 4,0) (0,1) ; C. [, 4,0)(0,1]Q . [, 4,0)(0,1)(2)设 fxIg 2x,则 f x f 2的定义域为()2x2xA. 4,0 0,4;B.4, 1 1,4 ; C. 2,11,2 ;D.4, 22,4【答案】( 1)D ; (2) B【解析】(1)欲使函数f (x)有意义,必须并且只需x 2 3x 2 0 2x 3x 4-------------- --------------------- x [ 4,0) (0,1),故应选择 Dx 2 3x 2 x 2 3x 4 0x 0【易错点】抽象函数的定义域【思维点拨】 如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:①分母不能为 0;②对数的真数必须为正;③偶次根式中被开方数应为非负数;④零指数幕中,底 数不等于0;⑤负分数指数幕中,底数应大于 0;⑥若解析式由几个部分组成,则定义域为各个部分相应集 合的交集;⑦如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意 定义域优先原则,实际问题的定义域不要漏写。
求复合函数定义域,即已知函数f (x)的定义为[a,b ],则函数f [g(x)]的定义域是满足不等式 a g(x) b 的x 的取值范围;一般地,若函数f [g(x)]的定义域是[a,b ], 指的是x [a,b ],要求f (x)的定义域就是x [a,b ]时g(x)的值域。
高三数学考点知识归类解析与专题训练2---函数的图象与性质
故填[−3,1] .
10.已知函数 f (x) = e|x−a|(a 为常数).若 在区间[1,+∞)上是增函数,则 a 的取值范
围是________.
【答案】(-∞, 1]
【解析】令
,则
,由于底数 ,故 增且
由 的图象知 在[ a ,+∞)上递增,
所以 在区间[1,+∞)上是增函数时,a≤1. 则 a 的取值范围是(-∞, 1].
( ) 5.已知函数 f (x) = 3x + 2cos x ,若 a = f 3 2 ,b = f (2) ,c = f (log2 7) ,则 a ,b ,c
的大小关系是( )
A. a < b < c
B. c < a < b
C. b < a < c
D. b < c < a
2/9
【答案】D 【解析】因为 f ′(x) = 3 − 2sin x > 0 ,所以 f (x) = 3x + 2 cos x 为增函数, 因为 3 2 > 3, log2 4 < log2 7 < log2 8 ,所以 3 2 > log2 7 > 2 , 所以 b < c < a . 故选 D. 6.已知某函数图象如图所示,则图象所对应的函数可能是( )
所以 f (x) > 0 的解集为{x | −2 < x < 2}
故填 (−2, 2)
9.已知函数
f
(
x
)
=
1 x
,
1 3
x< x ,
0 x
≥
0
,则不等式
f
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
高中数学函数的图象与性质考试题(含答案解析)
函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。
答案耳在答题娥上,耳在试题妖上无效。
一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。
2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析
三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。
2023年高考数学复习满分训练必做题(新高考专用)专题4-2 三角函数的图像与性质(练习版)
专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
高三二轮复习专题2.函数的图像与性质docx
专题2:函数的图象与性质一、前测训练1.求下列函数的值域:(1)y =sin(2x +π3) x ∈[0,π6] (2)y =1-x 21+x 2 (3)y =x +1-x(4)f (x )=(12)x -x ,x ∈[-1,2] (5)f (x )=x 2+2x 2+1 (6)f (x )=x ln x(7)y =x2.(1)f (x )=x (12x -1+12)的奇偶性为.(2)若f (x )=x(2x +1)(x -a )为奇函数,则a 的值为.3.(1)函数f (x )=2x +1x +1的增区间为; (2)f (x )=log 12(x 2-2x )的增区间为;(3)f (x )=ln x -2x 2的减区间为.4.(1)若f (x )是R 上的奇函数,且当x >0时,f (x )=1+3x ,则f (x ) =.(2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2) 0,则f (x )<0的x 的取值范围是.5.设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,(1)则f (7.5)=;(2)当x ∈[4,6]时,f (x )=.6.(1)已知函数f (x )=ln(2x +1),①将函数y =f (x )图象向右平移2个单位后的解析式为. ②与函数y =f (x )图象关于y 轴对称的函数解析式为. (2)方程1-x 2=x +m 有一个实数解,则m 的取值范围为.7.(1)若函数y =log 2(x +2)的图象与y =f (x )的图象关于x =1对称,则f (x )=.(2)已知f (x )=log 2|ax +3|关于x =1对称,则实数a =.二、例题讲解专题一、函数单调性例1:已知函数x a x x x f 3)(+-=在R 上为增函数,则实数a 的范围为又例:已知函数f (x )=x 2+ax (x ≠0,a ∈R).若f (x )在区间[2,+∞)上是增函数,则实数a 的取值范围为.再例:已知函数)(x f 的定义域是0≠x 的一切实数,对定义域内的任意21,x x 都有)()(121x f x x f =⋅),(2x f +且当1>x 时.1)2(,0)(=>f x f 则不等式.2)12(2<-x f的解集为围是___________.又例:已知函数⎩⎨⎧>-≤-=-.0,12,0,2)(x ax x e x f x (a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是(1,+∞); ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<.2)()(21x f x f +其中正确命题的序号是________(写出所有正确命题的序号).例3:若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.又例:若函数()(1)xf x a a =>的定义域和值域均为],[n m ,则a 的取值范围是.专题二:奇偶性与周期性 例 1.已知f (x )=|x +1|+|x +2|+|x +3|++|x +2017|+|x -1|+|x -2|+|x -3|++|x -2017|(x ∈R ),且2(32)(1),f a a f a -+=- 则a 的取值范围是.又例:已知函数0)1()1(),1lg()(22<++-++=m f m f x x x f 如果,则实数m 的取值范围是___________.再例.f(x)为偶函数,且在[)+∞,0上是增函数,若)1(2)1(ln )(ln f tf t f ≤+,则t 的范围是再例:已知函数(),如果(),那么的值是______.则实数a 的取值范围是.例2:f(x)为偶函数,)2()()4(f x f x f +=+,若2)1(=f ,则)2018()2017(f f +=又例:f(x)满足)()()()(3,31)3(y x f y x f y f x f f -++==,则=)1812(f再例:设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.再例:设()f x 是定义在R 上的偶函数,对任意x R ∈,都有()(4)f x f x =+,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有三个不同的实数根,则a 的取值范围为______________.例3.任给实数a ,b 定义,0,0ab ab a b aab b ≥⎧⎪⊕=⎨<⎪⎩,设函数()ln f x x x =⊕,若{}n a 是公比大于0的等比数列,且41a =, ()()()12612f a f a f a a +++= ,则1a =.又例.对于实数a 和b ,定义运算“*”:⎪⎩⎪⎨⎧>-≤-=*ba ab b b a ab a b a ,,22, 设)1()12()(-*-=x x x f ,且关于x 的方程为m x f =)((m ∈R )恰有三个互不相等的实数根123x x x 、、,则123x x x ++的取值范围是_____________.再例:函数()f x 的定义域为D ,若满足①()f x 在D 内是单调函数,②存在[],a b D ⊆,使()f x 在[],a b 上的值域为[],b a --,那么()y f x =叫做对称函数,现有()f x k=-是对称函数, 那么k 的取值范围是_____________.例4:若满足2x+=5, 满足2x+2(x -1)=5, +=又例:若R a y x ∈⎥⎦⎤⎢⎣⎡-∈,4,4,ππ,且满足方程:0cos sin 402sin 33=++=-+a y y y a x x 和,则=+)2cos(y x 。
高三数学题型练习题
