人教版七年级数学有理数单元测试题

合集下载

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 3.在,-4,0,这四个数中,属于负整数的是()A.B.C.0 D.4.|x|=|﹣3|,则x是()A.3 B.-3 C.D.±35.下面计算正确的是()A.﹣(﹣2)2=22B.(﹣3)2×C.﹣34=(﹣3)4D.(﹣0.1)2=0.126.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方7.如果两个有理数的积是负数,和是正数,那么这两个有理数()A.同号,且都为正数B.异号,且正数的绝对值较大C.同号,且都为负数D.异号,且负数的绝对值较大8.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.|b|>|a| B.a﹣b<0 C.a+b<0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.有理数3.1415精确到百分位结果是.10.两个有理数的和是5,其中一个加数是12,那么另一个加数是.11.某地一天早晨的气温是-7℃,中午气温上升了11℃半夜又下降了9℃,半夜的气温是℃.12.一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是.13.如图是一个三阶幻方,图中每行、每列、每条对角线上的数字之和相等,则的值为.三、解答题:(本题共5题,共45分)14.计算(1)(2)15.计算:(1)(2)(3)16.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。

七年级有理数单元测试卷人教版

七年级有理数单元测试卷人教版

七年级有理数单元测试卷人教版一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -1B. 0C. 0.5D. - (1)/(2)2. 有理数 -3的相反数是()A. -3B. 3C. (1)/(3)D. - (1)/(3)3. 计算( - 2)+( - 3)的结果是()A. 1B. -1C. 5D. -5.4. 计算- 3 - ( - 5)的结果是()A. -2B. 2C. -8D. 8.5. 计算( - 2)×3的结果是()A. 6B. -6C. 5D. -5.6. 计算( - 4)÷2的结果是()A. 2B. -2C. 4D. -4.7. 一个数的绝对值是5,则这个数是()A. 5B. -5C. ±5D. (1)/(5)8. 比较大小:-(3)/(4)___-(4)/(5)()A. >B. <C. =D. 无法确定。

9. 下列运算正确的是()A. 2 + 3×4 = 20B. ( - 2)^2=-4C. ( - 2)×( - 3)=6D. - 3^2 = 910. 若| a| = 3,| b| = 2,且a < b,则a + b的值为()A. -1或 - 5B. -1或5C. 1或 - 5D. 1或5。

二、填空题(每题3分,共15分)1. 某天的最高气温为5^∘C,最低气温为-3^∘C,则这天的温差是___^∘C。

2. 绝对值小于3的所有整数有___。

3. 把( - 8)+( + 3)-(-5)-(+7)写成省略括号的和的形式是___。

4. 计算:(-1)^2023=___。

5. 若a、b互为相反数,c、d互为倒数,则a + b + cd=___。

三、解答题(共55分)1. (8分)计算:(1)12-( - 18)+( - 7)-15;(2)( - (2)/(3))+((1)/(2))-((1)/(4))-((1)/(6))。

