高一上学期数学期中考试卷

合集下载

福建省宁德市2024-2025学年高一上学期11月期中考试数学试题

福建省宁德市2024-2025学年高一上学期11月期中考试数学试题

福建省宁德市2024-2025学年高一上学期11月期中考试数学试题一、单选题1.已知集合{}{04,A x x B x x =≤<=,则A B = ()A .{}0x x ≥B .{}4x <≤C .{}4x <<D .{0x x ≤<2.“每个三角形的重心都在其内部”的否定是()A .每个三角形的重心都在其外部B .每个三角形的重心都不在其内部C .至少有一个三角形的重心在其内部D .至少有一个三角形的重心不在其内部3.幂函数()2355m y m m x -=-+是偶函数,则m 的值是()A .4-B .1-C .1D .44.函数y =)A .31,72⎛⎤ ⎥⎝⎦B .31,,72∞∞⎛⎫⎡⎫-⋃+ ⎪⎪⎢⎝⎭⎣⎭C .31,72⎡⎤⎢⎥⎣⎦D .31,,72∞∞⎛⎤⎡⎫-⋃+ ⎪⎥⎢⎝⎦⎣⎭5.若函数()24f x x ax a =-++在区间[]2,6-上为增函数,则()A .a 的最小值为1-B .a 的最大值为1-C .a 的最小值为3D .a 的最大值为36.已知集合{}5A xx =>∣,{}5111B x a x a =-<<+∣,且A B A = ,则a 的取值范围为()A .(],6∞--B .6,5⎡⎫+∞⎪⎢⎣⎭C .6,35⎡⎫⎪⎢⎣⎭D .[)3,+∞7.若函数()f x 满足()143f x f x x x ⎛⎫-=- ⎪⎝⎭,则()2f =()A .92B .92-C .4516D .4516-8.已知1m >,0n >,且5m n +=,则111m n+-的最小值为()A .1B .32C .45D .2二、多选题9.下列判断正确的是()A .方程组2323x y x y +=⎧⎨+=⎩的解集为{}1B .“四边形Ω是梯形”是“四边形Ω有一组对边平行”的充分不必要条件C .若{}26,6a a a ∈--,则a 的取值集合为{}2-D .“2,2x x ∃∈-∉N N ”是存在量词命题10.若()f x 与()g x 分别为定义在上的偶函数、奇函数,则函数()()()h x f x g x =的部分图象可能为()A .B .C .D .11.如图,在ABC V 中,3AB AC ==,2BC =,点,D G 分别边,AC BC 上,点,E F 均在边AB 上,设DG x =,矩形DEFG 的面积为S ,且S 关于x 的函数为()S x ,则()A .ABC V 的面积为B .()1S =C .()S x 先增后减D .()S x三、填空题12.用符号“∈”或“∉”填空:(1)若A 为所有亚洲国家组成的集合,则泰国A ;(2,27Q .13.已知甲地下停车库的收费标准如下:(1)停车不超过1小时免费;(2)超过1小时且不超过3小时,收费5元;(3)超过3小时且不超过6小时,收费10元;(4)超过6小时且不超过9小时,收费15元;(5)超过9小时且不超过12小时,收费18元;(6)超过12小时且不超过24小时,收费24元.小林在2024年10月7日10:22将车停入甲车库,若他在当天18:30将车开出车库,则他需交的停车费为.乙地下停车库的收费标准如下:每小时2元,不到1小时按1小时计费.若小林将车停入乙车库(停车时长不超过24小时),要使得车停在乙车库比甲车库更优惠,则小林停车时长的最大值为.14.已知函数()()()()()2710,0a f x a x x g x x x-=+->=>,若()f x 与()g x 的单调性相同,则a 的取值范围为.四、解答题15.已知函数()f x 满足()2319f x x -=.(1)求()f x 的解析式;(2)求()f x 在[]22-,上的值域.16.(1)若()f x 为奇函数,当0x <时,()21f x x =+,求1;(2)用列举法表示集合:181M x x ⎧⎫=∈∈⎨⎬+⎩⎭NN ;(3)求不等式组222830x x x x ⎧+≥⎨-<⎩的解集.17.(1)已知0x >,0y >,且4x y +=xy 的最大值;(2)证明:x ∀、y 、()0,z ∈+∞,()()()4432x y y z z x xyz +++≥.18.已知函数()21f x x =+,()2g x x =,()()(),,f x x a h x g x x a⎧<⎪=⎨≥⎪⎩(1)用函数单调性的定义证明:函数()y f x =在区间1,2⎛⎤-∞- ⎥⎝⎦上单调递减.(2)当12a =-时,写出ℎ的单调区间.(3)若ℎ在R 上为单调函数,求a 的取值范围.19.若存在有限个0x ,使得()()00f x f x -=,且()f x 不是偶函数,则称()f x 为“缺陷偶函数”,且0x 为()f x 的偶点.(1)求函数()11p x x x=+-的偶点.(2)若()(),h x H x 均为定义在R 上的“缺陷偶函数”,试举例说明()()y h x H x =+可能是“缺陷偶函数”,也可能不是“缺陷偶函数”.(3)对任意,x y ∈R ,函数()(),f x g x 都满足()()()()22f x f y g x g y x y ++-=+.①比较()0g 与()1g 的大小;②若()g x y x=是“缺陷偶函数”,求()1g 的取值范围.。

江苏省扬州市第一中学2024-2025学年高一上学期11月期中考试数学试题

江苏省扬州市第一中学2024-2025学年高一上学期11月期中考试数学试题

江苏省扬州市第一中学2024-2025学年高一上学期11月期中考试数学试题一、单选题1.设集合{}13A x x =≤≤,{}24B x x =<<,则A B = ()A .{}23x x <≤B .{}23x x ≤≤C .{}14x x ≤<D .{}14x x <<2.命题“R x ∃∈,20x x +<”的否定是()A .R x ∀∈,20x x +>B .R x ∀∈,20x x +≥C .R x ∃∈,20x x +>D .R x ∃∈,20x x +≥3.已知函数2()1f x x =-的定义域为{1,0,1}-,则函数的值域为()A .{0,1}B .[1,)-+∞C .[1,0]-D .{1,0}-4.已知13a a -+=,则1122a a -+=()A .5B .C .D5.已知()f x 是一次函数,且(1)35f x x -=-,则()f x =()A .32x -B .23x +C .32x +D .23x -6.函数()212x f x x+=的图象大致为()A .B .C .D .7.“0m >”是“x ∀∈R ,220x x m ++>为真命题”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若函数()5,1,,1x x a x f x a x x ⎧+-≤⎪=⎨>⎪⎩是R 上的单调函数,则实数a 的取值范围为()A .[]3,2--B .[]3,1--C .[)2,0-D .()0,∞+二、多选题9.下列命题正确的是()A .集合{},,a b c 有6个非空子集B.m ∃∈N NC .“4m <”是“3m <”的必要不充分条件D .已知23,21a b <<-<<-,则2a b +的范围为225a b <+<10.已知关于x 的不等式20ax bx c ++>的解集为()(),23,-∞-⋃+∞,则()A .0a >B .不等式0bx c +>的解集是{6}xx <-∣C .0a b c ++>D .不等式20cx bx a -+<的解集为11,32⎛⎫- ⎪⎝⎭11.一般地,若函数()f x 的定义域为[,]a b ,值域为[,]ka kb ,则称[,]a b 为()f x 的“k 倍美好区间”.特别地,若函数的定义域为[,]a b ,值域也为[,]a b ,则称[,]a b 为()f x 的“完美区间”.下列结论正确的是()A .若[2,]b 为2(6)4f x x x =-+的“完美区间”,则6b =B .函数1()f x x=存在“完美区间”C .二次函数2113()22f x x =-+存在“2倍美好区间”D .函数||1()||m x f x x -=存在“完美区间”,则实数m 的取值范围为(2,){0}+∞⋃三、填空题12.函数()f x =的定义域为.13.()531001f x x x x =+++,若()2f m =-,则()f m -=.14.已知正数,x y 满足4x y xy +=,若不等式246x y m m +-≥恒成立,则实数m 的取值范围为.四、解答题15.计算下列各式的值:(1)1030.2518889-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(2)522log 253log 32lg 2lg 5-++16.设全集U =R ,集合{}15A x x =≤≤,集合{}122B x a x a =--≤≤-.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围;(2)若命题“x B ∀∈,则x A ∈”是假命题,求实数a 的取值范围.17.(1)已知1x >-,求941y x x =-++的最小值;(2)已知0a >,0b >,且3710a b +=.求ab 的最大值.18.某影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票价不超过10元时,票可全部售出,当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院一个合适的票价,符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.(1)设定价为x (*x ∈N )元,净收入为y 元,求y 关于x 的表达式;(2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?19.已知函数21()x f x ax b+=+是定义域上的奇函数,(1)2f =.(1)求()f x 的解析式;(2)判断并证明函数()f x 在[1,2]上的单调性;(3)若函数()2()2()g x f x tf x =-,若对1x ∀,2[1,2]x ∈,都有()()1294g x g x -≤,求实数t 的取值范围.。