高三数学题型练习题题一:函数的定义与性质1. 已知函数$f(x)=2x+3$,求函数$f(5)$的值。
解析:将$x$的值代入函数$f(x)$中,得$f(5)=2(5)+3=13$。
2. 函数$f(x)$的图像在直线$y=x$上方,$f(0)=-1$,求函数$f(x)$的解析式。
解析:由函数图像在直线$y=x$上方可知,对于任意$x$,都有$f(x)>x$。
又已知$f(0)=-1$,代入函数得$-1>f(0)=2(0)+3=3$,矛盾。
因此,不存在满足条件的解析式。
题二:函数的图像与性质1. 函数$f(x)=(x-2)^2+1$的图像在平面直角坐标系中的形状是什么?解析:函数$f(x)$是二次函数,图像为抛物线。
由$(x-2)^2$的形式可以知道顶点坐标为$(2,1)$,开口方向向上。
2. 函数$f(x)=\sqrt{x^2-3x}$的定义域是什么?解析:由于根号下的表达式必须大于等于0,即$x^2-3x\geq 0$。
对不等式进行因式分解得$x(x-3)\geq 0$,解得$x\leq 0$或$x\geq 3$。
因此,函数$f(x)$的定义域为$(-\infty, 0]\cup [3,+\infty)$。
题三:函数的求导与应用1. 已知函数$f(x)=3x^2+2x+1$,求$f'(x)$和$f''(x)$。
解析:对多项式函数$f(x)$求导,得到$f'(x)=6x+2$;再对$f'(x)$求导,得到$f''(x)=6$。
2. 函数$y=x^3-4x^2+2$在$x=2$处的切线方程是什么?解析:在$x=2$处,函数$y=x^3-4x^2+2$的导数为$y'=3x^2-8x$。
代入$x=2$得$y'=3(2)^2-8(2)=-10$,即切线的斜率为$-10$。
又因为切线经过点$(2,f(2))=(2,2)$,所以切线方程为$y-2=-10(x-2)$。
2025年高考数学一轮复习-三角函数的图象与性质-专项训练【含答案】
2025年高考数学一轮复习-三角函数的图象与性质-专项训练基础巩固练1.函数f(x)=tanπ 2的最小正周期是()A.2πB.4πC.2D.42.函数f(x)=sin2 在0()A.1B.-1 D.[0,1]3.若tan2=a,tan3=b,tan5=c,则()A.a<b<cB.b<c<aC.c<b<aD.c<a<b4.已知函数f(x)=x5+tan x-3,且f(-m)=-2,则f(m)=()A.-4B.-1C.1D.45.(多选题)已知f(x)=cos2x-sin2x,则()A.f(x)是偶函数B.f(x)的最小正周期是πC.f(x)0D.f(x)在06.(多选题)设函数f(x)=cos 则下列结论正确的有()A.y=f(x)的一个周期为2πB.y=f(x)的图象关于直线x=83π对称C.y=f(x+π)的一个零点为x=π6D.y=f(x)π上单调递减7.函数y=f(x)=sin2x,x∈-π6.8.若函数f(x)=cos(2x+φ)(-π≤φ<π)为奇函数,则φ=.9.已知函数f(x)=A sin +A>0,ω>0)的最小值为-2,最小正周期为π.(1)求实数A,ω的值;(2)当x∈0,求函数f(x)的值域.综合提升练10.下列坐标所表示的点不是函数y=tan3 ()000011.已知函数f(x)=sin +ω>0)在区间0,但无最小值,则ω的取值范围是()12.已知函数f(x)=+ω>0)的图象的两个相邻对称中心之间的距离为π4,则ω=()A.2B.4C.8D.1613.(多选题)已知函数f(x)=sin|x|+|sin x|,则下列结论正确的有()A.f(x)是偶函数B.f(x)π上单调递增C.f(x)在[-π,π]上有4个零点D.f(x)的最大值为214.若函数f(x)=sin(x+φ)+cos x的最大值为2,则常数φ的一个取值为.15.已知函数f(x)=4sinωx sin +1(ω>0)的最小正周期为π.(1)求ω的值及f(x)的增区间;(2)求f(x)图象的对称中心.创新应用练16.已知f(x)=sinωx-3cosωx,ω>0,若函数f(x)0对称,且函数f(x)在0调,则ω的值为()A.4B.3C.2D.117.若x=π8是函数f(x)=2sin x∈R)的一个零点,且0<ω<10,则函数f(x)的最小正周期为.18.已知函数f(x)=a2cos2 2+sin +b.(1)若a=-1,求函数f(x)的增区间;(2)当x∈[0,π]时,函数f(x)的值域是[5,8],求a,b的值.参考答案1.C2.A3.D4.A5.ABC6.ABC7.18.±π29.解(1)由题意知A=2,2π =π,解得ω=2.故A=2,ω=2.(2)由(1)知f(x)=2sin2因为x∈0所以2x+π3∈所以sin2 -21,所以2sin2 +∈-3,2,所以函数f(x)的值域为-3,210.C11.A12.B13.AD14 π2(答案不唯一)15.解(1)f(x)=4sinωx·12sinωx-1=2sin2ωx+23sinωx·cosωx-1=1-cos2ωx+3sin2ωx-1=3sin2ωx-cos2ωx=2sin2∵函数的最小正周期为π, 2π2 =π,∴ω=1,∴f(x)=2sin2令-π2+2kπ≤2x-π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,∴f(x)的增区间为-π6+kπ,π3+kπ(k∈Z).(2)令2x-π6=kπ,k∈Z,解得x=π12+ π2,k∈Z,∴f(x)+ π2,0,k∈Z.16.D17.π18.解f(x)=a(1+cos x+sin x)+b=2asin +(1)当a=-1时,f(x)=-2sin 1,由2kπ+π2≤x+π4≤2kπ+3π2(k∈Z),得2kπ+π4≤x≤2kπ+5π4(k∈Z),∴函数f(x)的增区间为2kπ+π4,2kπ+5π4(k∈Z).(2)∵0≤x≤π, π4≤x+π4≤5π4,∴≤sin +≤1.依题意知a≠0,①当a>0时,2 + + =8,=5,∴a=32-3,b=5;②当a<0时, =8,2 + + =5,∴a=3-32,b=8.综上所述,a=32-3,b=5或a=3-32,b=8.。
高中数学函数的图象与性质考试题(含答案解析)
---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------函数的图象与性质试题成绩课程名称高考数学二轮复习模拟考试开卷闭卷√教研室高三数学组A卷√B卷复习时间年月日时分至时分适用专业班级班级姓名学号考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。
答案写在答题纸上,写在试题纸上无效。
A组一、选择题一、选择题1.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(-2,1) D.[-2,1)2.(2017·沈阳模拟)已知函数f(x)=则f(f(4))的值为() A.-19B.-9C.19D.93.(2017·湖南东部六校联考)函数y=lg|x|()A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减试题共页第页C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减4.函数f(x)=2|log2x|-⎪⎪⎪⎪⎪⎪x-1x的图象为()5.(2017·西安模拟)对于函数y=f(x),部分x与y的对应关系如下表:x 123456789y 37596182 4数列{x n}满足:x1=1,且对于任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,则x1+x2+…+x2 017=()A.7 554 B.7 540C.7 561 D.7 5646.已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,若f(lg x)<0,则x的取值范围是()A.(0,1) B.(1,10)C.(1,+∞) D.(10,+∞)7.(2016·福州质检)已知偶函数f(x)满足:当x1,x2∈(0,+∞)时,(x1-x2)[f(x1)-f(x2)]>0恒成立.设a=f(-4),b=f(1),c=f(3),则a,b,c的大小关系为() A.a<b<c B.b<a<cC.b<c<a D.c<b<a8.函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=() A.-2 B.-1C.0 D.1---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 9.(2017·高考山东卷)设f(x)=⎩⎨⎧x,0<x<1,2(x-1),x≥1.若f(a)=f(a+1),f(1a)=() A.2 B.4C.6 D.810.(2017·山西四校联考)已知函数f(x)满足:①定义域为R;②∀x∈R,都有f(x+2)=f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=12log2|x|在区间[-3,5]内解的个数是()A.5 B.6C.7 D.811.(2017·天津模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.x2cos x B.sin x2C.x sin x D.x2-16x412.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)二、填空题13.(2017·高考全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.