初二奥林匹克数学竞赛试题

合集下载

奥林匹克数学竞赛初中试题

奥林匹克数学竞赛初中试题

1、若一个正整数的平方减去另一个正整数的平方等于45,则这两个正整数的和最小为:A. 5B. 7C. 9D. 11解析:设两正整数为a和b(a>b),则有a²- b²= 45,即(a+b)(a-b) = 45。

由于45可分解为1×45、3×15、5×9、9×5、15×3、45×1,考虑到a、b均为正整数且a>b,所以(a+b)与(a-b)的差应尽可能小,取5和9时满足条件,此时a=7,b=2,a+b=9。

(答案)C2、一个两位数,其十位数字与个位数字之和为9,若将这个两位数的十位数字与个位数字对调,得到的新数比原数大9,则原数为:A. 45B. 54C. 36D. 63解析:设原数十位为x,个位为9-x,原数为10x+9-x=9x+9,对调后的数为10(9-x)+x=90-9x,根据题意90-9x-(9x+9)=9,解得x=4,所以原数为45。

(答案)A3、在1至100之间,能被3整除但不能被5整除的数的个数是:A. 20B. 26C. 30D. 33解析:1至100之间能被3整除的数有33个(3,6,9,...,99),其中能被5整除的有6个(15,30,45,60,75,90),所以能被3整除但不能被5整除的数有33-6=27个,但需注意100不在此范围内,故实际个数为26个。

(答案)B4、若a、b、c为整数,且a+b+c=0,|a|+|b|+|c|=10,则a、b、c的可能取值组合有:A. 1组B. 2组C. 3组D. 4组解析:考虑a、b、c的绝对值组合,满足|a|+|b|+|c|=10,且a+b+c=0,则必有正有负。

可能的组合有(5,3,2)、(4,4,2)但后者不满足a+b+c=0,故只有(5,3,2)及其排列,共4组解。

(答案)D5、一个正方形的对角线长为10cm,则这个正方形的面积为:A. 25cm²B. 50cm²C. 75cm²D. 100cm²解析:正方形的对角线将正方形分为两个等腰直角三角形,对角线作为斜边,根据勾股定理,设边长为a,则2a²=10²,解得a²=50/2=25,正方形面积为a²=25cm²。

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。

答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。

因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。

经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。

试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。

答案:这是一个组合问题,我们可以使用组合公式来解决。

组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。

在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。

所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。

全国奥林匹克数学初二竞赛题

全国奥林匹克数学初二竞赛题

全国奥林匹克数学初二竞赛题
全国奥林匹克数学初二竞赛题
一、数学逻辑
1、已知函数f(x)的定义域为[a,b],若f(a)=8,f(b)=15,求f(c)的值。

2、若函数f(x)的定义域为[a,b],其图像对称轴的方程若为y=kx-k,求a,b的值。

3、已知椭圆的两个焦点F1,F2在x轴上,以及它们到圆心的距离为a,求椭圆方程。

二、不等式
4、设a,b,c分别为正实数,求使a,b,c满足不等式x^2+2ax+2bx+c=0
的有界解集。

5、若x^2+2ax+2bx+c>0,其中a,b,c均为正实数,求对应的x的取值范围。

6、已知x,y,a,b均为正实数,求使x^2+2ax+2bx+y^2+2ay+2by=c的有
界解集。

三、函数
7、已知f(x)的定义域为[2,30],求f(x)的最大值以及f(x)的最小值。

8、已知直线上有m,n两点,求m到n的最短距离以及对应的方程(以
y=mx+b的形式表示)。

9、已知椭圆上有m,n两点,求m到n的最短距离以及对应的方程(以ax^2+by^2+cx+dy+k=0的形式表示)。

四、应用题
10、已知某商品的销售总额为50万,还知该商品的单位成本为100元,求该商品的最大利润。

11、若有两段距离分别为a,b共需要t小时,若要同时全程行驶,求所
需的最大时间。

12、已知f(x)的定义域为[1,50],求f(x)的单调递增区间及它们的
端点值。

第八届奥林匹克全国数学大赛初二的题

第八届奥林匹克全国数学大赛初二的题

第八届奥林匹克全国数学大赛初二的题题目一:第八届奥林匹克全国数学大赛初二组一、选择题(共20题,每题4分,共80分)1. 在一个等差数列中,首项为3,公差为5,第5项为23,则这个等差数列的前n项和Sn为__________。

