中北大学 离散数学第六章 格和布尔代数
合集下载
离散数学第6章 格与布尔代数
设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
《离散数学及其应用》魏雪丽第6章 格与布尔代数
6.1.1 格的概念(lattices) 格的概念( ) 虽然偏序集合的任何子集的上确界、 虽然偏序集合的任何子集的上确界、下确界并不一 定都存在,但存在,则必唯一, 定都存在,但存在,则必唯一,而格的定义保证了 任意两个元素的上确界、下确界的存在性。 任意两个元素的上确界、下确界的存在性。因此我 们通常用a∨b表示 ,b}的上确界,用a∧b表示 , 表示{a, 的上确界 的上确界, 表示{a, 们通常用 ∨ 表示 ∧ 表示 b}的下确界,即 的下确界, 的下确界 a∨b=LUB{a,b}(Least upper bound), ∨ ( ) a∧b=GLB{a,b}(Greatest lower bound), ∧
LUB{a, b} = LUB{a, b}, GLB{a, b} = GLB{a, b}
L B L B
为此我们考察下面的例子。 为此我们考察下面的例子。 如图6.1.4), 取 【例6.1.4】设〈A,≤〉是一个格 如图 】 , 〉是一个格(如图
B1 = {b, d , h}, B2 = {a, b, d , h}, B3 = {a, b, d , f } B4 = {c, e, g , h}, B5 = {a, b, c, d , e, g , h},
计算机科学与技术学院
第6章 格和布尔代数 章
6.1.1 格的概念(lattices) 格的概念( )
表示正整数集, ”表示Z 上整除关系, (3)设Z+表示正整数集,“|”表示 +上整除关系,那么 ) 〈 Z+ ,|〉为格,其中并、交运算即为求两正整数最小公倍数 〉为格,其中并、 和最大公约数的运算, 和最大公约数的运算,即 m∨n=LCM(m,n) m∧n=GCD(m,n), ∨ = ( ) ∧ = ) 由〈 Z+ ,|〉所诱导的代数系统为〈 Z+ , ∨,∧ 〉。 〉所诱导的代数系统为〈 (4)任一全序集〈A, 〉是一个格。因为 a,b ∈A, )任一全序集〈 , 是一个格。 , ∀
离散数学课件13.4布尔代数
有限布尔代数的表示定理
定理13.11 若B是有限布尔代数,则 B含有2n个元(n∈N), 并且B与<P(S),∩,∪,~,,S>同构, 其中S是一个n元集合.
举例
格S12,gcd.lcm是布尔代数吗? 解: S12={1,2,3,4,6,12}的元素个数6, 不是2的整数幂, 故不是布尔代数. 不难看出2没有补元,因为 2∨x=lcm(2,x)=12当且仅当 x=12, 而12的补元是1而不是2.
例
集合代数<P(S),∩,∪,~,,S>是 布尔代数.
开关代数<{0,1},∧,∨,¬,0,1>是 布尔代数,其中∧为与运算,∨为或 运算, ¬为非运算.
布尔代数有以下性质.
定埋13.10 设<B,∧,∨,',0,1>是布尔代数, 则有:
a∈B,(a’)’=a(双重否定律), a,b∈B, (a∨b)'=a'∧b'
布尔格、布尔代数
定义13.12 如果格<L,∧,∨,0,1>是有 补分配格,则称L为布尔格,也叫做布 尔代数. 由于布尔代数L中的每个元都有唯一 的补元,求补运算也可以看成是L中的 一元运算. 因此,布尔代数L可记为<L,∧,∨,',0,1>, 其中'表示求补运算.
