五年级数学奇数和偶数
2023年人教版数学五年级下册奇数和偶数的运算性质说课(优选3篇)
人教版数学五年级下册奇数和偶数的运算性质说课(优选3篇)〖人教版数学五年级下册奇数和偶数的运算性质说课第【1】篇〗教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。
说教学目标:1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等毛生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
说教学重点:探索数的奇偶性变化规律。
教具学具准备:数字卡片,盒子,奖品。
说教学过程:复习引入新课。
(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。
)活动1:数的奇偶性在生活中的应用。
(一)激趣导入。
清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。
不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。
你知道第11个同学按过开关后,“开关”是打开的还是关闭了?(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况开、关;开、关;开、关;开、关;开、关;开、关……让学生数数,直观地发现第11个人按过开关后,开关是打开的。
2、增加人次,深入探究。
如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?3、第二次汇报交流。
投影下表:用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。
即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。
因为47是奇数,开关被打开;108是偶数,开关被关闭。
人教版五年级下册偶数和奇数的运算性质
12 x 8= 96
偶数 x偶数=偶数
任意写一个奇数一个偶数相乘, 你有什么发现。
15 x 12= 180 22 x 7= 154
奇数 x偶数=偶数
偶数个奇数相加,结果是偶数。
写3个、5个、7个……奇数相加, 你有什么发现。
3+5+7=15 3+5+7+9+11=35 3+5+7+9+11+13+15=63
奇数个奇数相加,结果是奇数。
任意写两个奇数乘以乘,你有什 么发现。
15 x 13= 195
23 x 7= 161
奇数 x奇数=奇数
任意写两个偶数乘以乘,你有什 么发现。
ห้องสมุดไป่ตู้
任意写一个奇数一个偶数加一加, 你有什么发现。
24+11=35 35+28=63
奇数+偶数=奇数
任意写几个偶数相加,你有什么 发现。
4+8+32+24+10=78
任意几个偶数相加,结果 还是偶数。
写2个、4个、6个……奇数相加, 你有什么发现。
3+5=8 3+5+7+9=24 3+5+7+9+11+13=48
任意写两个偶数加一加,减一减, 你有什么发现。
2 + 4 =6 8 + 12=20
偶数+偶数=偶数
4 - 2 =2 12 – 8 =4
偶数 - 偶数=偶数
任意写两个奇数加一加,减一减,
你有什么发现。
2 3-11 =12
23+11=34
35 -27 = 8
小学数学五年级上册《数的奇偶性》知识点
2、画:画出示意图或列出表格。
3、比:奇数的情形,偶数的情形。
4、结论:根据数的奇偶性判定
通过数学操作活动发现数的奇偶性。
运用
1、举例说明生活中的奇偶性问题。
1、读:读懂题意。
2、想:想是否是奇偶性的问题。
3、画:用画图或列表方式判定其奇偶性。
4、结论:根据数的奇偶性解决问题。
通过数学活动发现数的奇偶性。
二、1、看:两组数,一组是奇数一组是偶数。
2、算:任选两个偶数相加。3、说:汇报各自的计算结果。4、总结:偶数+偶数=偶数。5、验证:任意写两个偶数相加,和是偶数。
数的奇偶性即奇数次的情形与第一次相同,偶数次的情形与第二次相同。
表达
1、用画图方式表示数的奇偶性。
2、用列表方式表示数的奇偶性。
3、用语言描述数的奇偶性
小学数学五年级上册《数的奇偶性》知识点
教学点
陈述性知识
程序性知识
策略性知识
认知1、数的奇偶性即奇数次的 Nhomakorabea形与第一次相同,偶数次的情形与第二次相同。
2、偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
一、1、读:阅读教材弄清题意。
2、画:画图来判断哪次在哪岸。
3、列表:画图来判断哪次在哪岸。
4、总结:数的奇偶性即奇数次的情形与第一次相同,偶数次的情形与第二次相同。
1、偶数×偶数=偶数
2、偶数×奇数=偶数
3、奇数×奇数=奇数
4、偶数-偶数=偶数
5、偶数-奇数=奇数
6、奇数-偶数=奇数
7、奇数-奇数=偶数
1、列出算式
2、算出结果
3、发现规律
4、总结规律
看个位相加减乘除结果数的奇偶性。