2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.以下四个有理数中,绝对值最小的是( )A .-2B .2C .0D .12.下列选项,具有相反意义的量是( )A .增加20个与减少30个B .6个老师和7个学生C .走了100米和跑了100米D .向东行30米和向北行30米3.下列说法中不正确的是( )A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界4.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为 27500 亿立方米,人均占有淡水量居世界第 110 位,因此我们要节约用水,其中 27500 用科学记数法表示为( )A .227510⨯B .42.7510⨯C .52.7510⨯D .327.510⨯5.数轴上的两点之间的距离为7,一个点表示的数是﹣3,则另一个点表示的数是( )A .4B .4或﹣10C .﹣10D .10或﹣46.下列各式中,积为负数的是( )A .()()123-⨯-⨯B .()()123-⨯-⨯-C .()103-⨯⨯D .()()()123-⨯-⨯-7.如图,在一个不完整的数轴上有A ,B ,C 三个点,若点A ,B 表示的数互为相反数,则图中点C 点表示的数是( )A .2-B .1C .0D .48.现定义两种运算“ ⊕ ”,“ * ”.对于任意两个整数 11a b a b a b a b ⊕=+-*=⨯-, ,则 (68)(35)⊕*⊕ 的结果是( )A .69B .90C .100D .112 二、填空题9.123- 的倒数是 ,-2.3的绝对值是 . 10.5月23日,我国许多天文爱好者都拍摄了金星伴月的美丽天象,金星是距离地球最近的行星,距离大约4050万千米,用科学记数法表示这个数字为 千米.(保留两位有效数字)11.我们把向东走8步记作+8步,则向西走5步记作 步.12.大于- 132 而小于 122的所有整数的和是 . 13.已知|a ﹣2|+|b+1|=0,则(a+b )﹣(b ﹣a )= .14.如图是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为 .三、计算题15.510.474( 1.53)166----16.计算:(1)()1375+-- ;(2)()()324542-÷---⨯-17.计算:(1)()15136326⎛⎫-+⨯- ⎪⎝⎭;(2)()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭.18.如图所示,在一条不完整的数轴上从左到右有点 ,,A B C ,其中 2AB = , 1BC = 设点 ,,A B C 所对应的数之和是 m ,点 ,,A B C 所对应的数之积是 n .(1)若以 B 为原点,写出点 ,A C 所对应的数,并计算 m 的值;若以 C 为原点, m 又是多少?(2)若原点 O 在图中数轴上点 C 的右边,且 4CO = ,求 n 的值.19.某工厂一周内计划每日生产200辆车.受各种因素影响,实际每天的产量与计划量相比的情况如下表(增加为正)(1)本周三生产了多少辆车?(2)本周的总产量与计划相比,是增加还是减少了?增加或减少的数量是多少?(3)产量最多的一天与最少的一天相比,多生产多少辆?20.早在1960年、中国登山队首次从珠穆朗玛北侧中国境内登上珠峰,近几十年,珠峰更是吸引了大批的登山爱好者,某日,登山运动员傅博准备从海拔7400米的3号营地登至海拔近7900米的4号营地,由于天气骤变,近6小时的攀爬过程中他不得不几次下撤躲避强高空风,记向上爬升的海拔高度为正数,向下撒退时下降的海拔高度为负数,傅博在这一天攀爬的海拔高度记录如下:(单位:米)+320、-55、+116、-20、+81、-43、+115.(1)傳博能按原计划在这天登至4号营地吗?(2)若在这一登山过程中,傅博所处位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,则傅博这天消耗了多少卡路里?参考答案:1.C 2.A 3.C 4.B 5.B 6.D 7.B 8.B9.37-;2.310.74.110⨯11.-512.3-13.414.-115.解:原式= 510.474+1.53166-- = 510.47 1.534166+--=2-6=-4.16.(1)解:原式 1375=--65=-1=(2)解:原式 8458=-÷-+258=--+1=17.(1)解:()15136326⎛⎫-+⨯- ⎪⎝⎭()()()151363636326=⨯--⨯-+⨯-()()12906=---+-12906=-+-72=(2)解:()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭511138162=⨯-+÷1383216=-+⨯52=-+3=-18.(1)解:以 B 为原点,点 ,A C 所对应的数分别是 2- , 12011m =-++=-以 C 为原点 (21)(1)04m =--+-+=- ;n=---⨯--⨯-=-(2)解:(412)(41)(4)14019.(1)解:200-3=197(辆)答:本周三生产了197辆车(2)解:-8+8-3+4+14-9-25=-20 (辆)减少了20辆.答:本周与计划相比,总产量减少了,减少了20辆(3)解:产量最多的一天生产了200+14=214(辆)产量最少的一天生产了200-25=175(辆)产量最多的一天与最少的一天相比,多生产了214-175=39(辆)答:产量最多的一天与最少的一天相比,多生产39辆.20.(1)解:依题意得:-+-+-+=(米)傳博一天内的攀爬高度为:32055116208143115514-=<3号营地登至4号营地的高度为:79007400500514∴傳博能按原计划在这天登至4号营地(2)解:依题意得:傅博这天消耗了的卡路里为:()+-++-++-+⨯=⨯= 32055116208143115875086000。

初中数学人教版七年级上册第一单元《有理数》综合测试卷

初中数学人教版七年级上册第一单元《有理数》综合测试卷

初中数学人教版七年级上册第一单元《有理数》综合测试卷一、选择题1.下列各对数中,互为相反数的是()A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.−12的相反数是()A.12B.−12C.-2D.2 3.(2024七上·渠县期末)−2024的绝对值是()A.2024B.−2024C.12024D.−1 20244.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,−a,−b的大小顺序是()A.b<−a<a<−b B.−a<a<−b<bC.−a<b<a<−b D.−b<a<−a<b5.(2015七上·大石桥竞赛)把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或-1D.5或16.(2023七上·肇庆月考)下列各组数中互为相反数的是()A.−12与−2B.−1与−(+1)C.−(−3)与−3D.2与|−2|7.(2024·赤峰)如图,数轴上点A,M,B 分别表示数a,a+b,b,若AM>BM,则下列运算结果一定是正数的是()A.a+b B.a−b C.a b D.|a|−b8.(2022七上·京山期中)下列结论中正确的是()A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数9.(2022七上·鸡西期中)如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数10.(2023七上·应城期中)已知有理数a ,b ,c 满足abc <0,则a |a|+|b|b +c |c|−|abc|abc 的值是( )A .±1B .0或2C .±2D .±1或±2二、填空题11.(2017七上·黄冈期中)-2的绝对值是 12.(2020七上·兴庆期末)12的相反数是 .13.(2020七上·龙泉驿期中)在数轴上,与原点距离为6的点所表示的数是 . 14.已知|a −b |=b −a ,且|a |=6,|b |=3,则a +b 的值为 .15.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示 .三、计算题16.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,求m +cd +a+bm.四、综合题17.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,+6,−4,+2,−1.(1)总计超过或不足多少千克?(2)5筐蔬菜的总重量是多少千克?18.某共享单车厂一周计划生产700辆自行车,平均每天生产100辆,由于各种原因,实际每天生产量与计划量相比有出入,表格是某周的生产情况.(超产为正、减产为负)(1)根据记录,求产量最多的一天比产量最少的一天多生产几辆自行车?(2)该厂实行每周计件工资制,每生产一辆车可得50元加工费,若超额完成任务,则超过部分每辆另奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?19.(2018七上·顺德月考)邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?20.(2021七上·高安期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,b﹣a 0,c﹣a 0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.21.如图1,在数轴上点A表示数a,点B表示数b,O为原点,且a,b满足|a+5|+(b+2a)2= 0.(1)a=_____,b=______;(2)点P是数轴上一个动点,其表示的数是x,当AP=3BP时,求x;(3)如图2,E,F为线段OB上两点,且满足BF=2EF,OE=4,动点M从点A,动点N从点F同时出发,分别以2个单位/秒,1个单位/秒的速度沿直线AB向右运动,是否存在某个时刻,点M和点N相距一个单位?若存在,求此时点M表示的数;若不存在,请说明理由.。

