上海中考数学压轴题专题圆的经典综合题

合集下载

上海市上宝中学数学圆 几何综合章末训练(Word版 含解析)

上海市上宝中学数学圆 几何综合章末训练(Word版 含解析)

上海市上宝中学数学圆几何综合章末训练(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S △ABC = S △AOE ==2.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,∴BN BP BP BC=, ∵B B ∠=∠,∴BPN BCP ∆∆∽,∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.3.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.5.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=42或﹣42(舍弃),∴DE=2m=82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=62+或6.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴22AB BE-3,∵CE=BE=3,∴3(3)解:∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB时,∠DAC=∠BAC=30°,∴∠ACD=75°, ∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×32=33, ∴AD=2DF=36,∴AD 36CD ==62. 综上所述:AD CD =622+或62. 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.7.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且∠的度数;222EH BE DH=+,求CAG(3)如图3,在(2)的条件下,圆O上一点M与点C关于BD对称,连接ME,交∥交AD于点Q,交BD的延长线于点R,AB于点N,点P为弧AD上一点,PQ BG=,ANE的周长为20,52AQ BNDR=,求圆O半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB可得;(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合,证△ALE≌△AHE,利用勾股定理逆定理推导角度;(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD.先证△AEN≌△QUD,再证△NVE≌△RKU,可得到NV=KR=DK,进而求得OB的长.【详解】(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222=+EH BE DH∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU52∴∴BN=5∴22r【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形8.如图,PA,PB分别与O相切于点A和点B,点C为弧AB上一点,连接PC并延长交O于点F,D为弧AF上的一点,连接BD交FC于点E,连接AD,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257【解析】【分析】 (1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.9.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标;(2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ∆∆=.若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)13)C ;(2)23333y x x =-;(3)32333y x =+;(4)1283834,,2,33M M ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭.【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式. (4)当M 在x 轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE ∆绕边AB 的中点G 按顺时针方向旋转180︒到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3,根据等边CDE ∆的边长是2,利用等边三角形的性质可得13)C ;(2)抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,把(2,0)A,C '代入,得42093a b a b +=⎧⎪⎨+=⎪⎩解得3a =,b = ∴抛物线解析式为2y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=, (2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得k =b = ∴直线BF的解析式为33y x =+; (4)①当M 在x轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y , 当12x =-时,2(2)(2)y =--=1M ∴,2(M -; ②当M 在x轴下方时,不存在,设点2()M x x ,211:[4)]:[216:322AMF OAB S S ∆∆=-⨯⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为183 (4,)M,283 (2,)M-.【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)33PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。

中考数学压轴题专题圆的综合的经典综合题附详细答案

中考数学压轴题专题圆的综合的经典综合题附详细答案

中考数学压轴题专题圆的综合的经典综合题附详细答案中考数学压轴题专题:圆的综合一、圆的综合1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E。

1) 求证:AC∥OD;2) 如果DE⊥BC,求AC的长度。

答案】(1) 证明见解析;(2) 2π。

解析】试题分析:(1) 由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2) BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度。

试题解析:1) 证明:因为OC=OD,所以∠OCD=∠XXX。

因为CD平分∠ACO,所以∠XXX∠ACD。

因此,∠ACD=∠ODC,即可证得AC∥OD。

2) 因为BC切⊙XXXC,所以XXX。

因为DE⊥BC,所以OC∥DE。

因为AC∥OD,所以四边形ADOC是平行四边形。

因为OC=OD,所以平行四边形ADOC是菱形,所以OC=AC=OA。

因为△AOC是等边三角形,所以∠AOC=60°,因此弧AC的长度为2π。

点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式。

此题难度适中,注意掌握数形结合思想的应用。

2.(类比概念) 三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切。

以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形。

性质探究) 如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系。

猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号):A:平行四边形;B:菱形;C:矩形;D:正方形。

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。

上海中考数学压轴题专题:圆的经典综合题

上海中考数学压轴题专题:圆的经典综合题

1.如图,在半径为2的扇形AOB 中,∠AOB =90°,点C 是AB ︵上的一个动点(不与点A 、B重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当BC =1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;(3)设BD =x ,△DOE 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.A EC DO B2.如图,已知在△ABC中,AB=15,AC=20,cot A=2,P是边AB上的一个动点,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P 与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径;(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由.3.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,∠B=60°,AB=10,AD=4,⊙M 与∠BAD的两边相切,点N在射线AB上,⊙N与⊙M是等圆,且两圆外切.(1)设AN=x,⊙M的半径为y,求y关于x的函数关系式;(2)当x为何值时,⊙M与CD相切?(3)直线CD被⊙M所截得的弦与直线BC被⊙N所截得的弦的长是否可能相等?如果能,求出符合要求的x的值;如果不能,请说明理由.4.已知:半圆O 的半径OA =4,P 是OA 延长线上一点,过线段OP 的中点B 作OP 的垂线交半圆O 于点C ,射线PC 交半圆O 于点D ,连接OD . (1)当AC ︵=CD ︵时,求弦CD 的长;(2)设PA =x ,CD =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设CD 的中点为E ,射线BE 与射线OD 交于点F ,当DF =1时,求tan ∠P 的值.备用图备用图5.在Rt △ABC 中,∠C =90°,AC =6,sin B =35,⊙B 的半径长为1,⊙B 交边BC 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图2,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.A BCP图16.如图,⊙O 的半径为6,线段AB 与⊙O 相交于点C 、D ,AC =4,∠BOD =∠A ,OB 与⊙O 相交于点E ,设OA =x ,CD =y .(1)求BD 的长;(2)求y 关于x 的函数关系式,并写出定义域;(3)当CE ⊥OD 时,求AO 的长.A B D C E O。

上海中考数学压轴题专题复习——圆的综合的综合

上海中考数学压轴题专题复习——圆的综合的综合

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC (1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30. 【解析】 【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案. 【详解】(1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥, ∴90CEO ∠=︒, 又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB ,∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE ,∴OBE ∆为等边三角形, ∴60BOE ∠=︒,而OE CD ⊥, ∴30D ∠=︒. 故答案为30. 【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.2.如图,AB 是半圆O 的直径,C 是的中点,D 是的中点,AC 与BD 相交于点E .(1)求证:BD 平分∠ABC ; (2)求证:BE =2AD ; (3)求DEBE的值. 【答案】(1)答案见解析(2)BE=AF=2AD (3)212- 【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD ,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC 与AD 相交于点F, 证明△BCE ≌△ACF, 根据全等三角形的性质可得BE=AF=2AD ;(3)连接OD,交AC 于H.简要思路如下:设OH 为1,则BC 为2,OB=OD=2 ,DH=21-, 然后根据相似三角形的性质可求解. 试题解析:(1)∵D 是的中点∴AD=DC ∴∠CBD=∠ABD ∴BD 平分∠ABC(2)提示:延长BC 与AD 相交于点F, 证明△BCE ≌△ACF, BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, DEBE=DHBCDE BE =212-3.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.【答案】画图见解析.【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 4.如图,一条公路的转弯处是一段圆弧().AB()1用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)()2若AB的中点C到弦AB的距离为2080m AB m=,,求AB所在圆的半径.【答案】(1)见解析;(2)50m 【解析】分析:()1连结AC 、BC ,分别作AC 和BC 的垂直平分线,两垂直平分线的交点为点O ,如图1;()2连接OA OC OC ,,交AB 于D ,如图2,根据垂径定理的推论,由C 为AB 的中点得到1OC AB AD BD AB 402⊥===,,则CD 20=,设O 的半径为r ,在Rt OAD 中利用勾股定理得到222r (r 20)40=-+,然后解方程即可.详解:()1如图1,点O 为所求;()2连接OA OC OC ,,交AB 于D ,如图2,C 为AB 的中点,OC AB ∴⊥,1402AD BD AB ∴===,设O 的半径为r ,则20OA r OD OD CD r ==-=-,,在Rt OAD 中,222OA OD AD =+,222(20)40r r ∴=-+,解得50r =,即AB 所在圆的半径是50m .点睛:本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.5.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于点D ,DE ⊥AC ,垂足为E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;(2)若∠C =60°,AC =12,求BD 的长. (3)若tan C =2,AE =8,求BF 的长.【答案】(1)见解析;(2) 2π;(3)103. 【解析】分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可;(3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AEADE DE∠== ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C ∵OD=OB ∴∠ABC=∠ODB ∴∠C=∠ODB ∴OD ∥AC又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF ∴EF 是⊙O 的切线 (2) ∵AB=AC=12 ∴OB=OD=12AB =6 由(1)得:∠C=∠ODB=600 ∴△OBD 是等边三角形 ∴∠BOD=600∴BD =6062180ππ⨯= 即BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900在Rt △DEC 中, tan 2DEC CE== 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900 ∴∠C=∠ADE 在Rt △ADE 中, tan 2AEADE DE∠== ∵ AE=8,∴DE=4 则CE=2∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5 ∵OD//AE ∴△ODF ∽△AEF ∴OF OD AF AE = 即:55108BF BF +=+ 解得:BF=103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.6.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明 如图2,当时,求证:,且.(3)问题解决 求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.7.如图, Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F, (1)设AB=c, BC=a, AC=b, 求证: 内切圆半径r=12(a+b-c).(2) 若AD交圆于P, PC交圆于H, FH//BC, 求∠CPD;(3)若r=310, PD=18, PC=272. 求△ABC各边长.【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.(3)由PD=18和10,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.【详解】解:(1)证明:设圆心为O,连接OD、OE、OF,∵⊙O分别与BC、CA、AB相切于点D、E、F∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE ∴∠B=∠ODB=∠OFB=90°∴四边形BDOF是矩形∵OD=OF=r∴矩形BDOF是正方形∴BD=BF=r∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r∵AE+CE=AC∴c-r+a-r=b整理得:r=12(a+b-c)(2)取FH中点O,连接OD∵FH∥BC∴∠AFH=∠B=90°∵AB与圆相切于点F,∴FH为圆的直径,即O为圆心∵FH∥BC∴∠DOH=∠ODB=90°∴∠CPD=12∠DOH=45°(3)设圆心为O,连接DO并延长交⊙O于点G,连接PG,过O作OM⊥PD于M ∴∠OMD=90°∵PD=18∴DM=12PD=9∵10∴OM=22OD DM -=22(310)9-=9081-=3 ∴tan ∠MOD=DMOM=3 ∵DG 为直径 ∴∠DPG=90°∴OM ∥PG ,∠G+∠ODM=90° ∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90° ∴∠ADB=∠G ∴∠ADB=∠MOD ∴tan ∠ADB=ABBD=tan ∠MOD=3 ∴AB=3BD=3r=910∴AE=AF=AB-BF=910−310=610 设CE=CD=x ,则BC=310+x ,AC=610+x ∵AB 2+BC 2=AC 2∴(910)2.+(310+x)2=(610+x)2 解得:x=910∴BC=1210,AC=1510∴△ABC 各边长AB=910,AC=1510,BC=1210【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.8.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH<DN,符合题意,综上所述,满足条件的DH的值为632-或122311+.【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.9.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题10.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(23323π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。