2024年人教版数学五年级下册奇数和偶数的运算性质优秀教案精选3篇
人教版数学五年级下册奇数和偶数的运算性质优秀教案精选3篇〖人教版数学五年级下册奇数和偶数的运算性质优秀教案第【1】篇〗五年级数学《奇数和偶数的运算性质》教案教学目标:1、认识奇数和偶数,了解奇偶性的规律。
2、应用数的奇偶性分析和解释生活中一些简单现象。
3、体会生活中处处有数学,增强学生学好数学的信心和应用数学的意识。
4、培养学生发散思维的能力。
教学重点:探索并理解数的奇偶性。
教学难点:应用数的奇偶性分析和解释生活中一些简单现象。
教学准备:课件制作。
教学过程:一、创设情景,揭示课题1、教师从讲小商贩摆糖摊的事例导入。
2、揭示课题,板书课题:奇数与偶数的运算性质二、猜想验证, 认识奇偶性1、什么数叫奇数?什么数叫偶数?2、列举生活中的奇、偶数。
3、猜测、发现规律:师:请在你们的左、右手上分别写一个奇数和一个偶数,并用左手×2,右手×3,然后算出它们的和并告诉我得数,我就能知道你们哪只手写的是奇数,哪只手写的是偶数。
①学生自由算②学生回答,教师猜测③学生四人小组讨论,发现其中的秘密④分析、结论左手×2 右手×3 得数偶数×偶数=偶数奇数×奇数=奇数偶数+奇数=奇数奇数×偶数=偶数偶数×奇数=偶数偶数+偶数=偶数a、教师说,学生猜b、学生说,学生猜4、学生自由举例得出结论:奇数+奇数= 奇数-奇数= 偶数-奇数= 奇数-偶数=三.运用规律,解决问题1、考考你:(a、b是自然数)①4a是什么数?②5+2a是什么数?③6a+b是什么数?2、比比看:⑴数学小考场:①2---101是奇数多,还是偶数多?2+3+4﹢…+100结果是奇数还是偶数?②4a+5b=105,b是奇数还是偶数?③两个不同质数的和是21,这两个质数各是多少?⑵生活大舞台:①49箱梨,由5只船运过河,要求每只船都装偶数箱梨,能实现吗?②有一只渡船,在一条河的东西两岸来回运送乘客,若规定这只船从东岸到西岸或从西岸到东岸叫渡河一次,则当渡船最初在东岸,来回渡河79次后,船在()岸。
2024年人教版数学五年级下册奇数和偶数的运算性质说课稿(精推3篇)
人教版数学五年级下册奇数和偶数的运算性质说课稿(精推3篇)〖人教版数学五年级下册奇数和偶数的运算性质说课稿第【1】篇〗一、教材与学生1、教材《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的.因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。
2、学生五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力.但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。
二、教学目标1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力;3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。
三、教法和学法主要是自主探究与开放式教学相结合.1、让学生自主探索规律,并全程参与。
我想,什么也不能代替学生的亲身体验。
这里我讲一个小故事——有一天,我感冒了。
不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。
同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。
为什么不在适当的时候把课堂还给学生呢?!2、大胆开放,抛弃束缚。
我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的**,应该是*等的,**的。
这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?因此我打破了教材的局限,设计了一个崭新的思路——四、教学设计和思路(一)游戏导入,感受奇偶性1、游戏一:6只小鸭子、5只蝴蝶找伴2、游戏二:转轮盘(1)讲要求:指针停在几上就再走几步;(2)独白:A请他们全班去吃饭,地方吗B学生开心极了,当听到是东方饺子王………一片赞叹。
C结果:乘兴而来,败兴而归,有的指责我—骗人(我—我怎么骗人了?)讨论:为什么会出现这种情况呢?如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。
2024年人教版数学五年级下册奇数和偶数的运算性质说课稿推荐3篇
人教版数学五年级下册奇数和偶数的运算性质说课稿推荐3篇〖人教版数学五年级下册奇数和偶数的运算性质说课稿第【1】篇〗【新课讲授】1.游戏:换座位首先将全班30个学生分成5组,人数分别为4、5、6、7、8。
我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人一组的却有一人无法跟别人换座位)讨论:为什么会出现这种情况呢?学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7是单数,不是2的倍数。