人教版数学七年级上册第一章有理数《单元测试》附答案

人教版数学七年级上册第一章有理数《单元测试》附答案

人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。

人教版七年级数学上册《第一章有理数》单元测试题-附答案

人教版七年级数学上册《第一章有理数》单元测试题-附答案

人教版七年级数学上册《第一章有理数》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作()A.+10元B.﹣10元C.+20元D.﹣20元2.在数−2,12,√3,227中,有理数的个数有()A.4个B.3个C.2个D.1个3.如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是−3,则点B表示的数是()A.−1B.0 C.1 D.24.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.B.C.D.5.如图,数轴上点A所表示的数的相反数是()A.9 B.−19C.19D.−96.下列各对数中,互为相反数的是()A.-(-3)和3 B.+(-5)和-[-(-5)]C.13和-3 D.-(-7)和-|-7|7.有理数−2,−12,0,32中,绝对值最大的数是()A.−2B.−12C.0 D.328.−3的绝对值的相反数是()A.−3B.3 C.13D.0 二、填空题9.有理数中,最大的负整数是.10.在−5,|−4|,−(+3),0,−(−2)中,负数共有个.11.绝对值小于2.5的整数有.12.若a与−12互为相反数,则a的值为.13.如果一个数的绝对值是10,那么这个数是.三、解答题14.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297g.问食品生产厂家有没有欺诈行为?15.把下列各数填在相应的集合中:8,-1,-0.4与35,0,13,−137,−(−5),−|−207|.正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};非负有理数集合{ …}.16.求+358,-2.35,0,−227的相反数和绝对值.17.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.B5.D6.D7.A8.A9.-110.211.±2;±1;012.1213.±1014.解:由题意可知:“±5g”表示总净含量的浮动范围为上下5g,即含量范围在(300+5)=305克到(300−5)=295克之间,故总净含量为297在合格的范围内,食品生产厂家没有欺诈行为.15.8 3513−(−5);-1 -0.4 −137−|−207|;8 -1 0 −(−5);-0.4 3513−137−|−207|;8 350 1316.解:相反数分別是:−358,2.35,0,227;绝对值分别是:358,2.35,0,227.17.解:+3的相反数为:-3 -1.5的相反数为:1.50的相反数为:0−52的相反数为:52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。

人教版七年级数学试题:第一单元-有理数-单元测试题(含答案)

人教版七年级数学试题:第一单元-有理数-单元测试题(含答案)

有理数 单元测试题一、选择题(每小题3分,共30分)1. 若有理数a ,b 互为相反数,则下列等式恒成立的是( ).A .0=-b aB .0=+b aC .1=abD .1-=ab解:B .2. 如果3a 是负数,那么a ( ).A .0a >B .0a ≥C .0a <D .0a ≤解:C .3. 如果1a a=-,那么a 是 ( ). A .正数 B .负数 C .非正数 D .非负数解:B4. 若0ab ≠,则b a a b+的取值不可能是 ( ). A .0B .1C .2D .-2解:B .5. 两个相反数的商是 ( ).A .-1B .1C .0D .-1或没意义解:D .6. 下列说法正确的是 ( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为0,则这两个数都为0D .若两个数的和为正数,则这两个数中至少有一个为正数解:D .7. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式m b a cd m ++-2 的值为( ).A .3-B .3C .5-D .3或5-解:B .8. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .9. 若(2)(3)a =-⋅-,3(2)b =-,3(3)c =--,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .c >a >b D .c >b >a解:C .10. 计算()200820091(1)-+-的值是( ). A .0 B .-1 C .1 D .2解:A .二、填空题(每小题3分,共30分)11. 若数轴上表示的-4点记为A ,表示+2的点记为B ,那么把A 点向 边移动 个单位长度到B 点.解:右 6.12. y x --9的最大值是 ;y x ++-8的最小值是 . 解: 9 , -8.13. 如果022=-+-x x 那么x 的取值范围是 .解:2x ≤.14. 某食品包装袋上标有净含量“385±5(克)”,这包食品的合格净含量范围是_______克~ 克.解:380克~390克.15. 若2x =,3y =,且20x y<,则x y += . 解:1或-1.16. 绝对值大于4且小于7的整数有 .解:5±或6±.17. 已知一列数:1,-2,3,-4,5,-6,7,-8,9,-10……将这列数排列成下列形式. 第一行: 1第二行: -2, 3第三行: -4, 5, -6第四行: 7, -8, 9, -10第五行: 11, -12, 13, -14, 15……按照上述规律排列下去,那么第10行从左边数第5个数是 .解:-50.18. 若11x y⋅=-,则x 和y 之间的关系是__________. 解:互为相反数且不为0.19. 若230a b ->,则b 0.解:<.20. 水星和太阳的平均距离约为57900000km .用科学记数法表示57900000为 .解:75.7910⨯.三、解答题(本大题共5小题,共40分)21.计算:(每小题3分,共9分)(1)计算:()()⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-76.892583450114776.89 解:原式=()76.892583450114776.89++⎪⎭⎫ ⎝⎛-+- =()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++-50163450114776.8976.89 =0+⎪⎭⎫ ⎝⎛-504512 =10912-.(2)31324()864÷+-. 解:原式9418557624()24()242424245=÷+-=÷-=-.(3) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+217418 解:原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++217418=()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++217418 =()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++-++214178 =1+⎪⎭⎫ ⎝⎛-41 =43. 22.(6分) 计算:200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 解:原式=2005120041200412003141313121211-+-++-+-+- =1-20051 =20052004.23.(6分) 数a ,b c 在数轴上如图所示,求cc b b a a ++的值.解:由数轴可知0,0,0<>>c b a , ∴a a =,b b =,c c -=, ∴c c b b a a ++=cc b b a a -++ =1+1+(-1)=1.24.(9分). 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