上海中考数学压轴题专题:圆的经典综合题

上海中考数学压轴题专题:圆的经典综合题

1.如图,在半径为2的扇形AOB 中,∠AOB =90°,点C 是AB ︵上的一个动点(不与点A 、B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当BC =1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;(3)设BD =x ,△DOE 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.A EC DO B2.如图,已知在△ABC中,AB=15,AC=20,cot A=2,P是边AB上的一个动点,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P 与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径;(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由.3.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,∠B=60°,AB=10,AD=4,⊙M 与∠BAD的两边相切,点N在射线AB上,⊙N与⊙M是等圆,且两圆外切.(1)设AN=x,⊙M的半径为y,求y关于x的函数关系式;(2)当x为何值时,⊙M与CD相切?(3)直线CD被⊙M所截得的弦与直线BC被⊙N所截得的弦的长是否可能相等?如果能,求出符合要求的x的值;如果不能,请说明理由.4.已知:半圆O 的半径OA =4,P 是OA 延长线上一点,过线段OP 的中点B 作OP 的垂线交半圆O 于点C ,射线PC 交半圆O 于点D ,连接OD . (1)当AC ︵ =CD ︵时,求弦CD 的长; (2)设PA =x ,CD =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设CD 的中点为E ,射线BE 与射线OD 交于点F ,当DF =1时,求tan ∠P 的值.备用图备用图5.在Rt △ABC 中,∠C =90°,AC =6,sin B = 3 5,⊙B 的半径长为1,⊙B 交边BC 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图2,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.A BCP图16.如图,⊙O 的半径为6,线段AB 与⊙O 相交于点C 、D ,AC =4,∠BOD =∠A ,OB 与⊙O 相交于点E ,设OA =x ,CD =y .(1)求BD 的长;(2)求y 关于x 的函数关系式,并写出定义域;(3)当CE ⊥OD 时,求AO 的长.A B D C E O。

上海洋泾中学南校数学圆 几何综合(提升篇)(Word版 含解析)

上海洋泾中学南校数学圆 几何综合(提升篇)(Word版 含解析)

上海洋泾中学南校数学圆 几何综合(提升篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = , ∴∠ADE=∠AFE=45°,∵∠ABD=45°,∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD ,∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°,∵42AB =,∴BF=2cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8,∵BE 2=EF 2+BF 2, 82<BE ≤413 , ∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.2.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.(1)如图1,求证:AC =BC ;(2)如图2,E 为⊙O 上一点,AE =BE ,F 为AC 上一点,DE 与BF 相交于点T ,连接AT ,若∠BFC =∠BDC +12∠ABD ,求证:AT 平分∠DAB ; (3)在(2)的条件下,DT =TE ,AD =8,BD =12,求DE 的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA 即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH =5,AB =10, 设TR =TL =TH =h ,DT =m ,∵S △ADB =12•BD •AQ=12•AD •h+12•AB •h+12•DB •h , ∴12AQ =(8+12+10)h ,∴AQ =52h , ∵sin ∠BDE =sin ∠ADE ,可得h m =AP AD =AP 8, sin ∠AED =sin ∠ABD ,可得AP m =AQ AB =AQ 10=5210h , ∴AP m =52810mAP ⋅, 解得m =42或﹣42(舍弃),∴DE =2m =82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.3.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】 【分析】 (1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN OB cm =+=+====,所以926()MN ON OM cm =-=-; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-,运动时间为1862932x -==-(秒). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()ON BN cm ∴===, 926()MN ON OM cm ∴=-=,故答案为24cm ,(926)cm ;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴=,1262OC BC OB =-=-,移动的距离为61221862()cm +-=-,运动时间为1862932x -=-), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.4.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.5.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是813132+,最小值是813132- 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF 的面积有最大和最小值,取AB 的中点G ,连接FG ,DE ,证明△FAG ~△EAD ,进而证明点F 在以G 为圆心1为半径的圆上运动,过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小,分别求出△ACD 的面积和△ACF 的面积的最小值即可得出四边形ADCF 的面积的最小值;②当F 在F 2时,四边形ADCF 的面积有最大值,在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF 的面积的最大值.【详解】解:(1)连接线段OP 交⊙C 于A ,点A 即为所求,如图1所示;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ',∴CO +PQ ≤CQ '+P 'Q ',又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短.在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值.如图3,取AB 的中点G ,连接FG ,DE . ∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB , ∴AC =GB =3,又∵AD =9, ∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1, ∴点F 在以G 为圆心1为半径的圆上运动, 连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 13313BC BAC AC ∠===, 在Rt △ACH 中,313913sin 3GH AG BAC =•∠== ∴119131F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯-=; ∴四边形ADCF 面积最小值是:27313813132722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值, ∵229131F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22AC F H +•=⨯⨯+=; ∴四边形ADCF 面积最大值是27313813132722+++=; 综上所述,四边形ADCF 面积最大值是81313+,最小值是81313-. 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.6.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(23351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE~△CBO找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO =, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=EB OB =, ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.7.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标;(2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M,使得:16:3AMF OABS S∆∆=.若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)13)C;(2)23333y x x=-;(3)32333y x=+;(4)1283834,,2,33M M⎛⎫⎛-⎪⎪⎝⎭⎝⎭.【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F,B的坐标即可求出解析式.(4)当M在x轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE∆绕边AB的中点G按顺时针方向旋转180︒到△1C DE,则有,四边形'OAC B是菱形,所以1C的横坐标为3,根据等边CDE∆的边长是2,利用等边三角形的性质可得13)C;(2)抛物线过原点(0,0)O,设抛物线解析式为2y ax bx=+,把(2,0)A,3)C'代入,得420933a ba b+=⎧⎪⎨+=⎪⎩解得3a=23b=∴抛物线解析式为23333y x x=-;(3)90ABF∠=︒,60BAF∠=︒,30AFB∴∠=︒,又2AB=,4AF∴=,2OF ∴=,(2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得3k =3b =,∴直线BF 的解析式为y x =+;(4)①当M 在x 轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y ,当12x =-时,2(2)(2)y =--=1M ∴,2(M -;②当M 在x 轴下方时,不存在,设点2()M x x ,211:[4)]:[216:322AMF OAB S S ∆∆=-⨯⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为1M ,2(M -. 【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.8.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点(不与A 、B 重合),D 为的AC 中点,过点D 作弦DE ⊥AB 于F ,P 是BA 延长线上一点,且∠PEA =∠B .(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=512,试求AHAG的值.【答案】(1)证明见解析;(2)证明见解析;(3)1310 AHAG=.【解析】【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=512OFDF=,设OF=5x,则DF=12x,求出AE,BE,得出23AEBE=,证明△PEA∽△PBE,得出23PAPE=,过点H作HK⊥PA于点K,证明∠P=∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE,BE,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴23 PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴13 PKPE=,∵tan∠P=5 12,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴13131010 AH aAG a==.【点睛】本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.9.如图,平行四边形ABCD中,AB=5,BC=8,cosB=45,点E是BC边上的动点,以C为圆心,CE长为半径作圆C,交AC于F,连接AE,EF.(1)求AC的长;(2)当AE与圆C相切时,求弦EF的长;(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.【答案】(1)AC=5;(2)4105EF=;(3)03CE≤<或58CE<≤.【解析】【分析】(1)过A作AG⊥BC于点G,由cos45B=,得到BG=4,AG=3,然后由勾股定理即可求出AC的长度;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.【详解】解:(1)过A作AG⊥BC于点G,如图:在Rt△ABG中,AB=5,4 cos5BGBAB==,∴BG=4,∴AG=3,∴844CG=-=,∴点G是BC的中点,在Rt△ACG中,22345AC+=;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:∴CE=CF=4,∵AB=AC=5,∴∠B=∠ACB ,∴4cos cos 5CH B ACB CF =∠==, ∴CH=3.2,在Rt △CFH 中,由勾股定理,得FH=2.4,∴EH=0.8,在Rt △EFH 中,由勾股定理,得 224100.8 2.4EF =+=; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况:①当圆C 与AD 相离时,则CE<AE ,∴半径CE 的取值范围是:03CE ≤<;②当CE>CA 时,点E 在线段BC 上,∴半径CE 的取值范围是:58CE <≤;综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤.【点睛】本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,AC AB ⊥,90CAN BAM ∴∠+∠=︒,ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆,2(3)1CN AM ∴==---=,3(5)2BM AN ==---=,(2,2)B ∴--,(5,1)C --,点B ,C 在抛物线上, ∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩, ∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽, ∴AM BM BM DM=, ∴122DM=, 4DM ∴=,2()2D ∴,, 5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,22(63)(40)5AE ∴=-++--=,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②, 联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。

2020-2021上海中考数学压轴题专题复习——圆的综合的综合

2020-2021上海中考数学压轴题专题复习——圆的综合的综合

2020-2021上海中考数学压轴题专题复习——圆的综合的综合一、圆的综合1.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.2.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2) 25-504.【解析】分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可. 详解:证明:(1) ∵AB 是⊙O 的直径, ∴∠ACB=90°, 即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC , ∴∠EAC=∠ABC ∴∠BAC+∠EAC =90°, 即∠BAE= 90°∴直线AE 是⊙O 的切线; (2)连接OD ∵ BC=6 AC=8 ∴ 226810AB =+= ∴ OA = 5 又∵ OD = OA ∴∠ADO =∠BAD = 45° ∴∠AOD = 90° ∴AOD ODA S S S ∆-阴影扇形= =90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.3.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,点C 在⊙O 上,CB ∥PO . (1)判断PC 与⊙O 的位置关系,并说明理由; (2)若AB=6,CB=4,求PC 的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.4.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552 OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.5.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,PC=25,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)2=(25)2,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.6.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=2. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE=5,则GD =GE +ED=5.∴1119222S GD DF GD DE =⨯⨯=⨯⨯==.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.7.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.8.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【答案】(1) B(,2).(2)证明见解析.【解析】试题分析:(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可试题解析:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.9.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π- 【解析】【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE =12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.【详解】(1) 过C 点作直径CM ,连接MB , ∵CM 为直径,∴∠MBC =90°,即∠M+∠BCM =90°, ∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD ∥BC , ∴∠ACD =∠BAC ,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π22123604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.10.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②22CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即12CH=,∴CH2=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.11.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且10,CH52=.(1)求证:AH是⊙O的切线;(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;(3)在(2)的条件下,求EF的长.【答案】(1)证明见解析(2)证明见解析(3)102【解析】【分析】(1)连接AC,由AB⊥CB可知AC是⊙O的直径,由圆周角定理可得∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2= 40,从而可得AC2+AH2=CH2,根据勾股定理的逆定理可得AC⊥AH,问题得证;(2)连接DE、BE,由弦切角定理可知∠ABD=∠HAD,由D是»CE的中点,可得∠CED=∠EBD,再由圆周角定理可得∠ABE=∠ADE,结合三角形的外角即可证明∠HAF=∠AFH,从而可证得AH=HF;(3)由切割线定理可得EH=2,由(2)可知AF=FH=10,从而可得EF=FH﹣EH=10-2.【详解】(1)如图1所示:连接AC.∵AB⊥CB,∴AC是⊙O的直径,∵∠C=∠D,∴tanC=3,∴AB=3BC=3×2=6,在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40,又∵AH2=10,CH2=50,∴AC2+AH2=CH2,∴△ACH为直角三角形,∴AC⊥AH,∴AH是圆O的切线;(2)如图2所示:连接DE 、BE ,∵AH 是圆O 的切线, ∴∠ABD=∠HAD ,∵D 是»CE的中点, ∴»»CDED =, ∴∠CED=∠EBD , 又∵∠ABE=∠ADE ,∴∠ABE+∠EBD=∠ADE+∠CED , ∴∠ABD=∠AFE , ∴∠HAF=∠AFH , ∴AH=HF ;(3)由切割线定理可知:AH 2=EH•CH ,即(10)2=52EH , 解得:EH=2,∵由(2)可知AF=FH=10, ∴EF=FH ﹣EH=10-2.【点睛】本题主要考查圆的综合应用,解答主要应用了切线的判定定理、弦切角定理、切割线定理、圆周角定理、勾股定理、勾股定理的逆定理、三角形的外角的性质等,正确添加辅助线是解题的关键.12.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE长为直径的Qe与Pe相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010x x xy x-+=<<;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β, tanβ=2,则55 EB=BDcosβ=(525)525x ,∴PD ∥BE ,∴EB PD =BFPF,即:2248805x x x y xy--+=,整理得:y=)2x 8x 800x 103x 20-+<<+;(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.13.对于平面内的⊙C和⊙C外一点Q,给出如下定义:若过点Q的直线与⊙C存在公共点,记为点A,B,设AQ BQkCQ+=,则称点A(或点B)是⊙C的“K相关依附点”,特别地,当点A和点B重合时,规定AQ=BQ,2AQkCQ=(或2BQCQ).已知在平面直角坐标系xoy中,Q(-1,0),C(1,0),⊙C的半径为r.(1)如图1,当2r=①若A1(0,1)是⊙C的“k相关依附点”,求k的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”. (2)若⊙C 上存在“k 相关依附点”点M , ①当r=1,直线QM 与⊙C 相切时,求k 的值. ②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围.【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<.【解析】 【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQk CQ=计算即可解决问题;②根据定义求出k 的值即可判断;(2)①如图,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可;②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ =,推出2MQ NQ DQk DQ CQ CQ+===,可得当3k =3DQ =221CD CQ DQ -=,假设C e 经过点Q ,此时2r =,因为点Q 早C e 外,推出r 的取值范围是12r <…; (3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =3y x b=-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<. 【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C e 的切线,122222QA k QC ∴===. ②Q 2(12,0)A +在C e 上,2212122k -+++∴==,2A ∴是C e 的“2相关依附点”.故答案为:2,是;(2)①如图2,当1r =时,不妨设直线QM 与C e 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥.(1,0)Q -Q ,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQk CQ==; ②如图3中,若直线QM 与C e 不相切,设直线QM 与C e 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =Q ,∴2MQ NQ DQk DQ CQ CQ+===,∴当3k =时,3DQ =,此时221CD CQ DQ =-=,假设C e 经过点Q ,此时2r =,Q 点Q 早C e 外,r ∴的取值范围是12r <….(3)如图4中,由(2)可知:当3k =12r <….当2r =时,C e 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C e 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.14.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②27;(2)31312PQ PQ -≤≤+≠且;【解析】【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 的最小值为3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB ≌△AMN ,△APM 是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C 、P 、M 、N 四点在同一条直线上;②解:连接BN ,易得ΔABN 是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,3∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22BC BN27+=,∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ的最小值为3-1,PQ的最大值为3+1,PQ≠2,∴3-1≤PQ≤3+1且PQ≠2.PQ31PQ31PQ2的取值范围是且∴-≤≤+≠【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.15.如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,AC=6,求⊙O的半径R的长.【答案】(1)证明见解析(2)3 2【解析】试题分析:(1)连接OC,由题意得OC⊥CD.又因为AC平分∠DAB,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R =,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径, ∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC , ∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD =。