布尔代数的等价定义
定义13.13(公理化定义): 有两个二元运算的代 数B,*, 称为布尔代数,如果对任意元素 a,b,cB,成立
•此类布尔表达式可用带3个基本元件的电路来实 现.3个基本元件是:
①反相器
x
x’
②与门
x xy
y
③或门
x xy
y
实例之一
•实例1: 三人委员会表决某个提案,如有两张赞 成票即获通过,实现上述过程的表决机器的控制 电路如下图所示:
离散数学 格与布尔代数共89页
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
离散数学 格与布尔代数
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
离散数学格与布尔代数优秀课件
于是有 a∨(b∧c) ≤(a∨b)∧(a∨c) 。
由对偶原理得 a∧(b∨c)≥ (a∧b)∨(a∧c) 。
即 (a∧b)∨(a∧c)≤ a∧(b∨c) 。
b c d
由<A,≤>诱导的代数系统。B是A的
非空子集,如果∧
a
和∨在B上封闭,则 称<B, ≤>是<A, ≤>
b
c b
d
e
f e
的子格。
g
a
e
c
a
b f
c
g
d
<C,≤>是<A,≤>的子格。 <A,≤>
<B,≤> <C,≤>
而<B,≤>不是. b∧c=dB, (运算规则要从格<A,≤>中找)
二. 格的对偶原理
界,所以 a∨c≤b∨d。 类似可证 a∧c≤b∧d。 推论:在一个格中,任意 a,b,c∈A,如果b≤c,则
a∨b≤a∨c,a∧b≤a∧c。 此性质称为格的保序性。
3. ∨和∧都满足交换律。即 a∨b=b∨a,a∧b=b∧a 此性质由运算∨和∧的定义直接得证。
4. ∨和∧都满足幂等律。即 a∨a=a a∧a=a 证明:由性质1, a≤a∨a (再证a∨a≤a)
P’: a∨b≥a
{a,b}的最大下界≤a {a,b}的最小上界≥a
三. 格的性质
<A,∨,∧>是由格<A,≤>诱导的代数系统。a,b,c,d∈A 1. a≤a∨b b≤a∨b a∧b≤a a∧b≤b
此性质由运算∨和∧的定义直接得证。 2.如果a≤b,c≤d,则 a∨c≤b∨d,a∧c≤b∧d。 证明:如果a≤b,又b≤b∨d,由传递性得 a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得 c≤b∨d, 这说明b∨d是 {a,c} 的一个上界,而a∨c是 {a,c} 的最小上
中北大学离散数学第六章格和布尔代数分析
证明:(反证法)设有两个全上界a和b,则由定义 a≤b,且b≤a,由“≤”的反对称性, a=b。
[定义]设<L,≤>是一个格,格中存在全上界和全下 界,则称该格为有界格。
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。
证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。 (3)<L,≤>是格。对任意a,b,c,dL,如a≤b,
c≤d,则ac≤ bdபைடு நூலகம் ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
2
§6.1 格的概念
1.偏序集合格
L,
[定义]格是一个偏序集合
,其中每一对元素
a,b L都拥有一个最小上界和最大下界。通常用
a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即:
GLB{a,b} a b ——称为元素a和b的保交运算,
LUB{a,b} a b——称为元素a和b的保联运算。
[定义]设<L,≤>是一个格,格中存在全上界和全下 界,则称该格为有界格。
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。
证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。 (3)<L,≤>是格。对任意a,b,c,dL,如a≤b,
c≤d,则ac≤ bdபைடு நூலகம் ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
2
§6.1 格的概念
1.偏序集合格
L,
[定义]格是一个偏序集合
,其中每一对元素
a,b L都拥有一个最小上界和最大下界。通常用
a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即:
GLB{a,b} a b ——称为元素a和b的保交运算,
LUB{a,b} a b——称为元素a和b的保联运算。
离散数学格与布尔代数
<L, > <L, , *>
§7.1 格
例 < P(S) , >是格 表示为<P(S), , * > 又可表示为< P(S) ,∪,∩>
例 <Z+,≤>,或 <Z+,|> <Z+, , * > <Z+, LCM,GCD>
§7.2 格——代数系统
格〈L,≤〉中自然存在两个运算 和 * ,从而 派生出一个代数系统〈L,,*〉
6
<S15,|>,
2
2019/10/5
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/5
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
并、交 运算的性质
定理1 设〈L,≤〉是一个格,并运算与交运算 * 满足 如下性质:
L1 a a = a
a*a=a
(幂等律)
L2 a b = b a a * b = b * a (交换律)
L3 (a b) c = a (b c)
§7.1 格
