重庆大学高等数学(II-2) ( 第3次 )
重庆大学高等数学习题3-2
A 组1.用洛必达法则求下列极限:(1)02lim 1cos xxx e e x -→+-- (2)arctan 2lim 1x x xπ→+∞-(3)0cos lim sin x x e x x x →- (4)011limcot ()sin x x x x→- (5)10(1)lim xx x ex→+- (6)210sin lim ()x x x x +→ (7)011lim()sin x x x→- (8)sin 0lim xx x +→(9)lim(1)xx a x→∞+ (10)n 其中n 为正整数解析:考查洛必达法则的应用,洛必达法则主要应用于00,∞∞型极限的求解,当然对于一些能够化简为00,∞∞型极限的同样适用,例如00010⋅∞==∞等等,在求解的过程中,同样可以利用前面已经学到的极限的求解方法,例如等价无穷小、两个重要极限 解:(1)本题为型极限的求解,利用洛必达法则求解得 0002lim lim lim 21cos sin cos x x x x x x x x x e e e e e e x x x---→→→+--+===- (2)本题为型极限的求解,利用洛必达法则求解得 22221arctan 12lim lim lim 1111x x x x x x x x x π→+∞→+∞→+∞--+===+-(3)本题为0型极限的求解,利用洛必达法则求解得000cos sin 1lim lim lim sin sin cos 0x x x x x e x e x x xx x x →→→-+===∞+ (4)先化简,得2300011cos sin sin sin limcot ()lim lim lim sin sin sin sin x x x x x x x x x x xx x x x x x x x x →→→→----=⋅==型极限的求解,利用洛必达法则求解得23220001sin 1cos 12lim lim lim 336x x x xx x x x x x →→→--=== (5)化简1ln(1)00(1)lim limx x xx x x e eexx+→→+--=型极限的求解,利用洛必达法则求解得 0ln(1)ln(1)ln(1)lim 220002000ln(1)(1)ln(1)1lim lim lim(1)(1)ln(1)1ln(1)1ln(1)lim lim lim 222x x x x xxx x x x x x x xx e e x x x x e e x x x x x x x x x e e e e x x x →+++→→→→→→-+--+++=⋅=+-++-+--+====-(6)1∞型极限的求解,首先利用lne ,然后利用洛必达法则求解得222220002322000sin sin sin sin ln ln 11ln 11lim lim lim 001sin cos 112limlimlim 336sin lim ()lim x x x x x x x x x xxx x x x x x x x x x x x x x xxxx e eeexeeee+++→→→+++++→→→⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭→→----========(7)∞-∞型极限的求解,先化简再利用洛必达法则求解得2200000111sin sin 1cos 2lim()lim lim lim lim 0sin sin 22x x x x x xx x x x x x x x x x x x→→→→→----==== (8)00型极限的求解,先利用lne 化简,再利用洛必达法则求解得22002001ln lim limsin cos 1limlimsin ln sin cos sin sin 0lim lim 1x x x x xx xx x x x xx x x xxx x x e e eee++→→++→→++---→→======(9)1∞型极限的求解,先利用重要极限二化简lim(1)lim(1)lim(1)x x a a x a a ax x x a a a e x x x⋅⋅→∞→∞→∞+=+=+= 当然也可以先化简,再利用洛必达法则求解222ln()ln lim1[ln()ln ]1111limlim112limlim()2lim(1)lim()lim x x x x x x a xx x x x a x x x x x x a x x a x ax axax x a xxx aa x a e e x x eeeee →∞→∞→∞→∞→∞+-+-→∞→∞→∞--++--++++========(10)0∞型极限的求解,先化简,利用洛必达法则求解1ln212lim(2)lim lim1nn n nn n n nn e e→∞→∞→∞====2.已知21lim5sinxx bx cxπ→++=,求b,c的值解析:考查洛必达法则的应用,已知1limsin0xxπ→=,要使极限存在,则21lim()0xx bx c→++=同时可以利用洛必达法则求解解:根据上述分析得10b c++=21122lim limsin cosx xx bx c x b bx xππππ→→++++==-则25bπ+=-,解得52bπ=--则51cπ=+B组1.求下列极限(1)2222lim(1)(1cos)x x x xxxxe xe e ee x→+-+--(2)2lim(arctan)xxxπ→+∞⋅(3)1lnlim(cot)xxx+→(4)1111lim()x x xxxa b ca b c+++→++++(5)1limln1xxx xx x→--+(6)11112limnxx x xnxa a an→∞⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦L,其中12,,,0na a a>L解析:考查极限的求解,求解极限的方法包括洛必达法则、等价无穷小、两个重要极限还可以利用换元求解,下面结合实例说明解:(1)型极限的求解,先化简再利用洛必达法则求解222200023220022(2)(2)(23)(3)lim lim lim11(1)(1cos)22(44)(4)(84)(5)1lim lim333x x x x x x x xxx x xx x x xx xxe xe e e x e x e x e x ee x x x xx e x e x e x ex→→→→→+-+-++-++==--⋅-++-++===(2)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解222221221arctan ln arctan lim lim121ln arctan 12limarctan 12lim (arctan )lim x x x xx x x xx xx x x x x x x eeeeeππππππ→+∞→+∞→+∞⋅+⋅⋅-⋅→+∞→+∞-⋅-+⋅=====(3)0∞型极限的求解,先化简为型极限,再利用洛必达法则求解00csc cot cot lim 1ln cot 1lim 1sin ln ln 0lim(cot )lim x x x x x x xxxxxx x x e ee e +→+→++---→→====(4)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111110ln(ln ln ln )1111limln ln ln 1lim()lim ()x x x x x x x x x x a b c a b ca ab bc c x x x a b c a b cxxab cx x a a b b c ca b c a b ca b cab c ee a b cea b c +++++++++→+++++++++++⋅++++→→++++++++==++==(5)型极限的求解,直接利用洛必达法则求解 ln 2ln ln 111121[(ln 1)](ln 1)1limlim limlim211ln 1ln 11x x xx xx xx x x x e x x x e x ex x x x x x x x →→→→++--+-====---+-+- (6)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111122222121111221112111ln ln ln ln 111lim1112lim ln lim lim x x x n n xxxn x x xn x x x a a a a a a n x x x a a a n n a a a nxx x x n nxnx x x a a a a a a eene→∞→∞⎛⎫---⎛⎫ ⎪⋅⋅+⋅⋅++⋅⋅⎛⎫⎪ ⎪⎪+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++ ⎪⎝⎭⎪⎪⎝⎭⎝⎭-→∞→∞⋅+⎡⎤+++⎢⎥==⎢⎥⎢⎥⎣⎦=L L L L 112ln ln 12x x n n a a a na a a ⎛⎫ ⎪⋅++⋅ ⎪⎝⎭=L L 2.评论函数1(1),0()0,0xx x f x e x ⎧⎡⎤+⎪⎢⎥>⎪⎢⎥=⎨⎢⎥⎣⎦⎪⎪≤⎩在点0x =处的连续性解析:考查函数的连续性,只需证明0(0)lim ()x f f x →=解:已知(0)0f =01ln(1)lim00(1)1lim ()lim 1x x xxx x x f x e e e+→+++→→+==⋅=则函数在点0x =处不连续性。