试题共页第页---------------------------------------------------------------装--------------------订--------------------线-------------------------------------------------------------B组1.已知函数f(x)=⎩⎨⎧2x-2,x≤0,-log3x,x>0,且f(a)=-2,则f(7-a)=() A.-log37 B.-34C.-54D.-742.(2017·高考北京卷)已知函数f(x)=3x-(13)x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数3.函数y=(x3-x)2|x|的图象大致是()4.函数y=|x|(1-x)在区间A上是增函数,那么区间A是() A.(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C.[0,+∞) D.⎝⎛⎭⎪⎫12,+∞试题共页第页5.若函数f(x)=⎩⎨⎧x2-5x,x≥0,-x2+ax,x<0是奇函数,则实数a的值是()A.-10 B.10C.-5 D.56.(2017·贵阳模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=e1-x2 B.f(x)=e x2-1C.f(x)=e x2-1 D.f(x)=ln(x2-1)7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1 B.45C.-1 D.-458.(2017·陕西宝鸡中学第一次月考)已知函数f(x)=⎩⎨⎧(3a-1)x+4a,x<1,log a x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围是()A.⎝⎛⎭⎪⎫0,13 B.⎝⎛⎭⎪⎫13,1C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,19.对于函数f(x),使f(x)≤n成立的所有常数n中,我们把n的最小值G叫做函数f(x)的上确界.则函数f(x)=的上确界是()试题共页第页A组答案解析1.解析:∵4-x2≥0,∴-2≤x≤2,∴A=[-2,2].∵1-x>0,∴x<1,∴B=(-∞,1),∴A∩B=[-2,1).故选D.答案:D2.解析:因为f(x)=所以f(f(4))=f(-2)=19.答案:C3.解析:因为lg|-x|=lg|x|,所以函数y=lg|x|为偶函数,又函数y=lg|x|在区间(0,+∞)上单调递增,由其图象关于y轴对称,可得y=lg|x|在区间(-∞,0)上单调递减,故选B.答案:B4.解析:由题设条件,当x≥1时,f(x)=2log2x-⎝⎛⎭⎪⎫x-1x=1x;当0<x<1时,f(x)=2-log2x-⎝⎛⎭⎪⎫1x-x=1x-⎝⎛⎭⎪⎫1x-x=x.故f(x)=⎩⎪⎨⎪⎧1x,x≥1,x,0<x<1.故选D.答案:D5.解析:∵数列{x n}满足x1=1,且对任意n∈N*,点(x n,x n+1)都在函数y=f(x)的图象上,∴x n+1=f(x n),∴由图表可得x2=f(x1)=3,x3=f(x2)=5,x4=f(x3)=6,x5=f(x4)=1,…,∴数列{x n}是周期为4的周期数列,∴x1+x2+…+x2 017=504(x1+x2+x3+x4)+x1=504×15+1=7 561.故选C.答案:C6.答案:A7.解析:因为f(x)为偶函数,故f(-4)=f(4).因为(x1-x2)·[f(x1)-f(x2)]>0,故函数f(x)在(0,+∞)上单调递增,故f(-4)=f(4)>f(3)>f(1),即a>c>b,故选C.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案:C8.答案:D9.解析:若0<a<1,由f(a)=f(a+1)得a=2(a+1-1),∴a=14,∴f(1a)=f(4)=2×(4-1)=6.若a≥1,由f(a)=f(a+1)得2(a-1)=2(a+1-1),无解.综上,f(1a)=6.故选C.答案:C10.解析:画出y1=f(x),y2=12log2|x|的图象如图所示,由图象可得所求解的个数为5.答案:A11.解析:由图象可得f ⎝⎛⎭⎪⎫π2>0,故可排除A选项.由于函数f(x)在区间⎝⎛⎭⎪⎫0,π2上先增后减,而函数y=x sin x在⎝⎛⎭⎪⎫0,π2上单调递增(因为y=x及y=sin x均在⎝⎛⎭⎪⎫0,π2上单调递增,且函数取值恒为正),故排除C选项.对函数y=x2-16x4而言,y′=2x-23x3=23x(3-x2),当x∈⎝⎛⎭⎪⎫0,π2时,y′=23x(3-x2)>0,故y=x2-16 x4在区间⎝⎛⎦⎥⎤0,π2上单调递增,与图象不符,故排除D选项.故选B. 答案:B12.解析:由f(x-4)=-f(x)得f(x+2-4)=f(x-2)=-f(x+2),由f(-x)=-f(x)试题共页第页---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 1.解析:当a≤0时,2a-2=-2无解;当a>0时,由-log3a=-2,解得a =9,所以f(7-a)=f(-2)=2-2-2=-74,故选D.答案:D2.解析:∵函数f(x)的定义域为R,f(-x)=3-x-(13)-x=(13)x-3x=-f(x),∴函数f(x)是奇函数.∵函数y=(13)x在R上是减函数,∴函数y=-(13)x在R上是增函数.又∵y=3x在R上是增函数,∴函数f(x)=3x-(13)x在R上是增函数.故选A.答案:A3.解析:易判断函数为奇函数,由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.答案:B4.解析:y=|x|(1-x)=⎩⎨⎧x(1-x),x≥0,-x(1-x),x<0=⎩⎨⎧-x2+x,x≥0,x2-x,x<0=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x-122+14,x≥0,⎝⎛⎭⎪⎫x-122-14,x<0.试题共页第页试题共页第页。
压轴题08 函数的图像与性质(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题08函数的图像与性质题型/考向一:函数的概念及表示题型/考向二:函数的性质题型/考向三:函数的图像○热○点○题○型一函数的概念与表示1.复合函数的定义域(1)若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.(2)若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域.2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.一、单选题1.已知集合A x y ⎧⎫⎪==⎨⎪⎩,(){}2log 1B x y x ==-,则A B ⋃=()A .()0,∞+B .()(),02,-∞+∞C .()(),01,-∞⋃+∞D .R2.若函数221,0()=log (3),0x x f x x x ⎧+≤⎨+>⎩,则((f f -=()A .1B .2C .3D .4.已知函数的定义域是,则函数21y f x =-的定义域是()A .[]5,5-B .1,22⎡⎤-⎢⎥⎣⎦C .[]2,3-D .1,22⎡⎤⎢⎥⎣⎦4.已知()3,0f x a x x <=⎨+≥⎩,若()()()11f f f =-,则实数a 的值为()A .178-B .4-或178-C .4-D .不存在5.设c ∈R ,函数()22,0.xf x c x ⎧=⎨-<⎩若()f x 恰有一个零点,则c 的取值范围是()A .(0,1)B .{0}[1,)+∞UC .1(0,)2D .1{0}[,)2+∞U 函数,0,()22,0.x x c x f x c x -≥⎧=⎨-<⎩可由易知当0c =时,函数()f x 当0c <时,代表图象往上平移,显然没有零点,不符合题意;当0c >时,图象往下平移,当6.十九世纪德国数学家狄利克雷提出了“狄利克雷函数”()R 0,Q,D x x ⎧=⎨∈⎩ð它在现代数学的发展过程中有着重要意义,若函数()()2f x x D x =-,则下列实数不属于函数()f x 值域的是()A .3B .2C .1D .07.已知函数()()31f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .858.已知R λ∈,函数21()()412lg ,0,f xg x x x x x λ⎧+<==-++⎨>⎩,若关于x 的方程(())f g x λ=有6个解,则λ的取值范围为()A .10,2⎛⎤ ⎥⎝⎦B .20,3⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭故选:B.二、填空题9.y x =__________10.已知函数()11ln 1f x x x =+-,则11e e f f ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭____________.11.已知()1f x xx=+,则()()()()1111232022232022f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L _________12.定义函数()(){}()()()min ,,f x g x g x f x g x ⎧≤⎪=⎨>⎪⎩,设(){}2min 11,38=--+--h x x x ax a ,若()0h x =含有3个不同的实数拫,则实数a 的取值范围是______.