例 < P(S) , >是格 表示为<P(S), , * > 又可表示为< P(S) ,∪,∩>
例 <Z+,≤>,或 <Z+,|> <Z+, , * > <Z+, LCM,GCD>
§7.2 格——代数系统
格〈L,≤〉中自然存在两个运算 和 * ,从而 派生出一个代数系统〈L,,*〉
6
<S15,|>,
2
2019/10/5
30
10
15
3
5
1
§7.1 格
例 判断图中的哈斯图表示的偏序集是否构成格,说明为什么。
d c
b a
(a)
e d
c b
a (b)
f
d
e
d
e
c
b
c
a (c)
a
b
(d)
e
c
d
a
b
(e)
2019/10/5
§7.1 格
例 设Z+为正整数集合,对于a,b Z+,关系“≤”定义为: a≤b当 且仅当a整除b。则偏序集<Z+,≤>构成格,
并、交 运算的性质
定理1 设〈L,≤〉是一个格,并运算与交运算 * 满足 如下性质:
L1 a a = a
a*a=a
(幂等律)
L2 a b = b a a * b = b * a (交换律)
L3 (a b) c = a (b c)
离散数学-格和布尔代数
的次序图如下
-1 的次序图如下
6 2 1 3 2
1 3 6
若 < L; > 是一个偏序集,则对于任意元素 l1, l2, l3 L,有以 下六个关系式成立: l1 l1 若 l1 l2,l2 l1,则 l1 = l2 若 l1 l2,l2 l3,则 l1 l3 l1 l1 若 l1 l2,l2 l1,则 l1 = l2 (7-1) (7-2) (7-3) (7-1) (7-2)
60以上说明与格一样布尔代数也是一个代数系统该代数系统可取交换律分配律同一律和互补律作为公二元运算是一元运算若这些运算满足交换律分配律同一律和互补律则称称作集合代数它是一个布尔代数
第二部分 抽象代数
0
第七章
格和布尔代数
格是 Birkhoff (1884 - 1944) 在 20 世纪 30 年代提出的,格的提出 以子集为背景。 历史上最初出现的格是英国数学家 George Boole 于 1854 年提出 的,是他在研究命题演算中发现的,通常称为布尔格或布尔代 数。 格和布尔代数的理论成为计算机硬件设计和通讯系统设计中的 重要工具。格论是计算机语言的指称语义的理论基础。格是一 种特殊的偏序集,也可以看作是有两个二元运算的代数系统, 布尔代数是一种特殊的格。在保密学、开关理论、计算机理论 和逻辑设计以及其他一些科学和工程领域中,都直接应用了格 与布尔代数。 1
7.2 格及其性质
一、格的定义
定义7-5 设 < L; > 是一个偏序集,如果 L 中任意两个元素都 存在着最大下界和最小上界,则称 < L; > 是格。 由于每对元素的最大下界和最小上界唯一,故引入记号: l1 l2 = glb(l1, l2),l1 l2 = lub(l1, l2), 其中 和 均可看作是集合 L 上的二元运算,分别称为交和并。 注:若 < L; > 是一个格,则意味着 < L; > 也是一个形为 < L; , > 的代数系统,其中 和 是 L 上的两个二元运算, 对于任意 l1, l2 L,l1 l2 表示在偏序 “ ” 意义下,l1 和 l2 的最小上界,l1 l2 表示 l1 和 l2 的最大下界。
离散数学布尔代数
一个非零元素b,至少存在一个原子a,使得a ≤ b。 1
证明:若b本身就是一个原子,则b ≤ b,得证。c
df
若b不是原子,肯定存在b1,使得0 ≤ b1 ≤ b, a
be
若b1是原子,则定理得证;
0
否则,若b1不是原子,则必存在b2,使得0 ≤ b2 ≤ b1 ≤ b
∵<A, ≤>是一个有全下界的有限格,
定理1:对于布尔代数中任意两个元素 a, b,必定有
(1) ( a ) = a, (2) a∨b = a∧b , (3) a∧b = a∨b
3
❖ 布尔代数
定义3:设<A,∨1,∧1, - > 和<B,∨2,∧2, ~ >是两个布尔代数, 如果存在A到B的双射 f,对于a,bA,有
f (a∨1b) = f (a) ∨2 f (b)
2、对a,bA,有 f (a∧b) = f (a)∩f (b)
9
❖ 格与布尔代数
定理3 ( Stone表示定理 ) :
设<A,∨,∧, - >是由有限布尔格<A, ≤>所诱导的一个有 限布尔代数,S是布尔格<A, ≤>中的所有原子的集合,则 < A,∨,∧, - >< P(S),∪,∩, ~ >同构。 分析:要证两个代数系统同构,分为以下几步:
1、找一个双射函数 f: A P(S)
∴a ≤ c ,又∵a ≤ c, ∴a ≤ c ∧ c,即 a ≤ 0,
这与a是原子相矛盾, ∴假设错
∴b ∧ c = 0,由引理1得: b≤c ∴b=c,即:b= a1∨a2∨... ∨ak
7
❖ 格与布尔代数
证明(2):设b的另一种表示形式为 b = aj1∨aj2∨... ∨ajt 其中aj1,aj2,……,ajt是A中原子。∵b是 aj1,aj2,……,ajt 的最小上界, ∴有aj1≤b, aj2≤b,…,ajt≤b,而a1,a2,……,ak是A中满足 a j ≤b的所有原子, {aj1,aj2,…,ajt}是{a1,a2,…,ak}的子集,即 |{aj1,aj2,…,ajt}|<=|{a1,a2,…,ak}|, 即:t ≤ k。(下面证 t < k 是不可能的)
离散数学格的概念
其中 I+ 是正整数,D是整除关系,A={a,b,c} Sn ={n的所有因子}如:S6={1,2,3,6}、S12={1,2,3,4,6,12}、 解:< I+ , D>是格
∵整除关系是偏序关系,对a,bI, a、b的最小上界等于a、b的最小公倍数, a、b的最大下界等于a、b的最大公约数。
❖ 基本概念
< B2 , D >是否 < S30 , D >的子格?