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。

山西省太原市2024-2025学年高一上学期11月期中考试 数学含答案

山西省太原市2024-2025学年高一上学期11月期中考试 数学含答案

2024~2025学年第一学期高一年级期中学业诊断数学试卷(答案在最后)(考试时间:上午7:30-9:00)说明:本试卷为闭卷笔答,答题时间90分钟,满分100分.题号一二三四总分得分一、单项选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3A =,{}2,3,4B =,则A B = A.{}2,3 B.{}0,1,2,3,4 C.[]2,3 D.[]0,42.已知a b >,则下列结论正确的是A.ac bc > B.22a b> C.1a b >- D.11b a>3.函数()ln f x x =的定义域是A.()0,+∞ B.(]0,2 C.()()0,22,+∞ D.[)2,+∞4.“0xy =”是“0x =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数()11x f x a -=-(0a >,且1)a ≠的图象必经过的定点是A.()1,0 B.()1,1- C.()1,0- D.()1,1--5.已知不等式2220kx kx +-<对于一切实数x 都成立,则实数k 的取值范围是A.()2,0- B.(]2,0- C.()0,2 D.[)0,26.已知函数()()1,bf x ax a b x=++∈R ,且()10f -=,则()1f =A.-1B.1C.-2D.27.已知0,0x y >>,且满足2x y xy +=,若228x y m m +>-恒成立,则实数m 的取值范围是A.()1,9- B.()9,1- C.()(),19,-∞-+∞ D.()(),91,-∞-+∞ 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知幂函数()f x 的图象经过点(,则下列结论正确的是A.()2f -= B.()f x 是增函数C.()f x 是偶函数D.不等式()1f x <的解集为{}01x x <<10.已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-,则下列结论正确的是A.()00f = B.()1f -是函数()f x 的最大值C.当0x <时,()22f x x x=-+ D.不等式()0f x >的解集是()()2,02,-+∞ 11.已知函数()f x 对于一切实数x ,y 都有()()()f x y f x f y +=,当0x >时,()01f x <<,()113f =,则下列结论正确的是A.()01f = B.若()9f m =,则2m =C.()f x 是增函数D.()0f x >三、填空题(本题共3小题,每小题3分,共9分)12.命题“x ∃∈R ,20x x ->”的否定是________13.已知函数()2,0,1,0x a x f x ax x ⎧-=⎨-<⎩在R 上是增函数,则实数a 的取值范围________.14.对实数a 和b ,定义运算“◎”:,1,,1,a ab a b b a b -⎧=⎨->⎩◎,设函数()()222f x x x =+◎,x ∈R .若函数()y f x m =-的图象与x 轴恰有2个公共点,则实数m 的取值范围是________.四、解答题(本题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤)15.计算下列各式的值(每小题4分,共8分)(1)12023489-⎛⎫--⎪⎝⎭;(2)21151133662262a b a b a b ⎛⎫⎛⎫⎛⎫÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.16.(本小题满分8分)已知全集U =R ,{}260A x x x =+-<,1282xB x ⎧⎫=<<⎨⎬⎩⎭,{}212C x m x m =+<<-.(1)求()U A B ð;(2)若()A B C ⊆ ,求实数m 的取值范围.17.(本小题满分10分)已知函数()21xf x x =+.(1)判断并证明()f x 的奇偶性;(2)根据定义证明:()f x 在()1,1-上单调递增.18.(本小题满分10分)实行垃圾分类,保护生态环境,促进资源再利用。

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。

福建省福州市福建师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

福建省福州市福建师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

福建省福州市福建师范大学附属中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知集合{}012M =,,,{}230N x x x =-<,则M N = ()A .{}0,1,2B .{}1,2C .{}03x x ≤<D .{}03x x <<2.下列函数中,既是偶函数,又在(0,)+∞上单调递增的为()A .()||1f x x =-+B .3()f x x =C .||()2x f x =D .21()f x x =3.已知函数()f x 的定义域为()0,1,则函数()21f x -的定义域为()A .()0,1B .()1,1-C .()1,0-D .1,12⎛⎫ ⎪⎝⎭4.一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <5.已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b<c<aD .c<a<b6.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,则函数21()x f x x-=的图象大致为()A .B .C .D .7.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃8.已知e e m m +=,5e n n +=,则下列选项正确的是()A .01m n <<<B .01n m <<<C .1em n <<<D .1en m <<<二、多选题9.下列式子中正确的是()A 3=B .()lg lg100=C .2lg 2lg 5lg 202+⋅=D .21log 5210+=10.已知正数,a b 满足45a b ab ++=,则下列结论正确的是()A .ab 的最大值为1B .4a b +的最小值为4C .2216a b +的最小值为9D .111a b++的最小值为10911.已知函数()f x 是定义在R 上的奇函数,且满足下列条件:①对任意的实数0x >,0y >,都有()()()2f x y f x f y +=++;②对任意的实数0x >,都有()2f x >-;③()11f =-.则下列说法正确的有()A .()20f =B .()00f =C .函数()f x 在()0,∞+上单调递增D .不等式()0f x >的解集为()(),22,∞∞--⋃+三、填空题12.若幂函数()()233mf x m m x =--⋅在()0,∞+上为增函数,则实数m =.13.二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值为.14.函数()f x =的单调减区间是.15.设函数()10101xx f x =+,若[]x 表示不超过x 的最大整数,则函数()12y f x ⎡⎤=-⎢⎥⎣⎦的值域是.16.已知函数()13y f x =+-为奇函数,()321x g x x -=-,()f x 与()g x 的图像有8个交点,分别为()()()112288,,,,x y x y x y ,则()()128128y y y x x x +++-+++=.四、解答题17.设集合=b −2≤≤2,=b1−≤≤2−2(1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围;(2)若A B B = ,求实数m 的取值范围.18.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432x x f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.20.某小家电配件的生产厂家生产出的小家电配件,以每件7元的价格全部售出.经市场调研,生产这类配件,每月需要投入固定成本为1万元,每生产x 万件配件,还需再投入资金()P x 万元在月产量不足6万件时,()2P x x x =+(万元);在月产量不小于6万件时,()8274mP x x x =+--(万元).已知月产量是7万件时,需要再投入的资金是56万元.(1)试将生产厂家生产这些小家电的月利润()f x (万元)表示成月产量x (万件)的函数;(注:月利润=月销售收入-固定成本-再投入成本)(2)月产量为多少万件时,这个生产厂家生产这些配件获得的利润最大?最大利润是多少?21.已知函数()e e x xf x k -=+为奇函数.(1)求实数k 的值;(2)若对任意的x 2∈[]1,2,存在x 1∈[),t +∞,使()21ex tf x -≤成立,求实数t 的取值范围.22.已知集合{}()12,,2k A a a a k =≥ ,其中()1,2,i a i k ∈=Z ,新定义1个性质G :若对任意的x A ∈,必有x A -∉,则称集合A 具有性质G .由A 中元素可构成两个点集P 和Q :(){},,,P x y x A y A x y A =∈∈+∈,(){},,,Q x y x A y A x y A =∈∈-∈,其中P 中有m 个元素,Q 中有n 个元素.(1)已知集合{}0,1,2,3J =与集合{}1,2,3K =-和集合{}222L y y x x ==-+,判断它们是否具有性质G ,若有,则直接写出其对应的集合P ,Q ;若无,请说明理由;(2)集合A 具有性质G ,若100=k ,求:集合Q 最多有几个元素?(3)试判断:集合A 具有性质G 是m n =的什么条件(写出结论即可).。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