当4a =-时,()2044=+-=g x x x 数拫,不满足题意;当4a >-时,如下图,()2=--g a ()0380=-->g a ,解得4a -<<-综上,843a -<<-或8a =-.故答案为:843a -<<-或8a =-.○热○点○题○型二函数的性质1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有:f (x )是偶函数⇔f (-x )=f (x )=f (|x |);f (x )是奇函数⇔f (-x )=-f (x ).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).2.函数单调性判断方法:定义法、图象法、导数法.3.函数图象的对称中心或对称轴(1)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.(2)若函数f (x )满足关系式f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于(a ,b )对称.一、单选题1.下列函数中,既是定义域内单调递增函数,又是奇函数的为()A .()tan =f x xB .()1f x x=-C .()cos f x x x =-D .()e ex xf x -=-.已知是定义域为R 的奇函数,当0x >时,2A .2B .2-C .1D .1-【答案】B【详解】因为()f x 是定义域为R 的奇函数,所以()24(4)log 42f f -=-=-=-,故选:B.3.下列函数中,是偶函数且在(0,)+∞上单调递减的是()A .2()||f x x x =-B .21()f x x =C .||()e x f x =D .()|ln |f x x =【答案】B4.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若33f ⎛⎫-= ⎪⎝⎭,则3f ⎛⎫= ⎪⎝⎭()A .53-B .13-C .13D .535.设函数()1e 1x f x -=-,则()A .()f x 关于()0,1-对称B .()f x 关于()0,0对称C .()f x 关于1x =对称D .()f x 关于()1,1-对称滤芯)构成,其结构是多层式,主要用于去除铁锈、泥沙、悬浮物等各种大颗粒杂质.假设每一层PP 棉滤芯可以过滤掉三分之一的大颗粒杂质,过滤前水中大颗粒杂质含量为25mg/L ,若要满足过滤后水中大颗粒杂质含量不超过2.5mg/L ,则PP 棉滤芯层数最少为()(参考数据:lg 20.30≈,lg 30.48≈)A .5B .6C .7D .87.若实数,b ,0,1c ∈,且满足e e a a = 1.2e 1.2e b b =l.6e 1.6e c c =,b ,的大小关系是()A .c b a >>B .b a c>>C .a b c>>D .b c a>>即()()()f a f b f c >>,又a ,b ,[0,1]c ∈,所以a b c >>.故选:C.8.已知函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .85二、多选题9.已知函数()321132f x x x x λ=+-(R λ∈且2λ≤-),且0.31.7a =,0.3log 1.8b =,0.10.9c =,则下列结论正确的是()A .()f x 为R 上的增函数B .()f x 无极值C .()()()f b f c f a <<D .()()()f a f b f c <<[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A .()1y f x =+是偶函数B .()3y f x =+为奇函数C .函数()lg =-y f x x 有8个不同的零点D .()202311k f k ==∑()1y f x =+为()y f x =向左平移1个单位得到,是偶函数,故()3y f x =+为()y f x =向左平移3个单位得到,是奇函数,故由lg y x =在(,0)-∞上递减,且lg 101-=,lg 10-=;在(0,结合图象:看出()y f x =和lg y x =的图象有10个交点,即由()10f =,()21f =,()30f =,()41f =-,()50f =,()61f =-,()70f =,()81f =,则()()()1280f f f ++⋅⋅⋅+=,所以()()()()2023125201271k f k f f f ==⨯+++⋅⋅⋅+=-⎡⎤⎣⎦∑,故D 错误,故选:AB11.已知函数()21()ln e e 2x x f x a x -=--,其中e 是自然对数的底数,则下列选项正确的是()A .若1a =,则()f x 为奇函数B .若1a =-,则()f x 为偶函数C .若()f x 具备奇偶性,则1a =-或0a =D .若()f x 在(0,)+∞上单调递增,则a 的取值范围为[1,)-+∞12.已知定义在[]0,1上的函数()0,010,1,1,,,,f x p px p q q q q ⎧==⎪=⎛⎫⎨= ⎪⎪⎝⎭⎩或或为内的无理数为正整数为既约真分数该函数称为黎曼函数.若数列{}n a 满足1n n a f n ⎛⎫= ⎪+⎝⎭,则下列说法正确的是()A .0n a >B .1n na a +>C .11nn i a =<∑D .1112nn n i a a +=<∑【答案】AD○热○点○题○型三函数的图像1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,解不等式、求解函数的零点等问题.一、单选题1.函数()333x x x f x -=+的图象大致是()A .B .C.D.A.B.C.D.3.函数()1e πcos 1e 2x x f x x ⎛⎫-⎛⎫=- ⎪⎪+⎝⎭⎝⎭的部分图象大致形状是()A.B.C.D.4.函数()22xxf x -+=+的部分图象大致是()A .B .C .D .5.函数()cos e 1x x f x -=⋅+的图象大致为()A .B .C .D .6.函数的部分图像大致为()A .B .C .D .7.函数()113x x f x x--=的图像大致为()A .B .C .D .8.函数()3f x x x=-在[]π,π-上的图像大致为()A .B .C .D .【答案】B二、多选题9.已知Z k ∈,则函数()()22k x xf x x -=⋅+的图像可能是()A .B .C .D .故选:ABC.10.函数f (x )=b (x -a )2(x -b )的图象可以是()A .B .C .D .【答案】BC【详解】由函数解析式可知,a 是不变号零点,b 是变号零点,A.由图可知,变号零点是0,则0b =,则()0f x =,不成立,故A 错误;B.由图可知,变号零点小于0,不变号零点为0,则0,0b a <=,此时()()2f x b x b x =-,当x b <,()0f x >,当0b x <<,()0f x <,当0x >时,()0f x <,满足图象,故B 正确;C.由图可知,0b a >>,()()()2f x b x b x a =--,当x a <时,()0f x <,当a x b <<时,()0f x <,当x b >时,()0f x >,满足图象,故C 正确;D.由图可知,0a b <<,()()()2f x b x b x a =--,当x a <时,()0f x >,与图象不符,所以D 错误.故选:BC11.已知0a >,函数()()0a xf x x a x =->的图象可能是()A .B .C .D .【答案】ABC【详解】当01a <<时,函数a y x =在(0,)+∞上单调递增,函数x y a =在(0,)+∞上单调递减,因此函数()a x f x x a =-在(0,)+∞上单调递增,而()()01,0f f a =-=,函数图象为曲线,A 可能;当1a =时,函数()1f x x =-在(0,)+∞上的图象是不含端点(0,1)-的射线,B 可能;当1a >时,取2a =,有(2)(4)0f f ==,即函数2()2,0x f x x x =->图象与x 轴有两个公共点,又,()0x ∈+∞,随着x 的无限增大,函数x y a =呈爆炸式增长,其增长速度比a y x =的大,因此存在正数0x ,当0x x >时,020x x a <恒成立,即()0f x <,C 可能,D 不可能.故选:ABC12.函数(0)||x xa y a x =>的图象的大致形状是()A .B .C .D .。
高三理科数学专题测试二 函数的图象与性质(试题及详细答案解析)
[-1.08]=-2,$%*+{狓}=狓-[狓].C h 5 6 i
Tj Z:① * + {狓}( $ % k # 犚,. k H [0,1];②
lm{狓}=
1 2
R
n
+
T
F;③
*
+
{狓}#
o
p
*
+;④
*+{狓}#a*+.qrstjZ(u[R .
9.>Pvwxyz{|V 犘、犙 } ~ :①犘、犙 &
犵(狓); < .
(1)> 犺(狓)H = * + ,犫,犮 } ~ ( ;
(2)& (1)r ( 5 ,>犺(狓)& [2,+ ∞ )' H a *
+ , D +犮 ( L . M N .
A.1
B.2
C.3
D.4
2$3
Z[ 1
2
3
4
5
6
\]
第1页
11.( K Z } 20 ) ! " * + 犳(狓)( 1 2 0 * +犺(狓)=狓+狓1 +2
7.(- ∞ ,1] 8.② ③ 9.(0,1) NO:
1.!"#$,犳(狓)=犪狓2+犫狓+1 % & ' ([-2犪,犪2-3]) * +
,-,∴犳(狓)=犳(-狓),∴犫=0,. -2犪= - (犪2 -3),/ 0 犪
=31犪=-1(23),∴犪+犫=3.45 A.