2. 已知一组数的平均值是18,如果将其中一个数3改成2,则新的平均值为____。

3. 若一个正整数除以8余2,除以10余6,求这个数除以40的余数是多少?4. 若直线y=3x+2与圆的方程为$x^2+y^2-2x-4y-11=0$,求这个圆与y轴的交点坐标。

5. 若正方形的边长为a,则其对角线的长度为______。

6. 若两条直线的斜率之和为5,斜率之积为-6,则这两条直线的方程分别是______。

7. 若甲乙两个数的和是100,乙丙两个数的和是80,乙数比丙数多10,求甲数是多少?8. 若一个正整数除以5余3,除以6余4,求这个数除以30的余数是多少?9. 设A、B、C三个整数满足A<B<C,如果A、B、C是一个等差数列,则这个等差数列的公差为______。

10. 若集合A={1, 2, 3},集合B={2, 3, 4},则集合A与集合B的并集为______。

二、填空题(共5题,每题6分,共30分)1. 在一个等差数列中,首项为2,公差为4,若前n项的和为56,则这个等差数列的第n项为______。

2. 设矩形的长是宽的3倍,周长为72,这个矩形的长和宽的分别是______。

3. 若$ax^2+bx+c$的图像与x轴两交点均为负数,则a、b、c的关系式为______。

4. 若直线y=2x-7与直线y=kx-2平行,则k的值为______。

5. 设一个正整数的个、十位数字和为12,将该数字的个、十位数字对调后,新数字比原数字增大36,该正整数为______。

三、解答题(共5题,每题10分,共50分)1. 设$\log_5{x}=a,\log_3{x}=b$,求$\log_{75}{x}$的值。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

八年级奥赛班试题及答案

八年级奥赛班试题及答案

八年级奥赛班试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是最小的质数?A. 2B. 3C. 4D. 5答案:A2. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 已知一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 6答案:C4. 计算下列算式的结果:(2+3)×(2-3)。

A. -1B. 1C. -5D. 5答案:A5. 一个数是另一个数的两倍,如果这个数是6,那么另一个数是:A. 2B. 3C. 4D. 5答案:B6. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 以上都是答案:D7. 一个数的平方是25,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C8. 计算下列算式的结果:(-3)×(-2)。

A. 6B. -6C. 3D. -3答案:A9. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C10. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是____。

答案:82. 一个数的倒数是1/3,那么这个数是____。

答案:33. 一个数的平方是16,那么这个数可能是____或____。

答案:4或-44. 已知一个数的平方根是4,那么这个数是____。

答案:165. 计算下列算式的结果:(-2)^3。

答案:-8三、解答题(每题10分,共50分)1. 已知一个等腰三角形的底边长为6,两腰长分别为5,求这个三角形的周长。

答案:周长 = 5 + 5 + 6 = 162. 计算下列算式:(-3)×(-4)×(-5)。

答案:-603. 一个数的平方是36,求这个数。

答案:这个数可能是6或-6。

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。

(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。

(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

八年级数学奥林匹克试卷

八年级数学奥林匹克试卷

一、选择题(每题5分,共20分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列哪个数是0.2的平方根()A. -0.2B. 0.2C. 0.04D. -0.043. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若OA=3,OB=4,则该一次函数的解析式为()A. y=3x+4B. y=4x+3C. y=3x-4D. y=4x-34. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 105°D. 90°5. 若一个数的平方根是±3,则这个数是()A. 9B. -9C. 27D. -27二、填空题(每题5分,共25分)6. 已知一元二次方程x^2-5x+6=0,则该方程的解为______。

7. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标为______。

8. 一个等边三角形的边长为a,则其面积S为______。

9. 若一个数的立方根是2,则该数是______。

10. 在△ABC中,若AB=AC,则△ABC是______三角形。

三、解答题(每题10分,共30分)11. (10分)已知等腰三角形ABC中,AB=AC,∠B=50°,求∠A的度数。

12. (10分)已知一次函数y=kx+b的图象经过点A(2,-3)和点B(-1,1),求该一次函数的解析式。

13. (10分)在平面直角坐标系中,点P(m,n)在第二象限,且m+n=5,求点P 关于x轴的对称点坐标。

四、附加题(20分)14. (10分)已知一元二次方程x^2-4x+3=0,求该方程的解,并证明该方程的解是方程x^2+2x-15=0的根。

15. (10分)已知等腰三角形ABC中,AB=AC,BC=6cm,AD⊥BC于点D,求三角形ABC的面积。

第八届奥林匹克全国数学大赛初二试题

第八届奥林匹克全国数学大赛初二试题

第八届 全国数学大赛初二试题(时间:120分钟 满分:140分)题号 一 二三总分 1718 19 20 得分一、选择 题(每小题5分,共40分)1、已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形2、已知方程组⎩⎨⎧=+=+4535y ax y x 与⎩⎨⎧=-=+5235y x by x 有相同的解,则b a ,的值为( )A .⎩⎨⎧==21b aB .⎩⎨⎧-=-=64b aC .⎩⎨⎧=-=26b aD .⎩⎨⎧==114b a3、甲是乙现在的年龄时,乙l0岁;乙是甲现在的年龄时,甲25岁,那么( ). A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁 D .乙比甲大5岁4、化简)2(2)2(2234++-n n n 得( ). A .8121-+n B .12+-n C .87 D .475、如果式子aa ---11)1( 根号外的因式移入根号内,化简的结果为( )A .a -1B .1-aC .1--aD .a --1 6、如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角EPF 的 顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点C 、F , 给出以下四个结论:①AE =CF ; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ;④EF =AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有( )A .1个B .2个C .3个D .4个.7、在实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D .8、若p 为质数,35p +仍为质数,则57p +为( ).A.质数B.可为质数也可为合数C.合数D.既不是质数也不是合数二、填空题(每小题5分,共40分)9、若关于x 的方程)2(2015)1(--=-x n x m 有无数个解,则m 2015+n 2015= . 10、已知3=xy ,那么yx y xy x +的值为 .11、某数的平方根是22b a +和1364+-b a ,那么这个数是 . 12、设43239-的整数部分为a ,小数部分为b ,则ba b a -+++41111= . 13、直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.14、如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2015的坐标为 .15.如上图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =2, CD =3,则AB =16、小明、小强、小华三人参加奥林匹克杯数学大赛,他们是来自北京、上海、成都的选手,并分别获得一、二、三等奖。

wmo世界奥林匹克数学竞赛试题八年级

wmo世界奥林匹克数学竞赛试题八年级

wmo世界奥林匹克数学竞赛试题八年级WMO世界奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。

以下是一套模拟的WMO世界奥林匹克数学竞赛试题,适用于八年级学生:一、选择题(每题3分,共15分)1. 若\( a \)和\( b \)互为相反数,\( c \)和\( d \)互为倒数,且\( a \)和\( b \)的绝对值相等,求下列表达式的值:\[ \frac{1}{2}ab + cd \]A. 0B. 1C. -1D. 无法确定2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 正负16D. 正负44. 一个圆的直径是14厘米,求这个圆的面积。

A. 38.5平方厘米B. 153.94平方厘米C. 69.08平方厘米D. 98.16平方厘米5. 一个数列的前三项分别是1,2,3,如果每一项都是前一项的两倍,那么第10项是多少?A. 1024B. 2048C. 4096D. 8192二、填空题(每题2分,共10分)6. 一个数的立方根是2,这个数是________。

7. 如果一个数的绝对值是5,那么这个数可能是________或________。

8. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是________立方厘米。

9. 一个分数的分子是7,分母是12,化简后的分数是________。

10. 一个正整数,如果它是3的倍数,同时也是5的倍数,那么这个数至少是________。

三、解答题(每题5分,共20分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 =\frac{n^2(n+1)^2}{4} \)。

