圆柱与圆锥专题题型

合集下载

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。

7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。

8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。

9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。

三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。

11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。

四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。

13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。

答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。

11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。

(完整版)圆柱和圆锥20道专项练习题.doc

(完整版)圆柱和圆锥20道专项练习题.doc

圆柱和圆锥 20 道专项练习题1、一个圆柱形油桶,从里面量的底面半径是20 厘米,高是 3 分米。

这个油桶的容积是多少?2、一个圆柱,侧面展开后是一个边长9.42 分米的正方形。

这个圆柱的底面直径是多少分米?3、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12 升汽油。

如果这个油桶的内底面积是10 平方分米,油桶的高是多少分米?4、一只圆柱形玻璃杯,内底面直径是8 厘米,内装药水的深度是16 厘米,恰好占整杯容量的。

这只玻璃杯最多能盛药水多少毫升?5、有两个底面半径相等的圆柱,高的比是 2 : 5。

第二个圆柱的体积是175 立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?6、一个圆柱和一个圆锥等底等高,体积相差 6.28 立方分米。

圆柱和圆锥的体积各是多少?7、东风化工厂有一个圆柱形油罐,从里面量的底面半径是 4 米,高是20 米。

油罐内已注入占容积的石油。

如果每立方分米石油重700 千克,这些石油重多少千克?8、一个无盖的圆柱形铁皮水桶,底面直径是30 厘米,高是 50 厘米。

做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)9、一个圆锥形沙堆,高是 1.8 米,底面半径是 5 米,每立方米沙重 1.7 吨。

这堆沙约重多少吨?(得数保留整数)10 、一个圆锥与一个圆柱的底面积相等。

已知圆锥与圆柱的体积的比是1: 6,圆锥的高是 4.8 厘米,圆柱的高是多少厘米?11 、把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是 6 厘米的圆锥形机器零件,求圆锥零件的高?12 、在一个直径是20 厘米的圆柱形容器里,放入一个底面半径 3 里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3 厘米。

圆锥形铁块的高是多少厘米?13 、把一个底面半径是 6 厘米,高是10 厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是 5 厘米的圆柱形容器里,求圆柱形容器内水面的高度?14 、做一种没有盖的圆柱形铁皮水桶,每个高 3 分米,底面直径 2 分米,做 50 个这样的水桶需多少平方米铁皮?15 、学校走廊上有10 根圆柱形柱子,每根柱子底面半径是 4 分米,高是 2.5 分米,要油漆这些柱子,每平方米用油漆0.3 千克,共需要油漆多少千克?16 、一个底面周长是 43.96 厘米,高为8 厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?17 、一个圆柱体木块,底面直径和高都是10 厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?18 、用铁皮制成一个高是 5 分米,底面周长是12.56 分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?19 、一根圆柱形钢材,截下 1 米。

04 圆柱、圆锥、圆台的表面积和体积(原卷版)

04  圆柱、圆锥、圆台的表面积和体积(原卷版)

专题04圆柱、圆锥、圆台的表面积和体积题型一圆柱的表面积【例1】已知圆柱的底面半径r=1,母线长l与底面的直径相等,则该圆柱的表面积为( )A.6π B.8π C.9π D.10π【变式1-1】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.【变式1-2】一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是()A.142ππ+B.122ππ+C.12ππ+D.142ππ+【变式1-3】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122π B.12π C.82π D.10π题型二圆锥的表面积【例2】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为()A.B.2πC.D.【变式2-1】把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为()A.10 B.C.D.【变式2-2】已知某圆锥的底面半径为8,高为6,则该圆锥的表面积为_________.【变式2-3】圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.求圆柱的表面积和圆锥的表面积之比;【变式2-4】一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是()A.32πB.3πC.5πD.4π题型三圆台的表面积【例3】圆台的上下底面半径分别为1、2,母线与底面的夹角为60°,则圆台的侧面积...为________.【变式3-1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的表面积为574π,则圆台较小的底面半径为____________.【变式3-2】圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,求圆台的表面积.【变式3-3】已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是____________.【变式3-4】圆台的母线长为8 cm,母线与底面成60°角,轴截面的两条对角线互相垂直,求圆台的表面积.题型四圆柱的体积【例4】如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A.π B.2π C.4π D.8π【变式4-1】(多选)圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积可能是( )A.288πcm3B.192πcm3C.288π cm3D.192π cm3【变式4-2】周长为20cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_____3cm.【变式4-3】如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是________.题型五圆锥的体积【例5】已知圆锥的母线长为5,底面周长为6π,则它的体积为()A.10πB.12πC.15πD.36π【变式5-1】将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为()A.πB.C.3πD.3【变式5-2】已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为()A.3 B.3πC.9 D.9π【变式5-3】若一个圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比是( )A.1 B.1∶2 C.3∶2 D.3∶4题型六圆台的体积方法概要:台体的体积转化为求锥体的体积.根据台体的定义进行“补形”,还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.【例6】已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是_______.【变式6-1】圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为()A.40πB.52πC.50πD.212 3π【变式6-2】古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为()A.198π立方丈B.1912π立方丈C.198π立方丈D.19π12立方丈【变式6-3】设圆台的高为3,如图,在轴截面A1B1BA中,∠A1AB=60°,AA1⊥A1B,则圆台的体积为____________.题型七球的表面积和体积【例7】(1)已知球的直径为6 cm,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积;(3)已知球的体积为500π3,求它的表面积.【变式7-1】若一个球的直径为2,则此球的表面积为()A.2πB.16πC.8πD.4π【变式7-2】两个球的半径相差1,表面积之差为28π,则它们的体积和为____________.【变式7-3】三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.95倍D.74倍题型八球的截面问题【例8】一平面截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π【变式8-1】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为( )A.500π3cm3B.866π3cm3C.1372π3cm3D.2048π3cm3【变式8-2】球的表面积为400π,一个截面的面积为64π,则球心到截面的距离为____________.【变式8-3】一个距离球心为3的平面截球所得的圆面面积为π,则球的体积为____________。

