最新整理初中数学试题试卷2001我爱数学初中生夏令营数学竞赛试卷.doc

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

【教育资料】我爱数学少年夏令营数学竞赛试题学习专用

【教育资料】我爱数学少年夏令营数学竞赛试题学习专用

我爱数学少年夏令营数学竞赛试题1.由三个非零数字组成的三位数与这三个数字之和的商记为k,如果k为整数,那么k的最大值是____。

2.下式是经过四舍五入得到的一个等式:其中每一个△代表一个数字,那么这三个△所代表的三个数字分别是____。

余下废料是总量的____。

4.如下左图中给出6×6=36个点,请一笔画出一条折线,使得这条折线通过36个给定点中的每点至少一次,而且组成这条折线的直线段的条数最少。

那么你所画出的折线中直线段的条数是___。

5.如下右图中所有不同的三角形的个数是______。

6.甲、乙二人从周长250米的环形跑道上一点p同时、同向出发沿着次在点p相遇所用去的时间是____分钟。

7.在下面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,每个△代表一个数字,当算式成立时,乘积是____。

8.五个连续偶数之和为完全平方数,中间三个偶数之和为完全立方数(即一个整数的三次方)。

那么这样一组数中的最大数的最小值是____。

9.一张8×8的方格纸,每个方格都涂上红、蓝两色之一。

能否适当涂色,使得每个3×4(不论横竖)的12个方格中都恰有4个红格和8个蓝格?如果能行,请在下面的表格中画出来?10.甲、乙、丙三堆石子共196块,先从甲堆分给另外两堆,使得后两堆石子数增加一倍;再把乙堆照样分配一次;最后把丙堆也照样分配一次。

_____。

11.在右图中,ae∶ec=1∶2,cd∶db=1∶4,bf∶fa=1∶3,△abc的面积s=1,那么四边形afhg的面积safhg=______。

12.兄弟二人骑自行车同时出发从甲地到乙地,弟弟在前一半路程每小哥哥比弟弟早到20分钟。

那么甲、乙两地的距离是____千米。

计算竞赛试题(1)202-192+182-172+…+22-12=_____。

(2)(112233-112.233)÷(224466-224.466)=_____。

“我爱数学”初中生夏令营数学竞赛试题(含答案)

“我爱数学”初中生夏令营数学竞赛试题(含答案)