2.猜想验证, 认识奇偶性(1)设置悬念、激发思维现在我们继续来考虑五组人数:4人、5人、6人、7人、8人,那么猜猜那些组合起来能够刚好换完?那些不能?(2)探索奇数与偶数相加时存在的关系学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
教师根据学生汇报总结方法如下:方法一:利用奇数和偶数的意义,奇数除以2都余1,而偶数除以2没有余数,奇数加偶数的和除以2还余1。
所以:奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数;方法二:利用算式寻找规律例如: 5+8=13, 7+8=15…… 5+7=12,7+9=16…… 8+12=20,12+24=36……通过上面的算式发现:奇数与偶数的和是奇数,奇数与奇数的和是偶数,偶数与偶数的和是偶数。
所以,奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数。
师:你能举几个例子说明一下吗?(学生的举例可以引导从正反两个角度进行)3.探索奇数和偶数存在的其他关系及对比优化方法一:(1)计算下题的结果 16-12= 103-71= 19-12= 11×13= 30×4= 14×8=(2)观察算式,寻找规律12+16=2816-12=4103-71=3213+71=84114+25=13919-12=711×13=14331×4=12414×8=112方法二:利用奇数和偶数的意义,奇数除以2都余1,而偶数除以2没有余数,奇数加偶数的和除以2还余1,所以,奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数(大减小);奇数×奇数=奇数;偶数×偶数=偶数;偶数×奇数=偶数。
人教版五年级数学下册 奇数与偶数
你能很快判断下列算式的结果 是奇数还是偶数吗?
20149+2018
奇数 + 偶数 = 奇数
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5
和是奇数
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5 +7
和是偶数
1.十个自然数1,2,3,……10的和是 奇数还是偶数?
解法一:
1+2+3+4+5+6+7+8+9 +10 = 55
《奇数和偶数》
人教版五年级下册
什么叫做偶数? 什么叫做奇数? 整数中,是2的倍数的数叫做偶数。 不是2的倍数的数是奇数。
自然数的王国有两大家族
奇数
个位
1 3 5 7 9
……
偶数
个位 0
2 4 6 8 10 ……
判断一个数是奇数还是偶 个位 数,看个位
抽奖游戏
游戏1规则:盒子1装的 都是偶数,从盒子中任意取 出两张卡片,如果两数之和 是 一份。
奇数,可以兑换小礼品
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢?
你总结出什么规律呢?
偶数+偶数= 偶数
?
偶数+偶数= 偶数
偶数:
?
…
抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢?
你总结出什么规律呢?
奇数+奇数= 偶数
?
奇数+奇数= 偶数
奇数:
?
…
抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿到礼物呢?
发现规律:奇数次朝下,偶数次朝上。
不用计算,判断下列算式的结果 是奇数还是偶数。
小学数学五年级下册奇数和偶数
11×13=143 31×4=124 14×8=112
奇数和奇数相乘,积是奇数。 偶数和奇数相乘,积是偶数。 偶数和偶数相乘,积是偶数。
奇数×奇数=奇数; 偶数×偶数=偶数; 偶数×奇数=偶数。
①把10个球分成三组,要求每组球的 个数都是奇数,怎样分?
数
奇数
奇数
偶数
奇+奇+奇=奇 而10是偶数
所以不能分
奇数:
…
抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿到礼物呢? 你总结出什么规律呢?
? 偶数+奇数= 奇数
? 偶数+奇数= 奇数
奇数:
…
偶数:
…Leabharlann ?奇数+偶数=?
奇数? 偶数?
奇数+奇数=?
奇数? 偶数?
偶数+偶数=?
奇数? 偶数?
5 + 8 = 13 奇数 + 偶数 = 奇数
7 + 8 = 15
5 + 7 = 12 奇数 + 奇数 = 偶数
7 + 9 = 16
8 + 12 = 20 偶数 + 偶数 = 偶数
12 + 24 = 36
两个偶数相加(减), 和(差)是偶数。
两个奇数相加(减), 和(差)是偶数。
偶数和奇数相加(减), 和(差)是奇数。
奇数与偶数的关系:
奇数±奇数=偶数; 偶数±偶数=偶数; 奇数±偶数=奇数 (大减小);
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5 +7
和是偶数
1.十个自然数1,2,3,……10的和是 奇数还是偶数?