(完整版)六年级数学圆柱圆锥练习题及答案

(完整版)六年级数学圆柱圆锥练习题及答案

(四)例例2、求下面立体图形的底面周长和底面积。

半径3厘米直径10米例3、判断:圆柱和圆锥都有无数条高。

例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。

求它的侧面积。

例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。

做这样一个水桶,至少需用铁皮6123平方厘米。

例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。

这个圆柱的表面积是多少平方厘米?例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。

在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。

(3)底面周长是12.56厘米,高是4厘米。

5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。

(3)底面周长是25.12厘米,高是8厘米。

6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。

8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。

如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。

(3)底面直径是8米,高是10米。

(4)底面周长是25.12分米,高是2分米。

2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。

第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。

这支牙膏可用36次。

圆柱、圆锥知识(50题)

圆柱、圆锥知识(50题)

圆柱圆锥知识练习50题1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。

2,工地上运来 6 堆同样大小的圆锥形沙堆,每堆沙的底面积是18.84平方米,高是0.9米。

这些沙有多少立方米?如果每立方米沙重1.7吨,这些沙有多少吨?3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。

做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)4,会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?5一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?6、压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?7、有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件。

如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?8、一个圆柱,侧面展开后是一个边长9.42分米的正方形。

这个圆柱的体积是多少分米?9、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的 35升后,还剩12升汽油。

如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?10、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。

如果每分转动5周,每分可以压多大的路面?11、大厅里有10根圆柱,圆柱底面直径1米,高8米。

在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?12、一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?13、把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?14、将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?15、一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)16、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少17、把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?18、把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?19、砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?20、一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?21、一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)22、一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?23、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。

完整版圆柱和圆锥难题

完整版圆柱和圆锥难题

圆柱和圆锥1、你玩过零散吗?它上面是圆柱,下面是圆锥。

经过测试,当圆锥的高是圆柱高的75%时,陀螺才能旋转的又稳又快。

俏皮照这个标准做了一个陀螺,圆柱的底面直径是 6 厘米,高是 6 厘米。

这个陀螺的体积有多大?2、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是500毫升。

现在瓶中装有一些饮料,正放时饮料高度为20 厘米,倒放时空余部分的高度为 5 厘米,瓶内现有饮料多少毫升?3、一个内直径是 10cm 的瓶子里,水的高度是24 厘米,若是把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 6 厘米。

现将一个底面半径 3 厘米的圆柱形零件完好淹没在水中,这时水面正好上升至瓶口。

这个圆柱形零件的高是()厘米。

3、有A、B 两个容器,原来容器 A 中装有4800 毫升的水,容器 B 是空的。

现在以400 毫升每分钟的流速往两个容器里注入水, 4 分钟后,两个容器的水面高度相等,已知容器的地面半径是 2 厘米。

求容器 A 的地面直径。

B3、一个底面半径 6 厘米,高 12 厘米的圆锥体容器里盛满了水,将这些水全部倒入一个底面半径 4 厘米的圆柱体容器,这时圆柱体容器的水深10 厘米,求原来圆柱体容器中水深多少厘米?4、底面半径是4cm 的圆柱体容器盛有3cm 高的水,在杯中竖直放入一个底面半径是2cm高6cm 圆柱体铅块,两地面接触但水没有完好淹没圆柱体,此时水面高度比原来上升了多少厘米?5、甲乙两个圆柱体容器,底面积之比是5:4,甲容器水深 12 厘米,乙容器水深 8 厘米,再往两个容器注入同样多的水,直到水深相等,甲的水面上升了多少厘米?6、一只装水的圆柱形玻璃杯,底面积是16 平方厘米的长方体铁块竖放在水中后,80 平方分米,水深8 厘米,现将一个底面积是仍有一部分铁块露在外面。

现在水深()厘米。

1、 一个底面半径是 4 分米,高 6 分米的圆柱体零件熔铸成一个底面直径为形零件,求圆锥零件的高是多少分米?4 分米的圆锥1、段圆柱形木材,若是截成 3 个小圆柱,表面积就增加了78.5 平方分米,若是沿着底面直径切成两个半圆柱, 表面积增加了 70 平方分米。