我爱数学初中生夏令营数学竞赛说明:第一试每题50分,共150分;第二试每题15分,共150分.第一试1、已知当x 的值分别为2、m 1、m 2时,多项式ax 2+bx+c 的值分别为0、p 1、p 2.如果a>b>c,并且p 1p 2-cp 1+ap 2-ac=0,那么,能否保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数?证明你的结论.2、在△ABC 中,∠A=75°,∠B=35°,D 是边BC 上一点,BD=2CD. 求证:AD 2=(AC+BD)(AC -CD).3、(1)写出四个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数(2)写出六个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数,说明你的计算方法.第二试1、若2 008=a n (-3)n +a n -1(-3)n -1+…+a 1(-3)+a 0(a i =0,±1,±2,i=0,1,…,n),则a n +a n -1+…+a 1+a 0= .2、能使关于x 的方程x 2-6x -2n =0(n ∈N+)有整数解的n 的值的个数等于 .3、如果函数y=b 的图像与函数y=x 2-3|x -1|-4x -3的图像恰有三个交点,则b 的可能值是 .4、已知a 为整数,关于x 的方程1||41224+-+x x x x +2-a=0有实数根.则a 的可能值是 . 5、如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”.那么,在1,2,…,2 008中,和谐数的个数是 .6、已知某种型号的汽车每台的售价是23万元.某工厂在一年中生产这种汽车的总成本由固定成本和生产成本两部分组成.一年的固定成本为7000万元.在这一年中生产这种汽车x 辆时,生产每一辆车的生产成本为x3x-70万元(0<x<1 000).要使该厂一年中生产的这种汽车的销售收入不低于总成本,则至少需要生产这种汽车 辆. 7、若2008个数a 1,a 2,…,a 2008满足a 1=2,20081)12008(112++---n n n n a a a a =0,其中,n=2,3,…,2 008,那么,a 2008可能达到的最大值是.8、已知⊙O 与直线l 切于点M,⊙O 外一定点A 和⊙O 都在直线l 的同一侧.点A 到直线l 的距离大于⊙O 的直径,点B 在⊙O 上.过点A 作直线l 的垂线AN,过点B 作直线l 的平行线BC,直线AN 与BC 交于点C.则当点B 的位置在 时,ACAB 2的值达到最小.9、在底角等于80°的等腰△ABC 的两腰AB 、AC 上,分别取点D 、E,使得∠BDC=50°,∠BEC=40°.则∠ADE=10、从1, 2,…, 2 008中选出总和为1009000的1004个数,并且这1 004个数中的任意两数之和都不等于2 009.则这1 004个数的平方和等于 . 参考公式:12+22+…+n 2=61n(n+1)(2n+1).参考答案第一试1、由已知得ax 2+bx+c=a(x -2)(x -c/2a), 且 4a+2b+c=0.又由a>b>c 得a>0,c<0,c/2a<0.因此,仅当c/2a≤x≤2时,该多项式的值不是正数. 由已知得(p 1+a)(p 2-c)=0. 则p 1+a=0或p 2-c=0. 解得p 1=-a<0或p 2=c<0.因此,存在i(i=1或2)使得p i <0,m i >c/2a.由已知得c=-4a -2b>-6a,则c/a>-6,c/2a>-3,m i +5>2.当x=mi+5时,该多项式的值是正数.因此,可以保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数. 2、由已知得∠C=70°.延长BC 至E,使AC=CE.联结AE.则∠CEA=∠CAE=21∠ACB=35°=∠ABC.故△CAE ∽△AEB.从而,AE 2=AC·BE,即AB 2=AC(AC+BC).①设F 是BD 的中点,联结AF.则CD=DF=FB.在△ACF 、△ADB 中,由中线的性质分别得 AC 2+AF 2=2CD 2+2AD 2,② AD 2+AB 2=2DF 2+2AF 2.③由式②、③得2AC2+AB 2=6CD 2+3AD 2.④ 将式①代入式④得3AC 2+AC·BC=6CD 2+3AD 2. 将BC=3CD 代入上式得AC 2+AC·CD=2CD 2+AD 2.故AD 2=AC 2+AC·CD -2CD 2=(AC+2CD)(AC -CD)=(AC+BD)(AC -CD).3、(1)242、243、244、245是四个连续的正整数,242是112的倍数、243是32的倍数、 244是22的倍数、245是72的倍数.(2)2 348 124、2 348 125、2 348 126、2 348 127、2 348 128、2 348 129是六个连续的正整数,其中,2 348 124是22的倍数、2 348 125是52的倍数,2 348 126是112的倍数、2 348 127是32的倍数、2 348 128是22的倍数、2 348 129是72的倍数. 计算方法如下:记A=4×9×121×49k(k ∈N+). 由(1)可知,A+240是22的倍数, A+242是112的倍数, A+243是32的倍数, A+244是22的倍数, A+245是72的倍数. 设A+241是52的倍数. 则当k=11时,上式成立. 此时,A=2 347 884.A+240=2 348 124是22的倍数, A+241=2 348 125是52的倍数, A+242=2 348 126是112的倍数, A+243=2 348 127是32的倍数, A+244=2 348 128是22的倍数, A+245=2 348 129是72的倍数.