)>0
E
;
<
,
A L 狓1,狓2∈[2,+ ∞ ),Y 狓1 <狓2,1-狓1犮狓2 >0 E ; <,#犮<狓1狓2 E;<,∴犮≤4.(15) 11.(1) 犳(狓)12'A:VwxH(狓,狔), ∵V(狓,狔)W@V 犃(0,1)(?V(-狓,2-狔)
高考数学一轮专项复习练习卷-北师大版-函数的性质与图象(含解析)
一、单项选择题1.(2024·屯昌模拟)将函数y =2sin 2x +π6的图象向右平移14个周期后,所得图象对应的函数为()A .y =2sin 2x +5π12B .y =2sin 2x +π3C .y =2sin2x -π12D .y =2sin2x -π32.函数f (x )=sin(ωx +φ)ω>0,|φ|<π2()A .ω=2,φ=π6B .ω=12,φ=π6C .ω=2,φ=-π6D .ω=12,φ=-π63.把函数y =f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin x -π4的图象,则f (x )等于()A .sin x 2-7π12B .sin x 2+π12C .sin2x -7π12D .sin2x +π124.(2023·梅河口模拟)函数f (x )=sin(ωx +φ)ω>0,|φ|<π2f (x )的图象,只需将g (x )=cos 3x 的图象()A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π12个单位长度D .向右平移π12个单位长度5.(2023·大理模拟)函数f (x )=sin(ωx +φ)(ω>0,0<φ<π),若不等式f (x )≤|f π4ω对∀x ∈R 恒成立,且f (x )的图象关于x =π8对称,则ω的最小值为()A .1B .2C .3D .46.(2023·莆田模拟)已知函数f (x )=sin x ,将其图象向左平移π3个单位长度,得到函数g (x )的图象.△ABC 的顶点都是f (x )与g (x )图象的公共点,则△ABC 面积的最小值为()A.3B.3πC .23D .23π二、多项选择题7.如图是函数y =sin(ωx +φ)的部分图象,则该函数的解析式为()A .y =sinx +π3B .y =sin π3-2xC .y =cos2x +π6D .y =cos 5π6-2x8.(2023·鞍山模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)ω>0,|φ|<π2π,且f (x )的图象过点(0,2),则下列结论中正确的是()A .f (x )的最大值为2B .f (x )图象的一条对称轴为x =π4C .f (x )D .把f (x )的图象向左平移π6个单位长度,得到函数g (x )=2cos x 三、填空题9.(2024·嘉定模拟)已知A ∈R ,实数ω>0,f (x )=A y =f (x )的部分图象如图所示,若该函数的最小正零点是5π12,则ω=________.10.(2023·厦门模拟)将函数f (x )=sinx φ得到函数g (x )的图象,若g (x )是奇函数,则φ=________.11.已知f (x )=4sin(ωx +φ+φ>0,|φy =f (x )的部分图象,则φ=________;f (x )在区间[0,2024π]内有________条对称轴.12.风车发电是指把风的动能转化为电能.如图,风车由一座塔和三个叶片组成,每两个叶片之间的夹角均为120°.现有一座风车,塔高60米,叶片长度为30米.叶片按照逆时针方向匀速转动,并且6秒旋转一圈,风车开始旋转时,某叶片的一个端点P 在风车的最低点(P 离地面30米),设点P 离地面的距离为S (米),转动时间为t (秒),则S 与t 之间的函数解析式为________,一圈内点P 离地面的高度不低于45米的时长为________秒.四、解答题13.(2023·长沙模拟)函数f (x )=A sin(ωx +φ>0,ω>0,|φ(1)求函数y =f (x )的解析式;(2)先将函数y =f (x )的图象上各点的横坐标缩小为原来的12,再将得到的函数图象向左平移π24个单位长度,最后得到函数y =g (x )的图象,求g (x )在区间0,π4上的值域.14.把函数f (x )=2sin x 的图象向左平移φy =g (x )的图象,函数y =g (x )的图象关于直线x =π6对称,记函数h (x )=f (x )g (x ).(1)求函数y =h (x )的最小正周期和单调递增区间;(2)画出函数y =h (x )在区间-π2,π2上的大致图象.15.(2023·大连模拟)如图,函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象与坐标轴交于点A ,B ,C ,直线BC 交f (x )的图象于点D ,点O (坐标原点)为△ABD 的重心(三条边中线的交点),其中A (-π,0),则|OB |等于()A.1 2B.1 C.3 D.3216.(2023·长沙模拟)将函数f(x)=a sin x+b cos x(a,b∈R且b≠0)的图象上各点的横坐标伸长为原来的2倍,再将所得图形向左平移π3个单位长度后,得到一个奇函数图象,则ab=________.§4.6函数y =A sin(ωx +φ)的性质与图象1.D 2.C3.B4.D5.B6.B[函数f (x )=sin x ,将其图象向左平移π3个单位长度,得到函数g (x )的图象.所以g (x )=由f (x )=g (x ),可得sin x ==12sin x +32cos x ,可得tan x =3,x =k π+π3,k ∈Z ,如图所示就是△ABC 面积的最小值情况之一,此时|AB |=2π,此时点C 到AB 的距离为3,三角形的面积的最小值为12×3×2π=3π.]7.BC [由题图可知,函数的最小正周期T =2π,∴2π|ω|=π,ω=±2.当ω=2时,y =sin(2x +φ)×π6+0,∴2×π6+φ=2k π+π,k ∈Z ,即φ=2k π+2π3,k ∈Z ,故y =x由于y =x=sin πx=2B 正确;y =2=cos π2-2=x C 正确;对于A ,当x =π6时,1≠0,故A 错误;对于D ,当x =π6+2π32=5π12时,21≠-1,故D 错误;当ω=-2时,y =sin(-2x +φ)2×π6+0,结合函数图象,知-2×π6+φ=π+2k π,k ∈Z ,得φ=4π3+2k π,k ∈Z ,∴y =2x但当x =0时,y =2×0=-32<0,与图象不符合,舍去.]8.AC [f (x )=2sin+φ∵函数f (x )的最小正周期为π,∴2πω=π,解得ω=2,∴f (x )=2sinx +φ∵f (x )的图象过点(0,2),∴f (0)=2sin =2,即1,∴φ+π4=2k π+π2,解得φ=2k π+π4,k ∈Z ,∵|φ|<π2,∴当k =0时,φ=π4,则f (x )=2sin x +π4+=2sinx =2cos 2x ,则f (x )的最大值为2,故A 正确;f =2cos π2=0≠±2,则x =π4不是f (x )图象的一条对称轴,故B 错误;当0<x <π2时,0<2x <π,此时f (x )=2cos 2x C 正确;把f (x )的图象向左平移π6个单位长度,得到y =2cos 2=2cos x 无法得到g (x )=2cos x D 错误.]9.210.π611.π68096解析f (x )=4sin(ωx +φ+φ2sin(2ωx +2φ),由题图可知f (0)=3,即sin 2φ=32,由于点(0,3)在单调递增的区间内,故2φ=π3+2k π,k ∈Z ,解得φ=π6+k π,k ∈Z ,因为|φ|<π2,所以φ=π6;则5π6ω+π3=2π,解得ω=2.故f (x )=x 令4x +π3=π2+k π,k ∈Z ,解得x =π24+k π4,k ∈Z .令0≤π24+k π4≤2024π,k ∈Z ,则-16≤k ≤8096-16,k ∈Z .所以f (x )在[0,2024π]内有8096条对称轴.12.S =60-30cos π3t (t >0)4解析因为风车6秒旋转一圈,则其转动的角速度为π3rad/s ,经过t 秒时,叶片转过的圆心角为π3t ,此时离地面的高度为30+-cos 故S =60-30cos π3t (t >0).由S =60-30cos π3t ≥45,得cos π3t ≤12,因为0≤t ≤6,cos π3t ≤12,所以π3≤π3t ≤5π3,解得1≤t ≤5,故一圈内点P 离地面的高度不低于45米的时长为4秒.13.解(1)由图可知,A =2-(-2)2=2,函数f (x )的最小正周期为T =2π,∴ω=2πT =2,∵f ×π6+2,∴1,则φ+π3=π2+2k π,k ∈Z ,∴φ=π6+2k π,k ∈Z ,∵|φ|<π2,∴φ=π6,故f (x )=x (2)将函数y =f (x )的图象上各点的横坐标缩小为原来的12,可得到函数y =2sinx 的图象,再将得到的函数图象向左平移π24个单位长度,最后得到函数y =g (x )的图象,则g (x )=2sin4+π6=x 当0≤x ≤π4时,π3≤4x +π3≤4π3,则-32≤x 1,-3≤g (x )≤2,所以g (x )在区间0,π4上的值域为[-3,2].14.解(1)由题意知g (x )=2sin(x +φ),根据函数y =g (x )的图象关于直线x =π6对称,得π6+φ=π2+k π(k ∈Z ),即φ=π3+k π(k ∈Z ),又0<φ<π2,所以φ=π3,则g (x )=则h (x )=f (x )g (x )=4sin x=4sin x +32cos =2sin 2x +23sin x cos x =1-cos 2x +3sin 2x=x 1,则函数y =h (x )的最小正周期T =2π2=π,令-π2+2k π≤2x -π6≤π2+2k π(k ∈Z ),得-π6+k π≤x ≤π3+k π(k ∈Z ),故函数y =h (x )的单调递增区间是-π6+k π,π3+k π(k ∈Z ).(2)列表如下:x-π2-5π12-π6π12π3π2故y =h (x )在区间-π2,π2上的大致图象如图所示.15.C [根据题意可知,点C 是f (x )的一个对称中心,又直线BC 交f (x )的图象于点D ,利用对称性可知B ,D 两点关于C 点对称.不妨设B (x B ,y B ),C (x C ,y C ),D (x D ,y D ),由重心坐标公式可得-π+x B +x D3=0,又x B +x D =2x C ,即可得x C =π2,由最小正周期公式可得π2-(-π)=T 2=πω,解得ω=23,即f (x )=+将A (-π,0)代入f (x )可得-23π+0,又0<φ<π,所以φ=2π3,即f (x )=所以|OB |=y B =f (0)==3.]16.-3解析将函数f (x )=a sin x +b cos x (a ,b ∈R 且b ≠0)的图象上各点的横坐标伸长为原来的2倍,得到函数g(x)=f a sin 12x+b cos12x(a,b∈R)的图象,再将所得图象向左平移π3个单位长度后,得到函数h(x)=a sin b a,b∈R)的图象,因为h(x)为奇函数,图象关于原点对称,所以有h(0)=a sinπ6+b cos π6=12a+32b=0,解得ab=- 3.。