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。

练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。

1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。

(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。

有关圆柱和圆锥的题型

有关圆柱和圆锥的题型

有关圆柱和圆锥的题型1、一个圆柱底面半径是1厘米,高是2.5厘米,它的侧面积是多少平方厘米?表面积是多少平方厘米?体积呢?2、沿着一个圆柱的一条直径垂直于底面切开,断面正好是一个边长为6厘米的正方形,这个圆柱的侧面积是多少?表面积呢?体积呢?3、一种圆柱形烟囱,底面直径约为6厘米,每节长5分米,做100节这样的烟囱至少需要多少平方米铁片?4、压路机的滚筒是一个圆柱,它的宽是1.5米,滚筒横截面的直径是1.2米,以每分滚10周计算,1时能压多少平方米的路面?5、把一个长30厘米,底面半径为8厘米的圆木平均锯成4段,每段仍是圆柱体,锯后表面积比原来增加了多少?6、把一根长100厘米的圆木锯成3段,每段仍是圆柱体,表面积比原来增加了0.25平方厘米,这根圆木原来的体积是多少立方厘米?7、一个圆柱形游泳池,底面直径是20厘米,池深2米,这个游3装满水,求池内装水多少升?泳池的容积是多少立方米?池的48、一个圆柱体,如果把它的高截短6厘米,表面积就减少75.36平方厘米,体积减少了多少立方厘米?9、将一个棱长是8厘米的正方体木块切成一个最大的圆柱体,圆柱体的体积是多少?10、一个圆柱体的侧面积是100平方厘米,底面半径是3厘米,它的体积是多少立方厘米?11、一个圆柱形量筒,底面半径是5厘米,把一个铁块从这个量筒里取出后,水面下降3厘米,则这个铁块的体积是多少?12、一个圆锥的底面周长是9.42米,高1米,它的体积是多少立方米?13、一段圆柱形木头,削成一个最大的圆锥,削去的体积是44立方厘米,则削成的圆锥的体积是多少?圆锥和圆柱变式题型:1、已知圆柱的底面积和体积,求高。

2、已知圆柱的底面半径和体积,求高。

3、已知圆柱的底面直径和体积,求高。

4、已知圆锥的底面积和体积,求高。

5、已知圆锥的底面半径和体积,求高。

6、已知圆柱的底面直径和体积,求高。

题型:1、一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,3装满水,求水面高是多少分米?桶的42、将一个底面半径是4分米,高6分米的圆柱体零件熔铸成一个底面直径为4分米的圆锥形零件,则圆锥形零件的高是多少分米?。

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。

2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。

三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。

2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。

四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。

2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。

答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。

2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。

沙堆的重量为:12.56×1.5=18.84吨。

四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。

2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。

圆柱圆锥常考题型汇总

圆柱圆锥常考题型汇总

六年级数学下册——圆柱与圆锥常考题型汇总
1、(横切问题)把一根长2m的圆柱形木料锯成三段,表面积增加了100.48cm3,这段木料的体积?
2、(纵切问题)一个底面直径是4cm,高是5cm的圆柱,沿着底面直径切开,表面积增加多少平方厘米?
3、(叠加问题)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面是多少平方米?
4、(整体代换法的应用)一个圆锥的高和底面半径都等于一个正方体的棱长,已知正方体的体积是90立方厘米,求这个圆锥的体积?
5、(圆柱体转换成长方体)将一个高为8cm的圆柱沿着底面直径平均切成若干等份,在拼成一个与它等底等高的长方体后,表面积增加了80cm2 ,求原来圆柱的体积?
6、(水中浸物)一个圆柱水槽,底面半径是8厘米,水槽中完全浸没着一块铁,当铁块取出时,水面下降了5厘米。

这块铁的体积是多少?
7、(熔铸问题)把一块高12cm,横截面半径是3cm的圆柱形钢坯铸成一块底面半径是6cm的圆锥形钢坯,这个钢坯的高是多少?
8、(旋转问题)
(1)以3厘米这条边为轴,旋转后得到的立体图形体积是多少?
(2)以4厘米这条边为轴,旋转后得到的立体图形体积是多少?
(3)以斜边为轴,旋转后得到的立体图形体积是多少?
9、(压路机问题)
(1)一台压路机的滚筒宽5m,直径为1.8m,如果它滚动了20周压路的面积是多少平方米?
(2)一台压路机的滚筒长1.2m,底面直径为0.8m的圆柱,如果它分钟转5圈,那么它每分钟前进多少米?每分钟压过的面积是多少米?。

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】圆柱与圆锥•常考题型解题思路(1)直接利用公式计算体积V圆锥=13Sh=13πr2hV圆柱=Sh=πr2h(2)组合图形体积计算:圆柱上接圆锥V=13πr2h圆锥+πr2h圆柱(3)空心圆柱体积计算解:V=S大圆底面积h-S小圆底面积h=(S大圆底面积-S小圆底面积)h=π(R²-r²)h(4)等底等高的圆柱和圆锥的体积关系以及拓展问题结论一:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍。