第二试1、0或±4或±8.2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=0;2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-4;2 008=-(-3)7-(-3)6-2(-3)5-2(-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-8;2 008=2(-3)6-2(-3)5+(-3)4+(-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=4;2 008=(-3)8+2(-3)7+(-3)5+(-3)4+(-3)3+(-3)2+1, 此时,a n +a n -1+…+a 0=8. 注意到将(-3)n 变为(-1)(-3)n+1-2(-3)n , 将2(-3)n 变为(-1)(-3)n+1-(-3)n , 将3(-3)n 变为(-1)(-3)n+1的时候, a n +a n -1+…+a 0的值都增加或减少4,并且当n>8时, a n +a n -1+…+a 0的绝对值不大于8.因此,a n +a n -1+…+a 0=0或±4或±8. 2、1.x=3±n 223+,其中, n223+是完全平方数.显然,n≥2.当n≥2时,可设2n +32=(2k+1)2(k ∈N+,k≥2), 即 2n -2=(k+2)(k -1).显见k -1=1,k=2,n=4.能使原方程有整数解的n 的值的个数等于1. 3、-6、-25/4.令y=x 2-3|x -1|-4x -3.则y=x 2-x -6=425)21(2--x ,x≤1; y=x 2-7x=449)27(2--x ,x>1.当x=1时,y=-6; 当x=12时,y=-25/4.由图像知,所求b 的可能值是-6、-25/4.4、0、1、2. 令y=1x |x |2+.则0≤y<1.由y 2-4y+2-a=0 (y -2)2=2+a 1<2+a≤4 -1<a≤2. 因此,a 的可能值是0、1、2. 5、2 007.注意到91=7×13.数字和为1的数不是91的倍数. 1 001,10 101,10 011 001,101 011 001, 100 110 011 001,1 010 110 011 001,… 都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,….因此,在1,2,…,2 008中,能够表示成91的某个倍数的数字和的数的个数是2 007. 6、318.若该厂一年中生产的这种汽车的销售收入不低于总成本,则 23x -[7000+x xx370-]≥0x -x -300≥0 x ≥22011 1+ x≥234.6601+ x≥318. 因此,在一年中至少需要生产这种汽车318辆.7、2008 20062 .由已知得2008a a 1-n n =①或1-n n a 1a =②,1只能经过第①类变换或第②类变换变为an(n=2,3,…,2 008),从a1开始连续经过2 007次这样的变换变为a2 008. 连续两次第②类变换相互抵消,保持原数不变.连续三次变换依次是“第①类变换、第②类变换、第①类变换”时,其中两次第①类变换相互抵消,相当于只对原数进行了一次第②类变换.因此,对2的连续2 007次变换相当于对2连续进行m 次第①类变换或第②类变换,而且只有在第一次和最后一次变换中才可能是第②类变换.而对2连续2 007次变换:“前2 006次为第①类变换、最后一次为第②类变换”时,a 2008达到最大值2008 20062 .8、线段AM 内.设直线AB 与⊙O 的另一交点为D,不妨设点B 在点A 和D 之间.过点D 作直线AC 的垂线DE,垂足为E.则AB·AD=k(k 是一个不变的常数), △ABC ∽△ADE,AB/AC=AD/AE,AB 2/AC=AB·AD/AE=k/AE.当AE 达到最大值,即点B 的位置在线段AM 内时,AB 2/AC 的值达到最小. 9、50°.由已知∠BAC=20°,∠BCD=50°,故BC=BD,① ∠CBE=60°,∠ABE=20°.在CE 上取一点F 使∠CBF=20°,则∠EBF=40°,BF=FE,② ∠DBF=60°,∠BFC=80°,BC=BF.③由式①、③得BD=BF,知△BDF 是正三角形.于是,BF=DF.④ 由式②、④得DF=FE,知△DFE 是等腰三角形.又∠BFD=60°,知∠DFE=40°.从而,∠FED=70°,∠ADE=50°. 10、1 351 373 940.将1,2,…,2 008分成1 004组: {1,2 008},{2,2 007},…,{1 004,1 005}.由题设,各组中恰取出一个数.将2,4,…,2 008中的1 004,1 006,1 008,1 010分别换成同一组的1 005,1003,1001,999,其余各数不变,就是所选出的符合题目要求的1 004个数.2+4+…+2 008-(1 004+1 006+1 008+1 010)+(1 005+1 003+1 001+999) =1 009 020-(-1+3+7+11)=1 009 000,22+42+…+2 0082-(1 0042+1 0062+1 0082+1 0102)+(1 0052+1 0032+1 0012+9992) =4(12+22+…+1 0042)-2 009(-1+3+7+11) =2/3×1 004×1 005×2 009-2 009×20 =2 008×335×2 009-40 180=1 351 373 940. 答案与选法无关.。