重庆大学高等数学习题1-5
习题1-5 A 组1.求参数a 的值,使得函数24,2()2,2x x f x x a x ⎧-≠⎪=-⎨⎪=⎩在点2x =处连续解析:考查分段函数的连续性,函数在某一点连续的充要条件可以总结为00lim ()()x x f x f x →=解:本题中22224lim ()limlim(2)42x x x x f x x x →→→-==+=- 则4a =2.若函数(sin cos ),0()2,0x e x x x f x x a x ⎧+>=⎨+≤⎩是(,)-∞+∞上的连续函数,求a解析:考查函数在定义域内的连续性,本题中,当0x >和0x ≤时,函数()f x 都是初等函数的复合,因此都在连续的,则判断函数在上连续只需判断函数在点0x =处连续,即使00lim ()lim ()(0)x x f x f x f -+→→== 解:已知(0)f a =lim ()lim(2)x x f x x a a --→→=+=,00lim ()lim (sin cos )1x x x f x e x x ++→→=+= 则1a =3.若函数2,0()sin 0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =点处连续,求a 与b 的关系解析:考查分段函数在某点上的连续性,和上题类似,只需使0lim ()lim ()(0)x x f x f x f -+→→== 解:已知(0)f a =20lim ()lim()x x f x a bx a --→→=+=,00sin sin lim ()lim lim x x x bx bxf x b b x bx+++→→→===则a b =4.求下列函数的间断点,并指出其类型 (1)2sin ()1x f x x =-(2)1()1x f x x -=-(3)2tan ()1x f x x =+ (4)20,0,01()42,134,3x x x f x x x x x x <⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩ 解析:考查间断点的类型,首先要找出间断点,一般为无定义点、无极限点和函数值不等于该点的极限值的点。
重庆大学2020年春季学期课程作业高等数学(II-1)
函数的间断点是()。
A、oB、oC、oD、无间断点•收藏该题2、若,则的取值范围是()。
oA、oB、oC、oD、•收藏该题3、设, 当从变到时,函数的增量为( ) 。
•oA、oB、oC、oD、•收藏该题4、( ) 。
•oA、oB、oC、oD、•收藏该题5、曲线所围平面图形的面积为( )。
•oA、oB、oC、oD、•收藏该题6、d( )=•oA、oB、oC、oD、•收藏该题7、函数,则()。
oA、oB、1oC、oD、不存在•收藏该题8、函数在处的导数等于( )。
•oA、1oB、2oC、3oD、4•收藏该题9、是()的一个原函数。
oA、oB、oC、oD、•收藏该题10、当时,下列函数是无穷小是( )。
•oA、oB、oC、oD、•收藏该题11、( )oA、oB、不存在oC、1oD、•收藏该题12、( )。
•oA、-1oB、1oC、oD、不存在•收藏该题13、三次曲线在处取极大值,点是拐点,则()。
oA、oB、oC、oD、全部都错•收藏该题14、若,则()。
•oA、1oB、-1oC、oD、•收藏该题15、若函数f(x)在点x o可导,下列说法错误的是( )。
oA、函数f(x)在点x o左导数存在oB、函数f(x)在点x o右导数存在oC、函数f(x)在点x o左右导数均存在oD、函数f(x)在点x o可导与左右导数是否存在无关•收藏该题16、下列式子中,正确的是()。
•oA、oB、oC、oD、•收藏该题17、无穷多个无穷小量之和,则( )。
•oA、必是无穷小量oB、必是无穷大量oC、必是有界量oD、是无穷小,或是无穷大,或有可能是有界量•收藏该题18、=( )。
•oA、1oB、4oC、2oD、不存在•收藏该题19、下列函数在区间上单调减少的是()。
•oA、oB、oC、oD、•收藏该题20、判断函数的极值点应该判断()。
•oA、一阶导数为0的点和一阶导数不存在的点oB、二阶导数为0的点和二阶导数不存在的点oC、只判断一阶导数为0的点oD、只判断二阶导数为0的点•收藏该题21、区间[0,+∞)表示不等式( )。
重庆大学高数(工学下)期末试题一(含答案)
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆大学高数(下)期末试题四(含答案)
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 设,,a b c 满足条件,a c b c ⋅=⋅则().(A) a c = (B) a b c =- (C) b c = (D) ()a b c ⊥- 知识点:向量的运算.难度等级:1. 答案:(D)分析:由a b a c ⋅=⋅得()0a b c ⋅-=,,,a b c 都非零,所以()a b c ⊥-. 2. 若某个二阶常系数线性齐次微分方程的通解为12,x x y C e C e -=+其中12,C C 为独立的任意常数.则该方程为().(A)xy y e ''-= (B) 20y y ''-=(C)0y y ''+= (D)0y y ''-= 知识点:微分方程通解,微分方程,难度等级:1. 答案: (D)分析:由通解中的两个独立解,x x e e -知.方程对应的特征方程的特征根为121, 1.λλ==-因此对应的特征方程是2(1)(1)10.λλλ-+=-= 于是对应的微分方程应是0.y y ''-=故应选(D).3. 设222: (1)1,x y z Ω++-≤则2[23]x xyz dV Ω+-⎰⎰⎰().=(A)0 (B)3π (C)3π- (D)4π- 知识点:三重积分,对称性,难度等级:2. 答案:(D)分析: 积分区域关于yoz 面对称.22x xyz +为关于x 的奇函数.积分值为0,余下为3-倍体积.球体体积为4/3,π故选D. 4.设有曲线积分22,4Lydx xdyI x y -+=+⎰其中L 为不过原点的光滑闭曲线,并取正向,则I 的值为().命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(A)0 (B)2π (C)2π- (D)π 知识点:对坐标的曲线积分,难度等级:2. 答案:(D)分析: 由于内部含有不连续点.不能直接用格林公式.设曲线L 到原点最小距离为2,a 取曲线222:4C x y a +=的顺时针方向.与曲线L 构成闭区域.在该闭区域上使用格林公式.结果为0.故22222222cos sin 22.4C a a ydx xdy I d x y aπθθθπ-+-+===+⎰⎰选D.5. 经过两平面4310,x y z -+-=520x y z +-+=的交线作平面,π并使π与y 轴平行的方程为(). (A) 142130x y --= (B) 211430x z -+= (C) 211430x z +-= (D) 211430x z ++= 知识点:平面方程,平面束.难度等级:2. 答案:(C)分析:设平面π的方程为52(431)x y z x y z λ+-++-+-=即(14)(5)(31)20.x y z λλλλ++-+-+-=当5λ=时211430x z +-=与y 轴平行.6. 设()f u 具有连续导数.∑是曲面22z x y +=与228z x y --=所围成立体表面之外侧.则zdxdy dzdx yxf x dydz yx f y++⎰⎰)(1)(1=().