人教版2024七年级数学上册第一章《有理数》单元测试卷

人教版2024七年级数学上册第一章《有理数》单元测试卷

1第一章有理数单元练习时间:60分钟 满分:100分 姓名:_______一、选择题(本大题共10小题,每小题3分,满分30分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.若收入300元记作+300元,则支出180元应记作( ) A. +180元 B.+300元 C.-180元 D.-480元2.有理数2024的相反数是( )A.2024B.-2024元C.20241-元 D.20241元 3.下列选项记录了我国四个城市某年一月份的平均气温,其中平均气温最低的是( ) A. 北京-4.6℃ B.上海5.6℃ C.天津-3.2℃ D.重庆8.1℃ 4. 在数轴上,表示-2的点与表示7的点之间的距离是( ) A.2 B.5 C.7 D.95. 飞机上有一种零件的尺寸标准是±2005(单位:mm ),则下列零件尺寸不合格的是( ) A.196mm B.198mm C.204mm D.210mm6. 下列说法正确的是( )A. 所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数 D 零既可以是正整数,也可以是负整数.7. 为了检测篮球是否合格,将其质量超过标准的克数记为正数,不足的克数记为负数,在下面得到的四个检测结果中,质量最接近标准的一个是( )A.-0.6B.0.7C.-2.5D.-3.5 8. 如果a a -=,则( )A.a 是正数B.a 是负数C.a 是零D.a 是负数或零 9.如图,将一刻度尺放在数轴上(数轴的单位长度是1),刻度尺上“0”和“3”分别对应数轴上的3和0,那么刻度尺上“5.6”对应数轴上的数为( )A.-1.4B.-1.6C.-2.6D.1.610.如图,数轴上点A ,B 表示的数分别为a ,b ,且b a <,则b b a a --,,,的大小关系为( ) A.b a a b <<-<- B.b a b a <<-<- C.b a a b <-<<- D.a a b b <-<<- 二、填空题(本大题共6小题,每小题3分,满分18分) 11.比较大小5-____3-.12.化简:7--=____,)(7--=____. 13.在数轴上,点A 所表示的数为-1,那么在数轴上与点A 相距2个单位长度的点表示的数是________. 14.23-与它的相反数之间有____个整数. 15.绝对值大于1.5且小于3的整数是_______.16.如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数的点对应圆周上的数字是______.三、解答题(共6大题,共54分)17.(6分)把下列各有理数填在相应的大括号内:313.0221,4130741.0,35,,,,,,----- 整数集合{ }; 负分数集合{ }; 正有理数集合{ }; 18. (6分)比较下列各组数的大小。

人教版七年级上册数学《有理数》测试题(含答案)

人教版七年级上册数学《有理数》测试题(含答案)

七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。

2023-2024学年人教版七年级数学上册第一章有理数 单元测试题(含解析)

2023-2024学年人教版七年级数学上册第一章有理数 单元测试题(含解析)