数学竞赛试卷(初赛、决赛及答案)

数学竞赛试卷(初赛、决赛及答案)

2.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是 。

3.将60分成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是 。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.右面残缺算式中已知三个“4”,那么补全后它的乘积是 。

6.有A 、B 两个整数,A 的各位数字之和为35,B 的各位数字之和为26,两数相加时进位三次,那么A+B 的各位数字之和是 。

7.苹果和梨各有若干只,如果5只苹果和3只梨装一袋,还多4只苹果,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只,那么苹果和梨共有______只。

8.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。

9.在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是 。

10.高中学生的人数是初中学生的56,高中毕业生的人数是初中毕业生的1217,高、初中毕业生毕业后,高、初中留下的人数都是520人,那么高、初中毕业生共有 人。

11.如图,一个长方形的纸盒内,放着九个正方形的纸片,其中正方形A 和B 的边长分别为4和7,那么长方形(纸盒)的面积是 。

12.甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。

摩托车开始速度是50千米/d,时,中途减速为40千米/小时。

汽车速度是80千米/小时。

汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的_________小时。

3.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是_________。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,…,⑩=9×10×11,…如果,那么方框代表的数是________。

2001年我爱数学初中生夏令营数学竞赛

2001年我爱数学初中生夏令营数学竞赛

2001年我爱数学初中生夏令营数学竞赛
陈传理
【期刊名称】《《中等数学》》
【年(卷),期】2002(000)002
【摘要】第一试一、( 50分 )在锐角△ABC中,AD⊥BC ,D为垂足,DE⊥AC ,E为垂足,DF⊥AB ,F为垂足 .O为△ABC的外心 .求证:( 1 )△AEF∽△ABC ;( 2 )AO⊥EF .
二、( 50分 )给定代数式 -x3 +1 0 0x2 +x中的字母x只允许在正整数范围内取值 .当这个代数式的值达到最大值时 ,x的值等于多少 ?
【总页数】2页(P35-36)
【作者】陈传理
【作者单位】
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.2010我爱数学初中生夏令营数学竞赛 [J], 陈传理
2.2011我爱数学初中生夏令营数学竞赛 [J],
3.2008我爱数学初中生夏令营数学竞赛 [J], 夏兴国
4.2007我爱数学初中生夏令营数学竞赛 [J], 夏兴国
5.2009我爱数学初中生夏令营数学竞赛 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

初中数学竞赛试题及答案doc

初中数学竞赛试题及答案doc

初中数学竞赛试题及答案doc一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 2答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方等于-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A5. 一个数的倒数等于它自身,这个数是?A. 1B. -1C. 0D. 都不是答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是_________。

答案:±57. 如果一个数的平方根是2,那么这个数是_________。

答案:48. 一个数的立方根是3,那么这个数是_________。

答案:279. 一个分数的分子是7,分母是14,化简后是_________。

答案:1/210. 一个数的相反数是-5,那么这个数是_________。

答案:5三、解答题(每题5分,共20分)11. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。

证明:根据三角形不等式定理,对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。

如果已知AB + BC > AC,则满足三角形的构造条件,因此这样的三角形是存在的。

12. 计算:(2x - 3)(x + 4)。

解:根据多项式乘法法则,我们有(2x - 3)(x + 4) = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12。

13. 解方程:2x + 5 = 11。

解:首先将5移到等式右边,得到2x = 11 - 5,即2x = 6。

然后将2除到等式右边,得到x = 6 / 2,即x = 3。

14. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加了15平方米,求原长方形的长和宽。

全国初中数学竞赛试题及答案(2001年).doc

全国初中数学竞赛试题及答案(2001年).doc

2001年全国初中数学联赛一、选择题(每小题7分,共42分)1、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定2、若1≠ab ,且有5a 2+2001a +9=0及05200192=++b b ,则ba 的值是( ) (A )59(B )95(C )52001-(D )92001- 3、已知在△ABC 中,∠ACB =900,∠ABC =150,BC =1,则AC 的长为( )(A )32+(B )32-(C )30⋅(D )23-4、如图,在△ABC 中,D 是边AC 上的一点,下面四种情况中,△ABD ∽△ACB 不一定成立的情况是( )(A )BD AB BC AD •=• (B )AC AD AB •=2(C )∠ABD =∠ACB (D )BD AC BC AB •=•5、①在实数范围内,一元二次方程02=++c bx ax 的根为aac b b x 242-±-=;②在△ABC 中,若222AB BC AC >+,则△ABC 是锐角三角形;③在△ABC 和111C B A ∆中,a ,b ,c 分别为△ABC 的三边,111,,c b a 分别为111C B A ∆的三边,若111,,c c b b a a >>>,则△ABC 的面积S 大于111C B A ∆的面积1S 。

以上三个命题中,假命题的个数是( )(A )0(B )1(C )2(D )36、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。

某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )(A )522.8元(B )510.4元(C )560.4元(D )472.8二、填空题(每小题7分,共28分)1、已知点P 在直角坐标系中的坐标为(0,1),O 为坐标原点,∠QPO =1500,且P 到Q 的距离为2,则Q 的坐标为 。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案This manuscript was revised by the office on December 10, 2020.2001年全国初中数学联赛一、选择题(每小题7分,共42分)1、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( )(A ) 1999(B )2000(C )2001(D )不能确定2、若1≠ab ,且有5a 2+2001a +9=0及05200192=++b b ,则ba 的值是( ) (A )59(B )95(C )52001-(D )92001- 3、已知在△ABC 中,∠ACB =900,∠ABC =150,BC =1,则AC 的长为( ) (A )32+(B )32-(C )30⋅(D )23-4、如图,在△ABC 中,D 是边AC 上的一点,下面四种情况中,△ABD ∽△ACB 不一定成立的情况是( )(A )BD AB BC AD •=• (B )AC AD AB •=2(C )∠ABD =∠ACB (D )BD AC BC AB •=•5、①在实数范围内,一元二次方程02=++c bx ax 的根为a ac b b x 242-±-=;②在△ABC 中,若222AB BC AC >+,则△ABC 是锐角三角形;③在△ABC 和111C B A ∆中,a ,b ,c 分别为△ABC 的三边,111,,c b a 分别为111C B A ∆的三边,若111,,c c b b a a >>>,则△ABC 的面积S 大于111C B A ∆的面积1S 。