(A) 16π (B) 16π- (C) 8π- (D)因()f u 未知.故无法确定.知识点:对坐标的曲面积分,高斯公式.难度等级:2. 答案:(A)分析: 利用高斯公式可得积分为所围成立体体积.48416,yyD D V dy dxdz dy dxdz π=+=⎰⎰⎰⎰⎰⎰选A.二、填空题(每小题3分,共18分)7. 设函数10()0x f x x x ππ-<≤⎧=⎨<≤⎩在[],ππ-上的傅立叶级数的和函数为(),s x 则(4)s π=__________.知识点:傅里叶级数,和.难度等级:1. 答案:1.2分析:傅立叶级数的和函数为()s x 是以2π为周期的周期函数.(00)(00)1(4)(0).22f f s s π-++=== 8. 设∑为平面1x y z -+=在第四卦限的上侧.(,,)f x y z 为连续函数.则[(,,)]d d [2(,,)]d d [(,,)]d d ______.f x y z x y z f x y z y z x f x y z z x y ∑+++++=⎰⎰知识点:对坐标的曲面积分,难度等级:3. 答案:1.2分析:原积分{}}[(,,)],[2(,,)],[(,,)]1,1,1f x y z x f x y z y f x y z z dS ∑=+++-⎰⎰)1.2xyD x y z dS dxdy ∑=-+==⎰⎰9. 曲线z xyy ==⎧⎨⎩1在点(2,1,2)处的切线与x 轴正向所成的倾角为__________.知识点:曲线的切线,夹角.难度等级:2. 答案:.4π分析:曲线z xyy ==⎧⎨⎩1在点(2,1,2)处的切线与x 轴正向所成的倾角θ的正切为z xy =在点(2,1处关于x 的偏导数的值.即(2,1)(2,1)tan 1,z y x θ∂===∂所以.4πθ=10. 设L 是从点() 0, ,ππe e A -沿曲线cos , sin , t tt x e t y e t z e ===到点()1 , 0 , 1B 的弧段, 则第一类曲线积分()222 LI x y z ds =++⎰的值为__________.知识点:对弧长的曲线积分,难度等级:1. 答案:()31.3e π- 分析: ()22222 0 (t t t L I x y z ds e e dtπ=++=+⎰⎰)31.e π=- 11. 由曲线2,2y x y x ==+所围成的平面薄片其上各点的面密度为21,x μ=+则此薄片的质量M 为__________. 知识点:薄片的质量,难度等级:2. 答案:153.20分析:密度函数为被积函数.积分区域为曲线所围.故222221153(1)(1).20x Dx M x dxdy dx x dy +-=+=+=⎰⎰⎰⎰ 12. 设积分曲面∑是球面222:2,x y z az ++=则曲面积分222()_____.x y z d S ∑++=⎰⎰ 知识点:对面积的曲面积分,难度等级:2. 答案:48.a π分析:由于投影面有重叠.需将球面分为上下两个半球面计算.12,∑=∑+∑1:∑z a =2:z a ∑=在曲面上被积函数等于2,az 计算合并化简得二重积分2222448.x y a a a π+≤=⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题00430,6,10x x y y y y y ==''''-+===的解.知识点:二阶线性常系数微分方程的初值问题,难度等级:1. 分析:求特征根,写出通解,再求特解.解: 特征方程为2430,λλ-+=其根121,3,λλ==故通解为123.x x y C e e C =+代入初值条件可解得124, 2.C C ==从而特解为342.x x y e e =+14. 求幂级数2211(!)(2)!n n n xn +∞=∑的收敛域.知识点:幂级数的收敛域,难度等级:2 分析:比值法.并讨论端点的敛散性.解: 2232221((1)!)(22)!lim lim 1(!)4(2)!n n n n n x x n n x n ++→∞→∞++=< 2.x ⇒<当2x =时,221221111(!)(!)2(2)!!2(2)!(2)!(21)!!n n n n n n x n n n n n ++∞∞∞=====-∑∑∑通项极限不为0故发散.幂级数2211(!)(2)!n n n x n +∞=∑的收敛域为 2.x <15.过两平面0134=-+-z y x 和025=+-+z y x 的交线作一平面π过点(1,1,1), 求该平面方程.难度等级:2;知识点:空间解析几何. 分析: 写出过已知直线的平面束方程. 解: 设所求的平面方程为 431(52)x y z x y z λ-+-++-+= (1) 将点)1,1,1(代入(1)得57λ=-.将57λ=-代入(1)得 所求的平面方程为233226170x y z -+-=.16. 计算2(),I z x dydz zdxdy ∑=+-⎰⎰其中∑是抛物面)(2122y x z +=介于0=z 及2=z 之间的部分的下侧.知识点:对坐标的曲面积分. 难度等级:3分析:直接计算,化曲面积分为 二重积分.解 : 首先,计算2(),z x dydz ∑+⎰⎰其中12,∑=∑+∑1:x ∑=前侧;2:x ∑=后侧.2()zx dydz ∑+⎰⎰2z =(-y12()z x dydz ∑=++⎰⎰⎰⎰∑+2)(2dydz x z ⎰⎰⎰⎰---+-+=yzyzD D dydz y z z dydz y z z))(2()2(222222222224.yz D y dyπ-===⎰⎰⎰⎰其次,2222211()()4.22xyD zdxdy x y dxdy d rrdr πθπ∑-=-+-=⋅=⎰⎰⎰⎰⎰⎰于是,8.I π=四、解答题(每小题6分,共12分)17.设曲线积分[]⎰-+L dy x x xf dx x yf 2)(2)(在右半平面)0(>x 内与路径无关,其中(),(1)1,().f x f f x =可导且求知识点:对坐标的曲线积分,积分与路径无关,微分方程. 难度等级:2分析: 利用积分与路径无关的条件得微分方程. 解:由积分与路径无关的条件知:[]2()2(),yf x xf x x y x∂∂⎡⎤=-⎣⎦∂∂ 即有1()() 1.2f x f x x'+=解上面的微分方程得()f x C =+将1)(=x f 代入上式得1.3C =所以1()2).3f x x =+18.设为不自交的光滑闭曲线.求[]sin().grad x y z dr Γ++⋅⎰知识点:梯度,曲线积分向量表示.难度等级:2分析: 斯托克斯公式解: .记是以为边界的任意光滑曲面,其正侧与的正向按右手法则确定.应用斯托克斯公式.可得.五、证明题(每小题6分,共12分)19.设函数z f x y =(,)在P x y 000(,)处有连续的偏导数.证明它在P 0处沿等值线的切线方向的方向导数为零. 知识点:等值线,方向导数,难度等级:2分析:等值线(,)f x y C =上一点000(,)P x y 处的法向量为(,),x y f f 所以切向量为(,).y x f f -由方向导数的计算公式0z z a a∂=∇⋅∂即可得到结Γ[sin()]cos()()grad x y z x y z i j k ++=++++∑ΓΓ[sin()]cos()()grad x y z dr x y z dx dy dz ΓΓ++⋅=++++⎰⎰0000dydz dzdx dxdy ∑=++=⎰⎰论.证明:函数z f x y =(,)的等值线(,)f x y C =上一点P x y 000(,)处的法向量为(,),x y f f 所以切向量为(,).y x a f f =-z f x y =(,)沿此方向的方向导数为(,)(,)0.y x x y f f z z a f f a a a∂=∇⋅=⋅-=∂ 20. 设)(x f 在点0=x 的某一邻域内具有二阶连续导数.且0()lim 0.x f x x →=证明级数∑∞=⎪⎭⎫ ⎝⎛11n n f 绝对收敛. 知识点:极限,泰勒中值定理,比较判别法.难度等级:3 分析:由已知0()lim0x f x x→=可得(0),(0)f f ',利用泰勒中值定理建立函数()f x 与零点间的关系.证明:1. 0()lim0x f x x→= 0()(0)lim ()lim0.x x f x f f x x x→→⇒==⋅= 00()(0)()(0)limlim 0.x x f x f f x f x x∆→→∆-'⇒===∆ ⇒由泰勒中值定理.存在1(0,),nξ∈使得2111()(0)(0)().2f f f f n n nξ'''=++ 211()().2f f n nξ''⇒≤2.