结论二:圆柱和圆锥的体积与高分别相等,圆锥底面积是圆柱底面积的3倍。

结论三:圆柱和圆锥的体积与底面积分别相等,圆锥的高是圆柱的高的3倍(5)判断是否刚好组成一个圆柱(圆柱的长等于底面圆的周长)举例:用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上半径多少厘米的圆形铁片正好可以做成圆柱形容器?解:25.12÷3.14÷2=4(厘米)或18.84÷3.14÷2=3(厘米)(6)求包装圆柱时用的彩带长度,有打结处要加上举例:求右图中彩带的长度解:长度=8个高+6个直径+打结处(7)直接运用公式求圆柱表面积举例:求右图表面积解:S表面积=Ch+2πr2 =πdh+2πr2=2πrh+2πr2=2πr(h+r)=C (h+r)(8)无盖圆柱(一个地面+一个侧面):圆柱游泳池、无盖缸举例:圆柱形的一个水池,在池壁和底面贴上瓷砖,池底直径20米,池深1.2米,贴瓷砖的面积是多少平方米。

解:S表面积=πdh+πr2=20×1.2π+π×102=124π=389.36(㎡)(9)圆柱通风管(一个侧面):烟囱、压路机举例1:大厅有20根底面半径为0.3米,高6米的圆柱形柱子,每平方米用油漆1千克,刷这些柱子要用油漆多少千克?解:S侧=2πrh×根数×1=2×3.14×0.3×6×20×1=226.08(千克) (10)组合图形表面积:多个大小不一的圆柱叠放、沿着高切的半圆柱解:2πR2+S小侧面+S中侧面+S大侧面πr2+S小侧面的一半+ dh(11)侧面积的倍数变化问题举例:圆柱的底面直径扩大到原来的6倍,高缩小到原来的1,则3圆柱的侧面积如何变化?解:S侧=πdh,侧面积扩大成原来的2倍。

圆柱圆锥表面积体积计算题

圆柱圆锥表面积体积计算题

圆柱圆锥表面积体积计算题一、圆柱和圆锥的表面积和体积的公式圆柱的表面积公式为:S = 2πr(h + r),其中 r 是底面半径,h 是高。

圆柱的体积公式为:V = πr^2h。

圆锥的表面积公式为:S = πr^2 + πrl,其中 r 是底面半径,l 是斜边(母线)长度。

圆锥的体积公式为:V = 1/3πr^2h,其中 h 是高。

二、圆柱和圆锥的表面积和体积的题目题型一:已知圆柱的半径或直径和高,求表面积和体积1.已知圆柱的底面半径是2cm,高是5cm,求圆柱的表面积和体积。

2.已知圆柱的底面直径是6cm,高是4cm,求圆柱的表面积和体积。

题型二:已知圆柱的底面周长和高,求表面积和体积3.已知圆柱的底面周长是25.12cm,高是3cm,求圆柱的表面积和体积。

4.已知圆柱的底面周长是15.7cm,高是4cm,求圆柱的表面积和体积。

题型三:已知圆柱的侧面积和高,求表面积和体积5.已知圆柱的侧面积是50.24m²,高是8m,求表面积和体积。

6.已知圆柱的侧面积是219.8m²,高是10m,求表面积和体积。

题型四:已知圆柱的体积和半径或直径,求高和表面积7.已知圆柱的体积是157m³,半径是5m,求高和表面积。

8.已知圆柱的体积是3.14m³,半径是0.1m,求高表面积。

题型四:已知圆锥的半径或直径和高,求体积9.已知圆锥的底面半径是5cm,高是6cm,求圆锥的体积。

10.已知圆锥的底面直径是6cm,高是4cm,求圆锥的体积。

题型五:已知圆锥的底面周长和高,求体积11.已知圆锥的底面周长是18.84cm,高是3cm,求圆锥的体积。

12.已知圆锥的底面周长是9.42cm,高是9cm,求圆锥的体积。

题型六:已知圆锥的体积和半径或直径,求高13.已知圆锥的体积是78.5m³,半径是3m,求高。

14.已知圆锥的体积是1.884m³,直径是4m,求高。

圆柱与圆锥常见九种典型题型(已排版可直接打印)

圆柱与圆锥常见九种典型题型(已排版可直接打印)

圆柱圆锥常见九种典型题型一、公式转换1.基本公式:①圆柱的相关计算公式:底面积:S底=底面周长:C= = 。

原柱侧面积= ×(文字)S侧===。

(字母)逆推公式有:C= 。

h= 。

圆柱的表面积:S=2S底+S侧= 。

圆柱的体积:V柱= =逆推公式有:S= h=②圆锥的相关计算公式a.底面积:S底=πR2b.底面周长:C=πd=2πRc 体积:V= πR2 h逆推公式有:S= h=③圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。