以上三个命题中,假命题的个数是( ) (A )0(B )1(C )2(D )36、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。

2001年我爱数学初中生夏令营数学竞赛

2001年我爱数学初中生夏令营数学竞赛

2001年我爱数学初中生夏令营数学竞赛是由湖北省教育厅主办的一
项重点活动,旨在提高学生的数学能力,丰富学生的课外活动。

主办方提
出了以下内容:
一、竞赛内容
(1)基础知识答题:参赛学生需要准确地回答基础知识答题,例如函
数的一般性质、几何(三角形、圆、平面几何等),代数(初等方程、十
字矩阵等),概率论及数理统计等诸多数学问题。

(2)应用算法答题:参赛学生需要清楚明确地给出诸如图形的面积、
体积、频率分布等问题的正确答案。

(3)计算机应用:参赛学生需要利用计算机软件来完成复杂的计算,
以及分析研究并解决复杂的数学问题。

二、评选规则
本次比赛按照分赛场、班级、个人累计分数的方式进行评比,并给出
科学、客观、公正的评选和排名结果。

初中生参赛者将从三个维度(个人、班级、分赛场)得分加以累积,最后根据总分数进行排名。

三、奖励设置
(1)分赛场获奖者:分赛场内一、二、三等奖及优秀奖设置。

(2)班级获奖者:班级内三个最高得分者联合颁发特等奖。

(3)个人获奖者:参赛者均可获得参赛奖励。

我爱数学夏令营计算竞赛_试题

我爱数学夏令营计算竞赛_试题

1993年我爱数学夏令营计算竞赛1.91.5+88.8+90.2+270.4+89.6+186.7+91.8=_________。

2.123+234+345-456+567+678+789-890=_________。

3.1993-1+2-3+4-5+...+1948-1949=_________。

4.93+87+88+79+100+62+75+95+85+69+72+98+89+77+54+75+92+85+83+76+65+60+79+86+100+49+97+97+ 80+78= _________。

5.0.0625+0.125+0.1875+0.25+0.3125+0.375+0.4375+0.5+0.5625+0.625+0.6875+0.75+0.8125+0.875+0.9375=_____。

6.=_________。

7.2+{3+[4+(5+6)×7]×8}×9=_________。

8.=_______。

9. 641×6700417=_________。

10.0.3125×457.83×32=_________。

11.69316.931÷69.31=_________。

12.0.1×0.2×0.3×…×0.9=_________。

13.0.225×0.335+0.335×0.775+0.775×0.225=_________。

14.3367×3367+3456×3456-4825×4825=_________。

15.=_________。

16.=_________。

17.=_________。

18.=_________。

19.=_________。

20.=_________。

21.=_________。

22.=_________。

最新整理初中数学试题试卷暑假初中数学竞赛培训.doc

最新整理初中数学试题试卷暑假初中数学竞赛培训.doc

《整式的运算》专项检测姓名: 成绩:一、填空题:(每小题4分,共40分)1.已知:1=x ,1-=y 时,03=-+by ax ,那么当1-=x ,1=y 时,代数式3-+by ax 的值等于 .2.已知:211=+b a ,则=-+-+-bab a b ab a 454323 . 3. 若8919+=+=+c b a ,则()()()=-+-+-222a c c b b a .4. 若432z y x ==,且20523-=+-z y x ,则z y x -+3的值等于 . 5. 已知014642222=+-+-++z y x z y x ,则=++z y x .6. 已知:32=+xy x ,22-=+y xy ,则=--2232y xy x .7. 已知:()0232=-+-n x ,那么代数式⎪⎭⎫ ⎝⎛-+-+-331313312n n n x x x x 的值等于 . 8. 已知()()()c b b a c a --=-241,且0≠b ,则=+bc a . 9. 已知()()199919982000=-⋅-a a ,那么()()=-+-2219982000a a .10. If 02=+a a ,then the result of 1220002001++a a is .二、选择题:(每小题3分,共30分)1.计算()()()[]222222m n n m ----+等于( ) A.224n m - B.224n m C.0 D.2222n m + 2.若012=-+x x ,则=-+x x x 2332( )A .0B .1C .-1D .不能确定3.若012=++a a ,则3199820002002+++a a a 的值为( )A .1B .2C .3D .44.乘积⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⋅⋅⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222200011199911311211等于( ) A.20001999 B.20002001 C.40001999 D.40002001 5.若01132=+-x x ,则441xx +的个位数字是( ) A.1 B.3 C.5 D.7 6.若2=-y x ,422=+y x ,则20022002y x+的值是( ) A.4 B.22002 C.20022 D.20024暑假初中数学竞赛培训7.已知20021999+=x a ,20031999+=x b ,20041999+=x c ,则ca bc ab c b a ---++222的值为( ) A.0 B.1 C.2 D.38.已知4=-b a ,042=++c ab ,则=+b a ( )A.4B.0C.2D.2-9.已知3=-b a ,那么ab b a 933--的值为( )A.3B.9C.27D.8110.已知a y x =-,10=-y z ,则代数式zx yz xy z y x ---++222的最小值为( )A.75B.80C.100D.105三、解答题:(1小题8分,2小题12分,3小题10分,共30分)1.如果a 、b 互为相反数,c 、d 互为倒数,e 的绝对值等于1,求cd e c b a -+⎪⎭⎫⎝⎛+20042004的值.2.设()0122334455512a x a x a x a x a x a x +++++=-,求(1)543210a a a a a a +++++.(2)543210a a a a a a -+-+-.(3)420a a a ++.3.已知x 、y 满足y x y x +=++24522,求代数式y x xy+的值.命题:杨华。