人教版七年级数学上册第一章有理数单元测试题一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走步记作步,那么向南走步记作( )A .步B .步C .D .步2.在数–8,+4.3,–|–2|,0,50,–中,整数有( ) A .3个B .4个C .5个D .6个3.在数轴上与表示数-3的点的距离等于2的点表示的数是( )A .1B .-5C .-1或-5D .-1或54.互为相反数是指( )A .意义相反的两个量B .一个数前面添上“-”所得的数C .数轴上原点两旁的两个点所表示的两个数D .只有符号不同的两个数(零的相反数是零)5.数-6,5,0,中最大的是( )A .-6B .5C .0D .6.某地一天中午12时的气温是,14时的气温升高了,到晚上22时气温又降低了,则22时的气温为( )A .B .C .D .7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .B .C .D .8.下列四个式子中,计算结果最大的是( )55+1010+10-12+步2-1272724℃2℃7℃6℃3-℃1-℃13℃0a b +>0a b ->a b a->->0a b ⋅>A .-23+(-1)2B .-23-(-1)2C .-23×(-1)2D .-23÷(-1)29. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .B .C .D .10.已知a 是一个三位小数,用四舍五入法得到a 的近似数是3.80,则a 的取值范围是( )A .B .C .D .二、填空题11.比较大小: (填“>”,“<”或“=”).12.若与3互为相反数,则等于 .13.计算: .14.已知整数a ,b ,c ,且,满足,则的最小值为 .三、计算题15.计算:(1)(2)(3)(4)四、解答题16.出租车司机小王某天下午营运全是在东西走向的汶河大道上进行的,如果规定向东为正,向西为负,这天上午他的行车里程(单位:千米)如下表所示:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次第十一次+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?70.4610⨯64.610⨯74.610⨯546.010⨯3.750 3.854a << 3.750 3.854a ≤<3.795 3.805a << 3.795 3.805a ≤<23-35-x 4x +()13633-÷⨯=0c <23101002023a b c +-=a b c ++()151318+-+()10.254-⨯-1243-÷⨯()232323-⨯+⨯-(2)若汽车耗油量为0.1升/千米,这天上午小王共耗油多少升?17.计算:已知,.若,求的值.18.在数轴上把下列各数表示出来,并用“<”连接各数.0,﹣|﹣1|,﹣3, ,﹣(﹣4)19.已知|m|=4,|n|=3,且mn <0,求m+n 的值.五、综合题20.如图,点A ,B ,C 为数轴上三点,点A 表示-2,点B 表示4,点C 表示8.(1)A 、C 两点间的距离是 .(2)当点P 以每秒1个单位的速度从点C 出发向CA 方向运动时,是否存在某一时刻,使得PA=3PB ?若存在,请求出运动时间;若不存在,请说明理由.21.(1)已知|m|=5,|n|=2,且m<n ,求m−n 值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y 的值.22.根据实际规律我们知道:海拔高度每升高100米,气温将下降0.6℃.甲、乙两名登山运动员在攀登同一座高峰,途中甲发信息说他所在地的气温为5℃,海拔为1200米,同一时刻乙发回信息说他所在地气温为-4℃.(设地面海拔为0米)(1)求此刻地面的气温为多少℃;(2)求乙所在地的海拔高度.5x =3y =0xy <||x y -112答案解析部分1.【答案】B【解析】【解答】解:向北走步记作步,那么向南走步记作步,故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】B【解析】【解答】解:–8是整数,+4.3是小数,–|–2|是整数,0是整数,50是整数,–是分数. 可知有四个整数.故答案为:B.【分析】本题考查整数的定义,根据整数的定义即可求出答案.3.【答案】C【解析】【解答】解:当这个点在表示数−3的点的左边,则这个点表示的数为−3−2=−5;当这个点在表示数−3的点的右边,则这个点表示的数为−3+2=−1.故答案为:C.【分析】分类讨论:①当这个点在表示数−3的点的左边;②当这个点在表示数−3的点的右边,然后根据数轴上的点表示数的方法即可得到答案.4.【答案】D【解析】【分析】本题主要考查相反数的意义,根据相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0,即得结果。

人教版七年级数学上册第一章 有理数 单元测试卷(2024年秋)

人教版七年级数学上册第一章  有理数  单元测试卷(2024年秋)

人教版七年级数学上册第一章有理数单元测试卷(2024年秋)七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作()A.+30元B.-50元C.-30元D.+50元2.-12的相反数是()A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为()A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是()A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()A B C D7.下列说法中,错误的是()A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是()A.A B.B C.C D.D9.下列说法中,错误的有()①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A.1个B.2个C.3个D.4个10.[2024徐州二模]有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a>b B.-a>-bC.|a|>|b|D.|-a|>|-b|二、填空题(每题4分,共24分)11.[真实情境题航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是,绝对值是.12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715(2)----14.当x=时,|x-6|+3的值最小.15.[新考法分类讨论法]如果点M,N在数轴上表示的数分别是a,b,且|a|=2,|b|=3,那么M,N两点之间的距离为.16.[新考法分类讨论法2024烟台栖霞市月考]点A为数轴上表示-2的点,当点A沿数轴以每秒3个单位长度的速度移动4秒到达点B时,点B所表示的有理数为.三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{…};负数集合:{…};正整数集合:{…};负整数集合:{…};负分数集合:{…};有理数集合:{…}.18.(6分)化简下列各数:(1)-(-68);(2)-(+0.75);(3)--19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.-4,|-2.5|,-|3|,-112,-(-1),0.20.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1.C2.D3.A4.D5.A6.A7.A8.D9.D10.B二、11.-60;6012.1013.(1)<(2)<14.615.1或516.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68.(2)-(+0.75)=-0.75.(3)---=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A,B表示的数互为相反数,可确定数轴原点O如下图:所以点C表示的数为5.(2)由点B,D表示的数的绝对值相等,可知点B,D表示的数互为相反数,从而可确定数轴原点O如下图:所以点A表示的数为12.(3)由题意可知点F在点E的左边或右边.当点F在点E的左边时,如图:所以点F表示的数为-5;当点F在点E的右边时,如图:所以点F表示的数为1.故当EF=3时,点F表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为12×2024=1012.又因为点M在点N的左侧,所以点M表示的数为-1010,点N表示的数为1014.。