数学高考总复习同步优化探究理数(北师大版)练习第二章第七节函数的图像含解析
课时作业 A 组——基础对点练1.(2018·广州市模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图像是( )解析:g (x )=-f (-x )=⎩⎪⎨⎪⎧-x 2,x ≤01x ,x >0,∴g (x )的图像是选项D 中的图像.答案:D2.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图像为( )解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D3.(2018·惠州市调研)函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)的图像可能为( )解析:函数f(x)=(x-1x)cos x(-π≤x≤π且x≠0)为奇函数,排除选项A,B;当x=π时,f(x)=(π-1π)cos π=1π-π<0,排除选项C,故选D.答案:D4.(2018·长沙市一模)函数y=ln|x|-x2的图像大致为()解析:令f(x)=ln|x|-x2,定义域为(-∞,0)∪(0,+∞)且f(-x)=ln |x|-x2=f (x),故函数y=ln |x|-x2为偶函数,其图像关于y轴对称,排除B,D;当x>0时,y=ln x-x2,则y′=1x-2x,当x∈(0,22)时,y′=1x-2x>0,y=ln x-x2单调递增,排除C.选A.答案:A5.(2018·武昌调研)已知函数f(x)的部分图像如图所示,则f(x)的解析式可以是()A.f(x)=2-x2 2xB.f(x)=cos x x2C.f(x)=-cos2x xD.f(x)=cos x x解析:A中,当x→+∞时,f(x)→-∞,与题图不符,故不成立;B为偶函数,与题图不符,故不成立;C中,当x→0+时,f(x)<0,与题图不符,故不成立.选D.答案:D6.函数f(x)的图像向右平移1个单位长度,所得图像与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1解析:与曲线y=e x关于y轴对称的图像对应的函数为y=e-x,将函数y=e-x的图像向左平移1个单位长度即得y=f(x)的图像,∴f(x)=e-(x+1)=e-x-1,故选D. 答案:D7.函数f(x)=2ln x的图像与函数g(x)=x2-4x+5的图像的交点个数为() A.3 B.2C.1 D.0解析:在同一直角坐标系中画出函数f(x)=2ln x与函数g(x)=x2-4x+5=(x-2)2+1的图像,如图所示.∵f(2)=2ln 2>g(2)=1,∴f(x)与g(x)的图像的交点个数为2.故选B.答案:B8.如图,函数f(x)的图像为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1} D.{x|-1<x≤2}解析:作出函数y=log2(x+1)的图像,如图所示:其中函数f (x )与y =log 2(x +1)的图像的交点为D (1,1),结合图像可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C. 答案:C9.已知函数f (x )=|2x -m |的图像与函数g (x )的图像关于y 轴对称,若函数f (x ) 与函数g (x )在区间[1,2]上同时单调递增或同时单调递减,则实数m 的取值范围 是( ) A .[12,2]B .[2,4]C .(-∞,12]∪[4,+∞)D .[4,+∞)解析:易知当m ≤0时不符合题意,当m >0时,g (x )=|2-x -m |,即g (x )=|(12)x -m |.当f (x )与g (x )在区间[1,2]上同时单调递增时,f (x )=|2x -m |与 g (x )=|(12)x -m |的图像如图1或图2所示,易知⎩⎨⎧log 2m ≤1,-log 2m ≤1,解得12≤m ≤2;当f (x )在[1,2]上单调递减时,f (x )=|2x -m |与g (x )=|(12)x -m |的图像如图3所示,由图像知此时g (x )在[1,2]上不可能单调递减.综上所述,12≤m ≤2,即实数m 的取值范围为[12,2].答案:A10.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是 . 解析:由y =2-x +1+m ,得y =⎝ ⎛⎭⎪⎫12x -1+m ;函数y =⎝ ⎛⎭⎪⎫12x -1的图像如所示,则要使其图像不经过第一象限,则m ≤-2. 答案:(-∞,-2]11.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图像如图所示,则a +b +c= .解析:由图像可求得直线的方程为y =2x +2.又函数y =log c ⎝ ⎛⎭⎪⎫x +19的图像过点(0,2),将其坐标代入可得c =13,所以a +b +c =2+2+13=133. 答案:13312.(2018·枣庄一中模拟)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R)恰有4个零点,则m 的取值范围是 .解析:f (x )的图像如图所示,g (x )=0即f (x )=m , y =m 与y =f (x )有四个交点, 故m 的取值范围为(-1,0). 答案:(-1,0)13.若函数f (x )=⎩⎪⎨⎪⎧ 1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式-13≤f (x )≤13的解集为 .解析:函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0和函数g (x )=±13的图像如图所示.当x <0时,是区间(-∞,-3],当x ≥0时,是区间[1,+∞),故不等式-13≤f (x )≤13的解集为(-∞,-3]∪[1,+∞).答案:(-∞,-3]∪[1,+∞)B 组——能力提升练1.函数y =x +2x +1的图像与函数y =2sin πx +1(-4≤x ≤2)的图像所有交点的横坐标之和等于( ) A .-6 B .-4 C .-2D .-1解析:依题意,注意到函数y =1x 与函数y =-2sin πx (-3≤x ≤3)均是奇函数,因此其图像均关于原点成中心对称,结合图像不难得知,它们的图像共有2对关于原点对称的交点,这2对交点的横坐标之和为0;将函数y =1x 与函数y =-2sin πx (-3≤x ≤3)的图像同时向左平移1个单位长度、再同时向上平移1个单位长度,所得两条新曲线(这两条新曲线方程分别为y =1+1x +1=x +2x +1、y =-2sin π(x +1)+1=2sin πx +1)仍有2对关于点(-1,1)对称的交点,这2对交点的横坐标之和为-4(其中每对交点的横坐标之和为-2),即函数y =x +2x +1的图像与函数y =2sinπx+1(-4≤x≤2)的图像所有交点的横坐标之和等于-4,因此选B.答案:B2.函数f(x)=ax3+bx2+cx+d的图像如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0解析:∵函数f(x)的图像在y轴上的截距为正值,∴d>0.∵f′(x)=3ax2+2bx+c,且函数f(x)=ax3+bx2+cx+d在(-∞,x1)上单调递增,(x1,x2)上单调递减,(x2,+∞)上单调递增,∴f′(x)<0的解集为(x1,x2),∴a>0,又x1,x2均为正数,∴c3a>0,-2b3a>0,可得c>0,b<0.答案:A3.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是() A.3c>3a B.3c>3bC.3c+3a>2 D.3c+3a<2解析:画出f(x)=|3x-1|的图像,如图所示,要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0.由y=3x的图像可得0<3c<1<3a.∴f(c)=1-3c,f(a)=3a-1,∵f(c)>f(a),∴1-3c>3a-1,即3a+3c<2.答案:D4.已知函数f(x)=-2x2+1,函数,则函数y=|f(x)|-g(x)的零点的个数为()A.2B.3C.4D.5解析:函数y=|f(x)|-g(x)的零点的个数,即|f(x)|-g(x)=0的根的个数,可得|f(x)|=g(x),画出函数|f(x)|,g(x)的图像如图所示,观察函数的图像,则它们的交点为4个,即函数y=|f(x)|-g(x)的零点个数为4,选C.答案:C5.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎦⎥⎤0,12 C .[2,+∞)D .(2,+∞)解析:不等式4a x -1<3x -4等价于a x -1<34x -1.令f (x )=a x -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图像,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图像,如图2所示,则f (2)≤g (2),即a2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12,故选B.答案:B 6.若函数f (x )=(2-m )xx 2+m的图像如图所示,则m 的取值范围为( ) A .(-∞,-1) B .(-1,2) C .(0,2)D .[1,2)解析:根据题图可知,函数图像过原点,即f (0)=0,所以m ≠0.当x >0时,f (x )>0,所以2-m >0,即m <2.函数f (x )在[-1,1]上是单调递增的,所以f ′(x )≥0在[-1,1]上恒成立, 则f ′(x )=(2-m )(x 2+m )-2x (2-m )x (x 2+m )2=(m -2)(x 2-m )(x 2+m )2≥0,∵m -2<0,(x 2+m )2>0,∴只需x 2-m ≤0在[-1,1]上恒成立即可,∴m ≥(x 2)max , ∴m ≥1.