2001年全国初中数学联合竞赛试题及解答

2001年全国初中数学联合竞赛试题及解答
20 分) 在直角坐标系中有三点 A(0 , 1) , B(1, 3) , C (2 , 6) .已知直线 y ax b 上横坐标为 0、1、2 的点分别为 D , E , F .试求 a , b 的值使得 AD2 BE 2 CF 2 达到最 大值. 解
b , E 1, a b , F 2, 2a b , D , E , F 的坐标为 D 0 ,
b b2 4ac ; 2a
②在 △ABC 中,若 AC 2 BC 2 AB2 ,则 △ABC 是锐角三角形; ③在 △ABC 和 △A1 B1C1 中, a ,b , c 分别为 △ABC 的三边, a1 ,b1 ,c1 分别为 △A1 B1C1 的三边,若 a a1 , b b1 , c c1 ,则 △ABC 的面积 S 大于 △A1 B1C1 的面积 S1 . 以上三个命题中,假命题个数是( A.0 【答】D. ① 若 0 ,命题不成立. ② AB 未必是最大边. ③ 反例:如图,取 △ABC ,在 BC 上取 BK 0.9BC ,过 K 作 l ∥ AB ,在 AB 延长线上 取 B ,使 AB 1.1AB .当点 C 在 l 上远离时, AC 与 BC 1 均变长,故可有 AC AC ,
1 x x 1 必是整数,由 2a 是整数得 2
1 2a x x 1 是整数,又由 a b ,c 是整数得 a b x c 是整数,因此当 x 取 2
任意整数时,二次函数 y ax2 bx c 总取整数值. 方法二:若 c , a b , 2a 都是整数, 则当 x 为偶数时,设 x 2k ,
2
2a 2k 2 2k 2a 2 a b k a b c