初中数学人教版七年级上册 第二章 有理数的运算单元测试(含简单答案)

初中数学人教版七年级上册 第二章 有理数的运算单元测试(含简单答案)

第二章 有理数的运算一、单选题1.天宫空间站每天大约要绕地球15周半,大约每90分钟,航天员就要经历一次日出与日落,经计算,空间站绕地球一周的路程大约为43000千米.将数据43000可用科学记数法表示为( )A .43×103B .4.3×104C .4.3×105D .0.43×1052.把算式(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A .−5−4−7+2B .−5+4−7+2C .−5+4−7−2D .−5−4+7−23.下列各数中,结果相等的是( )A .23和32B .(−2)3和−23C .(−3)2和−32D .|−2|3和(−2)34.某市一天的最高气温为2°C ,最低气温为−9°C ,那么这天的最高气温比最低气温高( )A .−11°CB .−7°C C .11°CD .7°C5.计算|−2|−23×(−3)的结果为( )A .–26B .–22C .26D .226.下列算式:①(−2)+(−3)=−5; ②(−2)×(−3)=−6; ③−32−(−3)2=0; ④−27÷13×3=−27,其中正确的有( )A .0个B .1个C .2个D .3个7.绝对值不大于2的所有负整数的和为( )A .0B .-1C .-2D .-38.若−1<a <0,则对a 、−a 、a 2、a 3排列正确的是( )A .a <a 3<a 2<−aB .a <−a <a 2<a 3C .a <a 3<−a <a 2D .−a <a <a 2<a 39.如果a ,b 满足a +b >0且ab <0,则下列各式中正确的是( )A .a >0,b <0B .a <0,b >0C .a >0,b <0且|a |<|b |D .a ,b 异号,且正数的绝对值较大10.若|a |=2,|b |=23,且ab <0,则a b =( )A .3B .−2C .−3D .3或−3二、填空题11.计算|−18|+6= .12.比-3.5大的所有负整数的和为 .13.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为−3,1,若BC =2,则AC 等于 .14.若a 、b 互为相反数,c 、d 互为倒数,|x |=3,则式子−2(a +b )+cd +x 的值为 .15.若|a +3|+(b ﹣1)2=0,则a +b = .16.规定“*”是一种运算符号,且a *b =ab ﹣3a ,则计算(﹣3)*2= .17.小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现包括他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,-2),B (+6,-5).经过A ,B 这两站点后,车上还有 人.18.有一个数值转换器,其工作原理如图所示,若输入-2,则输出的结果是 .三、解答题19.计算:(1)−20−(−18); (2)2×(−3)+8÷(−2);(3)−22+[1−(−3)2]×|−14|; (4)(−24)×(0.25−38)+(−1)2023.20.“十一”黄金周期间,某超市家电部大力促销,收银情况如下表,下表为当天与前一天的营业额的涨跌情况(上涨为正,下跌为负,单位:万元).已知9月30日的营业额为26万元:10月1日10月2日10月3日10月4日10月5日10月6日10月7日+4+3+20−1−3−5(1)家电部黄金周内哪天收入最高,为多少万元?哪天收入最低,为多少万元?(2)家电部黄金周内平均每天的营业额是多少万元?21.小明骑摩托车从咖啡店出发,在东西向的大道上送咖啡.如果规定向东行驶为正,向西行驶为负,一天中小明的五次行驶记录如下(单位:km):−7,+8,−4,+6,−5.(1)求第五次咖啡送完时小明在咖啡店的什么方向?距离多少千米?(2)若摩托车每千米耗油量为0.2升,小明从出发送第一次咖啡到送完五次咖啡后返回咖啡店共耗油多少升?22.外卖送餐为我们的生活带来了许多便利,某学习小组调查了一名外卖小哥一周每天的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“−”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量/单−3+4−5+14−8+7+12求该外卖小哥这一周平均每天送餐多少单.23.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作−10.上星期图书馆借出图书记录如下:星期星期一星期二星期三星期四星期五记录数值+8−7+6+12小明统计时不小心把星期四的数据滴上墨水了,请你根据以上信息,回答下列问题:(1)上星期三借出图书多少册?(2)上星期二比上星期三少借出图书多少册?(3)上星期五比上星期四多借出图书15册,被污染的数据是多少?(4)上星期图书馆一共借出图书多少册?24.阅读材料:求1+2+22+…+22023+22024的值.解:设S=1+2+22+…+22023+22024将等式两边同时乘以2,得2S=2+22+23+…+22024+22025将下式减去上式,得S=22025−1即1+2+22+…+22023+22024=22025−1请你仿照此法计算:(1)1+3+32+33+⋯+310(2)15+152+153+⋯+1519参考答案:1.B2.C3.B4.C5.C6.B7.D8.A9.D10.C11.2412.-613.6或214.4或−215.﹣2.16.317.1618.-219.(1)-2;(2)-10;(3)-6;(4)2.20.(1)家电部黄金周内10月3日、4日收入最高,为35万元;10月7日收入最低,为26万元(2)家电部黄金周内平均每天的营业额是32万元21.(1)西方,2km(2)6.4升22.该外卖小哥这一周平均每天送餐43单23.(1)56册(2)13册(3)−3(4)266册24.(1)311−12(2)519−14×519。