12. 一个长方体的长、宽、高分别是\( l \)、\( w \)和\( h \),如果长方体的表面积是\( S \),求长方体的体积。

八年级奥林匹克数学竞赛题

八年级奥林匹克数学竞赛题

八年级奥林匹克数学竞赛题八年级的奥林匹克数学竞赛题相对于一般数学题而言,更侧重考查学生对知识的综合运用能力和解题思维能力,题目相对偏难一些。

接下来是店铺为大家带来的八年级奥林匹克的数学竞赛题,供大家参考。

八年级奥林匹克数学竞赛题目一填空题1、观察下列各式1× 3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是 __ 。

2、a=2005x+2004,b=2005x+2005,c=2005x+2006,代数式a2+b2+c2-ab-bc-ca= 。

3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的运费是元。

5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________。

6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。

7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件(只需填写一个你认为适当的条件即可)。

8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,第2堆有硬币____枚,第3堆有硬币_____枚.9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。

初二奥林匹克数学竞赛(10道变态难数学题)

初二奥林匹克数学竞赛(10道变态难数学题)

初二奥林匹克数学竞赛(10道变态难数学题)今天给大家分享的是八年级数学奥林匹克竞赛的知识,也会讲解10道异常难的数学题。

如果你碰巧解决了你现在面临的问题,别忘了关注这个网站,现在就开始!初二奥林匹克数学竞赛始于1894年由匈牙利数学界为纪念数理学家厄特沃什-罗兰而组织的数学竞赛。

而把数学竞赛与体育竞赛相提并论,与科学的发源地–古希腊联系在一起的是前苏联,她把数学竞赛称为数学奥林匹克。

20世纪上半叶,不同国家相继组织了各级各类的数学竞赛,先在学校,继之在地区,后来在全国进行,逐步形成了金字塔式的竞赛系统。

从各国的竞赛进一步发展,自然为形成最高一层的国际竞赛创造了必要的条件。

1975年匈牙利布达佩斯大学数学委员会提倡创立,并于1978年8月在匈牙利举行了第一次世界奥林匹克数学竞赛(Would Mathematical Olympiad 简称WMO)。

随着影响力的扩大,越来越多的国家和地区参与进来。

2006年,中国组委会提出申请,并于2007年8月获准加入该协会。

最近几年中国一直排名第一。

10道变态难数学题1、有六级台阶,小明从下往上走,若每次只能跨一级或两级,她走上去有几种可能?2.如果今天是星期六,从明天算起2的20次方后的第一天是星期几?3.在一个月中,星期二的天数比星期三多,星期一的天数比星期天多。

这个月5号是星期几?4、100的平方-99的平方+98的平方-97的平方+……+2的平方-1的平方是多少?5、1×2+2×3+3×4+……100×1016.某次比赛,一等奖10个,二等奖20个。

现在一等奖最后四个人调整为二等奖,所以二等奖平均分增加2分,也就是一等奖平均分增加1分。

原来一等奖比二等奖平均分多多少分?7.一条公交线路中间有15个站,有快车和慢车两种。

快车的速度是慢车的1.5倍。

慢车每站都停,快车只停中间站,停站时间2分钟。

慢车每次60分钟从同一个始发站发车时,快车刚好到达终点。

初中数学奥林匹克竞赛(八年级)

初中数学奥林匹克竞赛(八年级)