我爱数学初中生夏令营数学竞赛试题

我爱数学初中生夏令营数学竞赛试题

年我爱数学初中生夏令营数学竞赛试卷说明:第一试每题分,共分;第二试每题分,共分.第一试.已知≠,并且关于的方程--①至多有一个解,试问:关于的方程(-)(-)3a②是否一定有解?并证明你的结论..已知点为等腰△的底边的中点为线段内部的任意一点,设的垂直平分线与直线交于点与交于点.求证:直线是△的外接圆的切线..在,…这个正整数中,最多可以取出多少个数,使得所取出的数中的每一个都与互质,并且所取出的数中的任意三个的和都不是的倍数.第二试.已知在△中,∠°,,则 ..已知,则代数式化简的最后结果是. .代数式-的最小值为..如果一个直角三角形的两条直角边的乘积等于它的斜边的平方的,那么,这个直角三角形中较大的锐角的度数为..已知在直角坐标系中,△的三个顶点分别为( , )、(,)、( , ).则△的边上的高与∠的平分线的交点的坐标为..已知某工厂一月份生产某产品万件,二月份生产万件,三月份生产万件月份生产万件,其中、、都是常数,…,则该工厂四月份生产万件..方程-(-)-(-)的解为 ..已知矩形的周长的平方与面积的比为.则矩形的较长的一边与较短的一边的长度的比等于..已知正方形纸片的面积为 .现将该纸片沿一条线段折叠(如图),使点落在边上的点′处,点落在点′处′′与交于点.则△′的周长等于..若为整数<<,且()是一个完全平方数,则整数的值等于.参考答案第一试.由题意知,方程①的判别式Δ4a(-)≤(2a-)≤∴-≤≤,-≤2a-≤∴-≤≤≤.当-时,方程②化为-,有解.当-<时,方程②的判别式Δ(-)-()(-)>,此时也有解.综上所述,方程②一定有解..以为圆心、为半径作圆,则点、都在该圆的圆周上.联结.则∠°-∠°-∠∠.因此是△的外接圆的切线..将,…分别用除,余数为、、、、的各有个;余数为、的各有个.在,…中,与不互质的数有××,…×以及×××××.将这些与不互质的数分别用除,余数依次为,…以及.于是,在这些与不互质的数中,余数为、、、、、、的依次有、、、、、、个.在,…且与互质的数中,余数为、、、、、、的依次有、、、、、、个.要使所取出的数中的任意三个的和都不是的倍数,至多取个余数为的数.由于余数为()、()、()、()、()、()以及()、()的三数的和都是的倍数,因此,至多取组其余数在图中不相邻的全部数.经验证可知,取组余数为、的全部数,再取个余数为的数,符合题目的要求,且取出的数的个数达到最大值.故最多可以取出个数,使得所取出的数中的每一个都与互质,并且所取出的数中的任意三个的和都不是的倍数.第二试-....令-,则××,×-×-.故Δ()-××(×-)×(-×)≥.所以≥.当且仅当时取最小值°.设较大的锐角为α.由题意易知α·ααα°.( , ).设△的边上的高与∠的线交于点( , ).则∠∠ .又∠∠,于是, 由半角公式得 .·.由题设易知··.则(-)(-).故-.所以.. , --.令,代入原方程得--.易知满足条件.故.于是-(-)-(-)(-)( -).(-)(-)( -).所以--...设矩形的长、宽分别为、(≥).则(),即4a(-).令,则(-).解得..设正方形边长,∠′α.则∠′α′α′(-α).所以,△′的周长为(-α)( αα)2a .或.设(),则()-.令,则--.其为佩尔方程,其基本解为()().其全部正整数解可由()得到.其中,()(),()(),()()>.故或.。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

2001年全国初中数学竞赛历年竞赛试题以及参考答案

2001年全国初中数学竞赛历年竞赛试题以及参考答案
答案: 或10
10.销售某种商品,如果单价上涨 %,则售出的数量就将减少 。为了使该商品的销售总金额最大,那么 的值应该确定为____________。
答案:25
11.在直角坐标系 中, 轴上的动点M(x,0)到定点P(5,5)、Q(2,1)的距离分别为MP和MQ,那么当MP+MQ取最小值时,点M的横坐标 ____________。
6.若 是正数,且满足 ,则 之间的大小关系是()。
(A) (B) (C) (D)不能确定
答案:A
二、填空题(30分)
7.已知: 。那么 ____________。
答案:970
8.若 则 的值为____________。
答案:6或-7
9.用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于___________Fra bibliotek。答案:
12.已知实数 满足 ,那么t的取值范围是____________。
答案:
三、解答题(60分)
13.某个学生参加军训,进行打靶训练,必须射击10次。在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环。他的前9次射击所得的平均环数高于前5次射击所得的平均环数。如果他要使10次射击的平均环数超过8.8环。那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)
14. 如图,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A,B两点,并交ST于点C。
求证: .
答案:P,A,C,B四点成调和点列(德站解答)
15. 如图,已知圆O的两条半径OA与OB互相垂直,C为弧AmB上的一点,且 ,求 的度数。
16.对非负整数n,满足方程 的非负整数 的组数记为

我爱数学夏令营计算竞赛试题(1989-2007)

我爱数学夏令营计算竞赛试题(1989-2007)

我爱数学夏令营计算竞赛试题(1989-2007)1993年我爱数学夏令营计算竞赛1.91.5+88.8+90.2+270.4+89.6+186.7+91.8=_______ __。

2.123+234+345-456+567+678+789-890=_________。

3.1993-1+2-3+4-5+...+1948-1949=_________。

4.93+87+88+79+100+62+75+95+85+69+72+98+89+77+5 4+75+92+85+83+76+65+60+79+86+100+49+97+97+ 80+78= _________。

5.0.0625+0.125+0.1875+0.25+0.3125+0.375+0.4375 +0.5+0.5625+0.625+0.6875+0.75+0.8125+0.875+0 .9375=_____。