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)

七年级数学上册《第一章 有理数》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.6的负倒数是( )A .﹣6B .6C .16D .16- 2.下列计算结果最小的是( )A .()22--B .()22-C .212⎛⎫- ⎪⎝⎭D .212⎛⎫-- ⎪⎝⎭3.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为( )A .3.6×102B .360×104C .3.6×104D .3.6×1064.①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有( )A .2个B .3个C .4个D .5个5.一个点从数轴的﹣1所表示的点开始,先向左移动5个单位,再向右移动3个单位,这时该点表示的数是( )A .1B .﹣2C .﹣5D .﹣36.按照如图所示的操作步骤进行计算,若输人的值为-3,则输出的值为( )A .0B .4C .55D .607.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是(A .269元B .369元C .569元D .669元8.有理数a ,b 在数轴上的位置如图,则下列各式不成立的是( )A .a+b <0B .a ﹣b >0C .ab >0D .|b|>a 二、填空题: 9.计算23--的结果为 .10.用科学记数法表示123000000000= .11.在数轴上,点A 表示的数为15-,点M 以每秒3个单位长度的速度从点A 出发沿数轴向右运动经过 秒,点M 与原点O 的距离为6个单位长度.12.若一种零件的直径尺寸为0.040.0330+-mm .则该种零件的最大直径为 mm ,最小直径为 mm .13.有一张厚度是0.2毫米的纸,如果将它连续对折6次,则折叠6次后的厚度为 毫米.14.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使m 所表示的数是 。

2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)

2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)

8.如图,点4在数轴上表示的数为1,将点A向左移动4个单位长度得到点6,则点3表示的数为
()
A ------------------------- --------------- A
01
A. -2
B. -3
C. -5
D. 5
9.在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A. 5
B. -7
(2)负分数集合:{-5.15, _0 -5%,……}.
17. 0, 2.
18. 120.
故答案为:-5.15, -0. 4,- 5%; (3)非负数集合:{+5, ().06, O, π, 1.5, ........}. 故答案为:+5, 0.06, 0, m 1.5; (4)有理数集合:{-8, +5, 0.06, ∙5.15, 0, _0.
23. (8分)(1)如果同=5,以=2,且小6异号,求a、b的值. (2)若Ial=5, |" = 1,且求内力的值.
第3页共6页
24. (8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5X5的方格(每个小方格的边长 表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点& G O, E处的某只羊, 规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为Af3( + 1, +3),从点3 到点A记为B-A (-1, -3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向
发,到收工时所走路程(单位:千米)分别为:+10, -3, +4, +2, -8, +13, -2, +12, +8,
+5.
(1)收工时在A地的

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

B.绝对值等于 3 的数是-3
C.若 a a ,则 a ≤0
D.绝对值不大于 2 的数是±2,±1,0
4.将 6.9108 6.6107 的计算结果用科学记数法表示为( )
A. 3108
B. 3107
C. 6.24107
D. 6.24108
5.两个有理数 a,b 在数轴上位置如图,下列四个式子中运算结果为正数的是( )
2023-2024 学年七年级上册数学人教版
第一章《有理数》单元测试题
一、单选题(共 10 小题,满分 40 分) 1.下面四个数中,最大的数是( )
A. 4
B. 1
C. 0
D. 5
2.下列计算结果是负数的是( )
A. 2
B. 23
C. 321 0
D. - (- 2)
3.下列说法正确的是( )
A.一个数的绝对值一定大于这个数的相反数
12.数轴上有 A、B 两点,点 A 表示数为 m,点 B 表示数为 n,则 A、B 两点之间的距离为: .
13.重庆市卫生健康委发布消息,截至 5 月 6 日,重庆市已累计接种新冠病毒疫苗 10210000 人次,其中数 10210000
用科学记数法表示成

14.一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑 1 米,
用科学记数法表示为

18.用“★”定义新运算:对于任意有理数 a、b,都有 a★b=ba,那么 4★(2)= .
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.某奶粉每袋的标准质量为 454 克,在质量检测中,若超出标准质量 2 克,记为 2 克,若低于标准质量 2 克,记 为 2 克;若质量低于标准质量 3 克以上的,则这袋奶粉为不合格,现在抽取10 袋样品进行质量检测,结果如下(单 位:克) 袋号 1 2 3 4 5 6 7 8 9 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第一章有理数单元测试
1、在-5,-
10
1
,-,-,-2,-212各数中,最大的数是( ) A -12 B -10
1
C -
D -5
2在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A 、5
B 、-7
C 、5或-7
D 、8
3、如果|x|=|-5|,那么x 等于( )
A 、5
B 、-5
C 、+5或-5
D 、以上都不对
4 a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)
(C)a -b>0 (D)b -5、比-大,而比1小的整数的个数是( )
A 6
B 7
C 8
D 9
6、某天股票A 开盘价为12元,上午12:00跌元,下午收盘时又涨了元,则股票
A 的收盘价是( ) A 、元
B 、元
C 、元
D 、12元
二、填空题
7计算31-2
1
= .
8如果数轴上的点A 对应的数为,那么与A 点相距3个单位长度的点所对应的有
理数为___________。