30
6
30
10
6 15
2
3
10
15
1 ∨1 2 3 6 11236 22266
2
53
5
∧1 2 3 6
1
11111
21212
说明:
33636 66666
31133 61236
(1) 子格必是格。
运算∨和∧在B1上封闭,B1 S30 且B1 ≠Ø, ∴ < B1, D >是 < S30 , D >的子格; 同理可证< B2 , D >是 < S30 , D >的子格
例:A={a, b, c }, < P(A) , > 所诱导的代数系统为?
< P(A),∪,∩>
❖ 基本概念
定义3:设<A,≤ >是一个格,由其所诱导的代数系统为 <A,∨,∧>。设BA且B ≠Ø ,如果运算∨和∧在B上封闭, 则称<B,≤ > 是<A,≤ >的子格。
❖ 基本概念
例2:B1 = {1,2,3,6} , B2 = {5,10,15,30} ,< B1, D >和
离散数学
❖ 格与布尔代数 1 格的概念
∵整除关系是偏序关系,对a,bI, a、b的最小上界等于a、b的最小公倍数, a、b的最大下界等于a、b的最大公约数。
❖ 基本概念
< B2 , D >是否 < S30 , D >的子格?
30
6
30
10
6 15
2
3
10
15
1 ∨1 2 3 6 11236 22266
2
53
5
∧1 2 3 6
1
11111
21212
说明:
33636 66666
31133 61236
(1) 子格必是格。
运算∨和∧在B1上封闭,B1 S30 且B1 ≠Ø, ∴ < B1, D >是 < S30 , D >的子格; 同理可证< B2 , D >是 < S30 , D >的子格
例:A={a, b, c }, < P(A) , > 所诱导的代数系统为?
< P(A),∪,∩>
❖ 基本概念
定义3:设<A,≤ >是一个格,由其所诱导的代数系统为 <A,∨,∧>。设BA且B ≠Ø ,如果运算∨和∧在B上封闭, 则称<B,≤ > 是<A,≤ >的子格。
❖ 基本概念
例2:B1 = {1,2,3,6} , B2 = {5,10,15,30} ,< B1, D >和
离散数学
❖ 格与布尔代数 1 格的概念
离散数学讲义(第6章)
18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f
格
c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26
《离散数学》第六章代数结构
返回本章首页
5 2020/2/14
第四节 子群
与集合的子集、向量空间的子空间一样. 群也有子群的概念.子群作为群的一部分. 它的结构对群的结构有重要影响.
主要概念有:平凡 元素的周期.
讨论了一个群的非空子集构成子群的条 件;在某个元素生成的子群的基础上定义 循环群,把循环群的结构研究清楚了.
返回本章首页
2 2020/2/14
第二节 置换(1)
群论的研究始于置换群.置换群在群论里 有重要的地位.例如,五次以上方程不能 用根号求解的问题的证明就用到置换群. 置换概念本身在计算机科学中也起作重 要作用.同时置换群的记法简单,运算方 便.
本节的概念有:置换、循环置换、不相交 置换、对换、奇置换、偶置换等;
返回首页
1 2020/2/14
第一节 代数结构概述
我们在前面已经研究过集合,那时没有 过多地考虑一个集合内部元素之间的联 系.现在我们要在一个集合的内部引入运 算,并研究其运算规律,主要内容为:
1.代数系统的定义,然后用例子说明代数 系统的丰富性;
2.代数系统的运算的常用记法和运算表 的概念.
第六章 代数结构
代数结构的主要研究对象是各种各样的代数系 统,即具有一些元运算的集合,本章介绍的群就 是具有一个二元运算的代数系统.
本章以群为例讨论代数结构,它的思想和方 法已经渗透到现代科学的许多分支、它的结果 已应用到计算机的不少方面,因此计算机科学 工作者应初步掌握其基本的理论和方法. 读者通过对群的学习应初步掌握对代数系统研 究的一般方法,从简单到复杂、从具体到一般, 从而发现代数系统的一般规律.本章的内容较为 抽象、难学.可根据具体情况删减一些内容.