2. 等底等高的情况下,圆锥体积是圆柱体积的。

3. 等底等高的情况下,圆锥体积比圆柱体积少。

4. 等底等高的情况下,圆柱体积比圆锥体积多倍。

5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。

6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。

一、基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。

二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?三.放入或拿出物体,水面上升或下降。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米= 0.05米沙堆的底面半径:25.12+ (2x3.14)=25.12+6.28=4 (米)1沙堆的体积:x3.14x42x1.8 = 3.14x16x0.6 = 3.14x9.6 = 30.144 (立方米)所铺沙子的长度:30.144+ (8x0.05)=30.144+0.4 = 75.36 (米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的1底面半径,用公式:C+2n=r,要求沙堆的体积,用公式:V= nr2h,最后用沙堆的体积+ (公路的宽x铺沙的厚度)=铺沙的长度,据此列式解答.2.工地上有一个圆锥形的沙堆,高是1.5 米,底面半径是6 米,每立方米的沙约重1.7 吨。

这堆沙约重多少吨?(得数保留整吨数)【答案】解:3.14x62x1.5x x1.7=3.14x18x1.7=56.52x1.7,96 (吨)答:这堆沙约重96吨。

1【解析】【分析】圆锥的体积=底面积x高x ,先计算圆锥的体积,再乘每立方米沙的重量即可求出总重量。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆柱体容器的底面直径是16 厘米,容器中盛有10 厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14x (16“)2x3= 3.14x64x3= 200.96x3= 602.88 (立方厘米)答:圆锥形铁块体积是602.88立方厘米。

圆柱和圆锥各种类型训练题

圆柱和圆锥各种类型训练题

圆柱和圆锥的练习题公式:正方形的周长= 4a 正方形的面积= a²正方体的表面积= 6 a²正方体的体积= a³正方体的棱长总和= 12a 长方体的棱长总和= 4(a + b + c)长方形的周长= 2(a + b) 长方形的面积= ab 长方体的表面积= 2(ab + bc + ac)长方体的体积= abc 圆的周长= πd = 2πr 圆的面积= πr²圆柱的表面积= Ch + 2πr²圆柱的体积= Sh = πr²h圆锥的体积= 13Sh =13πr²h 圆环的面积= π(R²-r²)半圆的周长= πr + d 圆周长的一半= πr题型一:圆柱和圆锥的体积1. 一个圆锥的体积是76立方厘米,底面积是19平方厘米.这个圆锥的高是()厘米。

2. 一个圆锥体的体积是12立方分米,底面积是3平方分米,高是()分米。

3. 一个圆锥的体积是40平方米,高是6米,底面积是()平方米。

4. 一个圆锥体的底面半径是2m,体积是25.12m³,这个圆锥的高是()米。

5. 一种压路机滚筒是圆柱体,它的底面直径1米,长1.5米.如果它转5圈,一共压路( )m²。

1. 制作一节圆柱形通风管,长50厘米,底面直径是20厘米,至少需要铁皮多少平方厘米?2.已知一个圆锥体的地面周长是18.84厘米,高是3厘米,这个圆锥体的体积是多少平方厘米?3.一个圆锥体底面周长是12.56厘米,体积是37.68立方厘米,高是多少厘米?4.一个圆柱的侧面积是37.68平方厘米,底面半径是2厘米,它的体积是多少立方厘米?5.一个圆柱形水池,它的容积是64立方米,底面积是12平方米,水池中放了34的水,这时水面高是多少米?6. 如图,这个杯子能否装下500毫升的牛奶?6.一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米.如果把它捏成同样高的圆锥,这个圆锥的底面积是多少?7.一个圆锥形沙堆,高是1.5米,底面半径是4米,每立方米沙约重1.7吨.这堆沙约重多少吨?8.一个圆锥形谷堆的底面周长是12.56米,高是3米,每立方米稻谷重500千克,这堆稻谷重多少千克?10. 一个圆锥体建筑物,高120分米,体积是94.2立方米,这个建筑物的底面积是多少?11. 学校门口一个圆锥形沙堆,底面周长是6.28米,高是10米,这堆沙有多少立方米?12.把直径为20cm的圆柱形钢材截下一段,锻造成底面直径60cm,高120cm的圆锥形零件,求要截下多长的钢材?13.一个圆锥形的稻谷堆,底周长12.56米,高1.5米,把这堆稻谷装进一个圆柱形粮仓,正好装满.这个粮仓里面的底直径为2米,高是多少米?14.一个圆锥形砂堆,底面周长是31.4米,高3米,每方砂重1.8吨,用一辆载重4.5吨的汽车,几次可以运完?15.已知直角三角形ABC的一条直角边AB=13,另一条直角边AC=5.以直线BC为轴旋转一周得一个圆锥,求这个圆锥的体积是多少?16.一个圆锥形的漏斗,它的容积是94.2立方厘米,底面半径3厘米,求漏斗的高是多少厘米?17.把一个体积是90立方厘米的圆柱形铁块,加工成一个高是6厘米的圆锥形铁块,圆锥形铁块的底面是多少?18.下面两个图中,左边一个是梯形,绕它的6cm的边将这个梯形旋转一周得到如右边的立体图形,这个立体图形的体积是多少立方厘米?18.100个油桶的表面要刷漆,每平方米需油漆0.6千克.每个油桶的底面直径是40厘米,高是60厘米,刷100个油桶需多少油漆?19.一个圆柱形状的无盖水桶,从里面量,底面直径40厘米,高50厘米.用这个水桶装满水去浇花,平均每棵花用水0.4升.这桶水最多可以浇多少棵花?21. 一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是多少?题型二:圆柱和圆锥的关系1. 一个圆锥的体积是6.3立方厘米,与它等底等高的圆柱的底面积是7平方厘米,圆柱的高应该是()厘米。