上海市初三数学复习专题及答案圆的综合i(2021年整理)

上海市初三数学复习专题及答案圆的综合i(2021年整理)

部内容。

教学内容1 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为().A.(45)+ cm B. 9 cm C.45cm D.62cm2 正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin EAB∠的值为()A.43B.34C.45D.353 如图,⊙O的半径为2,点A的坐标为(2,32),直线AB为⊙O的切线,B为切点.则B点的坐标为A.⎪⎪⎭⎫⎝⎛-5823,B.()13,- C.⎪⎭⎫⎝⎛-5954,D.()31,-一、同步知识梳理xyO 11BA三、课堂达标检测检测题:如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,=4AC,BOD A∠=∠,OB与⊙O相交于点E,设OA x=,CD y=.(1)求BD长;(2)求y关于x的函数解析式,并写出定义域;(3)当CE⊥OD时,求AO的长.AEODC B四、学法提炼1、专题特点:圆中的等腰三角形的运用;2、解题方法:利用圆中的等腰三角形构造相似解决问题;3、注意事项:圆中条件缺乏时善于考虑半径相等构造的等腰。

三、学法提炼1、专题特点:圆中的动点问题;2、解题方法:垂径定理构造直角相似;3、注意事项:对于圆中的不确定点要注意分类讨论。

一、专题精讲例:如图,在Rt△ABC中,∠ACB=90°,6AC cm=,8BC cm=,点P为BC的中点,动点Q从点P出发,延射线PC方向以2/cm s的速度运动,以点P为圆心,PQ长为半径作圆. 设点Q运动的时间为t秒.(1)当 1.2t=时,判断直线AB与⊙P的位置关系,并说明理由;(2)当△AQP是等腰三角形时,求t的值;(3)已知⊙O为ABC的外接圆,若⊙P与⊙O相切,求t的值.BPCAOQ1时,求AP2过点P、O AP上(如图x=,QP=关系式,并写出函数的定义域;)在(2)的条件下,当化,请简述理由;若不变化,请求出四边形如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB =90º,点C 是AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC =x ,BD =y .(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 如果⊙1O 与⊙O 相交于点A 、C ,且⊙1O 与⊙O 的圆心距为2,当BD =31OB 时,求⊙1O 的半径;已知:半圆O 的半径4OA =,P 是OA 延长线上一点,过线段OP 的中点B 作垂线交O 于点C ,射线PC 交O 于点D ,联结OD .(1)若=AC CD ,求弦CD 的长.(2)若点C 在AD 上时,设=PA x ,CD y =,求y 与x 的函数关系式及自变量x 的取值范围; (3)设CD 的中点为E ,射线BE 与射线OD 交于点F ,当1DF =时,请直接写出P ∠tan 的值.如图,已知∠MON两边分别为OM、ON, sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.上海市初三数学复习专题及答案圆的综合i(word版可编辑修改)授课类型21。

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)

上海中考数学第25题分析(下)——与圆有关的压轴题前言:我们古代数学家刘徽、祖冲之为了研究圆(周长和面积),费尽毕生精力,不管是割圆术还是牟合方盖,不管极限思想还是圆周率的精确,都是古人智慧的结晶,也许正因为古人的智慧铺垫,才有了如今我们学习圆的轻松和方便,今天我们一起来探究下圆的压轴!一、圆的知识梳理及拓展延伸——重要!!!1、圆的定义(轨迹法):平面上的动点到定点的距离等于定长,这样的轨迹称之为圆(定点为圆心,定长为半径)。

2、圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

6、切线的性质:①经过切点垂直于这条半径的直线是圆的切线。

②经过切点垂直于切线的直线必经过圆心。

③圆的切线垂直于经过切点的半径。

7、直径所对的圆心角为直角。

8、两圆相交,则连心线平分公共弦——注意事连心线,不是圆心之间的线段! 9、①圆的周长及面积公式:r C π2=,2r S π=; ②扇形的周长及面积公式:r n C π2360=,2360r n S π=; 10、圆的割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

11、圆和圆的位置关系:相交、相离(外离+内含)、相切(外切+内切)。

12、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等;②圆内接四边形的对角互补;③圆内接四边形的外角等于内对角。

题外话:圆的性质是所有章节最多的一个,还有弦切角+圆心角+圆周角的关系、圆幂定理及逆定理、托勒密定理及其逆定理等等,但可恨的是上海中考这个拿学业水平考当选拨的考试,它根本就不考那么多!二、25题与圆有关的压轴题题型归纳圆的综合在一模试卷中出现的不多,二模中是重点题型。

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3)433 【解析】 【分析】 (1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°;(3)易证12COE CAE S S =V V ,由于23CDF COE S S =V V ,所以CDF CAE S S V V =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案.【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ;(2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°.∵OE ∥BC ,∴∠AEO =∠AGC =60°.∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAE S S =V V . 23CDF COE S S =V V Q ,∴CDF CAE S S V V =13. ∵AC 是直径,∴∠AEC =∠FDC =90°.∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =3,∴CF =3CA =43.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.4.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.5.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有¶BG=¶ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴¶AD=¶¶BC BD∴,=¶AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴¶BG=¶ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.6.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?【答案】(1)522-;(2)52-;(3)20423-【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B点移动的距离.详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,由切线长定理可知C′E=C′D,设C′D=x,则C′E=x,∵△ABC是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°,∴△EFC′是等腰直角三角形,∴2x,∠OFD=45°,∴△OFD也是等腰直角三角形,∴OD=DF , ∴2x+x=1,则x=2-1, ∴CC′=BD -BC-C′D=5-1-(2-1)=5-2,∴点C 运动的时间为522-; 则经过522-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,由切线长定理得C′E=C′D′=4-t ,由(1)得:4-t=2-1,解得:t=5-2,答:经过5-2秒△ABC 的边与圆第一次相切;(3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,由切线长定理得C′E=C′D′=4-1.5t ,由(1)得:4-1.5t=2-1,解得:t=10223-, ∴点B 运动的距离为2×10223-=20423-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.7.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项(含解析)

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项(含解析)