返回本章首页
3 2020/2/14
离散数学第六章
6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
离散数学第六章
二. 格是代数系统
2.偏序集合的格、代数系统的格二者定义是等价 的
定理4.若<L, ,>是一个格(作为代数系统), 那么,L 中存在一偏序关系≤, 使a,bL ,有 ab=lub(a,b), ab=glb(a,b). 证:在集合L上定义的二元关系如下: a,bL,若a≤b ab=a 分三步: 1) 证明’≤’是L上的偏序关系 2)证明 a,bL, {a,b}的最大下界存在, 且 ab=glb(a,b)。 3)a,bL, {a,b}的最小上界存在,且 lub(a,b)=ab
6.3布尔代数
3.原子 设<A, ≤> 是一个格,且具有全下界0,若有a盖 住0,称a为原子。
例:1盖住d,e,b,则 a,b,c为原子
1 d a 0
b
e c
6.3布尔代数
定理: 若<A, ≤>为具有0的有限格,则
bA,b≠0,aA, a为原子,且a≤b
证明:
若b为原子,则b≤b 得证。
1.定义: 若<A,≤>是一个格,由它诱导的代数系统 <A, ,>,如果对于任意的a,b,c∈A,有 b≤a a(bc)=b(ac), 称<L, ≤>是模格。
例1:
1 a c b d
它是模格,但不是分配格 b≤a: a(cd)=a1=a (ac)(ad)=bb=b
6.2
但 a(bc)=a1=a
b(ac)=b0=b
分配格
1 a b 0 c
例2:它不是模格,b≤a,
3.分配格是模格
证:a(bc)=(ab)(ac) = b(ac)
6.3 有补格
1.全上界(全下界)定义 给定格<L,≤> , 若存在aL, 使bL,有b≤a (a≤b), 称a为<L,≤>的全上界(全下界)。 注:一个格的全上界(全下界)是唯一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[定义]设<L,≤>是一个格,格中存在全上界和全下 界,则称该格为有界格。
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。 证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
3
§6.1 格的概念
例:以下均为偏序集合格(D为整除关系,Sn为n的因 子集合)。
4
§6.1 格的概念
2.代数系统格 L, [定义]设 是一个格,如果在A上定 义两个二元运算和,使得对于任意的a,bA, ab等于a和b的最小上界,ab等于a和b的最大 下界,那么就称<L, ,L,> 为由格 所诱导的代数系统。
2
§6.1 格的概念
1.偏序集合格 L, [定义]格是一个偏序集合 ,其中每一对元素 a, b L 都拥有一个最小上界和最大下界。通常用 a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即: GLB{a, b} a b ——称为元素a和b的保交运算,
LUB{a, b} a b ——称为元素a和b的保联运算。
20
§6.3 有补格
[定理]在有界分配格中,若有一个元素有补元,则 必是唯一的。 证明:
21
§6.4 布尔代数
[定义]一个有补分配格称为布尔格。
[定义]一个格<L,≤>如果它既是有补格,又是分配格, 则它为有补分配格。我们把有补分配格中任一元 素a的唯一补元记为a。 讨论定义: (1)布尔格中,每个元素有唯一的补元。 (2)我们可以定义L上的一个一元运算,称为补运算, 记为“-”。
30
§6.4 布尔代数
因此, 从逻辑观点看,布尔代数是命题演算系统。 从集合论观点看,布尔代数是集合代数。 从抽象代数的观点看,布尔代数是一个代数系统。
31
第三篇小结
通过本篇的学习应该达到以下基本要求: (1)给定集合与运算的解析表达式,写出该运算的运 算表。 (2)给定集合和运算,判别该集合对运算是否封闭。 (3)给定二元运算,说明运算是否满足交换律、结合 律、幂等律、分配律和吸收律。 (4)给定集合S上的二元运算,求出该运算的幺元、 零元、幂等元和所有可逆元素的逆元。 (5)给定集合S和二元运算*,能判定<S,*>是否构成半 群、独异点和群。
26
§6.4 布尔代数
例:<(S),,,~,,S>,其中S={a,b,c}, 在这个布尔代数中的元素分三种情况: (ⅰ)界:全上界S,全下界 ; (ⅱ){a},{b},{c}单个元素集合的元素; (ⅲ)二,三个元素作为集合的元素,但它们均可 {a,b,c} 用单个元素的集合的元素来表述: {a,c} {a,b}={a}{b} ,{a,c}={a}{c}, {a,b} {b,c} {b,c}={b}{c}, {a} {b} {c} {a,b,c}={a}{b}{c} 。
33
习题选讲
例1. 设:S={a,b},则S上可以定义多少个二元运算?其 中有4个运算如下表所示,则有哪些满足交换律, 哪些满足幂等律,哪些有幺元,哪些有零元?