2024-2025学年四川省成都市九县区高一上学期期中考试数学试卷含答案

2024-2025学年四川省成都市九县区高一上学期期中考试数学试卷含答案

2024~2025学年度上期高中2024级期中考试数学考试时间120分钟,满分150分一,选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22A x x =∈-≤≤Z ,{}03B x x =∈≤≤Z ,则A B = ()A.{}1,2 B.{}0,1,2 C.{}1,0,1,2- D.{}2,1,0,1,2,3--2.若命题p :x ∀∈R ,2230x x -+>,则p ⌝为()A.x ∀∈R ,2230x x -+< B.x ∀∈R ,2230x x -+≤C.x ∃∈R ,2230x x -+< D.x ∃∈R ,2230x x -+≤3.下列四个命题中的真命题有()①若a b >,c d >,则a c b d +>+②若a b >,c d >,则ac bd>③若a b >,则22ac bc >④若a b >,则()()2211a cbc +>+A.②③B.②④C.①④D.③④4.函数()2441xf x x =-+的图象大致为()A.B. C.D.5.函数()f x =的定义域为()1,2,则ab =()A.2B.-2C.-1D.16.已知()f x 为定义在R 上的奇函数,当0x ≤时,()221f x x x a =++-,则()1a f +=()A.-2B.-1C.1D.17.高一某班共有45名学生,该班参加数学强基班的学生有25人,参加物理强基班的学生有18人,既参加数学强基班又参加物理强基班的学生有8人,则既没有参加数学强基班又没有参加物理强基班的学生有()A.10人B.11人C.12人D.13人8.集合{}1,3,5,7M =的所有子集中的元素之和为()A.126B.128C.130D.132二,选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。

江苏省天一中学2024-2025学年高一上学期期中考试数学试卷

江苏省天一中学2024-2025学年高一上学期期中考试数学试卷

17.已知函数
f
(x)
=
ax + b 16 - x2
是定义在 (-4, 4)
上的奇函数.且
f
(1)
=1.
(1)求实数 a , b 的值; (2)判断函数 f (x) 在 (-4, 4) 上的单调性,并用定义证明你的结论;
( ) (3)若 f t2 -1 + f (1- 5t) < 0 ,求 t 的取值范围.
<
1 b
=
1
,故
D
错误;
故选:A. 5.B 【分析】根据函数奇偶性和单调性即可求解.
【详解】因为
f
(x)
=
x3
-
1 x
,
x Î (-¥, 0) U (0, +¥),
f
(- x)
=
-x3
+
1 x
=
-
f
(x) ,
所以 f (x) 为奇函数,
当 x > 0 时, 1 为减函数, x3 为增函数,故 f (x) 为增函数,故 B 选项正确. x
B. a = m - 3
C. 4b + (2m - 3)2 = 0
D.
c
=
-
21 4
三、填空题
12.
æ çè
5
1 16
ö0.5 ÷ø
+ (-1)5
¸
æ çè
3 ö-2 4 ÷ø
+
æ çè
2
10 27
ö
-
2 3
÷ø
=
试卷第31 页,共33 页
13.已知函数 f (x) 是偶函数,当 x ³ 0 时, f (x) = -x(2x -1) ,则当 x < 0 时, f (x) =

辽宁省辽南协作体2024-2025学年高一上学期期中考试数学试卷(含解析)

辽宁省辽南协作体2024-2025学年高一上学期期中考试数学试卷(含解析)