解法一:
2024年人教版数学五年级下册奇数和偶数的运算性质教案模板(精推3篇)
人教版数学五年级下册奇数和偶数的运算性质教案模板(精推3篇)〖人教版数学五年级下册奇数和偶数的运算性质教案模板第【1】篇〗教学内容:北师大版教材五年级上学期14——15页。
教学目标:1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经理探索加法中数的奇偶性变化的过程,在活动中发现加法中的数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。
教学过程:一、情境一:师:同学们喜欢旅游吗?一定去过笔架山吧!今年夏天,老师也去了一次笔架山,可不巧,海水淹没了天桥,我只好坐船上山了,这些船从北岸到笔架山,在从笔架山回到北岸,不断往返,老师选了一条船,买了往返船票(边说边在黑板上画简图),老师在回来时,想正好到达山下时,船也正好到山下,船摆渡10次后,还是11次后,我赶到山下,能正好坐上船啊?自己独立思考,然后和小组交流一些,说出你的道理。
小组交流,汇报。
师:你不仅帮助了老师,还从中发现了一条规律,你们是怎样发现这条规律的?学生汇报方法,教师引导学生进行“列表”“画示意图”等方法解决问题。
二、情境二师:同学们玩过有奖游戏吗?今天老师给大家带来一个有奖游戏,游戏规则是:掷色子,掷到几,就从转盘上的数下一格向前走几,走到有奖的格子奖品就归你了。
(图略)师:谁想第一个来试一试?师:在游戏中,你们发现了什么?生:刚才这几位同学得到的都是糖,为什么得不到学习用品呢?师:问题提的真好,有思考价值。
为什么他们拿到的奖品都是糖,得不到有实用价值的奖品?你们可以互相交流一下,看看为什么这样?学生交流,汇报奇数+奇数=偶数;偶数+偶数=偶数师:你还能举些例子来证明你们的发现是正确的吗?(学生举例子证明)师:你们能修改一下规则,让这个游戏一定能等到学习用品吗?引导学生发现:奇数+偶数=奇数。
三、解决问题:小华买了一支铅笔,两块橡皮,付了两角钱,售货员阿姨找给他3角钱,小华知道橡皮、铅笔单价都是整角,而且铅笔是4角钱一支,他马上对售货员说:“阿姨,你把账算错了。
人教数学五年级下册《奇数和偶数》教学设计
人教数学五年级下册《奇数和偶数》教学设计人教数学五年级下册第二单元因数和倍数质数和合数第二课时《奇数和偶数》教学设计设计说明教学内容人教版小学数学五年级下册“奇数和偶数”,课本第15页。
教学目标:一)知识与技能1.在理解奇数与偶数的意义的基础上通过运算性质探索奇数与偶数的关系,掌握奇数、偶数的关系。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
(二)过程与方法三)情感态度与价值观在实践活动中认识奇数和偶数,了解奇偶性的规律,培养学生的探究能力和创新意识。
讲授重点难点:重点:探索并理解数的奇偶性,准确把握奇数和偶数的意义。
难点:能应用数的奇偶性常识来解决糊口中一些简单理论题目课时安排1课时讲授办法自主、合作、探讨的讲授模式。
教学准备多媒体课件教学过程1、回忆旧知,引入新课。
1、师:在研究2、5的倍数特征时,我们已经知道什么是奇数和偶数,那么谁能回答一下,什么叫做奇数?什么叫做偶数?(生回答后)那么,奇数和偶数又有那些特征呢?这节课我们就来进一步研究奇数和偶数。
板书课题《奇数和偶数》设计理念]复旧知引入新课,能让学生把学过的常识和将要研究的新知操演起来,为更好地学好新知奠基了基础。
2、课堂游戏,感受奇偶性1、游戏:换座位首先将全班30个学生分成5组,人数分别为4、5、6、7、8.我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、一组的却有一人无法跟别人换座位)讨论:为什么会出现这种情况呢?学生能很直观的找出原因,并说清这是由于4、6、8、恰好是双数,都是2的倍数;而5、7是单数,不是2的倍数。