综上所述:1≤m <2,故选D. 答案:D7.设函数f (x )=若f (x 0)>1,则x 0的取值范围是 .解析:在同一直角坐标系中,作出函数y =f (x )的图像和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.定义在R 上的函数f (x )=⎩⎨⎧lg|x |,x ≠0,1, x =0,关于x 的方程y =c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3= . 解析:函数f (x )的图像如图,方程f (x )=c 有三个根,即y =f (x )与y =c 的图像有三个交点,易知c =1,且一根为0,由lg|x |=1知另两根为-10和10,∴x 1+x 2+x 3=0. 答案:09.设f (x )是定义在R 上的偶函数,F (x )=(x +2)3f (x +2)-17,G (x )=-17x +33x +2,若F (x )的图像与G (x )的图像的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )= .解析:∵f (x )是定义在R 上的偶函数,∴g (x )=x 3f (x )是定义在R 上的奇函数,其图像关于原点中心对称,∴函数F (x )=(x +2)3f (x +2)-17=g (x +2)-17的图像关于点(-2,-17)中心对称.又函数G (x )=-17x +33x +2=1x +2-17的图像也关于点(-2,-17)中心对称,∴F (x )和G (x )的图像的交点也关于点(-2,-17)中心对称,∴x 1+x 2+…+x m =m 2×(-2)×2=-2m ,y 1+y 2+…+y m =m2×(-17)×2=-17m ,∴∑i =1m(x i +y i )=(x 1+x 2+…+x m )+(y 1+y 2+…+y m )=-19m .答案:-19m10.(2018·西安质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的研究:①y =f (x )的值域为R.②y =f (x )在(0,+∞)上单调递减.③y =f (x )的图像关于y 轴对称. ④y =f (x )的图像与直线y =ax (a ≠0)至少有一个交点. 其中,结论正确的序号是 .解析:函数f (x )=1|x |-1=⎩⎪⎨⎪⎧1x -1,x ≥01-x -1,x <0,其图像如图所示,由图像可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;在(0,1)和(1,+∞)上单调递减,在(0,+∞)上不是单调的,故②错;f (x )的图像关于y 轴对称,故③正确;由于在每个象限都有图像,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确. 答案:③④。
高三理科数学二轮复习专题能力提升训练:函数、基本初等函数的图象和性质(含答案解析).pdf
训练 函数、基本初等函数的图象和性质 一、选择题(每小题5分,共25分) 1.函数f(x)=+lg(1+x)的定义域是( ). A.(-∞,1) B.(1,+∞) C.(-1,1)(1,+∞) D.(-∞,+∞) 2.如果x<y<0,那么( ). A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x 3.下列四个函数中,是奇函数且在区间(-1,0)上为减函数的是( ). A.y=|x| B.y= C.y=log2|x| D.y= 4.已知函数f(x)=ex-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为( ). A.[2-,2+] B.(2-,2+) C.[1,3] D.(1,3) 5.已知函数y=f(x)的周期为2,当x[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有( ). A.10个 B.9个 C.8个 D.1个 二、填空题(每小题5分,共15分) 6.设函数f(x)=x3cos x+1,若f(a)=11,则f(-a)=______. 7.f(x)为定义在R上的以3为周期的奇函数,若f(1)>0,f(2)=(a+1)(2a-3),则a的取值范围是________. 8.函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x)对一切xR都成立,又当x[-1,1]时,f(x)=x3,则下列四个命题: 函数y=f(x)是以4为周期的周期函数; 当x[1,3]时,f(x)=(2-x)3;函数y=f(x)的图象关于x=1对称; 函数y=f(x)的图象关于点(2,0)对称. 其中正确命题的序号是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知aR且a≠1,求函数f(x)=在[1,4]上的最值. 10.(12分)已知二次函数f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立. (1)求F(x)的表达式; (2)当x[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围. 11.(12分)已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n[-1,1],m+n≠0时,有>0. (1)解不等式f<f(1-x); (2)若f(x)≤t2-2at+1对所有x[-1,1],a[-1,1]恒成立,求实数t的取值范围.1.C [要使函数有意义当且仅当解得x>-1且x≠1,从而定义域为(-1,1)(1,+∞),故选C.] 2.D [因为y=logx为(0,+∞)上的减函数,所以x>y>1.] 3.D [选项A,y=|x|为偶函数,因此排除;选项B,y==-=-=-1+对称中心为(2,-1),在(2,+∞)和(-∞,2)递减,不符合题意,排除;选项C,y=log2|x|是偶函数,因此不符合题意,排除C.答案为D.] 4.B [f(a)>-1,g(b)>-1,-b2+4b-3>-1, b2-4b+2<0,2-<b<2+.选B.] 5.A [根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下 可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时,|lg x|>1.因此结合图象及数据特点y=f(x)与y=|lg x|的图象交点共有10个.] 6.解析 令g(x)=x3cos x,则f(x)=g(x)+1且g(x)为奇函数,所以g(-a)=-g(a).由f(a)=11得,g(a)+1=11,所以g (a)=10. f(-a)=g(-a)+1=-g(a)+1=-10+1=-9. 答案 -9 7.解析 f(x)是周期为3的奇函数, f(2)=f(2-3)=f(-1)=-f(1)<0.(a+1)(2a-3)<0.解得-1<a<.答案 8.解析 因为函数y=f(x)是奇函数,故有f(-x)=-f(x),由f(x-2)=-f(x)可知,函数是最小正周期为4的函数,故命题正确. f(-x)=-f(x)和f(x-2)=-f(x)结合得到 f(x-2)=f(-x),故函数关于x=-1对称, 而x[1,3],x-2[-1,1], f(x-2)=(x-2)3=-f(x), f(x)=-(x-2)3=(2-x)3,故命题正确, 由上可作图,推知命题正确. 答案 9.解 任取x1,x2[1,4],且x1<x2,则 f(x1)-f(x2)=-=. x1-x2<0,(x1+1)(x2+1)>0,又aR,且a≠1. 当a-1>0,即a>1时,f(x1)-f(x2)<0. 即f(x1)<f(x2). 函数f(x)在[1,4]上是增函数, f(x) max=f(4)=,f(x)min=f(1)=. 当a-1<0,即a<1时,f(x1)-f(x2)>0, 即f(x1)>f(x2),函数f(x)在 [1,4]上是减函数, f(x)max=f(1)=,f(x)min=f (4)=. 10.解 (1)f(-1)=0,a-b+1=0, b=a+1,f(x)=ax2+(a+1) x+1. f(x)≥0恒成立, ∴∴a=1,从而b=2,f(x)=x2+2x+1, F(x)= (2)g(x)=x2+2x+1-kx=x2+(2-k)x+1. g(x)在[-2,2]上是单调函数, ≤-2,或≥2,解得k≤-2,或k≥6. 所以k的取值范围为(-∞,-2][6,+∞)11.解 (1)任取x1、x2[-1,1],且x2>x1,则f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0, f(x2)>f(x1),f(x)是增函数. f<f(1-x) 即不等式f<f(1-x)的解集为. (2)由于f(x)为增函数,f(x)的最大值为f(1)=1, f(x)≤t2-2at+1对a[-1,1]、x[-1,1]恒成立t2-2at+1≥1对任意a[-1,1]恒成立t2-2at≥0对任意a[-1,1]恒成立.把y=t2-2at看作a的函数, 由a[-1,1]知其图象是一条线段, t2-2at≥0对任意a[-1,1]恒成立 ?t≤-2,或t=0,或t≥2.。
高考数学函数的性质与图像选择题
高考数学函数的性质与图像选择题1. 函数f(x)=x^3-3x+1的图像在x=1处是否有极值?为什么?2. 已知函数f(x)=ln(x^2+1),求f'(x)。
3. 函数f(x)=(x-2)^2(x-3)^2在x=2和x=3处的函数值。
4. 已知函数f(x)=x^3-3x,求f'(x)。
5. 函数f(x)=ln(x^2+1)在x=1处的切线斜率。
6. 函数f(x)=x^3-3x+1的导数f'(x)。
7. 已知函数f(x)=x^3-3x,求f''(x)。
8. 函数f(x)=x^3-3x在x=1处的函数值。
9. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的值。
10. 已知函数f(x)=x^3-3x,求f'(x)在x=1处的值。
11. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线斜率。
12. 函数f(x)=x^3-3x在x=1处的切线斜率。
13. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线方程。
