第二章 结构图的等效变换求系统的传递函数 (1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合点移动
G3
G1
G2
向同类移动 无用功
错!
G2
H1
G3 G1
G1
G2
H1
G4 G1 G2
作用分解
G3
H1
G4 G1 G2
H3
G3
H1 H1
H3 H3
R(s)
G1
A C
D
G2
B
C(s)
当比较点和引出点出现相交叉的情况时,如上 图所示系统,比较点A因为引取出点C、D的存 在,引出点因为比较点A、B的存在不能前后 移动,不能用方框图化简的方法来求传递函数, 而必须借助梅森(Mason)增益公式。
引出点移动
H3(s) G1(s)
G 2G 3G 4G 3 (s)G 4 (s) G2(s) G3(s) G4(s) 1+G 3 (s)G 4 1+G 2 G 3H 2 +G 3G 4 H 3 (s)H3 (s)
H2(s)
1 G 4 (s)
H1(s)
G1G 2 G 3G 4 1+G1G 2 G 3G 4 H1 +G 2 G 3 H 2 +G 3G 4 H3
1 1
G2(s) G22(s) G (s) HH (s) 2 (s) H(s) 2 2
HH (s) 1 (s) H(s) 1 1
H3(s)
H3(s) H33(s) H (s)
C(s)
G1(s)
R(s) E(S) P1= –G2H3 P1=1 H1(s)
△△1= 1 2HH2(s)P1△1= ? 1=1+G 2
梅逊公式介绍
R-C :
C(s) = R(s)
∑Pk△k △
其中:
△称为系统特征式 △= 1 - ∑La + ∑LbLc -∑LdLeLf+…
所有单独回路增益之和 ∑LbLc—所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和
— ∑L
a
Pk—从R(s)到C(s)的第k条前向通路传递函数
L1L4=(–G1H1)(–G4G3)=G1G3G4H1
G3(s) R(s) R(s) R(s) R(s)
梅逊公式求E(s)
N(s) N(s) N(s)
G2(s) C(s) C(s) C(s)
P2= - G3G2H3 △2= 1 P2△2=?
G3 (s) E(S)G(s) G33(s) E(S) E(S) E(S) GG (s) 1 (s) G(s)
C(s) G1(s) =?
G4(s)
△2=1+G1H1
G2(s) G3(s) 试着写出答案,如何? G3(s)
P2= G4G3
L4= – G4G3
P1=G1G2G3
L1= –G1 H1 L2= – G3 H3 L5 = – G1G2G3
L3= – G1G2G3H3H1
L1L2= (–G1H1) (–G3H3) = G1G3H1H3
△k称为第k条前向通路的余子式 △k求法: 去掉第k条前向通路后所求的△ △k=1-∑LA+ ∑LBLC- ∑LDLELF+…
R(s)
a b
c
G4(s) G (s) G11(s) H1(s)
d e
梅逊公式例R-C
G22(s) G (s)
f
பைடு நூலகம்
G33(s) G (s)
g H3(s)
h
C(s)
△1=1
R(s)
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
相关文档
最新文档