2024-2025学年度上学期期中考试高一数学时间:120分钟 满分:150分命题范围:必修一一、单选题:(每题5分)1.已知全集,集合,,则()A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.已知,,则“”是“且”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.定义行列式,若行列式,则实数的取值范围为( )A. B.C. D.5.已知关于的方程有两个实数根,.若,满足,则实数的取值为( )A.或6B.6C. D.6.函数的定义域为,函数,则的定义域为( )A. B.C. D.{}*05,U x xx =≤<∈N {}1,2,3P ={}2,4Q =()UP Q = ð{}0,2,3,4{}2,4{}2,3,4{}1,2,43x ∃≥2230x x -+<3x ∀≥2230x x -+<3x ∀≥2230x x -+≥3x ∀<2230x x -+≥3x ∃<2230x x -+≥x y ∈R 1x y +≤12x ≤12y ≤a b ad bc c d =-2014132a a <a 31,2⎛⎫- ⎪⎝⎭()3,1,2⎛⎫-∞-+∞⎪⎝⎭3,12⎛⎫-⎪⎝⎭()3,1,2⎛⎫-∞-+∞ ⎪⎝⎭x ()222110x k x k +-+-=1x 2x 1x 2x 22121216x x x x +=+k 2-2-54()1f x +[]2,1-()g x =()g x 1,22⎛⎫-⎪⎝⎭()1,-+∞()1,00,22⎛⎫-⎪⎝⎭1,22⎛⎤-⎥⎝⎦7.已知函数,若在上是减函数,则实数的取值范围为( )A. B. C. D.8.已知函数的定义域为,且为奇函数,当时,,则的所有零点之和为( )A. B. C.-3D.0二、多选题(每题6分)9.下列函数中,值域为的是( )A. B.C., D.()10.下列命题中,真命题是( )A.若、且,则、至少有一个大于1B.C.“”是“”的必要条件D.“”是“关于方程有一正一负根”的充要条件11.已知,,,则下列结论中一定成立的是( )A.的最小值是B.的最小值是2D.的最小值是25三、填空(每题5分)12.已知集合,,,则的值为______.13.已知函数,,则______.14.已知是定义在上的偶函数,若在上是增函数,则满足的实数的取值范围为______;若当时,,则当时,的解析式是______.四、解答题(共77分)15.已知:(),:.()()231,1,1a x x f x a x x ⎧-+≤⎪=⎨>⎪⎩()f x R a 2,3⎡⎫+∞⎪⎢⎣⎭23,34⎛⎤⎥⎝⎦2,13⎛⎫⎪⎝⎭3,14⎡⎫⎪⎢⎣⎭()y g x =()(),11,-∞--+∞ ()1g x -1x >-()221g x x =-()()1f x g x =-1-2-[]0,4()[]1,1,5f x x x =-∈()24f x x =-+()f x =[]2,14x ∈-()12f x x x=+-0x >x y ∈R 2x y +>x y 2,2x x x∀∈<R x y >x y >0m <220x x m -+=0a >0b >1a b +=22a b +121ab ab +49a b+{}3,A a ={},1B a ={}1,2,3,2A B =- a ()2f x x =()2g x x =+()()3f g =()f x R ()f x [)0,+∞()()11f m f -<m 0x ≥()24f x x x =+0x <()f x p 22680x ax a -+<0a ≠q 2430x x -+≤(1)当时,若同时成立,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.16.已知集合,集合,集合,集合.(1)求(2)设,求实数的取值范围.17.已知函数是定义在上的奇函数,且.(1)求实数和的值;(2)判断函数在上的单调性,并证明你的结论;(3)若,求的取值范围.18.某厂家拟定在2023年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)万件与年促销费用()万元满足(为常数).如果不举行促销活动,该产品的年销量只能是1万件.已知2023年生产该产品的固定投入将为10万元,每生产1万件,该产品需要再投入16万元(再投入费用不包含促销费用),厂家将每件产品的销售价格定为“平均每件产品的固定投入与再投入”的倍.(1)求的值;(2)将2023年该产品的利润(万元)表示为年促销费用(万元)的函数;(3)该厂家2023,结果保留1位小数).19.对于二次函数(),若存在,使得成立,则称为二次函数()的不动点.(1)求二次函数的不动点;(2)若二次函数有两个不相等的不动点、,且,,求的最小值.(3)若对任意实数,二次函数()恒有不动点,求的取值范围.1a =,p q x p q a U =R 4221x A xx ⎧-⎫=<⎨⎬+⎩⎭{}312B x x =->[],1C m m =+A B()U B C C = ðm ()24ax b f x x +=-()2,2-()213f =a b ()f x ()2,2-()()2110f t f t -+-<t x m 0m ≥32kx m =-+k 32k y m 1.414=2y mx nx t =++0m ≠0x ∈R 2000mx nx t x ++=0x 2y mx nx t =++0m ≠23y x x =--()2231y x a x a =-++-1x 2x 1x 20x >1221x x x x +b ()()211y ax b x b =+++-0a ≠a高一数学参考答案题号1234567891011答案BBBACDBAACADACD1. B 因为,所以.2. B 解:因为命题“,”为存在量词命题,所以其否定为“,”.3. B 【详解】当“”时,如,,满足,但不满足且,当且时,根据不等式的性质有“”,故“”是“且”的必要不充分条件.4. A 【详解】因为,即,即,即,解得,所以实数的取值范围为.故选:A5. C 【详解】∵关于的方程有两个实数根,,∴,解得,∴实数的取值范围为,根据韦达定理可得,,∵,∴,即,解得或(不符合题意,舍去),∴实数的值为.6. D 【详解】由函数的定义域为,可得函数的定义域为,函数,可得,解得,所以函数定义域为.{}{}*05,1,2,3,4U x x x U =≤<∈==N(){}{}{}42,42,4UP Q == ð3x ∃≥2230x x -+<3x ∀≥2230x x -+≥1x y +≤4x =-1y =1x y +≤12x ≤12y ≤12x ≤12y ≤1x y +≤1x y +≤12x ≤12y ≤2014132a a <2213140a a -⨯<⨯-⨯2230a a --<()()2310a a -+<312a -<<a 31,2⎛⎫- ⎪⎝⎭x ()222110x k x k +-+-=1x 2x ()()222141450k k k ∆=---=-+≥54k ≤k 54k ≤1212x x k +=-2121x x k =-()22212121212216x x x x x x x x +=+-=+()()()2221221161k k k ---=+-24120k k --=2k =-6k =k 2-()1f x +[]2,1-112x -≤+≤()f x []1,2-()g x =12210x x -≤≤⎧⎨+>⎩122x -<≤()g x 1,22⎛⎤- ⎥⎝⎦7. B 【详解】由在上是减函数可得,解得,8. A 【详解】因为为奇函数,所以关于对称,则关于对称,即,当时,,当时,,则,所以,则,因为,则或,解得或,所以.9. AC 【详解】对于A :函数,在定义域上单调递增,又,,所以,故A 正确;对于B :由,所以,即,故B 错误;对于C :函数,在定义域上单调递增,又,,所以,故正确;对于D :因为,所以,当且仅当,即时取等号,所以,故D 错误;10. AD 【详解】假设,都不大于1,即,,则,因此不成立,所以假设不成立,故A 正确;()f x R 2300231a a a a-<⎧⎪>⎨⎪-+≥⎩2334a <≤()1g x -()1g x -()0,0()g x ()1,0-()()2g x g x =---1x >-()221g x x ==1x <-21x -->-()()()222221287g x g x x x x ⎡⎤=---=----=---⎣⎦()2221,1287,1x x g x x x x ⎧->-=⎨---<-⎩()()()2222,1122,1x x f x g x x x ⎧->-⎪=-=⎨-+<-⎪⎩()0f x =22201x x ⎧-=⎨>-⎩()21220x x <-⎧⎪⎨-+=⎪⎩11x =22x =-121x x +=-()1f x x =-[]1,5x ∈()10f =()54f =()[]0,4f x ∈20x ≥244x -+≤()(],4f x ∈-∞()f x =[]2,14x ∈-()20f -=()144f =()[]0,4f x ∈C 0x >()1220f x x x =+-≥-=1x x=1x =()[)0,f x ∈+∞x y 1x ≤1y ≤2x y +≤2x y +>因为时,,故B 错误;因为,但是,则不一定能推出,且,但是,所以不一定能推出,所以“”是“”的既不充分也不必要条件,故C 错误;关于方程有一正一负根,所以“”是“关于方程有一正一负根”的充要条件,故D 正确;故选:AD11. ACD 【详解】∵,,,∴,所以A 中结论一定成立,由已知得,∴,所以B 中的结论是错误的,由,所以C 中的结论是成立的,由已知得,所以D 中的结论是成立的,12.【详解】由题意得,且,故,13. 25 【详解】根据题意可知,则.【详解】∵是定义在上的偶函数,若在上是增函数,∴不等式等价为,即得,得,若,则,则当时,,则当时,,1x =22x x >32->32-<x y >x y >23>-23<-x y >x y >x y >x y >220x x m -+=44000m m m ∆=->⎧⇔⇔<⎨<⎩0m <220x x m -+=0a >0b >1a b +=()2221122a b a b +≥+=21024a b ab +⎛⎫<≤= ⎪⎝⎭()2222111117241244ab a b ab ab ab ab -+⎛⎫+==+≥-+= ⎪⎝⎭()222a b ≤+=≤()494949131325b a a b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭2-a a ≠2a =2a =-()3325g =+=()()()235525f g f ===()f x R ()f x [)0,+∞()()11f m f -<()()11f m f -<111m m -=-<111m -<-<02m <<0x <0x ->0x -≥()()24f x x x f x -=-=0x <()24f x x x =-故答案为:(1),(2)15.【详解】(1)当时,:,即:,:,即:,若同时成立,则,即实数的取值范围为(2)由(1)知,:,:(),即:,①当时,:,若是的充分不必要条件,则,解得;②当时,:,此时不可能是的充分不必要条件,不符合题意综上,实数的取值范围为.16.【详解】(1)由已知,,所以;(2)由(1)得,所以,又,且所以,即,解得,所以实数的取值范围是.17.【详解】(1)由函数是定义在上的奇函数,所以得,02m <<()24f x x x=-1a =p 2680x x -+<p 24x <<q 2430x x -+≤q 13x ≤≤,p q 23x <≤x (]2,3q 13x ≤≤p 22680x ax a -+<0a ≠p ()()240x a x a --<0a >p 24a x a <<p q 1243a a ≤<≤1324a ≤≤0a <p 420a x a <<<p q a 13,24⎡⎤⎢⎥⎣⎦()4221,21x A xx ⎧-⎫=<=-⎨⎬+⎩⎭{}()1312,1,3B x x ⎛⎫=->=-∞-+∞ ⎪⎝⎭ ()11,1,23A B ⎛⎫=-- ⎪⎝⎭ ()1,1,3B ⎛⎫=-∞-+∞ ⎪⎝⎭ 1,13U B ⎡⎤=-⎢⎥⎣⎦ð()U B C C = ð[],1C m m =+()U C C B ⊆C ≠∅1311m m ⎧≥-⎪⎨⎪+≤⎩103m -≤≤m 103m m ⎧⎫-≤≤⎨⎬⎩⎭()24ax bf x x+=-()2,2-()004bf ==0b =又因为,所以,经检验,当,时,是奇函数,所以,(2)由(1)可知,设所以因为,所以,,,,,所以,即,所以函数在上是增函数.(3)由函数是定义在上的奇函数且,则,所以所以的取值范围是.18.【详解】(1)由已知,当时,,,解得:,(2)由(1)知,故。