14. 已知函数f(x)=x^3-3x,求f''(x)在x=1处的值。
15. 函数f(x)=x^3-3x在x=1处的切线方程。
16. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线斜率。
17. 已知函数f(x)=x^3-3x,求f'(x)在x=1处的切线斜率。
18. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线方程。
19. 函数f(x)=x^3-3x在x=1处的切线斜率。
20. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线斜率。
21. 已知函数f(x)=x^3-3x,求f''(x)在x=1处的值。
23. 函数f(x)=x^3-3x+1的导数f'(x)在x=1处的切线斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小题专项训练2 函数的图象与性质一、选择题1.函数f (x )=1x -1+x 的定义域为( )A .[0,+∞)B .(1,+∞)C .[0,1)∪(1,+∞)D .[0,1)【答案】C【解析】由题意知x ≥0且x ≠1.故选C .2.(2019年福建厦门模拟)设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥3,f (x +1),x <3,则f (log 26)的值为( )A .3B .6C .8D .12【答案】D【解析】因为log 24<log 26<log 28,即2<log 26<3,所以f (log 26)=f (log 26+1)=2log 26+1=2log 212=12.故选D .3.(2019年北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg 10.1D .10-10.1【答案】A【解析】设太阳的星等是m 1=-26.7,天狼星的星等是m 2=-1.45,由题意可得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,则E 1E 2=1010.1.故选A .4.(2019年上海)已知ω∈R ,函数f (x )=(x -6)2·sin ωx ,存在常数a ∈R ,使得f (x +a )为偶函数,则ω可能的值为( )A .π2B .π3C .π4D .π5【答案】C【解析】若f (x +a )为偶函数,则f (x )的图象关于直线x =a 对称.又y =(x -6)2关于x =6对称,所以a =6且y =sin ωx 也关于x =6对称.所以6ω=π2+k π,k ∈Z .当k =1时,得ω=π4.故选C .5.(2019年浙江)在同一直角坐标系中,函数y =1ax ,y =log a ⎝⎛⎭⎫x +12(a >0且a ≠1)的图象可能是( )A B C D【答案】D【解析】当0<a <1时,y =1a x 是增函数,图象恒过(0,1),y =log a ⎝⎛⎭⎫x +12是减函数,图象恒过⎝⎛⎭⎫12,0,排除A ,B ;当a >1时,y =1a x 是减函数,图象恒过(0,1),y =log a ⎝⎛⎭⎫x +12是增函数,图象恒过⎝⎛⎭⎫12,0,排除C .故选D .6.若f (x )=⎩⎪⎨⎪⎧2x -3,x >0,g (x ),x <0,是奇函数,则f (g (-2))的值为( )A .1B .-1C .52D .-25【答案】A【解析】因为f (x )是奇函数,所以当x <0时,g (x )=-12x +3.所以g (-2)=-1,f (g (-2))=f (-1)=g (-1)=1.7.函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72 B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52 C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1) D .f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 【答案】B【解析】∵f (x +2)是偶函数,∴f (x +2)=f (-x +2),即f (x )的图象关于x =2对称.又∵y =f (x )在区间[0,2]上单调递增,∴y =f (x )在区间[2,4]上单调递减.∵f (1)=f (3),72>3>52,∴f ⎝⎛⎭⎫72<f (3)<f ⎝⎛⎭⎫52,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点,设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )ABC D【答案】B【解析】设正方体的棱长为1,当P 移动到体对角线BD 1的中点O 时,函数y =MN =AC =2取得唯一的最大值,排除A ,C ;当P 在BO 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,排除D .故选B .9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( )A .有最大值B .有最小值C .是增函数D .是减函数【答案】C【解析】∵f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.g (x )=f (x )x =x +a x -2a .若a ≤0,则g (x )=x +ax -2a 在(-∞,0),(0,+∞)上单调递增;若0<a <1,则g (x )=x +ax -2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +ax-2a 在(1,+∞)上一定是增函数.10.(2018年湖南名校高三联考)已知函数f (x )=(e x -e -x )x 2,若实数m 满足f (log 3m )-f (log13m )≤2f (1),则实数m 的取值范围为( )A .(0,3]B .⎣⎡⎦⎤13,3C .(0,9]D .⎝⎛⎭⎫0,13∪(3,+∞) 【答案】A【解析】由题意得函数的定义域为R ,∵f (-x )=(e -x -e x )(-x )2=-f (x ),∴f (x )为奇函数.又当x ≥0时,f ′(x )=(e x +e -x )x 2+(e x -e -x )·2x ≥0,∴f (x )在[0,+∞)上单调递增,则在R 上奇函数f (x )为增函数,∴f (log 3m )-f (log 13m )=f (log 3m )-f (-log 3m )=2f (log 3m )≤2f (1),即f (log 3m )≤f (1),∴log 3m ≤1,解得0<m ≤3.故选A .11.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,若存在x 1,x 2∈D ,对任意x ∈D ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10【答案】C【解析】作出f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2),知f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9.12.(2019年新课标Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是A .⎝⎛⎦⎤-∞,94B .⎝⎛⎦⎤-∞,73 C .⎝⎛⎦⎤-∞,52 D .⎝⎛⎦⎤-∞,83 【答案】B【解析】因为f (x +1)=2f (x ),所以f (x )=2f (x -1).因为x ∈(0,1]时,f (x )=x (x -1)∈⎣⎡⎦⎤-14,0,所以x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2)∈⎣⎡⎦⎤-12,0,所以x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4(x -2)(x -3)∈[-1,0].f (x )的大致图象如图所示.由4(x -2)(x -3)=-89,解得x =73或x =83.若对任意x ∈(-∞,m ],都有f (x )≥-89,则由图象可知m ≤73.二、填空题13.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上为单调递增函数,则实数a 的取值范围为________.【答案】(0,4]【解析】f (x )=x +a x ,则f ′(x )=1-ax 2.由题意知在(2,+∞)上f ′(x )≥0,所以a ≤x 2,则0<a ≤4.14.已知函数f (x )是定义在R 上且周期为4的偶函数,当x ∈[2,4]时,f (x )=⎪⎪⎪⎪log 4⎝⎛⎭⎫x -32,则f ⎝⎛⎭⎫12的值为________.【答案】12【解析】∵f (x )是定义在R 上且周期为4的偶函数,∴f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫4-12=f ⎝⎛⎭⎫72.又当x∈[2,4]时,f (x )=⎪⎪⎪⎪log 4⎝⎛⎭⎫x -32,∴f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫72=⎪⎪⎪⎪log 4⎝⎛⎭⎫72-32=|log 42|=12. 15.(2018年新课标Ⅲ)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________. 【答案】-2【解析】f (a )+f (-a )=ln(1+a 2-a )+ln(1+a 2+a )+2=2,则f (-a )=2-f (a )=2-4=-2.16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数,例如函数f (x )=2x +1(x ∈R )是单函数.给出下列命题:①函数f (x )=x 2(x ∈R )是单函数; ②指数函数f (x )=2x (x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________. 【答案】②③④【解析】对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),①错误;对于②,f (x )=2x 为单调递增函数,②正确;③④显然正确.故真命题的是②③④.。