1 a a a b a b a a 2 a a b a b b b a 3 a b a b a b a a 4 a b a a b b a b
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。
(3)<L,≤>是格。对任意a,b,c,dL,如a≤b, c≤d,则ac≤ bd, ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
10
§6.2 分配格
[定义]如对L中任意a,b,c有: a≤ca (b c) = (a b) c 则称<L,≤>为模格。 例:
11
§6.2 分配格
[定理]如果格中交对并是分配的,那么并对交也是 分配的,反之亦然。 证明:已知a(bc)=(ab)(ac) (ab)(ac)=((ab)a)((ab)c) =a((ab)c) =a((ac)(bc)) =(a(ac))(bc) =a(bc) 即:并对交也是分配的。
Ø
27
§6.4 布尔代数
(3)A中除0外的每个元素,都可以唯一地表示成原子 的并。 该定理可得以下两个推论: a)<B,*,,’,0,1>与<p(S),∪,∩,~,Ø,S>同构, |p(S)|=2|s|所以,|B|=2|s|,故任一有限布尔代数 载体的基数是2的幂。 b)任一有限布尔代数和它的原子集合S构成的幂集集 合代数<p(S),∪,∩,~,Ø,S>同构,但后者又与任 一基数相同的幂集集合代数同构,故具有相同载 体基数的有限布尔代数都同构。
34
习题选讲
例2. 对以下定义的集合和运算判别它们能否构成代数系统? 如能,请说明是构成哪一种代数系统? (1) S1 {0,1,2,...,n} ,+为普通加法;
1 (2) S 2 { ,0,2} ,*为普通乘法; 2
(3) S3 {0,1,2,3}
,≤为小于等于关系;
35
Hale Waihona Puke (7)(吸收律)对L中任意a,b,有 a(ab)=a a(ab)=a。
8
§6.2 分配格
对格所定义的代数系统<L,,>,其运算和不一 定满足分配律。 [定义]设<L,,>是由<L,≤>所诱导的代数系统。 如果对任意的a,b,cL,满足: a (b c)=(a b) (a c) 及 a (b c)=(a b) (a c) 则称<L,≤>是分配格。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。 讨论定义: (1)∵ 和是可交换的,∴补元是相互的。 (2) 1 0 1 0 0,0 1 1 1 0 1 ,在有界格 0 中,1和0互为补元; (3)由定义可知L中一个元素的补元不一定唯一; 例:
5
§6.1 格的概念
3.格的主要性质: (1)格的对偶原理 设<L,≤>是格,“≤”的逆关系“≥”与L组成的偏 序集 <L, ≥>也是格。两者互为对偶。前者的GLB,LUB 恰好是后者的LUB,GLB。如有关于<L,≤>的有效 命题,将“≤”换成“≥”,“”换成“”, “”换成 “”,便能得到<L, ≥>的有效命题。 反之亦然。
22
§6.4 布尔代数
[定义]由布尔格<L,≤>,可以诱导一个包括交,并和 补运算的代数系统<L,,,->,称此代数系统为布 尔代数。 例:设S是一个非空有限集,<(S),>是一个格, 且是一个布尔格。由<(S),>所诱导的代数系统 为 < (S), ,,-> 是一个布尔代数。其中“,,-”分 别是集合的交、并、补运算。
9
§6.2 分配格
讨论定义: (1)定义中的两式互为对偶式。 6. (2)如<L,≤>非为分配格,则有下面的分配不等式: a (b c) ≤ (a b) (a c) a (b c) ≥ (a b) (a c) 以及模不等式: a≤ca (b c) ≤ (a b) c
23
§6.4 布尔代数
[定理]对于布尔代数中任意两个元素a,b,必定有
(a ) a
a b a b
a b a b
24
§6.4 布尔代数
证明:
25
§6.4 布尔代数
[定理]设<A,,,->是由有限布尔格<A,≤>所诱导的一 个有限布尔代数,S是布尔格<A,≤>中的所有原子 的集合,则<A,,,->和<(S),,,~>同构。 讨论定理: (1)当布尔代数<A,,,->的载体A的基数|A|是有限数 时,则称之为有限布尔代数。 (2)设<A,,,->是一个布尔代数,a∈A,如果a盖住0, 则称元素a是该布尔代数的一个原子。 例如:
14
§6.3 有补格
[定义]设<L,≤>是一个格,如果存在元素aL,对 于任意的x L,都有: a≤x 则称a为格<L,≤>的全下界,记格的全下界为0。 例:
15
§6.3 有补格
[定理]如果格<L,≤>有全上界(全下界),那么它 是唯一的。 证明:(反证法)设有两个全上界a和b,则由定义 a≤b,且b≤a,由“≤”的反对称性, a=b。
13
§6.2 分配格
[定理]每个链均是分配格。 证明:设<L,≤>是链。对任意a,b,cL (1)若a≤b或a≤c,则 a (b c) = a, (a b) (a c)=a 即: a (b c) = (a b) (a c) (2)若a≥b且a≥c,则 a (b c) = b c, (a b) (a c)= b c 即:a (b c) = (a b) (a c)。得证。
12
§6.2 分配格
[定理]分配格是模格。 证明:由于a (b c) = (a b) (a c) (1)若a≤c,则a c=c,代入上式得 a (b c) = (a b) c (2)若a (b c) = (a b) c,则 a≤ a (b c) = (a b) c≤c,即: a≤c ∴分配格是模格
16
§6.3 有补格
[定理]如果<L,≤>是有界格,全上界和全下界分别 是1和0,则对任意元素aL,有: a1=1a=1 ,a1=1a=a, a0=0a=a ,a0=0a=0。 证明:因为1≤a1, 又因(a1)L且1是全上界,∴a1≤1, ∴ a1=1。由交换律:1a=a1=1。 因为a≤a,a≤1,∴a a≤a1,即:a≤a1, 又a1≤a, ∴ a1=a。仿此可得另两式。
3
§6.1 格的概念
例:以下均为偏序集合格(D为整除关系,Sn为n的因 子集合)。
4
§6.1 格的概念
2.代数系统格 L, [定义]设 是一个格,如果在A上定 义两个二元运算和,使得对于任意的a,bA, ab等于a和b的最小上界,ab等于a和b的最大 下界,那么就称<L, ,L,> 为由格 所诱导的代数系统。
2
§6.1 格的概念
1.偏序集合格 L, [定义]格是一个偏序集合 ,其中每一对元素 a, b L 都拥有一个最小上界和最大下界。通常用 a b表示a和b的最大下界,用 a b 表示a和b的最 小上界。即: GLB{a, b} a b ——称为元素a和b的保交运算,
LUB{a, b} a b ——称为元素a和b的保联运算。
20
§6.3 有补格
[定理]在有界分配格中,若有一个元素有补元,则 必是唯一的。 证明:
21
§6.4 布尔代数
[定义]一个有补分配格称为布尔格。
[定义]一个格<L,≤>如果它既是有补格,又是分配格, 则它为有补分配格。我们把有补分配格中任一元 素a的唯一补元记为a。 讨论定义: (1)布尔格中,每个元素有唯一的补元。 (2)我们可以定义L上的一个一元运算,称为补运算, 记为“-”。
30
§6.4 布尔代数
因此, 从逻辑观点看,布尔代数是命题演算系统。 从集合论观点看,布尔代数是集合代数。 从抽象代数的观点看,布尔代数是一个代数系统。
31
第三篇小结
通过本篇的学习应该达到以下基本要求: (1)给定集合与运算的解析表达式,写出该运算的运 算表。 (2)给定集合和运算,判别该集合对运算是否封闭。 (3)给定二元运算,说明运算是否满足交换律、结合 律、幂等律、分配律和吸收律。 (4)给定集合S上的二元运算,求出该运算的幺元、 零元、幂等元和所有可逆元素的逆元。 (5)给定集合S和二元运算*,能判定<S,*>是否构成半 群、独异点和群。
26
§6.4 布尔代数
例:<(S),,,~,,S>,其中S={a,b,c}, 在这个布尔代数中的元素分三种情况: (ⅰ)界:全上界S,全下界 ; (ⅱ){a},{b},{c}单个元素集合的元素; (ⅲ)二,三个元素作为集合的元素,但它们均可 {a,b,c} 用单个元素的集合的元素来表述: {a,c} {a,b}={a}{b} ,{a,c}={a}{c}, {a,b} {b,c} {b,c}={b}{c}, {a} {b} {c} {a,b,c}={a}{b}{c} 。
33
习题选讲
例1. 设:S={a,b},则S上可以定义多少个二元运算?其 中有4个运算如下表所示,则有哪些满足交换律, 哪些满足幂等律,哪些有幺元,哪些有零元?