数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则( )A、构成等边三角形B、构成直角三角形C、构成锐角三角形D、三点在同一直线上2、边长为整数,周长为20的三角形个数是()A、4个B、6个C、8个D、123、N=31001+71002+131003,则N的个位数字是()A、3B、6C、9D、04、P为正方形ABCD内一点,若PA:PB:PC=1:2:3,则∠APB的度数为()A、120°B、135°C、150°D、以上都不对6、已知a+b+c≠0,且a+bc=b+ca=a+cb=p,则直线y=px+p不经过()A、第一象限B、第二象限C、第三象限D、第四象限7、计算(1252011)(2462010)的结果是()A.1004 B.1006 C.1008 D.10108、如果有四个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,那么m+n+p+q等于()A.21 B.24 C.26 D.289、如图2,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是()A.4 B.3 C.2 D.110、如果实数8181m n mm n m nn m n,且,则()A.7 B.8 C.9 D.10 二、填空题11、如果a是方程x2-3x+1=0的根,那么分式2a5-6a4+2a3-a2-13aF( 图2 )EDCBA的值是;12、甲乙两个机器人同时按匀速进行100米速度测试,自动记录仪表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点 1.01米,经过计算,这条跑道长度不标准,这这条跑道比100米多;13、根据图中所标的数据,图中的阴影部分的面积是;14、有三个含有30°角的直角三角形,它们的大小互不相同,但彼此有一条边相等,这三个三角形按照从大到小的顺序,其斜边的比为;15.若(20114149aQ a ,)是第三象限内的点,且a 为整数,则a =.16.若实数22222313-2x y x y S x y,满足,,则S 的取值范围是.17.在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,5∠C=9∠A ,则∠B 的度数是.18.已知22302010 672010xyxy,,则.三、解答题(本大题共有3小题,第11小题20分,第12、13小题各25分,满分70分)19、已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形20、已知n是大于1的整数求证:n3可以写出两个正整数的平方差21、已知正整数x、y满足条件:2x+1y=a,(其中,a是正整数,且x<y)求x和y。

八年级世界少年奥林匹克数学竞赛(中国区)总决赛试卷

八年级世界少年奥林匹克数学竞赛(中国区)总决赛试卷

(第15小题图)世界少年奥林匹克数学竞赛(中国区)总决赛八年级数学试卷(满分120分)一、选择题。

(每小题3分,共18分)(将正确答案的字母填在括号内)1.下列调查,比较适用普查而不适用抽样调查方式的是( )。

A .为了了解中央电视台春节联欢晚会的收视率 B .为了了解夏季冷饮市场上一批冰淇淋的质量情况C .为了了解初三某班的每个学生周末(星期六)晚上的睡眠时间D .为了考察一片试验田里某种水稻的穗长情况2.如果分式x x 2-1的值为零,那么x 的取值是( )。

A .0B .1C .-1D .±1 3.把不等式组 的解集表示在数轴上,正确的是( )。

4.某同学利用影子长度测量操场上旗杆的高度,在同一时刻,他测得自己影子长为0.8m ,旗杆的影子长为7m ,已知他的身高为1.6m ,则旗杆的高度为( )。

A .8cmB .10mC .12mD .14m 5.下列四个命题中是真命题的有( )。

(1)同位角相等 (2)相等的角是对顶角(3)直角三角形的两个锐角互余 (4)三个内角相等的三角形是等边三角形 A .1个 B .2个 C .3个 D .4个6.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )。

A .a 2―b 2=(a ―b)2B .(a +b)2=a 2+2ab +b 2C .(a ―b)2=a 2―2ab +b 2D .a 2―b 2=(a +b) (a ―b)二、填空题。

(每小题3分,共33分)7.今年我市约有6万名初中毕业生参加升学考试,为了解6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中总体是______________________。

8.当x____________时,分式x +1x -1有意义。

初二奥林匹克数学竞赛试卷

初二奥林匹克数学竞赛试卷

一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. 2/3B. -1/4C. √2D. 3.142. 已知a=2,b=-3,那么a²+b²的值是()A. 1B. 5C. 13D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,不成立的是()A. a²+b²=c²(c为直角三角形斜边)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)(a-b)=a²-b²5. 已知函数f(x)=3x²-4x+1,当x=2时,f(x)的值是()A. 5B. 7C. 9D. 11二、填空题(每题5分,共20分)6. 分数4/5的倒数是__________。

7. 下列数中,最小的负整数是__________。

8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。

9. 若a、b、c为三角形的三边,且满足a+b>c,b+c>a,a+c>b,那么这个三角形一定是__________三角形。

10. 在平面直角坐标系中,点A(2,3),点B(-1,-2),那么线段AB的中点坐标是__________。

三、解答题(每题20分,共80分)11. (10分)已知一元二次方程x²-5x+6=0,求它的两个根。

12. (10分)已知函数f(x)=2x+1,求函数f(x)的值域。

13. (10分)已知等差数列{an}的首项为2,公差为3,求第10项an的值。

14. (10分)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。

15. (10分)已知函数f(x)=ax²+bx+c(a≠0),若f(1)=2,f(2)=5,f(3)=10,求a、b、c的值。

世界少年奥林匹克数学竞赛初赛八年级考试卷(A)含答案

世界少年奥林匹克数学竞赛初赛八年级考试卷(A)含答案

世界少年奥林匹克数学竞赛(中国区)选拔赛2020-2021 初赛试卷 八年级(A 卷)┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄考生须知:本卷共120分,考试时间90分钟。