2、猜想验证,认识奇偶性1)设置牵挂、激发思维现在我们继续来考虑五组人数:4人、5人、6人、7人、8人,那么猜猜那些组合起来能够刚好换完?那些不能?2)探索奇数与偶数相加时存在的关系学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
小学数学五年级《奇数与偶数》 练习题(含答案)
《奇数与偶数》练习题(含答案)①偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.②偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.操作,每次操作拉一下同一行或同一列灯的开关,请问能否经过若干次操作,使这36盏灯全部亮.分析:不能,每一次改变6盏灯的状态,无论这6盏灯原来的状态如何,等只能增加或减少偶数盏亮着的灯,所以无论拉多少次都不能将这36盏灯全部亮.[拓展]如果36盏灯当中有两盏灯是亮着的,那么是否有可能经过若干次操作,使这36盏灯全部亮.分析:不能,如果两盏灯是亮着,而且经过若干次操作,使这36盏灯全部亮的话,那么原来亮着得灯要拉偶数下,原来不亮的灯要拉奇数下,两盏灯若在同一行(或同一列),那么该行(或该列)被拉的次数,与这两盏灯所在的列(或行)被拉的次数同奇偶,与其他列(或行)被拉的次数的奇偶性质相反,那么其他行(或列)被拉的次数无论是奇数还是偶数,都不能使该行所有灯同熄同亮,若两盏原来两着的灯不同行同列,分析法雷同.【例7】有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。
2024年人教版数学五年级下册奇数和偶数的运算性质说课(精推3篇)
人教版数学五年级下册奇数和偶数的运算性质说课(精推3篇)〖人教版数学五年级下册奇数和偶数的运算性质说课第【1】篇〗说教学目标:1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究发现数的奇偶性。
2.经历探索加法中数的奇偶性变化过程,在活动重视学生体验探究方法。
3.培养学生分析、解决问题的能力。
说教学重难点:探索加法中数的奇偶性变化规律。
教法:情境教学法学法:小组合作观察探究教具准备:教学挂图纸杯说教学过程:课前活动游戏1:翻手腕活动。
游戏2:以开火车,各大组报数,记好各自的序号,以游戏的形式复述奇数和偶数的相关知识为本节课的教学做铺垫。
上课一、创生活情境,感受生活中的奇偶性1.谈话引入。
同学们,从开学那天起,我们每天都要在家到学校的路上来回走动,可就在来回走的过程中,只要你们用心观察,就能发现许多跟奇偶数相关的知识。
2.请一位同学来演示。
从讲台一端走(家)到另一端(学校),再按原路返回。
问:走5次后,这位同学在哪里?猜想:走12次后,这位同学会在哪里?师:光有猜想是不够的,我们还得想办法来验证一下自己的猜想是否正确。
3.尝试解答。
你是怎样想的?先各自在草稿上把自己的想法表示出来。
教师指导:用列表或画图的方法进行。
4.同桌交流。
5.全班反馈。
结论:走奇数次后,同学在(学校),走偶数次后,同学在(家里)。
二、解决生活中简单的奇偶性问题1.同桌翻纸杯游戏:游戏规则:(1)同桌合翻一个纸杯,第一位同学翻1次杯口朝下,第二位同学2次杯口朝上,这样轮流翻下去。
(2)每完成一个任务前,可先猜想一下纸杯可能在谁的手中,然后再动手验证。
(3)讨论时,同桌的交流不得让别的小组听到。
问题:翻动10后,杯口朝(),翻动19次后杯口朝()。
2.阅读课本上主题图。
快速作答:摆渡100次后,船在()岸。
摆渡133次后,船在()岸。
3.你能联系生活提出类似的问题吗?(上下楼梯、开关电灯、翻硬币、开关门、钓鱼、拉抽屉等)4.从刚才的几个活动中,你能解决类似的生活问题了吗?解决问题的关键是要弄清什么?(奇数次时是什么状况,偶数次时又是什么状况。
乐乐课堂五年级下册数学偶数和奇数
乐乐课堂五年级下册数学偶数和奇数定义:整数中,能够被2整除的数,叫做偶数。
特别提示:偶数包括正偶数、负偶数和0. 偶数=2n ,奇数=2n+1(或-1),这里n 是整数。
所有整数不是奇数(又称单数),就是偶数(又称双数)。