2019-2020年上海市中考数学各地区模拟试题分类:圆压轴题专项1.(2020•长宁区二模)已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD=CB.(1)如图1,如果BO平分∠ABC,求证:=;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.2.(2020•浦东新区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.3.(2020•崇明区二模)如图已知⊙O经过A、B两点,AB=6,C是的中点,联结OC 交弦AB与点D,CD=1.(1)求圆⊙O的半径;(2)过点B、点O分别作点AO、AB的平行线,交于点G,E是⊙O上一点,联结EG 交⊙O于点F,当EF=AB,求sin∠OGE的值.4.(2020•宝山区二模)已知:如图,⊙O与⊙P相切于点A,如果过点A的直线BC交⊙O 于点B,交⊙P于点C,OD⊥AB于点D,PE⊥AC于点E.求:(1)求的值;(2)如果⊙O和⊙P的半径比为3:5,求的值.5.(2020•闵行区一模)在圆O中,弦AB与CD相交于点E,且弧AC与弧BD相等.点D 在劣弧AB上,联结CO并延长交线段AB于点F,联结OA、OB.当OA=,且tan∠OAB =.(1)求弦CD的长;(2)如果△AOF是直角三角形,求线段EF的长;(3)如果S△CEF =4S△BOF,求线段AF的长.6.(2020•宝山区一模)如图,直线l:y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A2作x 的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去.求:(1)点B1的坐标和∠A1OB1的度数;(2)弦A4B3的弦心距的长度.7.(2020•闵行区一模)如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.8.(2020•都江堰市模拟)如图,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.点O在边BC上,以O为圆心,OB为半径的弧经过点A.P是弧AB上的一个动点.(1)求半径OB的长;(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;(3)如果BA平分∠PBC,延长BP、CA交于点D,求线段DP的长.9.(2020•亳州模拟)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A 的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.10.(2019•杨浦区三模)△ABC中,∠ACB=90°,tan B=,AB=5,点O为边AB上一动点,以O为圆心,OB为半径的圆交射线BC于点E,以A为圆心,OB为半径的圆交射线AC于点G.(1)如图1,当点E、G分别在边BC、AC上,且CE=CG时,请判断圆A与圆O的位置关系,并证明你的结论;(2)当圆O与圆A存在公共弦MN时(如图2),设OB=x,MN=y,求y关于x的函数解析式,并写出定义域;(3)设圆A与边AB的交点为F,联结OE、EF,当△OEF为以OE为腰的等腰三角形时,求圆O的半径长.11.(2019•青浦区二模)已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.(1)如图1,如果BC=2,求DE的长;(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;(3)如图3,连接CE,如果CG=CE,求BC的长.12.(2019•浦东新区二模)已知AB是圆O的一条弦,P是圆O上一点,过点O作MN⊥AP,垂足为点M,并交射线AB于点N,圆O的半径为5,AB=8.(1)当P是优弧的中点时(如图),求弦AP的长;(2)当点N与点B重合时,试判断:以圆O为圆心,为半径的圆与直线AP的位置关系,并说明理由;(3)当∠BNO=∠BON,且圆N与圆O相切时,求圆N半径的长.13.(2019•静安区二模)已知:如图8,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD =6.动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP=x,PC=y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆心半径为R的⊙D与⊙P相交,求R的取值范围.14.(2019•普陀区二模)如图1,在Rt△ABC中,∠ACB=90°,AB=5,cos∠BAC=,点O是边AC上一个动点(不与A、C重合),以点O为圆心,AO为半径作⊙O,⊙O 与射线AB交于点D,以点C为圆心,CD为半径作⊙C,设OA=x.(1)如图2,当点D与点B重合时,求x的值;(2)当点D在线段AB上,如果⊙C与AB的另一个交点E在线段AD上时,设AE=y,试求y与x之间的函数解析式,并写出x的取值范围;(3)在点O的运动过程中,如果⊙C与线段AB只有一个公共点,请直接写出x的取值范围.15.(2019•嘉定区二模)在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x 的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.16.(2019•虹口区二模)如图,AD∥BC,∠ABC=90°,AD=3,AB=4,点P为射线BC 上一动点,以P为圆心,BP长为半径作⊙P,交射线BC于点Q,联结BD、AQ相交于点G,⊙P与线段BD、AQ分别相交于点E、F.(1)如果BE=FQ,求⊙P的半径;(2)设BP=x,FQ=y,求y关于x的函数关系式,并写出x的取值范围;(3)联结PE、PF,如果四边形EGFP是梯形,求BE的长.17.(2019•长宁区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P在边AC上(点P与点A不重合),以点P为圆心,PA为半径作⊙P交边AB于另一点D,ED⊥DP,交边BC于点E.(1)求证:BE=DE;(2)若BE=x,AD=y,求y关于x的函数关系式并写出定义域;(3)延长ED交CA的延长线于点F,联结BP,若△BDP与△DAF相似,求线段AD的长.18.(2019•宝山区二模)如图已知:AB是圆O的直径,AB=10,点C为圆O上异于点A、B的一点,点M为弦BC的中点.(1)如果AM交OC于点E,求OE:CE的值;(2)如果AM⊥OC于点E,求∠ABC的正弦值;(3)如果AB:BC=5:4,D为BC上一动点,过D作DF⊥OC,交OC于点H,与射线BO交于圆内点F,请完成下列探究.探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.19.(2019•徐汇区二模)如图,△ABC中,AC=BC=10,cos C=,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长20.(2019•金山区二模)如图,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D,点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA.(2)设经过点D、C、E三点的圆为⊙P.①当⊙P与边AB相切时,求t的值.②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧),联结CP并延长CP交边AB于点M,当△PFM与△CDE相似时,求t的值.参考答案一.解答1.(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC,∴=.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴3∠C+90°=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,∴EC2+2EC﹣4=0,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.2.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.3.解:(1)∵AB=6,C是的中点,CD=1,∴OC⊥AB且OC平分AB,∴AD=3,∠ODA=90°,设OA=r,则OD=r﹣1,∴r2=32+(r﹣1)2,解得,r=5,即圆⊙O的半径为5;(2)作OH⊥EF于点H,∵AB=EF,OD=r﹣1=4,∴OH=OD=4,∠OHG=90°,∵OA∥BG,OG∥AB,∴四边形OABG是平行四边形,∴OG=AB,∵AB=6,∴OG=6,∴sin∠OGH===,即sin∠OGE=.4.解:(1)∵OD⊥AB,PE⊥AC,OD过O,PE过P,∴AD=AB,AE=AC,∴;(2)连接OP,OP必过切点A,连接OB、CP,∵OB=OA,PA=PC,∴∠OBA=∠OAB=∠PAC=∠PCA,即∠OBA=∠PCA,∠BAO=∠PAC,∴△OOA∽△CPA,∴=,∵⊙O和⊙P的半径比为3:5,即=,∴=.5.解:(1)如图,过点O作OH⊥AB于点H,∵tan∠OAB==,∴设OH=a,AH=2a,∵AO2=OH2+AH2=5,∴a=1,∴OH=1,AH=2,∵OH⊥AB,∴AB=2AH=4,∵弧AC=弧BD∴=,∴AB=CD=4;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OA=,tan∠OBA=,∴OC=OA=,OF=1,AB=4,∴EF=CF•tan∠ECF=CF•tan∠OBA=;②当∠AOF=90°时,∵OA=OB,∴∠OAF=∠OBA,∴tan∠OAF=tan∠OBA=,∵OA=,∴OF=OA•tan∠OAF=,∴AF=,∵∠OAF=∠OBA=∠ECF,∠OFA=∠EFC,∴△OFA∽△EFC,∴==,∴EF=OF=,即:EF=或;(3)如图,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴=, ∴=,∴FO =CO =,∴OH ==1,∴HF ==,∴AF =AH +HF =2+.6.解:(1)∵直线的解析式y =x ,∴tan ∠A 1OB 1==, ∴∠A 1OB 1=60°,OA 1=1,∴A 1B 1=,OA 2=OB 1=2, ∴B 1(1,).(2)连接A 4B 3,作OH ⊥A 4B 3于H .由题意OA1=1,OA2=2,OA3=4,OA4=8,∵OA4=OB3,OH⊥A4B3,∴∠A4OH=∠A4OB3=30°,∴OH=OA4•cos30°=8×=4.7.(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.8.解:(1)∵Rt△ABC中,∠ACB=90°,AC=,BC=16,∴AB==12,如图1,过O作OH⊥AB于H,则BH=AB=6,∵∠BHO=∠ACB=90°,∠B=∠B,∴△BHO∽△BCA,∴,∴=,∴OB=9;(2)如图2,连接OP交AB于H,过P作PE⊥BC于E,∵点P是弧AB的中点,∴OP⊥AB,AH=BH=AB=6,在Rt△BHO中,OH===3,在△POE与△BOH中,,∴△POE≌△BOH(AAS),∴PE=HB=6,OE=OH=3,∴CE=BC﹣OB+OE=10,∴∠PCB的正切值==;(3)如图3,过A作AE⊥BD于E,连接CP,∵BA平分∠PBC,AC⊥BC,∴AE=AC=4,∵∠AED=∠ACB=90°,∠D=∠D,∴△ADE∽△BDC,∴=,设DE=x,∴=,∴AD=,在Rt△ACB与Rt△AEB中,,∴Rt△ACB≌Rt△AEB(HL),∴BE=BC=16,∵CD2+BC2=BD2,∴(4+)2+162=(16+x)2,解得:x=,∴AD=,BD=16+=,∴CD=,∴OB=9,过O作OF⊥PB交PB于F,则△OBF∽△DBC,∴,∴=,∴BF=7,∴PB=2BF=14,∴PD=BD﹣BP=.9.(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10﹣6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8﹣r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8﹣r)2+42,解得,r=5,即⊙O2的半径长为5.10.解:(1)圆A与圆O外切,理由如下:∵∠ACB=90°,tan B=,AB=5,∴AC=3,BC=4,作OP⊥BE于P,如图1所示:则PB=PE,OP∥AC,∴=,设PB=PE=x,则CG=CE=4﹣2x,∴OB==x,AG=AC﹣CG=2x﹣1,∵AG=OB,∴2x﹣1=x,解得:x=,∴OB═,∴OA=AB﹣OB=5﹣==2OB,∴圆A与圆O外切;(2)连接OM,如图2所示:∵圆O与圆A存在公共弦MN,∴OA与MN垂直平分,∴∠ODM=90°,DM=MN=y,AD=OD=(5﹣x),由勾股定理得:DM2=OM2﹣OD2,即(y)2=x2﹣()2,整理得:y2=3x2+10x﹣25,∴y=(<x<5);(3)分三种情况:①当圆O与圆A外切,OE=OF时,圆O与圆A外切,圆O的半径长OB=;②当OE=FE时,圆O与圆A相交,如图3所示:作EH⊥OF于H,则OF=OH=﹣OB,∵∠B=∠B,∠EHB=90°=∠C,∴△BEH∽△BAC,∴=,∴EH==,在Rt△OEH中,由勾股定理得:()2+(﹣OB)2=OE2=OB2,解得:OB=;③当O与A重合时,OE=OF,F与B重合,OE=AB=5;综上所述,当△OEF为以OE为腰的等腰三角形时,圆O的半径长为或或5.11.解:(1)如图1中,连接CE.在Rt△ACB中,∵∠ACB=90°,AC=1,BC=2,∴AB==,∵CD是⊙Q的直径,∴∠CED=90°,∴CE⊥AB,∵BD=AD,∴CD=AB=,∵•AB•CE=•BC•AC,∴CE=,在Rt△CDE中,DE===.(2)如图2中,连接CE,设AC交⊙Q于K,连接FK,DF,DK.∵∠FCK=90°,∴FK是⊙Q的直径,∴直线FK经过点Q,∵CD是⊙Q的直径,∴∠CFD=∠CKD=90°,∴DF⊥BC,DK⊥AC,∵DC=DB=DA,∴BF=CF,CK=AK,∴FK∥AB,∴=,∵BC=x,AC=1,∴AB=,∴DC=DB=DA=,∵△ACE∽△ABC,∴可得AE=,∴DE=AD﹣AE=﹣,∴=,∴=,∴y=(x>1).(3)如图3中,连接FK.∵CE=CG,∴∠CEG=∠CGE,∵∠FKC=∠CEG,∵FK∥AB,∴∠FKC=∠A,∵DC=DA,∴∠A=∠DCA,∴∠A=∠DCA=∠CEG=∠CGE,∴∠CDA=∠ECG,∴EC=DE,由(2)可知:=﹣,整理得:x2﹣2x﹣1=0,∴x=1+或1﹣(舍弃),∴BC=1+.12.解:(1)连接PO并延长交弦AB于点H,如图1所示:∵P是优弧的中点,PH经过圆心O,∴PH⊥AB,AH=BH,在△AOH中,∠AHO=90°,AH=AB=4,AO=5,∴OH===3,在△APH中,∠AHP=90°,PH=OP+OH=5+3=8,∴AP===4;(2)当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;理由如下:作OG⊥AB于G,如图2所示:∵∠OBG=∠ABM,∠OGB=∠AMB,∴△OBG∽△ABM,∴=,即=,解得:BM=,∴OM=﹣5=,∵<,∴当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;(3)①当点N在线段AB延长线上时,当圆N与圆O相外切时,作OD⊥AB于D,如图3所示:∵OA=OB=5,∴AD=DB=AB=4,∴OD===3,∵∠BNO=∠BON,∴BN=OB=5,∴DN=DB+BN=9,在Rt△ODN中,由勾股定理得:ON===3,∵圆N与圆O相切,∴圆N半径=ON﹣5=3﹣5;当圆N与圆O相内切时,圆N半径=ON+5=3+5;②当点N在线段AB上时,此时点P在弦AB的下方,点N在圆O内部,如图4所示:作OE⊥AB于E,则AE=BE=4,OE==3,∵∠BNO=∠BON,∴BN=OB=5,∴EN=BN=BE=1,在Rt△OEN中,由勾股定理得:ON===,∴圆N半径为5﹣或5+;综上所述,当∠BNO=∠BON,且圆N与圆O相切时,圆N半径的长为3﹣5或3+5或5﹣或5+.13.(1)∵证明:梯形ABCD,AB=CD,∴∠B=∠DCB,∵PB=PE,∴∠B=∠PEB,∴∠DCB=∠PEB,∴PE∥CD;(2)解:分别过P、A、D作BC的垂线,垂足分别为点H、F、G.∵梯形ABCD中,AD∥BC,AF⊥BC,DG⊥BC,PH⊥BC,∴四边形ADGF是矩形,PH∥AF,∵AD=2,BC=DC=6,∴BF=FG=GC=2,在Rt△ABF中,AF===4,∵PH∥AF,∴==,即==,∴PH=x,BH=x,∴CH=6﹣x,在Rt△PHC中,PC=,∴y=,即y=(0<x<9);(3)解:作EM∥PD交DC于M.∵PE∥DC,∴四边形PDME是平行四边形.∴PE=DM=x,即MC=6﹣x,∴PD=ME,∠PDC=∠EMC,又∵∠PDC=∠B,∠B=∠DCB,∴∠DCB=∠EMC=∠PBE=∠PEB.∴△PBE∽△ECM,∴=,即=,解得:x=,即BE=,∴PD=EC=6﹣=,当两圆外切时,PD=r P+R,即R=0(舍去);当两圆内切时,PD=r P﹣R,即R1=0(舍去),R2=;即两圆相交时,0<R<.14.解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,AB=5,cos∠BAC=,∴AC=4,BC===3,∵OA=OB=x,∴OC=4﹣x,在Rt△BOC中,∵OB2=BC2+OC2,∴x2=32+(4﹣x)2,∴x=(2)如图2中,作CH⊥AB于H,OG⊥AB于G,EK⊥AC于K,连接CE.∵•AB•CH=•BC•AC,∴CH=,AH=,∵OD=OA=x,OG⊥AD,∴AG=DG=OA•cos A=x,∴AD=x,DH=x﹣,∴CD2=()2+(x﹣)2,∵AK=AE•cos A=y,EK=y,∴CE2=(4﹣y)2+(y)2,∵CD=CE,∴()2+(x﹣)2=(4﹣y)2+(y)2,∴x2﹣x=y2﹣y,∴(y﹣)2=(x﹣2)2,∵y<,x>2,∴﹣y=x﹣,∴y=﹣x+(2<x≤).(3)①如图3﹣1中,当⊙C经过点B时,易知:BH=DH=,∴BD=,∴AD=5﹣=,∴x=,∴x=,观察图象可知:当0<x<时,⊙C与线段AB只有一个公共点.②如图3﹣2中,当⊙C与AB相切时,CD⊥AB,易知OA=2,此时x=2,③如图3﹣3中,当<x<4时,⊙C与线段AB只有一个公共点.综上所述,当0<x<或x=2或<x<4时,⊙C与线段AB只有一个公共点.15.解:(1)过点O作ON∥BC交AM于点N,如图1∴,,∵∴∵点M是弦BC的中点∴BM=MC∴,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°,又∵∠MOC=∠EOM∴△MOC∽△EOM;∴,∵OE:CE=1:2∴,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,∴;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=∵DL∥OC,∴设BD=x,则CD=8﹣x,∴BL=DL=x,CH=(8﹣x),OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴,∴=;∴y关于x的函数解析式是定义域是,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.16.解:(1)∵BE=FQ,∴∠BPE=∠FPQ,∵PE=PB,∴∠EBP=(180°﹣∠EPB),同理∠FQP=(180°﹣∠FPQ),∴∠EBP=∠FQP,∵AD∥BC,∴∠ADB=∠EBP,∴∠FQP=∠ADB,∴tan∠FQP=tan∠ADB=,设⊙P的半径为r,则tan∠FQP==,∴=,解得:r=,∴⊙P的半径为;(2)过点P作PM⊥FQ,垂足为点M,如图1所示:在Rt△ABQ中,cos∠AQB====,在Rt△PQM中,QM=PQ cos∠AQB=,∵PM⊥FQ,PF=PQ,∴FQ=2QM=,∴,当圆与D点相交时,x最大,作DH⊥BC于H,如图2所示:则PD=PB=x,DH=AB=4,BH=AD=3,则PH=BP﹣BH=x﹣3,在Rt△PDH中,由勾股定理得:42+(x﹣3)2=x2,解得:x=,∴x的取值范围为:;(3)设BP=x,分两种情况:①EP∥AQ时,∴∠BEP=∠BGQ,∵PB=PE,∴∠PBE=∠BEP,∴∠BGQ=∠PBE,∴QG=QB=2x,同理:AG=AD=3,在Rt△ABQ中,由勾股定理得:42+(2x)2=(3+2x)2,解得:x=,∴QG=QB=2x=,∵EP∥AQ,PB=PQ,∴BE=EG,∵AD∥BC,∴=,即=,解得:BG=,∴BE=BG=;②PF∥BD时,同①得:BG=BQ=2x,DG=AD=3,在Rt△ABD中,由勾股定理得:42+32=(3+2x)2,解得:x=1或x=﹣4(舍去),∴BQ=2,∴BP=1,作PN⊥BG于N,则BE=2BN,如图3所示:∵AD∥BC,∴∠PBN=∠ADB,∴cos∠PBN=cos∠ADB=,即=,∴BN=,∴BE=2BN=;综上所述,或.17.(1)证明:∵ED⊥DP,∴∠EDP=90°.∴∠BDE+∠PDA=90°.又∵∠ACB=90°,∴∠B+∠PAD=90°.∵PD=PA,∴∠PDA=∠PAD.∴∠BDE=∠B.∴BE=DE.(2)∵AD=y,BD=BA﹣AD=5﹣y.过点E作EH⊥BD垂足为点H,由(1)知BE=DE,∴.在Rt△EHB中,∠EHB=90°,∴.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.∴AB=5.∴.∴,∴.(3)设PD=a,则,在等腰△PDA中,,易得在Rt△PDF中,∠PDF=90°,.∴,.若△BDP∽△DAF又∠BDP=∠DAF①当∠DBP=∠ADF时,即,解得a=3,此时.②当∠DBP=∠F时,即,解得,此时.综上所述,若△BDP与△DAF相似,线段AD的长为或.18.解:(1)如图1,过点O作ON∥BC交AM于点N,∵点O是AB的中点,∴点N是AM的中点,∴ON=BM,∵点M为弦BC的中点,∴BM=CM,∴ON=CM,∵ON∥BC,∴=;(2)如图1,连接OM,∵点M为弦BC的中点,∴OM⊥BC,∵AM⊥OC于点E,∴∴∠OME+∠CME=∠CME+∠C=90°,∴∠OME=∠MCE,∴△OME∽△MCE,∴ME2=OE•CE,设OE=x,则CE=2x,ME=x,在Rt△MCE中,CM==x,∴sin∠ECM===∴sin∠ABC=;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,∵DF⊥OC,∴DL∥OC,∴∠LDB=∠C=∠B,∴BL=DL,∵AB=10,AB:BC=5:4,设BD=x,则CD=8﹣x,BL=DL=x,CH=,OH=OC﹣CH=5﹣(8﹣x),∵OH∥DL,∴=,∴,∴y=(其中);探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5﹣x,∴,解得:x=,∴BD=.19.解:(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cos C=,则sin C=,sin C===,解得:R=;(2)在△ABC中,AC=BC=10,cos C=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=BC sin C=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4﹣x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,PD∥BE,tanβ=2,则cosβ=,sinβ=,EB=BD cosβ=(4﹣x)×=4﹣x,∴PD∥BE,∴,即:=,整理得:y=(0<x<10);(3)以EP为直径作圆Q如下图所示,点D在圆P上,EP是圆Q的直径,则点D也在圆Q上,故GD为相交所得的公共弦,设∠DCP=∠PDC=∠α,GD是公共弦,则GD⊥PE,则∠PED=∠BDE,∵∠EDP=90°,∴∠PDE+∠EPD=90°=∠EPD+∠GDP,故∠PED=∠EDP=∠α,由(2)知tan∠BAC=tanβ=2,故tan,则cosα=,则AD=AG=x,在Rt△EPD中,ED=2PD=2x,在Rt△BED中,ED=2x,则EB=ED=x,则EC=CB﹣BE=10﹣x,在Rt△CGE中,CG=AC﹣AG=10﹣2x,cos∠C===,解得:x=;GD=2PD cosα=2x cosα=2××=.20.(1)证明:由题意得:CD=t,CE=t,由勾股定理得,BC==12,=,==,∴=,又∠C=∠C,∴△DCE∽△BCA;(2)①连结CP并延长CP交AB于点H,∵∠ACB=90°,∴DE是⊙P的直径,即P为DE中点,∴CP=DP=PE=DE,∴∠PCE=∠PEC,∵△DCE∽△BCA,∴∠CDE=∠B,∵∠CDE+∠CED=90°,∴∠B+∠HCB=90°,即CH⊥AB,∵⊙P与边AB相切,∴点H为切点,CH为⊙P的直径,∵sin A==,∴=,解得,CH=,∴DE=,sin A=sin∠CED==,即=,解得,CD=,∴t=;②由题意得,0<t≤12,即0<t≤9,∵CD=t,CE=t,∴DE==t,由①得,CM=,CP=DE=t,CM⊥AB,∴PM=﹣t,PF=CP=t,∠PMF=90°,当△FMP∽△DCE时,=,即=,解得,t=;当△PMF∽△DCE时,=,即=,解得,t=;∴综上所述:当△PFM与△CDE相似时.t=或t=.。