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a∈R,若集合M={1,a},N={−1,0,1},则“a=0”是“M⊆N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是A. ∀a,b∈R,a2+b2<0B. 菱形的两条对角线相等C. ∃x0∈R,x20=x0D. 一次函数的图象是直线3.设全集U=R,集合A={1,2,3,4,5},B={x|3<x<8,x∈N},则下图中的阴影部分表示的集合是A. {1,2,3,4,5}B. {3,4}C. {1,2,3}D. {4,5,6,7}4.若函数f(x)=4x2−kx−8在[5,8]上是单调函数,则实数k的取值范围是A. (−∞,40)B. (−∞,40]∪[64,+∞)C. [40,64]D. [64,+∞)5.已知关于x的不等式ax2+bx+c>0的解集为{x|13<x<12},则不等式cx2+bx+a>0的解集为A. {x|−12<x<−13}B. {x|x>3或x<2}C. {x|2<x<3}D. {x|−3<x<−2}6.已知关于x的不等式2x+2x−a≥7在区间(a,+∞)上恒成立,则实数a的最小值为A. 1B. 32C. 2 D. 527.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,这便是科学记数法,若两边取常用对数,则有lg N=n+lg a.现给出部分常用对数值(如下表),则可以估计22023的最高位的数值为真数x2345678910lg x(近0.301030.477120.602060.698970.778150.845100.903090.95424 1.000似值)A. 6B. 7C. 8D. 98.已知函数g(x)是R上的奇函数,且当x<0时,g(x)=−x2+2x,函数f(x)={x,x≤0,g(x),x>0,若f(2−x2 )>f(x),则实数x的取值范围是A. (−2,1)B. (−∞,−2)∪(1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)二、多选题:本题共3小题,共18分。

上海市闵行中学2024-2025学年高一上学期期中考试数学试卷

上海市闵行中学2024-2025学年高一上学期期中考试数学试卷

上海市闵行中学2024-2025学年高一上学期期中考试数学试卷一、填空题1.已知集合{}{}1,0,1,0,1,2A B =-=,则A B = .2.已知正实数,x y 满足1xy =,则x y +的最小值是.3.函数20242024(0,1)x y a a a -=+>≠的图像恒过定点.4.已知幂函数的图象过点1(2,)4,则幂函数的解析式()f x =.5.若关于x 的不等式20x x b -+<的解集是(1,)t -,则b =6.函数()()21log 4x f x x -=-的定义域是.7.若关于x 的不等式11x x a -++>恒成立,则实数a 的取值范围是.8.函数22812y x x =++的最小值是.9.已知函数()2112024x f x -⎛⎫= ⎪⎝⎭,则()f x 的值域为.10.已知正数a 、b 满足4a b =,且2log 3a b +=,则a b +=.11.若函数()f x 对定义域内的每一个值1x ,在其定义域内都存在唯一的2x ,使12()()1f x f x =成立,则称该函数为“依赖函数”.若函数2()2x f x -=在定义域[],(0)m n n m >>上为“依赖函数”,则mn 的取值范围是.12.已知函数f (x )=x 2+(a -1)x -a ,g (x )=ax +4,若不存在x 0,使得()()0000f x g x <⎧⎪<⎨⎪⎩,则实数a 的取值范围.二、单选题13.下列各式正确的是()Aa =B .01a =C 4=-D π=-14.已知()3f x x =,()2g x x =,则下列说法正确的是()A .()0,x ∈+∞时,恒有()()f x g x ≥B .()f x 与()g x 函数图象仅有唯一交点C .()0,1x ∈时,()f x 图象在()g x 图象下方D .存在()01,x ∈+∞使得()()00f x g x =15.设,a b R ∈,则“1ab a b +≠+”的充要条件是()A .a ,b 不都为1B .a ,b 都不为0C .a ,b 中至多有一个是1D .a ,b 都不为116.设0a b >>,若3322a b a b a bλ++≤-,则实数λ的最大值为()A .2+B .4C .2D .三、解答题17.(1)已知225(0,R)xxa a a x -+=>∈,求x x a a -+的值;(2)已知13log 7a =,134b =,用,a b 表示28log 52.18.已知集合2{|280}A x x x =+-≤,集合1{|0}6x B x x -=<-,设集合C A B =⋂.(1)求集合C ;(2)当x C ∈时,求函数9()2f x x x =+-的最小值.19.某校决定投资建一个形状为长方体的体育器材室,高度为3米,底面面积为36平方米,它的后墙利用旧围墙改造(面积足够用),改造费用为每平方米4百元,正面用防火板建造,防火板每平方米造价为8百元,两侧墙用砖建造,每平方米造价为6百元,顶部每平方米造价为3百元,下底费用不计.(1)求器材室总造价y (百元)关于器材室的正面长x (米)的函数关系式;(2)应怎样设计才能使器材室总造价最低,并求出总造价的最小值.20.已知函数2()21x x f x a a =--,其中0a >且1a ≠.(1)若2a =,求()f x 的最小值;(2)若()f x 在区间[0,1]上的最大值为2,求a 的值;(3)若2a =,且()42xf x m +>⋅对任意[1,1]x ∈-恒成立,求实数m 的取值范围.21.定义:若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.(1)若()2x f x x =-,(0,)x ∈+∞,判断()f x 是否为“1距”增函数,并说明理由;(2)若31()44f x x x =-+,R x ∈是“a 距”增函数,求实数a 的取值范围;(3)若2()2024xk xf x +=,(1,)∈-+∞x ,其中k (R k ∈)为常数,如果()f x 是“2距”增函数,求实数k 的取值范围及()f x 的最小值.。