若某数是2的倍数,它就是偶数,可表示为2n(n为整数);若非,它就是奇数,可表示为2n+1(n为整数),即奇数除以二的余数是一。
在十进制里,可以用看个位数的方式判定该数是奇数还是偶数:个位为1,3,5,7,9的数是奇数;个位为0,2,4,6,8的数是偶数。
两个偶数的和或差仍是偶数;两个奇数的和或差也是偶数;奇数和偶数的和或差是奇数;单数个奇数的和是奇数;几个偶数的和仍是偶数;几个偶数的和仍是偶数;奇数与奇数的积是奇数;偶数与整数的积是偶数;任何一个奇数都不等于任何一个偶数;若干个奇数的连乘积永远是奇数;若干个整数的连乘积,如果其中有一个偶数,乘积必然是偶数;偶数的平方被4整除,奇数的平方被4除余1。
小学五年级数学—奇数和偶数例题讲解
1×2+3×4+5×6+7×8+……+99×100 的结果是偶数。
50个偶数相加, 和仍然是偶数。
任意取出1994个连续自然数, 它们的总和是奇数还是偶数?
任意取出 1994个连 续自然数。
1994÷2=997 共有997个偶数, 997个奇数。
任意个偶数相加的和偶数, 997个偶数和是偶数。
奇数个奇数相加的和是奇 数,997个奇数和是奇数。
2. 把64颗草莓平均放在9个盘子里,在每个盘子里的草莓个数只能是奇数。 奇数个奇数的和只能是奇数,而草莓的总个数是偶数,所以原题错误。
3. 1-2+3-4+5-6+……+1989-1990+1991的结果是奇数。
1-2+3-4+5-6+……+1989-1990+1991
=(1-2)+(3-4)+(5-6)+……+(1989-1990)+1991
偶数+奇数=奇数 即它们的总和是奇数。
任意取出偶数个连 续自然数,奇数个 数和偶数一样多。
自然数的个数 是4的倍数。
自然数的个数 不是4的倍数。
偶数个奇数相加, 偶数个偶数相加。
奇数个奇数相加, 奇数个偶数相加。
偶数+偶数=偶数 最后的结果为偶数 举例:1、2、3、4。
奇数+偶数=奇数 最后的结果为奇数 举例:1、2、3、4、5、6。
偶数个奇数相加, 奇数个偶数相加。
奇数个奇数相加, 偶数个偶数相加。
奇数+偶数=奇数 最后的结果为奇数 举例:1、2、3、4、 5。
偶数+偶数=偶数 最后的结果为偶数 举例:1、2、3、4、 5、6、7。
人教版数学五年级下册奇数和偶数的运算性质教案与反思推荐(3)篇2024年
人教版数学五年级下册奇数和偶数的运算性质教案与反思推荐(3)篇2024年〖人教版数学五年级下册奇数和偶数的运算性质教案与反思第【1】篇〗一、教学目标(一)知识与技能能正确判断两数之和的奇偶性,并利用两数之和的奇偶性解决简单的实际问题;初步感知两数之积的奇偶性。
(二)过程与方法能运用所学知识和已有的经验,通过自主探索、合作交流、反思验证寻求两数之和的奇偶性的判断方法。
(三)情感态度和价值观在探索的过程中经历“尝试、验证”的过程,体会用“数形结合”解释数学问题。
二、教学重难点教学重点:正确判断两数之和的奇偶性。
教学难点:自主探索判断两数之和的奇偶性的方法,并验证自己的结论。
三、教学准备教学课件。
四、教学过程(一)阅读与理解课件出示教材第15页例2。
1、从题目中你知道了什么?是要求我们对哪些方面作一些探索?2、想一想,题目中的问题可以怎样表示?引导学生整理和改编问题:【设计意图】通过讨论,让学生经历将较复杂的数学问题用简洁的方式表达的过程,体会数学的简洁性。
(二)自主探究,合作交流1、探究“奇数+偶数”的和的奇偶性(1)我们先来探究“奇数+偶数”的和是奇数还是偶数?你有什么办法?(2)独立思考,展开交流。
方法一:列举法。
我们可以随意找几个奇数和偶数,加起来看一看,结果是奇数还是偶数?奇数:5,7,9,11,…偶数:8,12,20,24,…奇数+偶数:5+8=13,7+12=19,9+20=29,11+24=35,…和都是奇数,所以奇数+偶数=奇数。
这个结论正确吗?不能确定怎么办?我们能不能尝试其他方法呢?方法二:图示法(用奇数和偶数的特征来判断)。
因为奇数除以2余1,偶数除以2没有余数,所以奇数加偶数的和除以2仍余1,所以奇数+偶数=奇数。