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型

圆柱与圆锥典型及易错题型一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高 1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?【答案】解:×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.一个圆锥体形的沙堆,底面周长是25.12米,高 1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积:×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。

【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C ÷2π=r ,要求沙堆的体积,用公式:V=πr2h ,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.计算下面圆柱的表面积和体积,圆锥的体积。

(1)(2)【答案】(1)解:表面积: 3.14×52×2+3.14×5×2×13=157+408.2=565.2(cm2)体积:3.14×52×13=1020.5(dm3)(2)×3.14×82×15=×3.14×64×15=1004.8(cm3)【解析】【分析】(1)圆柱的表面积=底面积×2+侧面积,侧面积=底面周长×高,圆柱的体积=底面积×高,根据公式计算即可;(2)圆锥的体积=底面积×高×,根据公式计算体积即可。

人教版六年级下学期数学第三单元《圆柱和圆锥》专项练习(含答案)

人教版六年级下学期数学第三单元《圆柱和圆锥》专项练习(含答案)

第三单元《圆柱和圆锥》典型题型专项一、填空题1.把一根长3m的圆柱形木料,截成5段圆柱形木料,表面积增加了280dm,那么这根圆木的底面积是( )2dm。

2.一个圆柱,若沿着一条底面直径纵切后,可以得到一个边长是8厘米的正方形的截面,这个圆柱的表面积是( )平方厘米。

3.一个底面积为x平方厘米、高为h厘米的圆柱切成若干个小圆柱。

每切1次,表面积都增加( )平方厘米,切5次表面积增加( )平方厘米。

4.一个圆柱的高减少2厘米,它的表面积就减少50.24平方厘米,这个圆柱的底面直径是( )厘米。

5.一块长31.4cm、宽10cm、高2cm的长方体钢材,熔铸成一个底面积为15.7cm²的圆柱体钢锭,这块钢锭的高为( )dm。

6.一个装满水的圆柱形容器的底面积为24平方分米,高为6分米,容器中水的体积是________升;如果将这些水倒入一个底面长为9分米、宽为4分米,高为8分米的长方体容器中,水深为________分米.(容器的厚度忽略不计)7.一个圆柱形量杯的总高度是12cm,里面盛有200mL的水。

现将一个小石块放进这个量杯中,水面上升到250ml刻度处,刚好上升了0.5cm。

若此时向杯中注入水,最多还可以注入( )毫升的水。

8.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。

二、解答题9.一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥。

(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?10.王师傅加工20段底面半径为6cm,长为5dm的圆柱形铁皮通风管,至少要用多少平方分米的铁皮?11.一个圆柱形水池底面半径为4m,深为5m,如果在这个水池的内侧面和底部抹上一层水泥,那么抹水泥的面积有多少平方米?12.做一个没有盖的圆柱形水桶,底面直径20厘米,高27厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)13.有一个工具箱下半部分为正方体,上半部分为圆柱体一半(下图),如果把工具箱的表面涂上油漆(包括底面),求涂油漆部分的面积。

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷精品带答案

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷精品带答案

人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.下图扇形的半径是r。

请你想象, 用这个扇形围成一个高为h的圆锥(接缝处不计)。

圆锥的高h与扇形半径r之间的关系是()。

A.h>rB.h<rC.h=rD.无法确定2.一个圆锥的体积是36立方厘米, 底面积是12平方厘米, 高是()厘米。

A.9B.6C.33.把一个圆柱的侧面展开, 不可能得到下面的图形是()。

A. B. C. D.4.求做一个汽油桶至少需要多少铁皮, 就是求汽油桶的()。

A.体积B.侧面积C.表面积5.如图所示, 圆锥的高是圆柱高的/, 底面积相等, 圆柱的体积是圆锥体积的()。

A.20倍B.C.8倍D.27倍6.下列说法, 正确的有多少个?()①圆锥的体积等于圆柱体积的三分之一②长方体有12条棱和8个顶点③圆的半径扩大5倍, 周长也扩大5倍④直线外一点与直线上各点连接的所有线段中, 垂线段最短A.1个B.2个C.3个D.4个二.判断题(共6题, 共12分)1.求圆柱体的体积时, 可以把圆柱体转化为由一定数量的完全相同的圆片堆积而成。