6.=_________。

7.2+{3+[4+(5+6)×7]×8}×9=_________。

8.=_______。

9. 641×6700417=_________。

10.0.3125×457.83×32=_________。

11.69316.931÷69.31=_________。

12.0.1×0.2×0.3×…×0.9=_________。

13.0.225×0.335+0.335×0.775+0.775×0.225=_________。

14.3367×3367+3456×3456-4825×4825=_________。

15.=_________。

16.=_________。

17.=_________。

18.=_________。

19.=_________。

20.=_________。

夏令营初中数学试卷及答案

夏令营初中数学试卷及答案

一、选择题(每题2分,共20分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √362. 下列代数式中,同类项是()A. 3x^2 + 2xyB. 4a^2 - 5a^2C. 2x^3 + 3x^3D. 5m^2 - 3n^23. 若a = 2,b = -3,则a^2 - b^2的值是()A. 5B. -5C. 13D. -134. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,3)5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 3/xD. y = 56. 在等腰三角形ABC中,AB = AC,若∠B = 40°,则∠C的度数是()A. 40°B. 80°C. 100°D. 120°7. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 半圆D. 等腰梯形8. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x - 5 = 0C. 3x + 4 = 2x + 6D. 4x + 5 = 09. 若a,b是方程2x^2 - 5x + 2 = 0的两个根,则a + b的值是()A. 5B. -5C. 2D. -210. 下列不等式中,正确的是()A. 2x > 4B. 3x ≤ 6C. 4x < 8D. 5x ≥ 10二、填空题(每题2分,共20分)11. 计算:-8 + 3 - 5 + 2 = ______12. 化简:4a^2 - 9b^2 = ______13. 解方程:3x - 5 = 2x + 414. 若a = -3,b = 2,则2a - 3b的值是 ______15. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB的长度是______16. 下列函数中,y = 3x + 1的图象是()A. 斜线B. 抛物线C. 双曲线D. 水平线17. 在等腰三角形ABC中,AB = AC,若∠B = 70°,则∠A的度数是 ______18. 下列图形中,是平行四边形的是()A. 正方形B. 等边三角形C. 长方形D. 等腰梯形19. 解不等式:2x - 3 < 720. 若x^2 - 5x + 6 = 0,则x的值是 ______三、解答题(每题10分,共30分)21. (1)计算:√64 - √81 + √25(2)解方程:3(x - 2) = 2x + 622. (1)已知a,b是方程x^2 - 4x + 3 = 0的两个根,求a + b的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001我爱数学初中生夏令营数学竞赛试卷(第一试)
一.在锐角ΔABC中,AD⊥BC,D为垂足,DE⊥AC,E为垂足。

O为ΔABC的外心。

求证:(1)ΔAEF~ΔABC;(2)AO⊥EF。

二.给定代数式–x3+100x2+x 中的字母 x只允许在正整数范围内取值。

当这个代数式的值达到最大值时, x的值等于多少?并证明你的结论。

三.(1)证明存在非零整数对(x,y), 使代数式 11x2+5xy+37y2的值为完全平方数;(2) 证明存在六个非零整数a1,b1,c1,a2,b2,c2, 其中a1:a2≠b1:b2,使得对于任意自然数n, 当x=a1n2+b1n+c1,y=a2n2+b2n+c2时,代数式 11x2+5xy+37y2的值都是完全平方数。

2001我爱数学初中生夏令营数学竞赛试卷(第二试)
一.= 。

二.在长方形ABCD中,EF∥AB,GH∥AD,EF与GH相交于O,
HC与EF相交于I。

已知AH:HB=m:n, △COI的面积为1平方厘米,
那么矩形ABCD的面积等于平方厘米。

三.将三个数:用两个不等号“>”连接起来,正确的结果应该是:。

四.点D,E分别在△ABC的边AC和BC上,∠C为直角,DE∥AB,
且3DE=2AB,AE=13,BD=9,那么AB的长等于。

五.知:x,y,z是正整数,并且满足
那么,x-y+z的值等于。

六.已知点D,E,F分别在△ABC的三边BC,CA,AB上,G为BE与CF的交点,并且BD=DC=CA=AF,AE=EC=BF,那么的值等于。

七.如果满足||x2-6x-16|-10| = a的实数x恰有6个,那么实数a的值等于。

八.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于。

九.满足下列两个条件
(1)对所有的自然数,x,x-2001x+n≥0;
(2)存在自然数x0,使x02-2002 x0+n<0.
的正整数n的个数为
十.一批救灾物资分别随16列货车从甲站紧急调运到三百多里以外的乙站,已知每列货车
的平均速度都相等,且记为v公里/小时。

两列货车实在运行中的间隔不小于公里,
这这批救灾物资全部运到目的地最快需要6小时,那么每隔分钟从甲站向乙站发一
趟货车才能使这批货物在6小时内运到。

相关文档
最新文档