上海迎园中学数学圆 几何综合达标检测卷(Word版 含解析)

上海迎园中学数学圆 几何综合达标检测卷(Word版 含解析)

上海迎园中学数学圆几何综合达标检测卷(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB , ∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DEBD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ), ∴BE =BH , ∵D 是弧AC 的中点, ∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DHAD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ). ∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE , ∴AE =1. 【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图1,四边形ABCD 中,、为它的对角线,E 为AB 边上一动点(点E 不与点A 、B 重合),EF ∥AC 交BC 于点F ,FG ∥BD 交DC 于点G ,GH ∥AC 交AD 于点H ,连接HE .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD 中,若AB=4,BC=3,则它的“值”为 .(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.【答案】“值”为10;(1)是;(2)最多有5个.【解析】试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.矩形ABCD中,若AB=4,BC=3,则它的“值”为10;(1)等腰梯形是“四边形”;(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.考点:动点问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.⑴求证:AC是⊙D的切线.⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD= 时,四边形BDEF为菱形;②当AB= 时,△CDE为等腰三角形.【答案】(1)见解析;(2)①30°2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴DC=2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,BC=1+2∴()222(12)1x x++=+,解得x=2+1∴当AB=2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.6.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(370【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN)×FN=9,∴FN=2,∴DM=2,DH=4,∵∠GEC=∠GDC,∠EGC=∠DMC,∴△EGC∽△DMC,∴52 EC EGCD DM,∴EC=52CD,且HC=CD,∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC ,∴△GEH ∽△CHD ,∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE =70∴BC =70【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.7.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,610PQ OQ +=,求CF 的长. 【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据610PQ OQ +=,即可分别求出a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.8.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为52,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG=52,可求得a=2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到HG=2x,然后依据S△BHG=12BH•HG=42,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB、OC.∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO.∵∠BAC=2∠CAE,∴∠BAO=∠CAE.在△ABF和△ACE中,ABF ACEAB ACBAF CAE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF≌△ACE.∴BF=CE.(3)连接HG、BM.∵AB=AC,∠BAO=∠CAO,∴AG⊥BC,BG=CG.∵BH=DH,∴HG是△BCD的中位线.∴HG∥CD.∴∠GHF=∠CDE=90°.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO.∴HO=OF.∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG.∴OH=OG.∴OF=OG.∵OM=OC,∴四边形MFCG是平行四边形.又∵MC是圆O的直径,∴∠CBM=90°.∴四边形MFGB是矩形.∴MB=FG,∠FMB=∠AFN=90°.∵MF∥BC,∴12HF MF BH CB ==. ∴HF :HD=1:2.∴HF=FD . 在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HG HG x=. ∴. ∴S △BHG =12BH•HG=12, 解得:x=2.∴HB=4,.由勾股定理可知:.∴.∴.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.9.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:3l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O1-,即直线:l y b =+上的点到⊙O的最小值为1-要使直线:l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O 的最小值为2211m +-,最大值为2211m ++则224118m m -≥⎧⎪⎨+-≤⎪⎩,解得:454m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O 的最小值为22(1)11m ++-,最大值为22(1)11m +++;点T 到⊙O 的最小值为2221m +-,最大值为2221m ++则2222(1)114218m m ⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m -≤≤--或22177m -≤≤(舍去) 故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,AC AB ⊥,90CAN BAM ∴∠+∠=︒,ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆,2(3)1CN AM ∴==---=,3(5)2BM AN ==---=,(2,2)B ∴--,(5,1)C --,点B ,C 在抛物线上,∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽, ∴AM BM BM DM=, ∴122DM=, 4DM ∴=,2()2D ∴,, 5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,5AE ∴==,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②, 联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题 -备战2023年中考数学一轮复习考点帮(上海专用)(解析版)