大家如果理解有困难的话,我们不妨用画图来表示:【设计意图】列举法是同学们较容易想到的方法,但这样下结论还为时过早。
在讨论的基础上,教师引导学生用图示表示奇数和偶数相加的特征,利用直观来推断出结论,渗透数形结合的思想。
奇数与偶数(说课稿)-五年级下册数学苏教版
奇数与偶数(说课稿)-五年级下册数学苏教版一、教学目标1.了解什么是奇数,什么是偶数。
2.能够区分出奇数与偶数。
3.能够应用奇数与偶数的规律解决实际问题。
二、教学内容1. 什么是奇数?奇数是指能够被 2 整除余 1 的自然数,例如 1、3、5、7、9、11 等。
2. 什么是偶数?偶数是指能够被 2 整除的自然数,例如 2、4、6、8、10、12 等。
3. 区分奇数与偶数要区分奇数与偶数,只需要判断这个数能否被 2 整除。
如果可以被 2 整除,那么这个数就是偶数,否则这个数就是奇数。
4. 奇数与偶数的规律奇数与偶数有一定的规律,如下:•任何偶数加或减另一个偶数,结果仍然是偶数。
•任何奇数加或减另一个奇数,结果仍然是奇数。
•一个奇数加上一个偶数,结果是奇数。
•一个偶数加上一个奇数,结果是奇数。
三、教学过程1. 教师引入用小学生常见的事情引入课程:小明有 8 个糖果,他想要把它们平分给自己和他的朋友,请问他们每人可以得到几个糖果?2. 引入奇数与偶数的概念导入奇数与偶数的概念:小明平分 8 个糖果给自己和他的朋友,他们每人分得的糖果数量是否相同呢?班上的同学们肯定会用 4 来除以 2,得到每个人分得 4 个糖果。
接着问同学们:如果每人只能分到奇数个糖果呢?例如:5 个糖果,分给 2个人,每人分得几个糖果?这里用具体的例子来介绍奇数与偶数的概念。
3. 奇数与偶数的区分让同学们自己数 1 到 20 中的奇数和偶数。
为了检验同学们的数数是否准确,可以让他们写在黑板上,然后拉一下绿、红两个队,互相检查和讨论。
4. 奇数与偶数的应用通过图像的方式来讨论奇数与偶数的应用。
图 1:不同的万花筒,能够旋转多少次?给同学们看这张图,问他们每种万花筒能够旋转多少次。
图 2:奇偶数是如何影响旋转次数的?接着,给同学们看这张图,并问他们奇偶数是如何影响旋转次数的。
此时可以用具体的数值来讲解,例如:一个有 8 个面的万花筒,是一个偶数,所以能够旋转 4 次。
小学数学五年级《奇数与偶数》 练习题(含答案)
《奇数与偶数》练习题(含答案)①偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.②偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.操作,每次操作拉一下同一行或同一列灯的开关,请问能否经过若干次操作,使这36盏灯全部亮.分析:不能,每一次改变6盏灯的状态,无论这6盏灯原来的状态如何,等只能增加或减少偶数盏亮着的灯,所以无论拉多少次都不能将这36盏灯全部亮.[拓展]如果36盏灯当中有两盏灯是亮着的,那么是否有可能经过若干次操作,使这36盏灯全部亮.分析:不能,如果两盏灯是亮着,而且经过若干次操作,使这36盏灯全部亮的话,那么原来亮着得灯要拉偶数下,原来不亮的灯要拉奇数下,两盏灯若在同一行(或同一列),那么该行(或该列)被拉的次数,与这两盏灯所在的列(或行)被拉的次数同奇偶,与其他列(或行)被拉的次数的奇偶性质相反,那么其他行(或列)被拉的次数无论是奇数还是偶数,都不能使该行所有灯同熄同亮,若两盏原来两着的灯不同行同列,分析法雷同.【例7】有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 + 12 = 20 偶数 + 偶数 = 偶数
12 + 24 = 36
两个偶数相加(减), 和(差)是偶数。
两个奇数相加(减), 和(差)是偶数。
偶数和奇数相加(减), 和(差)是奇数。
奇数与偶数的关系:
奇数±奇数=偶数; 偶数±偶数=偶数; 奇数±偶数=奇数 (大减小);
一个茶杯,杯口朝上放在桌上, 翻动一次,杯口朝下。翻动两次, 杯口朝上……翻动5次呢?翻动95次? 100次?