()2.一个圆锥的底面半径扩大3倍, 它的体积也扩大3倍。

()3.把一个圆柱切成两部分, 它的表面积不变。

()4.一个圆柱的底面半径是r, 高是2π r, 那么它的侧面展开图一定是正方形。

()5.以直角三角形的任意一条边为轴旋转, 都可以得到一个圆锥。

()6.两个圆柱的侧面积相等,它们的底面周长也相等。

()三.填空题(共6题, 共8分)1.把一个底面积为6.28立方厘米的圆柱, 切成两个圆柱, 表面积增加()平方厘米。

2.一个圆柱的体积是15立方厘米, 与它等底等高的圆锥的体积是()立方厘米。

3.圆柱的两个底面是两个大小()的圆, 如果一个圆柱的底面周长和高相等, 那么它的侧面展开是一个()。

4.用一个长20 cm, 宽12 cm的硬纸板围成一个圆柱, 这个圆柱的侧面积是()cm2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元圆柱与圆锥教材分析:本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。

本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。

圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。

教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念,为进一步应用几何知识解决实际问题打下基础。

教学目标:1.使学生认识圆柱和圆锥,掌握它们的基本特征。

并认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2.引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.使学生理解除了研究几何图形的形状和特征,还要从数量的角度来研究几何图形,如图形的面积、体积等,体会数形结合思想。

5.通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。

教学重点:掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

教学难点:圆柱、圆锥体积的计算公式的推导。

教学建议1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。

2.让学生经历探索知识的过程,培养自主解决问题的能力。

3.充分关注操作与想象相结合,发展学生的空间观念。

课时安排:9课时1.圆柱第一课时教学内容:圆柱的认识,教材P17—20页相关内容。

教学目标:1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

2.培养学生细致的观察能力和一定的空间想像能力。

3.激发学生学习的兴趣。

教学重点:认识圆柱的基本特征教学难点:圆柱的侧面与它的展开图之间的关系教具、学具准备:圆柱体、硬纸、剪刀、直尺教学过程:一、自主学习(一)复习旧知,渗透学习方法。

师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。

相对的面的面积相等,相对的棱的长度相等。

师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。

今天这节课我们就用这种方式研究一种新的立体图形。

(二)引导学生观察教材第17页的建筑物及物品图,引入板书课题,明确目标(三)自学提示1.这些物体有什么共同的特点?2.一个圆柱形的物体,由几部分组成?它们有什么特征?3.圆柱的侧面展开后是什么形状?这个长方形的长、宽与圆柱有什么关系?圆柱在什么情况下展开图是正方形。

(四)学生自学二、展示交流(一)学生对子交流,小组讨论。

(二)学生展示(三)老师按自学提示组织反馈全班交流(四)总结归纳:1.圆柱由3个面围成的。

上、下两个面叫做底面,它们是完全相同的两个圆。

圆柱周围的曲面叫侧面。

2. 圆柱的两个底面之间的距离叫做高。

圆柱的高有无数条,高的长度都相等。

3.圆柱沿着高展开后得到一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。

当圆柱的底面周长与高相等时,展开后得到一个正方形。

三、达标检测1.完成课本第18页和19页做一做。

2. (1)上下两个底面相等的物体一定是圆柱体。

()(2)圆柱的侧面沿着高展开后会得到一个长方形或者正方形。

()(3)同一个圆柱底面之间的距离处处相等。

()(4)一个圆柱,底面周长是12.56厘米,高是12.56厘米。

这个圆柱的侧面沿着高展开,得到一个长方形。

()(5)一个圆柱,底面周长是12.56厘米,高是12.56厘米。

这个圆柱的侧面沿着高展开,得到一个正方形。

()(6)一个圆柱,底面半径是4厘米,高是4厘米。

这个圆柱的侧面沿着高展开,得到一个正方形。

3.练习三第1至第5题4.课堂总结学会了什么知识?有什么收获?5.课堂作业(补充)(1)画一个圆柱平面图,把它各部分的名称标上去(2)填空①圆柱的两个圆面叫做(),它们是()的圆形;周围的面叫做();圆柱两个底面之间的距离叫做()。

一个圆柱有()条高。

②把一张长方形的纸的一条边固定贴在一根木棒上,然后快速转动,得到一个()。

③一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。

这个圆柱的底面周长是()厘米,高是()厘米。

④一个圆柱的侧面展开后得到一个正方形,边长是9.42厘米。

这个圆柱的底面周长是()厘米,高是()厘米。

板书设计:圆柱的认识2.圆柱的表面积第二课时教学内容:圆柱的表面积,教材P21—22页例3、例4及做一做与练习四相关内容。

教学目标:1.理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2.会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

3.培养学生良好的空间观念和解决简单的实际问题的能力。

教学重点:认识圆柱的基本特征教学重点:掌握圆柱侧面积和表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

教具、学具准备:圆柱体教学过程:一、自主学习(一)复习旧知1.指名学生说出圆柱的特征.2.口头回答下面问题.(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算?(3)长方体、正方体的表面积指什么?(二)同学们,圆柱的表面积指什么?怎样求呢?今天就让我们一起来学习圆柱的表面积。