又)(x f 在点0=x 的某一邻域内具有二阶连续导数.故存在0,M >使得().f x M ''≤2211().22Mf M n n n ⇒≤=⇒级数∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.六、应用题(每小题8分,共16分)21. 在均匀的半径为R 的半圆形薄片的直径上, 要接上一个一边与直径等长的同样材料的均匀矩形薄片, 为了使整个均匀薄片的质心恰好落在圆心上, 问接上去的均匀矩形薄片另一边的长度应是多少?知识点:质心,难度等级:2分析:根据已知条件建立恰当坐标系.要求可得一方程.解方程可得结果解:设所求矩形另一边的长度为,H 建立坐标系, 使半圆的直径在x 轴上, 圆心在原点. 不妨设密度为31/.g cm ρ=由对称性及已知条件可知0,x y ==即0.Dydxdy =⎰⎰从而0.RRHdx ydy --=⎰即3221[()]0,2RR R x H dx ---=⎰亦即32210.3R R RH --=从而.H =因此,. 22.求原点到曲线221x y zx y z ⎧+=⎨++=⎩的最长和最短距离.知识点:条件极值.难度等级:3分析: 先写出目标函数.即曲线上的点(,,)x y z 到原点的距离.然后用拉格朗日乘数法可得条件极值点.解:原点到曲线上点(,,)x y z 的距离d =需要求出222x y z ++在221x y zx y z ⎧+=⎨++=⎩下的极值.令L =22222()(1),x y z x y z x y z λμ++++-+++-则由拉格朗日乘数法得2222022020.010x y z L x x L y y L z L x y z L x y z λμλμλμλμ⎧=++=⎪=++=⎪⎪=-+=⎨⎪=+-=⎪⎪=++-=⎩解方程组得驻点12x y ==-此时2z =d及驻点12x y ==-此时2z =.d。
重庆大学高数工学下资料期末试题十二含答案资料全
重庆大学《高等数学(工学类)》课程试卷20 —20 学年第学期答案:C.题号-一一二——三三四五六七八九十总分得分考试时间: ___ 120 分开课学院:数统学院课程号: 考试日期: ___________弊作绝拒、纪考肃严、信守实诚、争竞平公室教试考名姓号学级年班、业专院学考试提示1. 严禁随身携带通讯工具等电子设备参加考试;2. 考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.2.曲线x sect, y csct,z sectcsct在对应于t —点处的切线方程4是()•(A)拧¥ 22 z 2(B)x、+晋(C):22Z2 (D)x22育晋难度等级:1;知识点:多元微分学的几何应用答案:B.分析:t —时切点为G 2 '-2 2),切向量a (、-2、• 2,0).所以切线4方程为x二1 2三二.与(A)、(B)、(C)、(D)比较后知,应选(B).1 0、选择题(每小题3分,共18分)1.设Z x y x, 则-( ).xx(A)y x x y 1 (B) y x In xln y 丄xx(C) y x x y In x In 1 y _x(D) x 1x y iy x In x — x难度等级:2;知识点:偏导数t2t3、3.物质沿曲线:x t, y —,z — (0 t 1)分布,线密度为 2 3它的质量为().1 1A 0 t1 t2 t4dt (B) 0 -1 t2 t4dt(C) :t、1 t2 t4dt (D) :t2.1 t2 t4dt难度等级:2 ;知识点:第一类曲线积分的应用答案:C.组题人.审题人.命题时间教务处制则分析:化为疋积分,被积函数为只有C 符合. 4.设rm 2, n 1r m与 n 的r , r r r r J r r r—,a = 4m 2 n, b m 2n, c2m 3n ,则r 2 ar r 3(a b) 2(b c :)1 ( ). (A) 126(B) 102 (C) 103(D)104难度等级:1 ;知识点:二重积分 答案:(A)分析:四个选项都是先 y 后x 的积分顺序,曲线求交点得为(1,1),(2,4),积分区域为1 x 2,x 2 y x 2,显然(D)不符合,(C)下限小于上限不符合,(B)积分限不对,只有(A)符合. 6.设积分曲面为球面X 2 y 2 z 2 R 2的外侧,贝y难度等级:2 ;知识点:向量代数 答案:(D) 分析:「2 a(4rn n )2儲28mn n n 216 22 0 165r r , r r 、, r r 、 r 2 r r 小r 2朋a b (4 mn) (m2n) 4m7m n 2n 4 20 214r b c (mn2n)(2rm 3n) 2rri 2 2mn n 6n 2 2r 2 _r r r ra 3(a b) 2(b c)1 65 3 142 2 1 104x 2和y( 5.设积分区域D 由y 2 x 2(A) 1dx x 2f(x, y)dy1 x 2(C) 2dx 2f(x,y)dyx 2 围成,则 f (x, y)dD2 2(B) 1dx 0 f(x, y)dy 1 x 2(D) 0dx 2f (x,y)dy).O(X 2 z 2)3(xdydz ydzdx zdxdy)).(A) 0 (B)4 (C) 4 R 2(D) £ R 3难度等级:2;知识点:对坐标曲面积分的计算,高斯公式答案:(B).分析:先将 的方程代入被积函数,然后使用高斯公式,故选 B.二、填空题(每小题3分,共18分)7.极限难度等级:2;知识点:多元函数极限答案4分析:可通过分母有理化和等价无穷小的代换约去分母上的无穷小量,使分母的极限不为零.解:讪―y sin2x_ 1计网"2«6 1 4.xy 0J xy 1X0 xy8. 函数z 2x3 4xy y2 2x的驻点为_______________ . 答案:!,,1,2.3 3难度等级:1;知识点:多元函数极值分析:驻点处函数的偏导数等于0.2解:由Z x 6x 4y 20解得驻点:丄,2 , 1, 2 . z y 4x 2y 0 3 3 9. 设空间区域:x2 y2 z2 R2,则T x2~y2~ dV,难度等级:2;知识点:三重积分答案:R4.难度等级:1;知识点:旋度答案:一一x y2z 3y 3x z11. 设f(x) x4e x2,则f(69) (0)难度等级:2;知识点:函数展开成幕级数答案:0.n 2n分析:f (x) x4e x x4------- x f(69) (0) 0.因为 f (x) X4e X 幕n 0 n!级数的x69的系数为0.12. 设%(x),y2(x),y3(x)是线性微分方程y P(x)y Q(x)y f (x)的三个线性无关的解,则微分方程的通解是_________ .难度等级:1;知识点:二阶非齐次线性微分方程的通解答案:G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).类似的也可.分析:由二阶线性微分方程通解的结构定理,y.(x) V3(x)与分析::0 2 ,0,0r R,2 2-x y z2dv 二dR2d r r sin drR4.10.设向量场v A (2zv3y)iv3x z j y 2x k,则旋度rotA Y2(x) y3(x)是齐次微分方程y P(x)y Q(x)y 0的解,因此原方程的通解为G(%(x) y3(x)) C2(y2(x) y3(x)) y3(x).三、计算题(每小题6分,共24分)y 2x=2V4V 6,113.判断级数r(a 0)的敛散性.n 1 1 a难度等级:2;知识点:敛散性的判别分析:对参数进行讨论.M (x o, y°,Z o)处相切•难度等级:2 ;知识点:曲面的切平面•分析F(x,y,z) 0在点(x o,y o,z o)处的切平面的法向量为n (F x,F y,F z),两曲面在M(X o,y°,Z o)相切,说明法向量平行,且14.求微分方程xy y y2满足初始条件y— 1的解•难度等级:2;知识点:一阶线性微分方程.分析:方程为n 2的贝努利方程的初值问题•这是n 2的贝努利方程,在原式两边同除以xy2得丄dy丄y dx xydz 1zdx x 时针方向•解:(1) 0 a 1,lim 乙n1 a 1^ 1J n im T J7 I故级数发散M(X o,y o,z。
2020年春季学期课程作业高等数学(II-1)第2次13616540-重庆大学网络教育学院-参考资料
重庆大学网络教育学院-2020年春季学期课程作业高等数学(II-1)第2次-参考资料
请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!