9、倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 。

10、m -的相反数是 ,1m -+的相反数是 ,1m +的相反数是 .
11、已知a 、b 互为相反数,cd 互为倒数,则a -cd +b= 。

12、若|m -2|+|n +3|=0,则2n-3m= 。

13、观察式子
3
11⨯=⎪⎭⎫ ⎝⎛-31121,531
⨯=⎪⎭⎫ ⎝⎛-513121,
⎪⎭⎫ ⎝⎛-=⨯715121751,……由此可知
+⨯+⨯+⨯751531311……+=⨯2011
20091 。

14、如果|x +8|=5,那么x = 。

15、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2
,1+3+5+7+9
=25=5 2
,…… 猜想:(1) 1+3+5+7…+99 = ;
(2) 1+3+5+7+…+(2n-1)= _____________ . (结果用含n 的式子表示,其中n =1,2,3,……)。

16、计算| - π|- π的结果是 . 17、规定图形
表示运算a –b + c,图形
表示运算w y z x --+.
则 + =_______(直接写出答案).
18、计算:
()()()200021111-+-+- =_________。

19.观察下面一列数,根据规律写出横线上的数,
-1
1;21;-31;4
1
; ; ;……;第2003个数是 。

20 (1)8+(―4
1)―5―(― (2)―82+72÷36
(3)72
1×14
3÷(-9+19) (4)25×4
3―(―25)×2
1+25×(-4
1)
(5)(-81)÷24
1+9
4÷(-16) |-2|-(-)―|1-4|
(2) (-
21+61-83+125)×(-24) 2
1
(3) (-12)÷4×(-6)÷2 (4)64÷(-351)×8
5
21若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值。

22已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,

2||
4321
a b m cd m ++-+的值.
23一天小明和冬冬利用温差来测量山峰的高度。

冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降℃,问这个山峰有多高5分
24下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时
数)。

现在的北京时间是上午8∶00 (1)求现在纽约时间是多少
(2
25为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公
路上免费接送老师。

如果规定向东为正,向西为负,出租车的行程如下。

(单位:千米)
+15 -4 +13 -10 -12 +3 -13 -17
(1) 当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少
(2)若出租车的耗油量为升/千米,这天上午出租车共耗油多少升
一、选择题
1、下列叙述正确的是( )
(A)有理数中有最大的数. (B)零是整数中最小的数.
(C)有理数中有绝对值最小的数. (D)若一个数的平方与立方结果相等,则这个数是0.
2、 下列近似数中,含有3个有效数字的是( ) (A )5 430. (B )×10
6
(C ) 0. (D )万.
3、下列关于有理数-10的表述正确的是( ) (A )-(-10)<0. (B) -10>-
10
1 (C )-102<0. (D) -(-10)2
>0.
4、已知两数相乘大与0,两数相加小于0,则这两数的符号为( )
(A) 同正. (B )同负. (C )一正一负. (D )无法确定. 5、若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( ) (A )10. (B )-10. (C )6. (D )-6. 6、算式(
61-21-3
1
)×24的值为( ) (A )-16. (B )16. (C )24. (D )-24. 7、已知不为零的a,b 两数互为相反数,则下列各数不是互为相反数的是( ) (A )5 a 与5 b . (B)a 3与b 3. (C)a 1与b
1. (D)a 2与b
2. 8、按下面的按键顺序在某型号计算器上按键:
显示结果为( )
(A ). (B ). (C ) 5. (D ) 25. 二、填空题 9. -
32的倒数是 ;-32的相反数是 ,-32
的绝对值是 ; -3
2
的平方是 . 10、比较下列各组数的大小:
(1)
43 65; (2)-87 -9
8
; (3) -22
(-2)2
;(4)(-3)3 -33
. 11、(1)近似数万精确到 位;有效数字分别是 ;
(2)1纳米等于十亿分之一米,用科学记数法表示25米= 纳米. 12、我国著名数学家华罗庚曾经说过这样一句话:“数形结合百般好,隔裂分家万事休”.
如 图, 在一个边长为1的正方形纸板上,依次贴上面积为
21,41,81,161,…,102
1
表达式: .
三、解答题
13、计算
(1)(-18)÷241×9
4
÷(-16); (2)4+3×(-2)3+33;
(3)-63×(-61)2-72
; (4)30÷(51-6
1).
14、股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):
(1)星期三收盘时,该股票涨或跌了多少元
(2)本周内该股票的最高价是每股多少元最底价是每股多少元
(3)已知小杨买进股票时付了‰的手续费,卖出时还需要付成交额的‰的手续费和1‰的交易税.如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何。

相关文档
最新文档