专题18 圆压轴题以圆为背景的综合问题是中考压轴题的命题趋势之一,按往年命题趋势猜测,很大概率会和平行线段分线段成比例(2020年),梯形,特殊平行四边形(最新热点)等知识点结合,主要考查学生挖掘信息的能力,难题分解能力,数学综合能力考点一定圆结合直角三角形,考察函数关系,圆心距,存在性问题;考点二定圆结合直角三角形;三角形相似,线段与周长的函数关系;考点三定圆结合直角三角形;考察函数关系,三角形面积比值问题;考点四定圆结合平行线,弧中点,考察函数关系,与圆相切问题;考点五动圆结合三角形,考察三角形相似,考察三角形相似,函数关系;考点六动圆结合内切直角三角形,三角形相似,线段比,圆位置关系;考点七动圆结合定圆,考察函数关系,与圆有关的位置关系;考点八动圆结合定圆,函数关系,四边形,正多边形结合的问题。

一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.AB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G \аDGA=90由(1)知AD=CD\垂直平分ACDG\AC AG=2QAE DE=\ÐÐ=ADF DACDAC+∠DAB=90°Q∠\∠ADF+∠DAB=90°\ÐаDFA AGD==90又=QAD DA()\△≌△ADF DAG AASDF AG\=\AC DF=2(3)2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O 的半径为3,OC ^弦AB ,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y与x之间的函数解析式,并写出函数定义域;(2)当OEFD为直角三角形时,求AB的长;(3)如果1BF=,求EF的长.∴AB =OB =3(3)①当CF =OF =OB –BF =2时,可得:△CFO ∽△COE ,CE =292OC CF =,∴EF =CE –CF =95222-=.②当CF =OF =OB +BF =4时,可得:△CFO ∽△COE ,CE =294OC CF =,∴EF =CF–CE =97444-=.【点睛】本题考查了有关圆的知识的综合题,分类讨论是解决问题的关键.3.(2023春·上海·九年级专题练习)如图,等边△ABC 内接于⊙O ,P 是»AB上任一点(点P 与点A 、B 重合),连接AP 、BP ,过点C 作CM ∥BP 交P A 的延长线于点M .(1)求∠APC 和∠BPC 的度数;(2)求证:△ACM ≌△BCP ;(3)若P A =1,PB =2,求四边形PBCM 的面积;(4)在(3)的条件下,求»AB的长度.【答案】(1)∠APC =60°,∠BPC =60°(2)见解析(3)15344.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A =12∠O .已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DE 交射线AO 于点E ,联结OD ,⊙O 的半径为5,tan ∠OAC =34.(1)求弦AC 的长.(2)当点E 在线段OA 上时,若△DOE 与△AEC 相似,求∠DCA 的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=在Rt△OAH中,tanÐ∴设OH=3x,AH=∵OH2+AH2=OA2,由(1)可得OH=3,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,又∵∠M =∠C , 同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.6.(2021·上海青浦·统考二模)已知:在半径为2的扇形AOB 中,0180AOB m m Ð=°£(<),点C 是»AB上的一个动点,直线AC 与直线OB 相交于点D .(1)如图1,当090m BCD V <<,是等腰三角形时,求D Ð的大小(用含m 的代数式表示);(2)如图2,当90m =,点C 是»AB 的中点时,连接AB ,求ABD ABCS S V V 的值;(3)将»AC沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=时,求线段AD的长.1(3)图2如下:【点睛】本题考查圆的综合菱形的判定和性质、勾股定理等是解题关键.7.(2022春·上海·九年级专题练习)已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=7时,求BC的长;8(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.8.(2021·上海·九年级专题练习)如图,已知在四边形ABCD 中,//AD BC ,90ABC Ð=°,以AB 为直径的O e 交边DC 于E 、F 两点,1AD =,5BC =,设O e 的半径长为r .(1)联结OF ,当//OF BC 时,求O e 的半径长;(2)过点O 作OH EF ^,垂足为点H ,设OH y =,试用r 的代数式表示y ;(3)设点G为DC的中点,联结OG、OD,ODGV是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.Ð=Ð,GOD GDO∵//OG AD,∴ADO GODÐ=Ð,∴ADO GDOÐ=Ð,∴DO是ADGÐ的平分线,由题意知:OA AD^,,又OH CD^∴OA OH=,则此时圆O和CD相切,不合题意;综上所述,ODGV能成为等腰三角形,22r=.【点睛】本题考查了垂径定理、梯形中位线定理、勾股定理、角平分线的性质、等腰三角形的性质等知识;熟练掌握垂径定理和梯形中位线定理是解题的关键.9.(2022·上海·九年级专题练习)如图,已知AB是半圆O的直径,AB=6,点C在半圆⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点O上.过点A作AD OCF(点F不与点B重合).的中点时,求弦BC的长;(1)当点F为¶BC(2)设OD=x,DE=y,求y与x的函数关系式;AE(3)当△AOD与△CDE相似时,求线段OD的长.10.(2021·上海·九年级专题练习)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.一、解答题1.(2022·上海嘉定·统考二模)在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:»等于»CD;AD(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.(3)取BC中点H,连接OH、OD,则BH=CH=1BC=3,OH⊥BC,证2Rt△OED≌Rt△BHO,推出OE=BH=3,OD=OA=5,则在Rt△OED中,求出DE的长,在Rt△AED中,可求出AD的长.(1)证明:如图:连接BD、CDAB为直径Q\∠ADB=90°\∠DBA+∠DAB=90°DAC+∠DAB=90°Q∠\∠DAC=∠DBA又Q∠DCA=∠DBA\∠DAC=∠DCA\AD=CD\»AD=»CD(2)证明:如图:连接BD、CD,过点D作DG⊥AC于点G\а=90DGA由(1)知AD=CD\垂直平分ACDG\AC AG=2Q=AE DE\ÐÐ=ADF DAC2.(2021春·上海徐汇·九年级统考阶段练习)已知:⊙O的半径为3,OC^弦AB,垂足为D ,点E 在⊙O 上,ECO BOC Ð=Ð,射线CE 与射线OB 相交于点F .设,AB x =,CE y =,(1)求y 与x 之间的函数解析式,并写出函数定义域;(2)当OEF D 为直角三角形时,求AB 的长;(3)如果1BF =,求EF 的长.3.(2023春·上海·九年级专题练习)如图,等边△ABC内接于⊙O,P是»上任一点AB(点P与点A、B重合),连接AP、BP,过点C作CM∥BP交P A的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若P A=1,PB=2,求四边形PBCM的面积;(4)在(3)的条件下,求»的长度.AB4.(2021秋·上海金山·九年级期末)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=12∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=34.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).由垂径定理得:AH=∵∠DEO =∠AEC ,∴当△DOE 与△AEC »»AD AD=Q \12ACD DOE Ð=Ð,∴△AEG∽△AOH,∴AE EG AGAO OH AH==,∴4013345EG AG==,∴2413EG=,由(1)可得 OH =3,∵OE =1,∴AE =4,ME =6,∵EG ∥OH ,∴△AEG ∽△AOH ,∴45AE AG EG AO AH OH ===AG 16EG 12又∵∠M =∠C ,同理可求EG =185,∴EC =22GC EG +∵AM 是直径,∴∠ADM =90°=∠EGC 又∵∠M =∠C ,∴△EGC ∽△ADM ,5.(2021·上海·统考二模)如图,已知扇形AOB 的半径4OA =,90AOB Ð=°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结CD .点P 是弧AB 上一点,PC PD =.(1)当3cot 4ODC Ð=,以CD 为半径的圆D 与圆O 相切时,求CD 的长;(2)当点D 与点B 重合,点P 为弧AB 的中点时,求OCD Ð的度数;(3)如果2OC =,且四边形ODPC 是梯形,求PCD OCDS S △△的值.。