本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!
一、单项选择题 (共 30 题、63 / 90 分 )
1、
若,则的取值范围是()。
A、
B、
C、
D、
参考答案是:A
2、
骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。
A、
气温
B、
体温
C、
时间
D、
骆驼的体重
参考答案是:D
3、
在定义区间的最小值是()。
A、
B、
C、
1
D、
不存在
参考答案是:D
4、
曲线所围平面图形的面积为( )。
A、
B、。
高等数学(II-1)
D. 4
重庆大学网络教育学院
76. 数列
的极限为( )。
A. 1
B. -1
C. 0
D. 不存在
77. 区间[0,+∞)表示不等式( )。
A.
B.
C.
D.
78. 若函数 在某点 极限存在,则( )。
A.
在 的函数值必存在且等于极限值
B.
在 函数值必存在,但不一定等于极限值
C.
在 的函数值可以不存在
D. 如果
的反函数为_____。 , ______ 。
所围成的图形的面积为______
38.
______
39. 已知 40. 曲线
,则
______。
在 处的切线方程为______
四、计算题(本大题共 0 分,共 20 小题,每小题 0 分)
1. 判定曲线
的凹凸性。
C. 单调函数
D. 周期函数
54. 关于不定积分的性质,下列表述错误的是 ( ) 。
A.
B.
C.
D.
55. 设 在
的左右导数存在且相等是 在
A. 充分必要的条件
B. 必要非充分的条件
C. 必要且充分的条件 D. 既非必要又非充分的条件
56. 函数
A. 单调增加 B. 单调减少 C. 有界
在定义域内( )。
4. 单调有界数列必有极限。( )
5. 任意两点割线的斜率大于其中一点切线的斜率.( )
6. 函数的极值点一定是函数的驻点。
7. 两个无穷小量的和是无穷小量。
8. 由参数方程确定的函数具备函数的两个要素。(
)
9. 若
,则
。()
10.
重庆大学土木工程专业毕业学分要求
重庆大学专业毕业学分要求[主修]
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 1 页共 1 页
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 1 页共 6 页
重庆大学专业培养方案[主修]
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 2 页共 6 页
重庆大学专业培养方案[主修]
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 3 页共 6 页
重庆大学专业培养方案[主修]
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 4 页共 6 页
重庆大学专业培养方案[主修]
年级:2009 专业:土木工程(建筑工程方向)培养层次:本科
第 5 页共 6 页
第 6 页共 6 页。
重庆大学高等数学习题3-7
A 组1.求下列函数图形的渐近线:(1)21x y x=+; (2)1(21)x y x e =-解析:考查渐近线的求解,已知渐近线有三类,包括垂直渐近线、水平渐近线和斜渐近线,求解这类题目需要按照渐近线的定义一个个去验证解:(1)因为函数在1x =-上没有定义,且21lim1x x x →-=∞+,则存在垂直渐近线1x =- 2lim 1x x x→∞=∞+,则没有水平渐近线 设斜渐近线z kx b =+,则limlim 11x x y x k x x→∞→∞===+ 2lim()lim()lim 111x x x x xb y kx x x x→∞→∞→∞-=-=-==-++则存在斜渐近线1z x =-(2)因为函数在0x =上没有定义,且110lim(21)lim xxx x x e e →→-=-,而10lim xx e +→-=-∞,1lim 0xx e -→-=,则存在垂直渐近线0x = 1101(2)(2)lim(21)lim lim 1x xx x x x e x e x x e xx→∞→∞→---===∞,则没有水平渐近线设存在斜渐近线z kx b =+,则121lim lim2x x x y x k e x x→∞→∞-=== 11001(2)2lim()lim[(21)2]lim1(2)2lim lim(1)1x x x x x x x x x e x b y kx x e x xx e x e x→∞→∞→∞→→--=-=--=--==-=则存在斜渐近线21z x =+ 2.描绘下列函数的图形:(1)321y x x x =--+; (2)2361(3)xy x =++; (3)21y x x=+; (4)32(1)x y x =-解析:考查图形的描绘,前面已经学过了函数单调性、凹凸性、拐点、驻点、渐近线等性质,利用这些性质就能简单的绘制出函数的图形解:(1)2321y x x '=--,62y x ''=-令0y '=,0y ''=,得驻点13x =-,1x =,拐点13x = 点13x =-,13x =,1x =,将定义域分为四个子区间 表3-1又因为32lim lim(1)x x y x x x →∞→∞=--+=∞,lim x x→∞=∞,则不存在渐近线 根据上述分析画出函数的图形如下 (2)2361(3)xy x =++; 24336(3)362(3)36(3)(3)(3)x x x x y x x +-⋅+-'==++,326436(3)36(3)3(3)72(6)(3)(3)x x x x y x x -+--⋅+--''==++令0y '=,0y ''=,得驻点3x =,拐点6x = 同时存在原函数、一阶和二阶导数都不存在的点3x =-点3x =-,3x =,6x =,将定义域分为四个子区间因为23336lim lim[1](3)x x x y x →-→-=+=-∞+,236lim[1]0(3)x xx →∞+=+ 则存在垂直渐近线3x =-,水平渐近线0x =又因为22361136(3)limlim[]0(3)x x xx x x x →∞→∞++=+=+,则不存在斜渐近线 根据上述分析画出函数的图形如下(3)21y x x=+,3221212x y x x x -'=-=,33322(1)2x y x x +''=+= 令0y '=,0y ''=,得驻点x =,拐点1x =- 同时存在原函数、一阶和二阶导数都不存在的点0x = 点1x =-,0x =,x =,将定义域分为四个子区间 表3-3因为200lim lim()x x y x x →→=+=∞,2lim()x x x →∞+=∞ 则存在垂直渐近线0x =,不存在水平渐近线又因为2211limlim()x x x x x x x →∞→∞+=+=∞,则不存在斜渐近线 根据上述分析画出函数的图形如下(4)32(1)x y x =-2232433(1)2(1)(3)(1)(1)x x x x x x y x x ----'==--,232264(36)(1)3(3)(1)6(1)(1)x x x x x x xy x x -----''==--令0y '=,0y ''=,得驻点0x =,3x =,拐点0x = 同时存在原函数、一阶和二阶导数都不存在的点1x =点0x =,1x =,3x =将定义域分为四个子区间表3-4因为3211lim lim(1)x x x y x →→==∞-,32lim (1)x x x →∞=∞- 则存在垂直渐近线1x =,不存在水平渐近线又因为3222(1)lim lim 1(1)x x x x x xx →∞→∞-==-,32222lim[]lim 2(1)(1)x x x x x x x x →∞→∞--==-- 则存在斜渐近线2y x =+ 根据上述分析画出函数的图形如下B 组1.