第1至20题,每题6分。

考试期间,不得使用计算工具或手机PART 1 填空题1.今有公鸡每个5个钱,母鸡每个3个钱,小鸡1个钱3个,用100个钱买100只鸡,公鸡买 只,母鸡买 只,小鸡买 只。

2.已知312=+x x ,23410156x x x ++的值是 。

3. 分解因式22)()1(b a ab +-+= 。

4.方程 9822=-y x 的整数解有 对。

5. ⋅⋅⋅=+=,2,1,0,12F 2n n n,的末位数字为7时,n 的取值范围是 。

6. 无论y x ,取任何实数,82422+--+y x y x 的值总是 数。

7. 取整计算[]=6.1- 。

8. 整数2160能被 个正整数整除。

9. 分解因式=+33y x 。

10.将456100321⨯⋅⋅⋅⨯⨯⨯化简后分母是 。

PART 2 单项选择题(把字母填在空格处)11. 50113=+y x 有 组整数解 。

A .1B .2C .3D .412、在等边三角形ABC 所在的平面内存在点P ,使⊿PAB 、⊿PBC 、⊿PAC 都是等腰三角形.请指出具有这种性质的点P 的个数( ) A .1 B .7 C .10 D .15_______学校 姓名_________辅导教师__________年级____考场____考号 手机电话---------------------------------------装-----------------------------订---------------------------线----------------------------------13.若1x >,0y >,且满足3y yxxy x x y ==,,则x y +的值为( ).A .1B .2C .92 D .11214、某手表每小时比准确时间慢3分钟,若在清晨4点30分时与准确对准,则当天上午该手表指示时间是10点50分钟,准确时间应该是 ( )A 、11点10分B 、11点9分C 、11点8分D 、11点7分PART 3 填空题(配方)15、已知a b c 、、是实数,且222617,823,214ab b c c a +=-+=-+=,则_________a b c ++=。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

九初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案

九初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案

八年级奥林匹克数学竞赛一、选择题(每小题5分,共30分)1.计算(1252011)(2462010)++++-++++L L 的结果是( )A . 1004B . 1006C . 1008D .10102.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120°B .90°C . 60°D .45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;若只由男教师完成,则每人应上辅导课( )节A .9B . 10C . 12D .144.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p )(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .285.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC ,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD ,③AC+CD=AB ,④BE=CF ,⑤BF=2BE ,其中正确的结论的个数是( )A .4B .3C .2D .16.如果实数8181m n m mn m n n m n ++≠=+=++,且,则( )A . 7B . 8C . 9D .10二、填空题(每小题5分,共30分)7.若(2011 4149aQ a --,)是第三象限内的点,且a 为整数,则a = . 8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 . 9.在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,5∠C=9∠A ,则∠B 的度数是 .10.分解因式:2322+-+-y x yx =__________________。

11.如图3所示的长方形中,甲、乙、丙、丁四块面积相等,甲的长是宽的2倍,设乙的长和宽分别是 :a b a b =和,则 .12.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC +CD 等于______________三、(本题满分20分)F( 图2 )EDC BA13.某公司用1400元向厂家订了22张办公椅,办公椅有甲、乙、丙三种,它们的单价分别是80元,50元,30元,问有哪些不同的订购方案.四、(本题满分20分)14.如图4,在△ABC 中,AD 交边BC 于点D , ∠BAD=15°,∠ADC=4∠BAD ,DC=2BD . ⑴求∠B 的度数; ⑵求证:∠CAD=∠B.五、(本题满分20分) 15.已知4 5 6.ab ac bca b a c b c===+++,, 求17137a b c +-的值.( 图4 )DCBA。