中考数学几何综合圆的综合大题压轴题

中考数学几何综合圆的综合大题压轴题

圆的综合大题1.如图;⊙O是△ABC的外接圆;FH是⊙O的切线;切点为F;FH∥BC;连接AF交BC于E;∠ABC的平分线BD交AF于D;连接BF.1证明:AF平分∠BAC;2证明:BF=FD;3若EF=4;DE=3;求AD的长.2.如图;AB是⊙O的直径;过点B作⊙O的切线BM;点P在右半圆上移动点P与点A;B不重合;过点P作PC⊥AB;垂足为C;点Q在射线BM上移动点M在点B的右边;且在移动过程中保持OQ∥AP.1若PC;QO的延长线相交于点E;判断是否存在点P;使得点E恰好在⊙O上若存在;求出∠APC的大小;若不存在;请说明理由;2连接AQ交PC于点F;设;试问:k的值是否随点P的移动而变化证明你的结论.3.已知:如图1;把矩形纸片ABCD折叠;使得顶点A与边DC上的动点P重合P 不与点D;C重合;MN为折痕;点M;N分别在边BC;AD上;连接AP;MP;AM;AP 与MN相交于点F.⊙O过点M;C;P.1请你在图1中作出⊙O不写作法;保留作图痕迹;2与是否相等请你说明理由;3随着点P的运动;若⊙O与AM相切于点M时;⊙O又与AD相切于点H.设AB为4;请你通过计算;画出这时的图形.图2;3供参考4.在⊙O中;弦AB与弦CD相交于点G;OA⊥CD于点E;过点B作⊙O的切线BF交CD的延长线于点F.I如图①;若∠F=50°;求∠BGF的大小;II如图②;连接BD;AC;若∠F=36°;AC∥BF;求∠BDG的大小.5.如图;在⊙O中;半径OD⊥直径AB;CD与⊙O相切于点D;连接AC交⊙O于点E;交OD于点G;连接CB并延长交⊙于点F;连接AD;EF.1求证:∠ACD=∠F;2若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE;当⊙O的半径为3时;求DE的长.6.如图;⊙O的直径AB为10cm;弦BC为6cm;D、E分别是∠ACB的平分线与⊙O;AB的交点;P为AB延长线上一点;且PC=PE.1求AC、AD的长;2试判断直线PC与⊙O的位置关系;并说明理由.7.如图;点A是⊙O上一点;OA⊥AB;且OA=1;AB=;OB交⊙O于点D;作AC ⊥OB;垂足为M;并交⊙O于点C;连接BC.1求证:BC是⊙O的切线;2过点B作BP⊥OB;交OA的延长线于点P;连接PD;求sin∠BPD的值.8.如图;在△ABC中;∠ABC=90°;以AB的中点O为圆心;OA为半径的圆交AC 于点D;E是BC的中点;连接DE;OE.1判断DE与⊙O的位置关系;并说明理由;2求证:BC2=2CD•OE;3若cos∠BAD=;BE=;求OE的长.9.已知:如图;⊙O是△ABC的外接圆;且AB=AC=13;BC=24;P A是⊙O的切线;A 为切点;割线PBD过圆心;交⊙O于另一点D;连接CD.1求证:P A∥BC;2求⊙O的半径及CD的长.10.如图;已知△ABC内接于⊙O;AD平分∠BAC;交⊙O于点D;过D作⊙O的切线与AC的延长线交于点E.1求证:BC∥DE;2若AB=3;BD=2;求CE的长;3在题设条件下;为使BDEC是平行四边形;△ABC应满足怎样的条件不要求证明.11.如图;AB、BC、CD分别与⊙O相切于E、F、G;且AB∥CD;BO=6;CO=8.1判断△OBC的形状;并证明你的结论;2求BC的长;3求⊙O的半径OF的长.12.已知:以Rt△ABC的直角边AB为直径作⊙O;与斜边AC交于点D;过点D 作⊙O的切线交BC边于点E.1如图;求证:EB=EC=ED;2试问在线段DC上是否存在点F;满足BC2=4DF•DC若存在;作出点F;并予以证明;若不存在;请说明理由.13.如图;Rt△ABC中;∠ACB=90°;以AC为直径的⊙O与AB边交于点D;过点D作⊙O的切线;交BC于点E;1求证:BE=CE;2若以O、D、E、C为顶点的四边形是正方形;⊙O的半径为r;求△ABC的面积;3若EC=4;BD=;求⊙O的半径OC的长.14.已知:如图;P A、PB是⊙O的切线;A、B是切点;连接OA、OB、OP;1若∠AOP=60°;求∠OPB的度数;2过O作OC、OD分别交AP、BP于C、D两点;①若∠COP=∠DOP;求证:AC=BD;②连接CD;设△PCD的周长为l;若l=2AP;判断直线CD与⊙O的位置关系;并说明理由.15.如图1;已知正方形ABCD的边长为;点M是AD的中点;P是线段MD上的一动点P不与M;D重合;以AB为直径作⊙O;过点P作⊙O的切线交BC于点F;切点为E.1除正方形ABCD的四边和⊙O中的半径外;图中还有哪些相等的线段不能添加字母和辅助线;2求四边形CDPF的周长;3延长CD;FP相交于点G;如图2所示.是否存在点P;使BF•FG=CF•OF如果存在;试求此时AP的长;如果不存在;请说明理由.16.如图;从⊙O外一点A作⊙O的切线AB、AC;切点分别为B、C;且⊙O直径BD=6;连接CD、AO.1求证:CD∥AO;2设CD=x;AO=y;求y与x之间的函数关系式;并写出自变量x的取值范围;3若AO+CD=11;求AB的长.17.如图1;A为⊙O的弦EF上的一点;OB是和这条弦垂直的半径;垂足为H;BA 的延长线交⊙O于点C;过点C作⊙O的切线与EF的延长线相交于点D.1求证:DA=DC;2当DF:EF=1:8;且DF=时;求AB•AC的值;3将图1中的EF所在直线往上平行移动到⊙O外;如图2的位置;使EF与OB;延长线垂直;垂足为H;A为EF上异于H的一点;且AH小于⊙O的半径;AB的延长线交⊙O于C;过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立并证明你的结论.18.如图;圆O是以AB为直径的△ABC的外接圆;D是劣弧的中点;连AD并延长与过C点的切线交于点P;OD与BC相交于E;1求证:OE=AC;2求证:;3当AC=6;AB=10时;求切线PC的长.19.如图;已知AB是⊙O的直径;PC切⊙O于C;AD⊥PD;CM⊥AB;垂足分别为D;M.1求证:CB平分∠PCM;2若∠CBA=60°;求证:△ADM为等边三角形;3若PO=5;PC=a;⊙O的半径为r;且a;r是关于x的方程x2﹣2m+1x+4m=0的两根;求m的值.20.已知:在Rt△ABC中;∠ABC=90°;D是AC的中点;⊙O经过A、D、B三点;CB的延长线交⊙O于点E如图1.在满足上述条件的情况下;当∠CAB的大小变化时;图形也随着改变如图2;在这个变化过程中;有些线段总保持着相等的关系.1观察上述图形;连接图2中已标明字母的某两点;得到一条新线段与线段CE 相等;请说明理由;2在图2中;过点E作⊙O的切线;交AC的延长线于点F.①若CF=CD;求sin∠CAB的值;②若=nn>0;试用含n的代数式表示sin∠CAB直接写出结果.21.如图;OA和OB是⊙O的半径;并且OA⊥OB.P是OA上的任意一点;BP的延长线交⊙O于点Q;点R在OA的延长线上;且RP=RQ.1求证:RQ是⊙O的切线;2求证:OB2=PB•PQ+OP2;3当RA≤OA时;试确定∠B的取值范围.22.如图;AB为⊙O的直径;C为⊙O上一点;连接CB;过C作CD⊥AB于点D;过C作∠BCE;使∠BCE=∠BCD;其中CE交AB的延长线于点E.1求证:CE是⊙O的切线;2如图2;点F在⊙O上;且满足∠FCE=2∠ABC;连接AF并延长交EC的延长线于点G.ⅰ试探究线段CF与CD之间满足的数量关系;ⅱ若CD=4;tan∠BCE=;求线段FG的长.23.如图1;等腰△ABC中;AC=BC;点O在AB边上;以O为圆心的圆经过点C;交AB边于点D;EF为⊙O的直径;EF⊥BC于点G;且D是的中点.1求证:AC是⊙O的切线;2如图2;延长CB交⊙O于点H;连接HD交OE于点P;连接CF;求证:CF=DO+OP;3在2的条件下;连接CD;若tan∠HDC=;CG=4;求OP的长.24.如图;CD为⊙O的直径;直线AB与⊙O相切于点D;过C作CA⊥CB;分别交直线AB于点A和B;CA交⊙O于点E;连接DE;且AE=CD.1如图1;求证:△AED≌△CDB;2如图2;连接BE分别交CD和⊙O于点F;G;连接CG;DG.i试探究线段DG与BF之间满足的等量关系;并说明理由.ii若DG=;求⊙O的周长结果保留π25.在矩形ABCD中;点P在AD上;AB=2;AP=1;将三角板的直角顶点放在点P 处;三角板的两直角边分别能与AB、BC边相交于点E、F;连接EF.1如图;当点E与点B重合时;点F恰好与点C重合;求此时PC的长;2将三角板从1中的位置开始;绕点P顺时针旋转;当点E与点A重合时停止;在这个过程中;请你观察、探究并解答:①∠PEF的大小是否发生变化请说明理由;②求从开始到停止;线段EF的中点所经过的路线长.26.如图;△ABC内接于⊙O;AB是⊙O的直径;点D是劣弧AC上的一点;连结AD 并延长与BC的延长线交于点E;AC、BD相交于点M.1求证:BC•CE=AC•MC;2若点D是劣弧AC的中点;tan∠ACD=;MD•BD=10;求⊙O的半径.3若CD∥AB;过点A作AF∥BC;交CD的延长线于点F;求﹣的值.27.如图;⊙O是△ABC的外接圆;AB为直径;过点O作OM∥BC;交AC于点M.1求∠AMO;2延长OM交⊙O于点E;过E作⊙O的切线;交BC延长线于点F;连接FM;并延长FM交AB于点G.①试判断四边形CFEM的形状;并说明理由;②若AG=2;CM=3;求四边形CFEM的面积.28.如图1;△ABC内接于⊙O;且AB为⊙O的直径.∠ACB的平分线交⊙O于点D;过点D作DP∥BA交CA的延长线于点P;1求证:PD是⊙O的切线;2如图2;过点A作AE⊥CD于点E;过点B作BF⊥CD于点F;试猜想线段AE;EF;BF之间有何数量关系;并加以证明;3在2的条件下;如图2;若AC=6;tan∠CAB=;求线段PC的长.29.如图;P A为⊙O的切线;A为切点;直线PO交⊙O与点E;F过点A作PO的垂线AB垂足为D;交⊙O与点B;延长BO与⊙O交与点C;连接AC;BF.1求证:PB与⊙O相切;2试探究线段EF;OD;OP之间的数量关系;并加以证明;3若AC=12;tan∠F=;求cos∠ACB的值.30.如图;在平面直角坐标系中;点A10;0;以OA为直径在第一象限内作半圆C;点B是该半圆周上一动点;连接OB、AB;并延长AB至点D;使DB=AB;过点D作x轴垂线;分别交x轴、直线OB于点E、F;点E为垂足;连接CF.1当∠AOB=30°时;求弧AB的长度;2当DE=8时;求线段EF的长;3在点B运动过程中;是否存在以点E、C、F为顶点的三角形与△AOB相似若存在;请求出此时点E的坐标;若不存在;请说明理由.31.如图;AB是⊙O的直径;AB=4;点E为线段OB上一点不与O;B重合;作CE ⊥OB;交⊙O于点C;垂足为点E;作直径CD;过点C的切线交DB的延长线于点P;AF⊥PC于点F;连接CB.1求证:CB是∠ECP的平分线;2求证:CF=CE;3当=时;求劣弧的长度结果保留π32.如图;⊙O是△ABC的外接圆;BC是⊙O的直径;∠ABC=30°;过点B作⊙O 的切线BD;与CA的延长线交于点D;与半径AO的延长线交于点E;过点A作⊙O的切线AF;与直径BC的延长线交于点F.1求证:△ACF∽△DAE;2若S△AOC=;求DE的长;3连接EF;求证:EF是⊙O的切线.33.⊙O是△ABC的外接圆;AB是直径;过的中点P作⊙O的直径PG交弦BC 于点D;连接AG、CP、PB.1如图1;若D是线段OP的中点;求∠BAC的度数;2如图2;在DG上取一点K;使DK=DP;连接CK;求证:四边形AGKC是平行四边形;3如图3;取CP的中点E;连接ED并延长ED交AB于点H;连接PH;求证:PH ⊥AB.34.如图1;点O和矩形CDEF的边CD都在直线l上;以点O为圆心;以24为半径作半圆;分别交直线l于A;B两点.已知:CD=18;CF=24;矩形自右向左在直线l上平移;当点D到达点A时;矩形停止运动.在平移过程中;设矩形对角线DF与半圆的交点为P点P为半圆上远离点B的交点.1如图2;若FD与半圆相切;求OD的值;2如图3;当DF与半圆有两个交点时;求线段PD的取值范围;3若线段PD的长为20;直接写出此时OD的值.35.图1和图2中;优弧纸片所在⊙O的半径为2;AB=2;点P为优弧上一点点P不与A;B重合;将图形沿BP折叠;得到点A的对称点A′.发现:1点O到弦AB的距离是;当BP经过点O时;∠ABA′=;2当BA′与⊙O相切时;如图2;求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁;得到半圆形纸片;点P不与点M;N 重合为半圆上一点;将圆形沿NP折叠;分别得到点M;O的对称点A′;O′;设∠MNP=α.1当α=15°时;过点A′作A′C∥MN;如图3;判断A′C与半圆O的位置关系;并说明理由;2如图4;当α=°时;NA′与半圆O相切;当α=°时;点O′落在上.3当线段NO′与半圆O只有一个公共点N时;直接写出α的取值范围.36.如图;AB是⊙O的直径;DO⊥AB于点O;连接DA交⊙O于点C;过点C作⊙O 的切线交DO于点E;连接BC交DO于点F.1求证:CE=EF;2连接AF并延长;交⊙O于点G.填空:①当∠D的度数为时;四边形ECFG为菱形;②当∠D的度数为时;四边形ECOG为正方形.37.如图;点B;C为⊙O上两定点;点A为⊙O上一动点;过点B作BE∥AC;交⊙O 于点E;点D为射线BC上一动点;且AC平分∠BAD;连接CE.1求证:AD∥EC;2连接EA;若BC=CD;试判断四边形EBCA的形状;并说明理由.38.1特例探究.如图1;在等边三角形ABC中;BD是∠ABC的平分线;AE是BC边上的高线;BD 和AE相交于点F.请你探究=是否成立;请说明理由;请你探究=是否成立;并说明理由.2归纳证明.如图2;若△ABC为任意三角形;BD是三角形的一条内角平分线;请问=一定成立吗并证明你的判断.3拓展应用.如图3;BC是△ABC外接圆⊙O的直径;BD是∠ABC的平分线;交⊙O于点E;过点E作AB的垂线;交BA的延长线于点F;连接OF;交BD于点G;连接CG;其中cos∠ACB=;请直接写出的值;若△BGF的面积为S;请求出△COG 的面积用含S的代数式表示.39.已知:AB是⊙O直径;C是⊙O外一点;连接BC交⊙O于点D;BD=CD;连接AD、AC.1如图1;求证:∠BAD=∠CAD;2如图2;过点C作CF⊥AB于点F;交⊙O于点E;延长CF交⊙O于点G.过点作EH⊥AG于点H;交AB于点K;求证AK=2OF;3如图3;在2的条件下;EH交AD于点L;若OK=1;AC=CG;求线段AL的长.40.如图;以△ABC的AB边为直径作⊙O交BC于点D;过点D作⊙O切线交AC 于点E;AB=AC.1如图1;求证:DE⊥AC;2如图2;设CA的延长线交⊙O于点F;点G在上;=;连接BG;求证:AF =BG;3在2的条件下;如图3;点M为BG中点;MD的延长线交CE于点N;连接DF 交AB于点H;若AH:BH=3:8;AN=7;求DE长.41.已知AB;CD都是⊙O的直径;连接DB;过点C的切线交DB的延长线于点E.1如图1;求证:∠AOD+2∠E=180°;2如图2;过点A作AF⊥EC交EC的延长线于点F;过点D作DG⊥AB;垂足为点G;求证:DG=CF;3如图3;在2的条件下;当=时;在⊙O外取一点H;连接CH、DH分别交⊙O于点M、N;且∠HDE=∠HCE;点P在HD的延长线上;连接PO并延长交CM于点Q;若PD=11;DN=14;MQ=OB;求线段HM的长.42.已知△ABC内接于⊙O;AD平分∠BAC.1如图1;求证:=;2如图2;当BC为直径时;作BE⊥AD于点E;CF⊥AD于点F;求证:DE=AF;3如图3;在2的条件下;延长BE交⊙O于点G;连接OE;若EF=2EG;AC=2;求OE的长.43.已知:如图;AB为⊙O的直径;C是BA延长线上一点;CP切⊙O于P;弦PD ⊥AB于E;过点B作BQ⊥CP于Q;交⊙O于H;1如图1;求证:PQ=PE;2如图2;G是圆上一点;∠GAB=30°;连接AG交PD于F;连接BF;若tan∠BFE =3;求∠C的度数;3如图3;在2的条件下;PD=6;连接QC交BC于点M;求QM的长.44.已知:⊙O是△ABC的外接圆;点D在上;连接AD;BD;AD的延长线交BC 的延长线于点E;点F在BD上;连接EF;∠ACB=2∠DEF.1如图1;求证:∠DEF=∠DFE;2如图2;延长EF交AB于点G;若AE=BF;求证:AG=BG;3如图3;在2的条件下;连接OG;若cos∠AGE=;S△BEF=60;AD=BD;求线段OG的长.45.已知AB为⊙O的直径;CD为⊙O的弦;CD∥AB;过点B的切线与射线AD交于点M;连接AC、BD.1如图l;求证:AC=BD;2如图2;延长AC、BD交于点F;作直径DE;连接AE、CE;CE与AB交于点N;求证:∠AFB=2∠AEN;3如图3;在2的条件下;过点M作MQ⊥AF于点Q;若MQ:QC=3:2;NE=2;求QF的长.46.如图1;△ABC内接于圆O;点D为弧BC上一点;连接AD交BC于点E;∠ACD ﹣∠B=2∠BAD.1求证:AE=AC;2如图2;连接CO并延长交圆O于点F;连接AF;∠DAF=2∠BCD;求证:AF=AE;3如图3;在2条件下;过点F作FH∥BC交AB于点H;连接CH;过点A作AK ∥BF交CH于点K;当AK=EC;AB=3时;求线段AD的长度.47.如图1;⊙O中;AB为直径;弧BC=弧AC;点P在⊙O上;连接PC交AB于点E;过C作PC的垂线交⊙O于点Q1求证:弧AP=弧BQ;2如图2;点F在弧AC上;∠FEA=∠QEB=30°;连接PF;求证:PF=AO;3在2的条件下;如图3;过E作EG⊥FP于点G;若EG=6;求OE的长.48.如图1;等腰△ABC中;AC=BC;点O在AB边上;以O为圆心的圆与AC相切于点C;交AB边于点D;EF为⊙O的直径;EF⊥BC于点G.1求证:D是弧EC的中点;2如图2;延长CB交⊙O于点H;连接HD交OE于点K;连接CF;求证:CF=OK+DO;3如图3;在2的条件下;延长DB交⊙O于点Q;连接QH;若DO=;KG=2;求QH.49.如图;在Rt△ACB中;∠C=90°;D是AB上一点;以BD为直径的⊙O切AC 于点E;交BC于点F;连接DF;OP⊥AB交⊙O于点P;连接ED、EP;过点A作DQ⊥PE于点Q;1求证:DF=2CE;2求证:∠A=2∠P;3在2的条件下:若BC=6;sin B=;连接OQ;求线段OQ的长.50.已知:AD、DE是⊙O的弦;DB平分∠ADE交⊙O于B;1求证:=;2连接AB、AE、DB;若DE是⊙O的直径;AE、BD交于C;CD=2AB;求∠E的度数;3在2的条件下;K是弧AE上一点;连接OK;交AE于点G;F是AD上一点;连接AK、KE;FG;若∠AFG=4∠KAE;FG=5;DE=6;求KG长.。