发现规律:奇数次朝下,偶数次朝上。
不用计算,判断下列算式的结果 是奇数还是偶数。
157+6891
奇数 + 奇数 = 偶数
不用计算,判断下列算式的结果 是奇数还是偶数。
1457 - 111
11×13=143 31×4=124 14×8=112
奇数和奇数相乘,积是奇数。 偶数和奇数相乘,积是偶数。 偶数和偶数相乘,积是偶数。
奇数×奇数=奇数; 偶数×偶数=偶数; 偶数×奇数=偶数。
①把10个球分成三组,要求每组球的个 数都是奇奇数数,怎样分?源自奇数奇数偶数
奇+奇+奇=奇 而10是偶数
所以不能分
傍晚开电灯,小虎淘气,一连拉了 7下开关. 请你说说这时灯是亮了还是 没亮?
12 345 67
亮灭 亮灭亮 灭亮
所以这时灯是亮的
可是如果拉25下? 100下呢?还要 这样试吗?
1 2 3 4 5 6 7 ……
亮 灭 亮 灭 亮 灭 亮 ……
奇数 偶数
亮
灭
25是奇数,所以灯是亮的
100是偶数,所以灯是不亮的
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5 +7
和是偶数
1.十个自然数1,2,3,……10的和是 奇数还是偶数?
解法一:
1+2+3+4+5+6+7+8+9 +10 = 55
解法二:不用计算 两步:1、看其中的奇数
2、奇数的个数 5个 1 3 5 7 9
前十个自然数之和是奇数.
判断几个数的和是奇数还是偶数 1、看奇数 2、奇数的个数
是奇数,可以兑换小礼品
一份。
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢? 你总结出什么规律呢?
? 偶数+偶数= 偶数
? 偶数+偶数= 偶数
偶数:
…
抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢? 你总结出什么规律呢?
? 奇数+奇数= 偶数
? 奇数+奇数= 偶数
奇数:
…
抽奖游戏
《奇数和偶数》
人教版五年级下册
什么叫做偶数? 什么叫做奇数? 整数中,是2的倍数的数叫做偶数。
不是2的倍数的数是奇数。
奇数 偶数
自然数的王国有两大家族 个位 1 3 5 7 9 ……
个位 0 2 4 6 8 10 ……
判断一个数是奇数还是偶 数,看个位
抽奖游戏
游戏1规则:盒子1装的 都是偶数,从盒子中任意取 出两张卡片,如果两数之和
奇数 - 奇数 = 偶数
不用计算,判断下列算式的结果 是奇数还是偶数。
462+524 - 102
偶数 + 偶数 = 偶数 偶数 - 偶数 = 偶数
你能很快判断下列算式的结果 是奇数还是偶数吗?
20149+2018
奇数 + 偶数 = 奇数
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5
和是奇数
思考:继续抽下去会中奖吗? 是什么原因拿到礼物呢? 你总结出什么规律呢?
? 偶数+奇数= 奇数
? 偶数+奇数= 奇数
奇数:
…
偶数:
…
?
奇数+偶数=?
奇数? 偶数?
奇数+奇数=?
奇数? 偶数?
偶数+偶数=?
奇数? 偶数?
5 + 8 = 13 奇数 + 偶数 = 奇数
7 + 8 = 15
5 + 7 = 12 奇数 + 奇数 = 偶数