引入板书课题,明确目标(三)自学提示1.圆柱的表面积指什么?它由几部分组成?2.圆柱的表面积=()3.求圆柱的表面积,必须要先求出什么?怎么求?4.圆柱的侧面展开后是一个什么图形?求圆柱的侧面积可以转化成求什么图形的面积?圆柱的侧面积怎么样求?(四)学生自学二、展示交流(一)学生对子交流,小组讨论。

(二)学生展示(三)老师按自学提示组织反馈全班交流(四)总结归纳板书:1.圆柱的表面积=圆柱的侧面积+两个底面的面积2.圆柱的侧面积=底面周长×高3.练一练:完成21页做一做(五)出示例4,理清题意,学生尝试解答,小组交流,全班交流,归纳方法。

三、达标检测1.完成课本第22页做一做。

2.课堂总结学会了什么知识?有什么收获?3.课堂作业完成课本第23页1、2、3题板书设计:教学反思:第三课时教学内容:圆柱的表面积练习课,练习四第23—24页第4至14题教学目标:1.进一步巩固圆柱体的特征,侧面积、表面积的计算方法,提高计算正确率。

2.根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的实际问题。

3.渗透转化思想,提高学生对数学问题与生活问题相互转化的能力。

教学重点:圆柱体侧面积、表面积的计算方法。

教学难点:运用所学的知识解决简单的实际问题。

教具准备:小黑板教学过程:一、问题回顾,再现新知同学们,经过学习的不断深入,我们已初步掌握了圆柱形表面积的计算方法,下面我们就来回忆一下这些知识。

1.圆柱有几个面组成?2.圆柱的侧面积怎么求?3.圆柱的表面积怎么求?二、分层练习,巩固提高(一)基本练习,巩固新知学生自主练习,然后小组内交流练习成果。

师生共同小结计算公式:知道圆柱的底面直径和高求表面积:s=2π(d÷2)2+πdh知道圆柱的底面半径和高求表面积:s=2πr2+2πrh知道圆柱的底面周长和高求表面积:s=2π(C÷π÷2) 2+ch(二)综合练习,应用新知1.说一说联系生活实际,说说生活中的问题与哪些面积有关?(1)圆形水池的占地面积;(2)做一节烟囱所需铁皮的面积;(3)做一个无盖水桶所需铁皮的面积;(4)做一个油桶所需铁皮的面积;(5)求易拉罐上商标纸的面积;(6)在水池的内壁和底面抹水泥,求抹水泥部分的面积;(7)往大厅的柱子上涂漆,求涂漆部分的面积;(8)压路机的滚筒转动一周,求压路的面积.2.解决生活中的实际问题(1)一种圆柱形铁皮通风管,横截面的直径是10厘米,长 1米,做这样的通风管需要铁皮多少平方厘米?(2)做一个高5分米,底面半径1分米的无盖圆柱形铁皮水桶,大约要铁皮多少平方分米?(3)一个圆柱形汽油桶,底面直径是10分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分米)(4)一辆压路机的前轮是圆柱形,轮宽 1.6米,直径是 0.8米,每分前轮钟转12周。

A、每分钟前轮压路的面积有多大?(实际求什么?)B、每分钟前轮滚多远?(实际求什么?)(5)大厅里有5根柱子,每根柱子的底面周长3.14米,高3米,现给这5根柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少克?3.总结方法:在生活中要求圆柱的表面积,首先得考虑求哪几个面的面积。

一般分为三种:一种是只求一个侧面积,第二种是求一个侧面积和一个底面积;第三种是求一个侧面积和两个底面积。

这就要求学生要根据实际情况具体分析。

3.完成课本第5、6、7、9、11、13、14题(学生独立完成,小组交流,集体交流)三、梳理总结,提升认知通过这节课的学习,你有什么收获?四、课堂作业课本第4、8、10、12题板书设计:圆柱的侧面积=底面周长×高圆柱的表面积=圆柱的侧面积+底面积×2s=2π(d÷2)2+πdhs=2πr2+2πrhs=2π(C÷π÷2) 2+ch3.圆柱的体积第四课时教学内容:圆柱的体积,教材P25—26页例5、例6及相关练习题。

教学目标:1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2.初步学会用转化的数学思想和方法,解决实际问题的能力教学重点:1.掌握圆柱体积的计算公式。

2.应用圆柱的体积计算公式解决简单的实际问题。

教学难点:圆柱体积的计算公式的推导。

教具准备:圆柱体教学过程:一、自主学习(一)复习旧知(1)长方体的体积公式是什么?(2)复习圆面积计算公式的推导过程。

(二)引入板书课题,明确目标(三)自学提示自学课本25页,思考:1.什么叫圆柱的体积?2.圆柱的体积公式推导过程是怎么样的?3. 圆柱的体积怎么求?(四)学生自学二、展示交流(一)学生对子交流,小组讨论。

(二)学生展示、汇报(三)老师按自学提示组织反馈全班交流(四)总结归纳板书:长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即:V=Sh应用公式尝试解答:完成25页做一做(五)出示例6,(1)理清题意,学生尝试解答,小组交流,全班交流(2)集体订正。

①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)答:因为502.4大于498,所以杯子能装下这袋牛奶。

相关文档
最新文档