数学奥林匹克竞赛试卷初中

数学奥林匹克竞赛试卷初中

一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。

12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。

13. 一个数的平方根是±2,那么这个数是______。

14. 下列各数中,是质数的是______。

15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。

16. 若一个等边三角形的边长为a,那么它的周长是______。

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于它本身,那么这个数可能是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A4. 一个数列的前四项是2, 4, 8, 16,那么第五项是多少?A. 32B. 64C. 128D. 256答案:A二、填空题(每题5分,共20分)1. 一个等差数列的前三项是2, 5, 8,那么它的第五项是_________。

答案:112. 如果一个三角形的两边长分别是3cm和4cm,且这两边的夹角是90度,那么第三边的长度是_________。

答案:5cm3. 一个圆的直径是14cm,那么它的周长是_________。

答案:44π cm4. 一个数的立方等于它自身,那么这个数是_________。

答案:0或1或-1三、解答题(每题10分,共60分)1. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的第十项。

答案:第十项是76。

2. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求它的表面积和体积。

答案:表面积是94平方厘米,体积是60立方厘米。

3. 一个等比数列的前三项是2, 6, 18,求它的第五项。

答案:第五项是54。

4. 一个圆的半径是7cm,求它的面积。

答案:面积是154π平方厘米。

5. 一个数列的前四项是1, 3, 6, 10,求它的通项公式。

答案:通项公式是n(n+1)/2。

6. 一个长方体的长、宽、高分别是a、b、c,且a+b+c=12,求当a=4时,b和c的可能值。

答案:当a=4时,b和c的可能值是(3, 5)或(4, 4)或(5, 3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2008年初中数学联赛(初二组)试卷
一、选择题(本大题满分56分,每小题8分)
1、已知a 、b 、c 是三角形的三边,则
a 4+
b 4
c 4 -2 a 2c 2-2 b 2c 2-2 a 2c 2的值是( )
A.
恒正 B. 恒负 C.可正可负 D.非负 2、已知a +b +c =0, a
1
+b
1+c
1=-4,那么,
(a
1
)2
+(b
1)2
+(c
1)2
的值是( ) A.3 B. 8 C. 16 D.20
3、已知:a 1
-│a │=1,那么代数式a
1+│a │的值是( )
A.25
B.-2
5
C.-5
D. 5
4、已知│a │=5,b 2=9时,且ab >0则a +b 的值为( ),
A. 8
B.-2
C.-8或8
D.-2或2
5、已知a 、b 、c 是正整数,a >b ,且a 2-a b -a c +bc =7,
则a -c 的值为( )
A.-1
B.-1或-7
C.1
D.1或7 6、已知△ABC 的一个角是400,且∠A =∠B ,那么∠C 的外角的
大小是( )
A. 1400
B. 800或1000
C. 1000或 1400
D. 800 或1400
7、如图,已知FA =FB,FC =FD,下列结论中:①∠A ②DE =CE ;③连接FE ,则FE 平分∠F ,正确的是( ) A. ①② B.②③ C.①③ D.①②③
二、填空题(本大题满分40分,每小题8分)
1、若x 2+x y +y =14,y 2+x y +x =28,则 x +y 的值为 .
2、(
3+1)
2001
-2(3+1)
2000
-2(3+1)
1999
+2008= .
3、已知x 、y 是实数,43+x +y 2
-6y+9=0,若axy-3x=y ,则a= . 4、a 、b 、c 为△ABC 的三边,且3a 3+6a 2b-3a 2c-6abc=0,则△ABC 的形状为 .
5、已知x
1+y
1=5,则
y
xy x y
xy x +++-2252= .
1 2
三、计算(本大题满分20分,)要求写出必要的步骤.
(1)21
15141021
151410+++--+
2) 18
6
12⨯+(1+
3)(1-3)
四、(本大题满分12分,)
如图,在△ABC 中,AD 若AB=5,AC=3,求AD
五、(本大题满分12分)
如图,在△ABC 中,AB=AC ∠BAC=80°O 为△ABC 内一点,且∠OBC=10°,
∠OCA=20°,求∠BAO 的度数.。

相关文档
最新文档