上海第十中学数学圆 几何综合易错题(Word版 含答案)

上海第十中学数学圆 几何综合易错题(Word版 含答案)

上海第十中学数学圆几何综合易错题(Word版含答案)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,∴四边形CFOE是矩形,∴OF=CE=t,OE=CF=4-t,在Rt△CFD中,DF2+CF2=CD2,∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,解得:t=,t=4,∵0<t<4,∴当t=时,线段CD的长是4;(2)过点O作OG⊥DE于点G(如图2),∵AD∥CE,AD=CE=t∴四边形ADEC是平行四边形,∴DE∥AB∴∠GEO=30°,∴OG=OE=(4-t)当线段DE与⊙O相切时,则OG=,∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;(3)当⊙C与⊙O外切时,t=;当⊙C与⊙O内切时,t=;∴当t=或秒时,两圆相切.考点:圆的综合题.3.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A (﹣2,0),∴OA=2,∵P 是半圆O 上的点,P 在y 轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC 是正方形,∴正方形的面积是4,又∵BD ⊥AB ,BD=6,∴梯形OPDB 的面积=()(26)2822OP DB OB +⨯+⨯==, ∴点P 的关联图形的面积是12.(2)判断△OCD 是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=2∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+考点:圆的综合题.4.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅,∴BN BP BP BC=, ∵B B ∠=∠,∴BPN BCP ∆∆∽,∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BC PBG PBC BG PB=∠=∠, ∴PBG CBP ∆∆∽,∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小,∴最小值为:22435DG=+=;(3)如图,在BC上取一点G,使得BG=1,作DF⊥BC于F,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.5.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(﹣2,﹣12)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(312)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.7.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(370【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN)×FN=9,∴FN=2,∴DM =2,DH =4,∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC , ∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC , ∴△GEH ∽△CHD , ∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE∴BC【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点. 8.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据10PQ OQ +=a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG∵BD 是O 的切线∴∠OBD=90°∴∠DBC +∠CBG=90°∵BG 为直径∴∠BCG=90°∴∠CBG +∠G=90°∴∠DBC=∠G∵四边形ABGC 为O 的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB 上截取一点H ,使AM=MH ,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH ∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45° ∴△NQC 为等腰直角三角形∴NC=NQ=3a ,∴BC=2NC=6a在Rt △CFN 中,=∵PQ OQ ⊥∴PQ ∥BC∴∠PQE=∠BCG∵PE ∥BG∴∠PEQ=∠BGC∴△PQE ∽△BCG ∴=PQ PE BC BG即126=+PQ r r a r 解得:PQ=4a∵PQ OQ +=∴4a +2a=解得:∴=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.9.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)33PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12AB=22162r -; 又∵圆O 与直线MN 有交点,∴OE=22162r r -≤, ∴2262r r -≤,∴22364r r -≤,∴65r ≥, 又∵圆O 与直线AC 相离,∴r <6,即656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒,90ABM BAM ∴∠+∠=︒,AC AB ⊥,90CAN BAM ∴∠+∠=︒,ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆,2(3)1CN AM ∴==---=,3(5)2BM AN ==---=,(2,2)B∴--,(5,1)C --,点B ,C 在抛物线上,∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽,∴AM BM BM DM=, ∴122DM=, 4DM ∴=,2()2D ∴,,5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,5AE ∴==,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②, 联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在半径为2的扇形AOB 中,∠AOB =90°,点C 是AB ︵
上的一个动点(不与点A 、B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .
(1)当BC =1时,求线段OD 的长;
(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由;
(3)设BD =x ,△DOE 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.
A E
C D
O B
2.如图,已知在△ABC中,AB=15,AC=20,cot A=2,P是边AB上的一个动点,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P 与边AC相交于点M和点N时,设AP=x,MN=y.
(1)求⊙P的半径;
(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由.
3.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,∠B=60°,AB=10,AD=4,⊙M 与∠BAD的两边相切,点N在射线AB上,⊙N与⊙M是等圆,且两圆外切.
(1)设AN=x,⊙M的半径为y,求y关于x的函数关系式;
(2)当x为何值时,⊙M与CD相切?
(3)直线CD被⊙M所截得的弦与直线BC被⊙N所截得的弦的长是否可能相等?如果能,求出符合要求的x的值;如果不能,请说明理由.
4.已知:半圆O 的半径OA =4,P 是OA 延长线上一点,过线段OP 的中点B 作OP 的垂线交半圆O 于点C ,射线PC 交半圆O 于点D ,连接OD . (1)当AC ︵ =CD ︵
时,求弦CD 的长; (2)设PA =x ,CD =y ,求y 与x 的函数关系式及自变量x 的取值范围;
(3)设CD 的中点为E ,射线BE 与射线OD 交于点F ,当DF =1时,求tan ∠P 的值.
备用图
备用图
5.在Rt △ABC 中,∠C =90°,AC =6,sin B = 3 5
,⊙B 的半径长为1,⊙B 交边BC 于点P ,点O 是边AB 上的动点.
(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;
(2)在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;
(3)如图2,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.
A B
C
P
图1
6.如图,⊙O 的半径为6,线段AB 与⊙O 相交于点C 、D ,AC =4,∠BOD =∠A ,OB 与⊙O 相交于点E ,设OA =x ,CD =y .
(1)求BD 的长;
(2)求y 关于x 的函数关系式,并写出定义域;
(3)当CE ⊥OD 时,求AO 的长.
A B D C E O。

相关文档
最新文档