求下列函数的渐近线:(1)1xy xe =; (2)254(1)y x =+-; (3)1ln()y x e x=+,其中0x >解析:考查函数渐近线的求解,按照渐近线的定义一一验证解:(1)因为函数在0x =上没有定义,且1100lim lim lim lim 1x xx xx x x x e e xe e x x→→→∞→∞===,而lim xx e →+∞=∞,lim 0x x e →-∞=,则存在垂直渐近线0x =110lim lim lim 1xxxx x x e e xe xx→∞→∞→===∞,则不存在水平渐近线 设存在斜渐近线z kx b =+,则1lim lim 1x x x yk e x →∞→∞===11011lim()lim()lim lim 11x xxx x x x e e b y kx xe x xx→∞→∞→∞→--=-=-===则存在斜渐近线1y x =+ (2)254(1)y x =+-; 因为函数在1x =上没有定义,且215lim[4](1)x x →+=+∞-,则存在垂直渐近线1x =25lim[4]4(1)x x →∞+=-,则存在水平渐近线4y = 设存在斜渐近线z kx b =+,则225445(1)limlim lim[]0(1)x x x yx k x x x x x →∞→∞→∞+-===+=- 则不存在斜渐近线(3)1ln()y x e x=+,其中0x > 因为函数在x =上没有定义,且001ln()1ln()1lim ln()limlim lim 01x x x x e e x x x e x xe x x →→→+∞→+∞+++====+,则不存在垂直渐近线 01ln()1ln()lim ln()limlim 1x x x e e x x x e x xx→∞→∞→+++===∞,则没有水平渐近线 设存在斜渐近线z kx b =+,则1lim limln()1x x y k e x x→∞→∞==+=001ln()11ln()111lim()lim[ln()]lim lim lim 1x x x x x e e x x b y kx x e x x x e x ex→∞→∞→∞→→+-+-=-=+-====+则存在斜渐近线1z x e=+2.讨论下列函数凹点和拐点,并描绘函数图像:(1)23y x x =-; (2)222a y a x =+;(3)23x y e -=; (4)3ln3xy x +=-解析:考查函数图像的描绘,和A 组解题思路一样,尽可能的求解出函数的性质解:(1)223(23)y x x x x '=-=-,26y x ''=-令0y '=,0y ''=,得驻点0x =,23x =,拐点13x = 点0x =,13x =,23x =将定义域分为四个子区间因为23lim[]x x x →∞-=∞,则不存在垂直渐近线,不存在水平渐近线又因为232limlim()x x x x x x x→∞→∞-=-=∞,则不存在斜渐近线 根据上述分析画出函数的图形如下(2)222a y a x=+,22222()a x y a x -'=+222222222222222242232232()2()2()22()()()()a a x a x a x a a x a x a x x a y a x a x a x -⋅++⋅+-⋅++⋅--+''===+++ 令0y '=,0y ''=,得驻点0x =当2140a -<,即12a <-或12a >时,不存在拐点,即0y ''<恒成立 当2140a -=,即12a =±时,存在一个拐点12x =当2140a ->,即1122x -<<时,存在两个拐点12x =01.当12a <-或12a >时,0y ''<,则函数恒为凸02.当12a =±时,0y ''≤,则函数也恒为凸3.当1122x -<<时,存在拐点x =0x =<设点1x =0x =,2x =将定义域分为四个子区间因为222lim 0x a a x →∞=+,则不存在垂直渐近线,存在水平渐近线0y = 又因为222222lim lim 0()x x a a a x x x a x →∞→∞+==+ 则不存在斜渐近线根据上述分析画出函数的图形如下(3)23x y e-=26x y xe -'=-,22(126)x y x e -''=-令0y '=,0y ''=,得驻点0x =,拐点x = 点2x =-,0x =,2x =将定义域分为四个子区间因为2lim 33x x e -→∞=,则存在水平渐近线3y =又因为23lim0xx e x-→∞= ,则不存在斜渐近线 根据上述分析画出函数的图形如下(4)3ln3x y x +=-,因为303xx +>-,则33x -<<2233(3)63(3)9x x x y x x x --++'=⋅=+--,22226(2)12(9)(9)x xy x x -⋅-''==--令0y '=,0y ''=,则不存在驻点,拐点0x =同时存在原函数不存在点3x =,一阶和二阶导数都不存在的点3x =,3x =- 点0x =将定义域分为两个子区间因为333lim lim ln 3x x y x --→→==+∞-,33lim lim ln 3x x y x ++→-→-==-∞-则存在垂直渐近线3x =,3x =-根据上述分析画出函数的图形如下。
重庆大学建筑环境与设备工程专业培养计划
建筑环境与设备工程专业培养计划一、建筑环境与设备工程专业教学计划(一)修业年限及授予学位名称修业年限:4年授予学位:工学学士(二)培养目标、培养规格及要求本专业培养适应21世纪我国社会主义现代化建设需要,德、智、体全面发展,基础扎实、知识面宽、能力强、素质高、有创新意识的建筑环境与设备工程专业高级技术人才。
毕业生能够从事工业与民用建筑人工环境设施(供热、采暖、通风、空调、燃气、供配电、给排水等)和城市公用设施(城市燃气供应系统、城市热能供应系统等)的设计、安装、调试、运行管理,以及建筑自动化系统的方案制定,并具有初步的应用技术研究与开发能力。
能在建筑、市政等工程设计、研究、安装、物业管理以及工业企业等单位从事技术与管理工作。
本专业主要学习建筑环境与设备的基础理论,具有多种建筑设备系统的设计、施工调试和运行管理的能力,同时具备一定的计算机、电子、机械和建筑方面的知识与技能。
毕业生素质和应获得的知识和能力:(1)热爱社会主义祖国,拥护中国共产党领导,具有为国家富强、民族振兴而奋斗的理想、事业和责任感。
(2)具有一定的人文社会科学基础,掌握马克思列宁主义、毛泽东思想和邓小平理论的基本原理,了解我国基本国情、民族文化特点和社会主义市场经济体制,能理论联系实际,初步树立科学的世界观和为人民服务的人生观。
(3)有扎实的自然科学基础,良好的人文社会科学基础和外语与计算机应用能力。
(4)系统地掌握本专业领域必需的专业基础理论知识,主要包括:传热学、工程热力学、流体力学、建筑环境学、电工电子学、自动控制原理、机械原理、微机原理等。
(5)获得人工建筑环境技术(采暖、通风、空调、照明)和公用设施工程(冷热源、燃气输配、给排水、建筑自动化与能源管理)的实际设计训练。
(6)获得建筑环境与设备工程的施工组织、技术经济分析、系统与设备的测试、调试等基本训练。
(7)较熟练地掌握一门外语,通过大学四级外语统考,具有较好的听、读能力和一定的口语、写作能力,能较顺利的阅读专业外文资料。
重庆大学高等数学习题1-1