浙江省宁波市镇海中学2024-2025学年高一上学期期中考试数学试卷

浙江省宁波市镇海中学2024-2025学年高一上学期期中考试数学试卷

浙江省宁波市镇海中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知全集{}1,2,3,4,5U =,{}2,4A =,{}1,4,5B =,则()U B A ⋂=ð()A .{}3B .{}4C .{}1,4D .{}1,52.已知a ,b ,c ∈R ,则a b >是a c b c >的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知函数()224,04,0x x x f x x x x ⎧+≥=⎨-<⎩,则()()1f f -=()A .45B .5C .3-D .214.已知()lg f x x =,若()πa f =,13b f ⎛⎫= ⎪⎝⎭,()e c f =,则()A .a b c <<B .b c a <<C .c a b<<D .c b a<<5.已知函数()f x 的图象如图所示,()f x 的解析式可能是()A .()211f x x =+B .()21x f x x =+C .()211f x x =-D .()21x f x x =-6.已知01x <<,则1121x x+-的最小值为()A .3BC.32+D.3+7.已知函数()214x x f x a a +=-(0a >且1a ≠)在()0,1上单调递增,则a 的取值范围是()A .112a ≤<B .1a >C .102a <≤D .112a ≤<或1a >8.已知3n ≥,设函数f :{}{}1,2,3,,1,2,3n → 满足()()()f f t f t =,则这样的函数个数共有()A .233323n n --+⋅+B .23332n n --⋅+C .233324n n --+⋅+D .233232n n --+⋅+二、多选题9.若函数()122x x bf x a+-+=+为奇函数,则a ,b 的可能值为()A .2a =,1b =B .2a =,1b =-C .2a =-,1b =-D .2a =-,1b =10.已知()f x 的定义域为R ,()21f x +为奇函数,()2f x +为偶函数,则()A .()20230f =B .()20240f =C .()f x 为偶函数D .()()6f x f x -=-11.已知()111,P a b 与()222,P a b 是函数()f x 上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是()A .若()1f x kx =+(k 为常数),则无论k ,1P ,2P 如何,总有唯一解B .若()f x kx =(k 为常数),则无论k ,1P ,2P 如何,总无解C .若()xf x a =(0a >且1a ≠),则存在a ,1P ,2P ,使之恰有两解D .若()log a f x x =(0a >且1a ≠),则存在a ,1P ,2P ,使之无解三、填空题12.已知实数a 满足11221a a --=,则22a a -+=.13.已知实数x ,y 满足222x y y +-=,则22y x -的最大值为.14.已知奇函数()f x 的定义域为R ,当0x >时,()2f x ax x =+,若对11,22x 轾"Î-犏犏臌,()()f x a f x +<恒成立,则实数a 的取值范围是.四、解答题15.计算:(1)130333132log 2log 23πlog 8279-⎛⎫-+-+ ⎪⎝⎭;(2)2235lg 2lg 2lg5lg5log 3log 5log 8++-⋅⋅.16.设集合{}213,A x m x m m R =-≤≤+∈,2112x B x x ⎧⎫+=>⎨⎬-⎩⎭.(1)当2m =-时,求集合A B ⋂,A B ;(2)若A B A = ,求实数m 的取值范围.17.已知函数()()ln 1f x x =+,()()ln 21g x x t =+-,()g x 过定点()2,0.(1)若()()()h x f x g x =+,求函数()h x 的定义域;(2)若不等式()1lnx h x m->在[]2,4x ∈上恒成立,求m 的取值范围.18.定义在D 上的函数()f x ,如果满足:x D ∀∈,存在常数0M >,使得()f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的一个上界.已知函数()241x af x x -=+,x ∈R .(1)当0a =时,证明:()f x 在区间()1,1-上单调递增;(2)若()f x 在R 是以4为上界的有界函数,求实数a 的取值范围;(3)证明:若0a >,0x >,证明:()22af x x a ≤-+.19.定义:已知数集A 的元素个数不少于2个,若数集A 中任意两个元素之和不是整数的平方,则称A 是一个“好集”.对正整数n ,记{}1,2,3,,n T n = ,{},1,2,3n n m S m T t t ⎧⎫=∈∈⎨⎬⎩⎭.(1)求集合7S 的元素个数(2)是否存在“好集”A ,B ,满足A B =∅ ,14A B T = ,若存在,求出一组A ,B ,若不存在,说明理由,(3)求最大的正整数n ,使得存在“好集”A ,B ,满足A B =∅ ,nA B S =。