1 a a a b a b a a 2 a a b a b b b a 3 a b a b a b a a 4 a b a a b b a b
6
§6.1格的概念
(2)对格<L,≤>中任意a和b,有a≤ab及ab≤a。
(3)<L,≤>是格。对任意a,b,c,dL,如a≤b, c≤d,则ac≤ bd, ac≤bd
(4)(交换律)交和并运算是可交换的。 (5)(结合律)交和并运算是可结合的。
7
§6.1 格的概念
(6)(幂等律)对L中每一个a,有aa=a,aa=a。
10
§6.2 分配格
[定义]如对L中任意a,b,c有: a≤ca (b c) = (a b) c 则称<L,≤>为模格。 例:
11
§6.2 分配格
[定理]如果格中交对并是分配的,那么并对交也是 分配的,反之亦然。 证明:已知a(bc)=(ab)(ac) (ab)(ac)=((ab)a)((ab)c) =a((ab)c) =a((ac)(bc)) =(a(ac))(bc) =a(bc) 即:并对交也是分配的。
Ø
27
§6.4 布尔代数
(3)A中除0外的每个元素,都可以唯一地表示成原子 的并。 该定理可得以下两个推论: a)<B,*,,’,0,1>与<p(S),∪,∩,~,Ø,S>同构, |p(S)|=2|s|所以,|B|=2|s|,故任一有限布尔代数 载体的基数是2的幂。 b)任一有限布尔代数和它的原子集合S构成的幂集集 合代数<p(S),∪,∩,~,Ø,S>同构,但后者又与任 一基数相同的幂集集合代数同构,故具有相同载 体基数的有限布尔代数都同构。
34
习题选讲
例2. 对以下定义的集合和运算判别它们能否构成代数系统? 如能,请说明是构成哪一种代数系统? (1) S1 {0,1,2,...,n} ,+为普通加法;
1 (2) S 2 { ,0,2} ,*为普通乘法; 2
(3) S3 {0,1,2,3}
,≤为小于等于关系;
35
Hale Waihona Puke (7)(吸收律)对L中任意a,b,有 a(ab)=a a(ab)=a。
8
§6.2 分配格
对格所定义的代数系统<L,,>,其运算和不一 定满足分配律。 [定义]设<L,,>是由<L,≤>所诱导的代数系统。 如果对任意的a,b,cL,满足: a (b c)=(a b) (a c) 及 a (b c)=(a b) (a c) 则称<L,≤>是分配格。
17
§6.3 有补格
[定义]设<L,≤>是一个有界格,对于L中的一个元素 a,如果存在bL,使得ab=1和ab=0,则称元素 b是元素a的补元。 讨论定义: (1)∵ 和是可交换的,∴补元是相互的。 (2) 1 0 1 0 0,0 1 1 1 0 1 ,在有界格 0 中,1和0互为补元; (3)由定义可知L中一个元素的补元不一定唯一; 例:
5
§6.1 格的概念
3.格的主要性质: (1)格的对偶原理 设<L,≤>是格,“≤”的逆关系“≥”与L组成的偏 序集 <L, ≥>也是格。两者互为对偶。前者的GLB,LUB 恰好是后者的LUB,GLB。如有关于<L,≤>的有效 命题,将“≤”换成“≥”,“”换成“”, “”换成 “”,便能得到<L, ≥>的有效命题。 反之亦然。
22
§6.4 布尔代数
[定义]由布尔格<L,≤>,可以诱导一个包括交,并和 补运算的代数系统<L,,,->,称此代数系统为布 尔代数。 例:设S是一个非空有限集,<(S),>是一个格, 且是一个布尔格。由<(S),>所诱导的代数系统 为 < (S), ,,-> 是一个布尔代数。其中“,,-”分 别是集合的交、并、补运算。
9
§6.2 分配格
讨论定义: (1)定义中的两式互为对偶式。 6. (2)如<L,≤>非为分配格,则有下面的分配不等式: a (b c) ≤ (a b) (a c) a (b c) ≥ (a b) (a c) 以及模不等式: a≤ca (b c) ≤ (a b) c
23
§6.4 布尔代数
[定理]对于布尔代数中任意两个元素a,b,必定有
(a ) a
a b a b
a b a b
24
§6.4 布尔代数
证明:
25
§6.4 布尔代数
[定理]设<A,,,->是由有限布尔格<A,≤>所诱导的一 个有限布尔代数,S是布尔格<A,≤>中的所有原子 的集合,则<A,,,->和<(S),,,~>同构。 讨论定理: (1)当布尔代数<A,,,->的载体A的基数|A|是有限数 时,则称之为有限布尔代数。 (2)设<A,,,->是一个布尔代数,a∈A,如果a盖住0, 则称元素a是该布尔代数的一个原子。 例如:
14
§6.3 有补格
[定义]设<L,≤>是一个格,如果存在元素aL,对 于任意的x L,都有: a≤x 则称a为格<L,≤>的全下界,记格的全下界为0。 例:
15
§6.3 有补格
[定理]如果格<L,≤>有全上界(全下界),那么它 是唯一的。 证明:(反证法)设有两个全上界a和b,则由定义 a≤b,且b≤a,由“≤”的反对称性, a=b。
13
§6.2 分配格
[定理]每个链均是分配格。 证明:设<L,≤>是链。对任意a,b,cL (1)若a≤b或a≤c,则 a (b c) = a, (a b) (a c)=a 即: a (b c) = (a b) (a c) (2)若a≥b且a≥c,则 a (b c) = b c, (a b) (a c)= b c 即:a (b c) = (a b) (a c)。得证。
12
§6.2 分配格
[定理]分配格是模格。 证明:由于a (b c) = (a b) (a c) (1)若a≤c,则a c=c,代入上式得 a (b c) = (a b) c (2)若a (b c) = (a b) c,则 a≤ a (b c) = (a b) c≤c,即: a≤c ∴分配格是模格