习题1-1 A 组1.确定下列函数的定义域和值域 (1)y =(2)y =(3)1cos y x π=(4)ln(sin )y xπ=解析:本题考查函数定义域和值域的概念,定义域指的是自变量的取值范围,值域指的是函数的取值范围,一般定义域和值域可以用区间或描述法来表示,根据此可以求解 解:(1)因为303x x ->⇒>,则函数的定义域为(3,)+∞,值域为(0,)+∞ (2)因为232021x x x x -+≥⇒≥≤或,则函数的定义域为(,1][2,)-∞+∞U 值域为[0,)+∞(3)因为1cos 02x x n π≠⇒≠+(n 为整数),则函数的定义域为12{,}2nx x n z +≠∈ 值域为(,1][1,)-∞-+∞U(4)因为11sin02(21)1212n n x x xxxn nππππππ>⇒<<<+⇒><<+或或(n 是不为0 的整数) 则函数的定义域为11{,{0}}(1,)212xx n Z n n<<∈-+∞+U ,值域为(,1]-∞ 2.设函数()f x 的定义域为[2,3],求复合函数f 的定义域解析:考查复合函数定义域的求解,本题中可以令u 则本题就是求函数()f u 的定义域,也就是求函数u解:由已知可得[2,3]x ∈,则u =则复合函数f的定义域为3.设函数21,0()2,0x x x f x x ⎧+-∞<≤⎪=⎨<<+∞⎪⎩求(2)f -,(0)f ,(2)f解析:考查分段函数的函数值,注意找对变量所在的区间 解:2(2)1(2)5f -=+-=,2(0)101f =+=,2(2)24f ==4.求函数2,1(),142,4x x x f x x x x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩的反函数及其定义域解析:考查反函数的概念和性质,对于任意一个函数来说,其定义域就是反函数的值域,其值域就是反函数的定义域解:由已知可得,当1x -∞<<时,函数()f x 的值域为(,1)-∞当14x ≤<时,函数()f x 的值域为[1,16];当4x <<+∞时,函数()f x 的值域为[16,]+∞则函数的反函数为12,1()11616log ,y y x f y x x y --∞<<⎧==≤≤<<+∞⎩ 5.判断下列函数的奇偶性(1)235sin y x x =- (2)2233(1)(1)y x x =-++解析:考查函数奇偶性的概念,对于有对称定义域的函数,若()()f x f x -=,则称该函数为偶函数;若()()f x f x -=-,则称该函数为奇函数解:(1)因为2()35sin y x x x -=+,不满足奇、偶函数的定义,则为非奇非偶函数 (2)因为2233()(1)(1)()y x x x y x -=++-=,则原函数为偶函数 6.判断下列函数是由哪些基本函数复合而成: (1)y =2)3ln cos y x =解析:考查复合函数的概念,最常见的五种基本函数包括指数函数、对数函数、幂函数、三角函数、反三角函数,上述函数就是由基本函数复合而成解:(1)该函数是由反三角函数arctan y v =,指数函数12v u =和幂函数21u x =+组成 (2)该函数是由对数函数ln y v =,三角函数cos v u =和指数函数3u x =组成 7.指出下列函数是否为周期函数;若是,求其小正周期 (1)5sin 6y x = (2)2cos y x =解析:考查周期函数的概念,已知最简单的三角函数的周期,例如sin x ,cos x 的最小正周期为2π,根据函数定义域的概念,可以求上诉函数的最小正周期 解:(1)因为sin x 为周期函数,自然本函数为周期,623x x ππ=⇒=则函数的最小正周期为3π(2)同理,本函数也为周期函数,因为21cos 2cos 2xy x +==22x x ππ=⇒=,则函数的最小正周期为π8.设函数,1(),1x e x f x x x ⎧<=⎨≥⎩,22,0()1,1x x x x x ϕ+<⎧=⎨-≥⎩,求复合函数(())f x ϕ解析:考查复合函数的概念和性质,首先应确定函数()x ϕ的值域在函数()f x 哪个定义域内,然后求出复合函数(())f x ϕ的对应关系解:对于函数()x ϕ来说,当1x <-时,值域为(,1)-∞,此时2(())x f x e ϕ+=;当10x -≤<时,值域为(1,2),(())2f x x ϕ=+;当1x ≤<(0,1),21(())xf x e ϕ-=;x ≤时,值域为[1,)+∞,2(())1f x x ϕ=-综上可知2212,12,10(()),11,x x e x x x f x e x x x ϕ+-⎧<-⎪+-≤<⎪=⎨≤<⎪⎪-≥⎩B 组1.确定下列函数的定义域和值域 (1)2arccos1x y x =+ (2)211y x=-(3)y =(4)y =解析:考查定义域和值域的求解,函数的定义域一般利用函数的一些限制条件,例如:分母不为0、根号下大于等于0;根据定义域就可以求出函数值的取值情况 解:(1)因为2111113x x x -≤≤⇒-≤≤+,则函数的定义域为1[,1]3-,值域为(,)-∞+∞ (2)因为2102012x x x x -≠+≥⇒≠±≥-且且,则函数的定义域为[2,1)(1,1)(1,)---+∞U U ,因为函数211x -的值域为(,)-∞+∞,则原函数的值域也为(,)-∞+∞(3)sin 02(21)x n x n ππ≥⇒≤≤+(n 为整数),则函数的定义域为{2(21),}x n x n n Z ππ≤≤+∈,值域为[0,1](4)254015x x x +-≥⇒-≤≤,则函数的定义域为[1,5]-, 又因为极大值(2)3f =,(1)(5)0f f -==,则值域为[0,3] 2.设(1)cos f x x x +=+,求(8)f 与()f x解析:考查复合函数的概念,本题可以利用换元法或者配方法求解 解:换元法:令1x t +=,则1x t =-,(1)()1cos(1)f x f t t t +==-+-,也即()cos(1)1f x x x =+-- (8)7cos7f =+配方法:(8)(71)7cos7f f =+=+因为(+1)=11cos(11)f x x x +-++-,则()cos(1)1f x x x =+-- 注:熟悉后就可以直接利用配方法求解了 3.设函数()ln(2)f x x =-,求()f x 与(ln )f x 的定义域 解析:考查复合函数定义域的求解,本题可以先求出()f x 的定义域,然后求解函数(ln )f x 的定义域时,即已知lnx 的值域,求其定义域解:因为30x ->且20x ->,则函数()f x 的定义域为(2,3) 即函数lnx 的值域为(2,3),也即 2ln 3x <<,解得23e x e << 则函数(ln )f x 的定义域为23(,)e e4.讨论函数3()f x x =在(,)-∞+∞内的单调性 解析:本题考查函数单调性的定义解:对于函数3()f x x =来说,12,(,)x x ∀∈-∞+∞,当12x x <时12()()f x f x <则函数3()f x x =在(,)-∞+∞内是单调递增的 5.判断下列函数的奇偶性(1)cos(sin )y x = (2)1cosy x x=⋅ (3)11x x a y x a -=+其中0a >解析:考查奇偶性的定义,对于奇偶性的概念这里就不再赘述,本题都可以直接利用其概念求解解:(1)已知所求函数定义域为(,)-∞+∞且()cos[sin()]cos(sin )cos(sin )y x x x x -=-=-=,即()()y x y x -= 则原函数为偶函数(2)已知所求函数定义域为(,0)(0,)-∞+∞U且11()cos cos y x x x x x--=-⋅=-,即()()y x y x -=- 则原函数为奇函数(3)已知所求函数定义域为(,)-∞+∞且111()111x x x x x x a a a y x x x x a a a ------=-=-=+++,即()()y x y x -=则原函数为偶函数6.证明定义于(,)-∞+∞内的任何函数都可以表示为一个奇函数与一个偶函数之和解析:考查奇偶性的应用,本题比较抽象,但可以通过假设一个函数 ()f x ,其满足()()()()()22f x f x f x f x f x +---=+证明:设函数()()()2f x f x g x +-=,()()()2f x f x h x --=因为()()()()2f x f x g x g x -+-==,()()()()()()22f x f x f x f x h x h x -----==-=-则函数()g x 为偶函数,()h x 为奇函数即证结论7.判断下列函数是否为周期函数;若是,求其最小正周期(1)sin cos y x x =+ (2)y =解析:考查周期函数的概念,利用已知函数的周期来确定,例如函数sin x 、cos x 的周期都为2π,即满足sin sin(2)x x π=+,cos cos(2)x x π=+,根据此思路可以求解本题 解:(1)经过上述分析可知,对于函数sin cos y x x =+,满足()(2)y x y x π=+ 则为周期函数,其最小周期为2π(2)函数y =y =()tan 2u x x =组成的因为tan x 的周期为π,则函数()tan 2u x x =的周期为2π则()()2u x u x π=+,即()()2y x y x π=+ 则为周期函数,其最小周期为2π。