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

宁波2024年度第一学期期中高一数学试卷(答案在最后)(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,4,7M =,{}4,6,7N =,则M N = ()A.{}1,2,4,6,7B.{}1,2,6C.{}4,7 D.{}2,4【答案】C 【解析】【分析】利用集合的交集运算即可得解.【详解】因为{}1,2,4,7M =,{}4,6,7N =,所以M N = {}4,7.故选:C.2.命题“N n ∀∈,22Z n n ++∈”的否定为()A.N n ∀∈,22Z n n ++∉B.N n ∀∉,22Z n n ++∉C.N n ∃∈,22Z n n ++∈D.N n ∃∈,22Zn n ++∉【答案】D 【解析】【分析】利用量词命题的否定方法即可得解.【详解】因为量词命题的否定方法为:改量词,否结论,所以命题“N n ∀∈,22Z n n ++∈”的否定为N n ∃∈,22Z n n ++∉.故选:D.3.已知0.23a =,0.33b =,0.22c =,则()A.b a c >>B.a b c >>C.b c a >>D.a c b >>【答案】A 【解析】【分析】利用指数函数的单调性与幂函数的单调性即可判断得解.【详解】因为3x y =为单调递增函数,所以0.30.233>,则b a >,因为0.2y x =为增函数,所以0.20.232>,则a c >,综上,b a c >>.故选:A.4.已知正实数a ,b 满足2a b +=,则312a b+的最小值为()A.272B.14C.15D.27【答案】A 【解析】【分析】利用基本不等式“1”的妙用即可得解.【详解】因正实数a ,b 满足2a b +=,所以31213121312127()15152222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当312b a a b=,即24,33a b ==时取等号,所以312a b+的最小值为272.故选:A 5.函数3(e)x f xx =的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用奇偶函数的定义判断得()f x 的奇偶性排除AB ,再利用指数函数的性质分析得()f x 的正负情况,从而排除C ,由此得解.【详解】对于3()ex xf x =,其定义域为R ,又33()()e ex xx xf x f x ---==-=-,则()f x 是奇函数,排除AB ,当0x >时,30x >,e e 0x x =>,所以()0f x >,排除C ,又选项D 的图象满足上述性质,故D 正确.故选:D.6.设m ∈R ,“12m <-”是“方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要【答案】C 【解析】【分析】举反例说明充分性,利用二次方程根的分布说明必要性,从而得解.【详解】当12m <-时,取3m =-,则方程22(3)40m x m x -++=为2940x +=,显然无解,即充分性不成立;当方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根时,则()22222Δ344032242(3)40m m m m x m m m ⎧>⎪=+-⨯>⎪⎪⎨+=>⎪⎪⎪-++>⎩,即0315********m m m m m m ≠⎧⎪⎪-<<⎪⎪⎨-<<<<⎪⎪⎪-⎪⎩或或,则3152m -<<-,此时12m <-成立,即必要性成立;所以前者是后者的必要不充分,故C 正确.故选:C.7.中国5G 技术领先世界,其数学原理之一便是香农公式:2log 1S C W N⎛⎫=+⎪⎝⎭,它表示:在受噪音干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫信噪比.按照香农公式,若不改变带宽W ,将信噪比SN从2000提升至10000,则C 大约增加了(lg 20.3010)≈()A .18%B.21% C.23% D.25%【答案】B 【解析】【分析】由已知公式,将信噪比SN看作整体,分别取2000,10000求出相应的C 值,再利用对数运算性质与换底公式变形即可得解.【详解】由题意,将信噪比SN从2000提升至10000,则最大信息传递速率C 从()12log 12000C W =+增加至()22log 110000C W =+,所以2212212210001log log 10001log 20012001log 2001log 2001C C W W C W --==3100011000010lglg lg10.3012001200020.2121%lg 2001lg 2000lg 2lg100.3013-=≈==≈=++.故选:B.8.已知函数()f x 为R 上的奇函数,当0x ≥时,2()2f x x x =-,若函数()g x 满足(),0()(),0f x x g x f x x ≥⎧=⎨-<⎩,且(())0g f x a -=有8个不同的解,则实数a 的取值范围为()A.1a <-B.10a -<<C.01a <<D.1a >【答案】B 【解析】【分析】先利用函数的奇偶性与题设条件得到()f x 与()g x 的解析式,设()t f x =,作出函数()g t 的图象,数形结合,分类讨论函数1a <-、10a -<<与0a >三种情况,得到对应情况下(())0g f x a -=的解的个数,从而得解.【详解】因为函数()f x 为R 上的奇函数,当0x ≥时 ,令0x <,则0x ->,则()22f x x x -=+,又()()22f x f x x x=--=--所以()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩,则()222,02,0x x x g x x x x ⎧-≥=⎨+<⎩,设()t f x =,作出函数()g t 的图象,对于A ,当1a <-时,函数()g t a =没有实数根,不满足题意;对于B ,当10a -<<时,函数()g t a =有四个根1234,,,t t t t ,其中1(2,1)t ∈--,2(1,0)t ∈-,3(0,1)t ∈,4(1,2)t ∈;作出()f x 与1y t =、2y t =、3y t =与4=y t 的图象,如图,显然几个函数恰有8个交点,则(())0g f x a -=有8个不同的解,故B 正确;对于CD ,当0a >时,函数()g t a =有两个根12,t t ,其中1(,2)t ∈-∞-,2(2,)t ∈+∞,与选项B 同理可知()f x 与1y t =、2y t =各有一个交点,则(())0g f x a -=只有2个不同的解,不满足题意,故CD 错误.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是()A.11a b< B.11a cb c<--C.ac bc > D.22a b c c >【答案】AD 【解析】【分析】根据不等式的性质,作差逐一判断即可.【详解】因为0a b >>,选项A :110b aa b ab --=<,所以11a b<,故A 说法正确;选项B :()()11b aa cbc a c b c --=----,当a b c >>或c a b >>时,()()0b aa cbc -<--,即11a c b c<--;当a c b >>时,()()0b a a c b c ->--,即11a c b c>--,故B 说法错误;选项C :当0c =时,ac bc =,故C 说法错误;选项D :因为210c >,所以22a b c c >,故D 说法正确;故选:AD10.已知函数)()lg 1f x x =-+,则下列说法正确的是()A.()f x 的值域为RB.(1)f x +关于原点对称C.()f x 在(1,)+∞上单调递增D.()f x 在[1,1]x m m ∈-+上的最大值、最小值分别为M 、N ,则0M N +=【答案】ABD 【解析】【分析】利用作差法,结合对数函数的性质判断A ,构造函数())lg k x x =,研究()k x 的性质判断B ,利用()k x 的单调性与奇偶性判断CD ,从而得解.【详解】对于A ,()2222110x x x -+--=>,所以()222210x x x -+>-≥1x >-,10x -+>恒成立,所以()f x 的定义域为R ,且当x 趋于无穷大时,1y x =+接近于0,当x 趋于无穷小时,1y x =+=趋于无穷大,所以()f x 的值域为R ,故A 正确;对于B ,因为))(1)lg (1)1lgf x x x +=-++=,令())lgk x x =,则()(1)f x k x +=,易知()k x 的定义域为R ,又()()))lglglg10k x k x x x -+=+==,所以()k x 为奇函数,关于原点对称,即(1)f x +关于原点对称,故B 正确;对于C ,因为())1gk x x =-=在()0,∞+上递减,而将()k x 的图象向右平移一个单位可得()f x 的图象,所以()f x 在(1,)+∞上单调递减,故C 错误;对于D ,因为()k x 在()0,∞+上递减,且())1gk x x =为奇函数,则()00k =,())k x x =-∴在(),-∞+∞上为减函数,而将()k x 的图象向右平移一个单位可得()f x 的图象,()f x ∴在(),-∞+∞上为减函数,即()f x 在[1,1]m m -+上单调递减,则()()()()110M N f m f m k m k m +=-++=-+=,故D 正确.故选:ABD.11.已知函数()f x 满足:对于,x y ∈R ,都有()()()(1)(1)f x y f x f y f x f y -=+++,且(0)(2)f f ¹,则以下选项正确的是()A.(0)0f = B.(1)0f =C.(1)(1)0f x f x ++-= D.(4)()f x f x +=【答案】BCD 【解析】【分析】利用赋值法,结合条件分析得()()1,0f f 的值,从而判断AB ,利用赋值法,结合AB 中的结论、抽象函数的奇偶性和周期性的判定方法判断CD ,从而得解.【详解】对于B :令0x y ==,则()()()22001,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦令1x y ==,则()()()22012,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦所以()()2202,f f ⎡⎤⎡⎤=⎣⎦⎣⎦因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,则()()()()()110210f f f f f =+=,故B 正确;对于A :由选项B 可得()()200f f ⎡⎤=⎣⎦,所以()00f =或()01f =,若()00f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,所以()20f =,这与()()02f f ≠矛盾,舍去;若()01f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,解得()21f =±,因为()()02f f ≠,所以()21f =-,()01f =,故A 错误;对于C :令0x =,则()()()()()011f y f f y f f y -=++,因为 ,()01f =,所以()()f y f y -=,所以()f x 为偶函数,令1x =,则()()()()()()11211f y f f y f f y f y -=++=-+,即()()11f x f x -=-+,所以(1)(1)0f x f x ++-=,故C 正确;对于D :由选项C 知()()11f x f x -=-+,所以()()2f x f x -=-+,又()f x 为偶函数,所以()()()2f x f x f x =-=-+,即 t ,所以 t 䁝 t ,故D 正确.故选:BCD.【点睛】方法点睛:抽象函数求值问题,一般是通过赋值法,即在已知等式中让自变量取特殊值求得一些特殊的函数值,解题时注意所要求函数值的变量值与已知的量之间的关系,通过赋值还可能得出函数的奇偶性、周期性,这样对规律性求值起到决定性的作用.三、填空题:本题共3小题,每小题5分,共15分.12.函数3()log (31)f x x =+的定义域为______.