重庆高等数学试题及答案
重庆高等数学试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 4 \)的最小值是()。
A. 0B. 1C. 3D. 42. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值为()。
A. 0B. 1C. -1D. 23. 函数\( y = e^x \)的导数是()。
A. \( e^x \)B. \( -e^x \)C. \( \ln e^x \)D. \( \frac{1}{e^x} \)4. 曲线\( y = x^3 - 3x^2 + 2 \)的拐点坐标是()。
A. (0,2)B. (1,0)C. (2,-2)D. (3,6)5. 定积分\( \int_{0}^{1} x^2 dx \)的值为()。
A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{5} \)6. 微分方程\( y'' + 4y' + 4y = 0 \)的特征方程是()。
A. \( r^2 + 4r + 4 = 0 \)B. \( r^2 - 4r + 4 = 0 \)C. \( r^2 + 4r - 4 = 0 \)D. \( r^2 - 4r - 4 = 0 \)7. 函数\( f(x) = \ln(x+1) \)的不定积分是()。
A. \( x\ln(x+1) - x + C \)B. \( x\ln(x+1) + x + C \)C. \( x\ln(x+1) + \ln(x+1) + C \)D. \( x\ln(x+1) - \ln(x+1) + C \)8. 级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是()。
A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C. \( \frac{\pi^2}{3} \)D. \( \frac{\pi^2}{2} \)9. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是()。
重庆大学网络教育2019年秋季学期课程作业高等数学(II-2)第123次
答案+我名字在为常数,则级数 ( )设,当a=()时。
∙∙正确!∙收藏该题展开该题4、已知某微分方程的通解和初始条件分别为和,则常数和分别等于()。
∙∙正确!∙收藏该题展开该题5、微分方程的通解是()。
∙∙正确!∙收藏该题展开该题6、与的大小关系为(),其中V是以点(1,1,1),(2,1,1),(1,2,1)和(1,1,2)为顶点的闭区域。
∙∙正确!∙收藏该题展开该题7、下列一阶微分方程中哪个不是可分离变量的微分方程()。
∙∙正确!∙收藏该题展开该题8、下列平面中,垂直于Z轴的是()。
∙∙正确!∙收藏该题展开该题9、求解微分方程的通解的Matlab命令为()。
∙∙正确!∙收藏该题展开该题10、函数的定义域是()。
∙∙正确!∙收藏该题展开该题11、求解微分方程使用变换降阶得到的方程是()。
∙∙正确!∙收藏该题展开该题12、级数的和为()。
∙∙正确!∙收藏该题展开该题13、方程组所表示的圆的半径为()。
∙∙正确!∙收藏该题展开该题14、方程表示的曲面是()。
∙∙正确!∙收藏该题展开该题15、椭球面的中心坐标是( )。
∙∙正确!∙收藏该题展开该题二、判断题(共 5 题、5 / 5 分 )1、级数收敛。
()∙∙正确!∙收藏该题展开该题2、幂级数的收敛区间为[-6,-4]。
()∙∙正确!∙收藏该题展开该题3、已知是的解,则微分方程的通解为。
∙∙正确!∙收藏该题展开该题4、微分方程的通解是。
()∙∙正确!∙收藏该题展开该题5、对于非齐次微分方程的通解的Matlab命令为y=dsolve ('D2y-2Dy=(x^2+2x)exp(x)','x')。
()∙∙正确!∙收藏该题展开该题三、填空题(共 6 题、0 / 12 分 )1、二阶齐次微分方程的通解为_________。
∙收藏该题2、如果和是某二阶常系数齐次线性微分方程的解,则该微分方程为________。
∙收藏该题3、设,则= ________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3次作业
一、填空题(本大题共40分,共 10 小题,每小题 4 分)
1. 写出级数的通项为: ______ 。
2. 级数的敛散性为 ______ 。
3. 函数的定义域为 ______ 。
4. 设平面通过点(1,3,-2),且垂直于向量
,求该平面的方程。
5. 由曲线绕y轴一周所得的旋转面方程为 ______ 。
6. 设,且函数f可微,则
______
7. 已知D由及x轴围成,则
______ 。
8. 过点(3,0,-1)且与平面平行的平面方程为 ______ 。
9. 一平面通过两点和且垂直于平面,求它的方程。
10. 设,其中
具有连续的二阶偏导数, ____________。
二、计算题(本大题共40分,共 8 小题,每小题 5 分)
1. 判断级数的敛散性。
2. 利用二重积分的性质估计
(其中是
矩形区域 )的值。
3. 求曲面在点(1,1,2)处的切平面和法线方程。
4. 求两平面,
的夹角。
5. 已知三角形ABC的顶点是A(1,2,3),B(3,4,5), C(2,4,7),求三角形的面积。
6. 求微分方程满足的
特解。
7. 求的所有二阶偏导数。
8. 把对坐标的曲线积分
化成对弧长的曲线积分,其中L为 (1)在 xOy 面内沿直线从点(0,0)到点(1,1); (2)沿抛物线
从点(0,0)到点(1,1); (3)沿上半圆周
从点(0,0)到点(1,1)。
三、证明题(本大题共20分,共 2 小题,每小题 10 分)
1. 证明:若数列收敛于a,则级数。
2. 设级数和收敛, 证明级数
收敛。
答案:
一、填空题(40分,共 10 题,每小题 4 分)
1.
参考答案:
解题方案:
评分标准:
2.
参考答案:
发散
解题方案:
评分标准:
3.
参考答案:
解题方案:评分标准:
4.
参考答案:
解题方案:评分标准:
5.
参考答案:
解题方案:评分标准:
6.
参考答案:
解题方案:
评分标准:
7.
参考答案:2
解题方案:评分标准:
8.
参考答案:
解题方案:评分标准:
9.
参考答案:
解题方案:评分标准:
10.
参考答案:
解题方案:
评分标准:
二、计算题(40分,共 8 题,每小题 5 分)
1.
参考答案:
该级数尽管是一个交错级数,但是容易验证,该级数的通项极限为1,根据级数收敛的必要条件可知,该级数是发散的。
解题方案:
评分标准:
2.
参考答案:
解题方案:
评分标准:
3.
参考答案:
解题方案:
4.
参考答案:
解题方案:评分标准:
5.
参考答案:
解题方案:评分标准:
6.
参考答案:解题方案:
7.
参考答案:
解题方案:
评分标准:
8.
参考答案:
解题方案:
评分标准:
三、证明题(20分,共 2 题,每小题 10 分)
1.
参考答案:
解题方案:
评分标准:
2.
参考答案:
解题方案:评分标准:。