【答案】13x x ⎧⎫-⎨⎬⎩⎭【解析】【分析】根据对数式的意义即可求解.【详解】要使函数有意义,则13103x x +>⇒>-,所以函数的定义域为13x x ⎧⎫-⎨⎬⎩⎭.故答案为:13x x ⎧⎫-⎨⎬⎩⎭.13.定义()f x x =⎡⎤⎢⎥(其中⎡⎤⎢⎥x 表示不小于x 的最小整数)为“向上取整函数”.例如 1.11-=-⎡⎤⎢⎥,2.13=⎡⎤⎢⎥,44=⎡⎤⎢⎥.以下描述正确的是______.(请填写序号)①若()2024f x =,则(2023,2024]x ∈,②若27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥,则(2,4]x ∈,③()f x x =⎡⎤⎢⎥是R 上的奇函数,④()f x 在R 上单调递增.【答案】①②【解析】【分析】利用对“向上取整函数”定义的理解,结合定义域与二次不等式的求解可判断①②,举反例,结合函数奇偶性与单调性的定义可判断③④,从而得解.【详解】因为⎡⎤⎢⎥x 表示不小于x 的最小整数,则有x x ≥⎡⎤⎢⎥且1x x -<⎡⎤⎢⎥,即1x x x -<⎡⎤⎡⎤⎢⎥⎢≤⎥,对于①,()2024f x x ==⎡⎤⎢⎥,则20232024x <≤,即(2023,2024]x ∈,故①正确;对于②,令t x =⎡⎤⎢⎥,则不等式可化为27120t t -+≤,解得34t ≤≤,又t x =⎡⎤⎢⎥为整数,则3t =或4t =,当3t =时,即3x =⎡⎤⎢⎥,则23x <≤;当4t =时,即4x =⎡⎤⎢⎥,则34x <≤,所以24x <≤,则(2,4]x ∈,故②正确;对于③,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.5)0(0.5)f f -=≠-,则()f x x =⎡⎤⎢⎥不是R 上的奇函数,故③错误;对于④,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.6)1f =,即(0.5)(0.6)f f =,所以()f x 在R 上不单调递增,故④错误.故答案为:①②.14.已知a ,b 满足2221a ab b +-=,则232a ab -的最小值为______【答案】2【解析】【分析】变形给定等式,换元2a b m +=,用m 表示,a b ,再代入,利用基本不等式求出最小值.【详解】由2221a ab b +-=,得(2)()1a b a b +-=,令2a b m +=,则1a b m-=,解得233m a m =+,8322()33m a b a a b m-=+-=+,因此22228116132(32)()()(10)(1022333399m m a ab a a b m m m m -=-=++=++≥+=,当且仅当2216m m=,即24m =时取等号,所以232a ab -的最小值为2.故答案为:2【点睛】关键点点睛:将2221a ab b +-=变形为(2)()1a b a b +-=,令2a b m +=,再表示出,a b 是求出最小值的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(110232ln 2024+-(2)()()24525log 5log 0.2log 2log 0.5++【答案】(1)152(2)14【解析】【分析】(1)根据根式与指数式的互化将根式化为同底的指数式,再结合对数运算性质和指数幂性质即可计算得解.(2)根据对数性质、运算法则和换底公式即可计算求解.【小问1详解】原式()()111125253424211115221222222⨯+⨯=⨯+-=-=-=.【小问2详解】原式225511log 5log 0.2log 2log 0.522⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭225525log 5log log 2log log log ⎛=++= ⎝11lg5lg 2122lg 2lg5lg 2lg54=⨯=⨯=.16.已知集合{}121A x m x m =+≤≤-,11|288x B x -⎧⎫⎨⎬⎩⎭=≤≤.(1)求B ;(2)若A B ⊆,求实数m 的取值范围.【答案】(1){}|24B x x =-≤≤(2)5,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用指数函数的单调性解不等式,从而化简集合B ;(2)利用集合间的包含关系,分类讨论A =∅与A ≠∅两种情况,得到关于m 的不等式(组),解之即可得解.【小问1详解】由11288x -≤≤,得313222x --≤≤,所以313x -≤-≤,解得24x -≤≤,所以{}|24B x x =-≤≤.【小问2详解】因为A B ⊆,{}121A x m x m =+≤≤-,当A =∅时,121m m +>-,得2m <,满足条件;当A ≠∅时,2m ≥且21214m m -≤+⎧⎨-≤⎩,解得522m ≤≤;综上所述,m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与使用肥料x (单位:千克)满足如下关系:210(3),02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,肥料成本投入为11x 元,其他成本投入(如培育管理、施肥等人工费)25x 元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?【答案】(1)220036600,02()2000200036,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.【解析】【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案.(2)结合二次函数的最值以及对勾函数求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【小问1详解】依题意,2200(3)36,02()20()251120()3610020(10036,251x x x f x W x x x W x x x x x ⎧+-≤≤⎪=--=-=⎨--<≤⎪+⎩220036600,022*********,251x x x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()20036600f x x x =-+,则当2x =时,()f x 取得最大值(2)1328f =;当25x <≤时,500()203636(1)20364[9(1)]112000f x x x x x =--+=-++++令1(3,6]x t +=∈,5005009(1)91x t x t ++=++,函数5009t t y +=在(3,6]上单调递减,当6t =时,min 4123y =,此时5x =,()f x 取得最大值4460(5)3f =,而446013283<,因此当5x =时,max 4460()3f x =,所以当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.18.已知函数()42x xa f x -=为奇函数,(1)求a 的值;(2)判断()f x 的单调性,并用单调性定义加以证明;(3)求关于x 的不等式()22(4)0f x x f x ++-<的解集.【答案】(1)1a =(2)()f x 在R 上单调递增,证明见解析(3){}41x x -<<【解析】【分析】(1)利用奇函数的性质()00f =求得a ,再进行检验即可得解;(2)利用函数单调性的定义,结合作差法与指数函数的性质即可得解;(3)利用()f x 的奇偶性与单调性,将问题转化为224x x x +<-,从而得解.【小问1详解】因为()42x x a f x -=为奇函数,且定义域为R ,所以()00f =,则00402a -=,解得1a =,此时()411222x x x x f x -==-,则()()112222x x x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭,即()f x 为奇函数,所以1a =.【小问2详解】()f x 在R 上单调递增,证明如下:任取12,R x x ∈,且12x x <,则12220x x -<,12220x x ⋅>则()()1222211112111122222222x x x x x x x x f x f x ⎛⎫-=---=-+- ⎪⎝⎭()12121212122212222102222x x x x x x x x x x -⎛⎫=-+=-+< ⎪⋅⋅⎝⎭,所以()()12f x f x <,故()f x 在R 上单调递增.【小问3详解】因为()22(4)0f x x f x ++-<,所以()()22(4)4f x x f x f x +<--=-,则224x x x +<-,即2340x x +-<,解得41x -<<,所以()22(4)0f x x f x ++-<的解集为{}41x x -<<.19.已知函数3()f x x a a x=--+,(R)a ∈,(1)若1a =,求关于x 的方程()1f x =的解;(2)若关于x 的方程2()f x a =有三个不同的正实数根1x ,2x ,3x 且123x x x <<,(i )求a 的取值范围;(ii )证明:1333x x x >.【答案】(1)11322x =+(2)(i)732⎛ ⎝;(ii )证明见解析【解析】【分析】(1)根据题意得由31x x-=,分类讨论1x ≥与1x <两种情况去掉绝对值即可得解;(2)(i )分段讨论()f x 的解析式,结合对勾函数的性质分析得()f x 的单调性,进而得到关于a 的不等式,解之即可得解;(ii )利用(i )中结论,分析得123x x =与3x 关于a 的表达式,进而得解.【小问1详解】当1a =时,3()11f x x x =--+,则由()1f x =,得31x x -=,当1x ≥时,则31x x -=,即230x x --=,解得11322x =+或11322x =-(舍去);当1x <时,则31x x -=,即230x x -+=,无实数解,综上,11322x =+.【小问2详解】(i )因为3()f x x a a x=--+,当x a ≤时,33()2f x x a a a x x x ⎛⎫=-+-+=-+ ⎪⎝⎭,当x a >时,33()f x x a a x x x=--+=-,由对勾函数的性质可知,32y a x x ⎛⎫=-+⎪⎝⎭在(上单调递增,在)+∞上单调递减,易知3y x x =-在()0,∞+上单调递增,当)0a a ≤≠时,则32y a x x ⎛⎫=-+ ⎪⎝⎭在()0,a 上单调递增,3y x x =-在(),a +∞上单调递增,又当x a =时,332a x x x x ⎛⎫-+=- ⎪⎝⎭,所以()f x 在()0,∞+上单调递增,故方程2()f x a =不可能存在3个不同正实根,所以a ≥32y a x x ⎛⎫=-+ ⎪⎝⎭在(上单调递增,在)a 上单调递减,3y x x=-在(),a +∞上单调递增,故2322a a a a a <<-⎛⎫-+ ⎪⎝⎭,解得732a <<即a 的取值范围为2⎛ ⎝;(ii )12x x 、是方程322a x x a ⎛⎫-+= ⎪⎝⎭,即22230x a x a ⎛⎫--+= ⎪⎝⎭的两个根,故123x x =,3x 是方程32x x a -=的较大根,即2230x x a--=的较大根,则31x a =+且在区间732⎛+ ⎝上单调递减,所以1233333x x x x ⎛=>=.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。

北京市大峪中学2024-2025学年高一上学期期中考试数学试卷(含答案)

北京市大峪中学2024-2025学年高一上学期期中考试数学试卷(含答案)

大峪中学2024-2025第一学期高一年级数学学科期中考试试卷(满分:150分;时间:120分钟;命题人:高一集备组;审核人:)一、选择题(本大题共10小题,每题4分,共40分)1.若,则集合A 中的元素个数是( )A.1个 B.2个 C.3个 D.4个2.命题“,都有”的否定是()A.,使得B.,使得C.,都有D.,都有3.已知四个实数.当时,这四个实数中的最大者是()A. B. C. D.4.“”是“”的().A.充分不必要条件.B.既不充分也不必要条件C.充要条件D.必要不充分条件5.已知定义在上的函数的图象是连续不断的,且有如下部分对应值表:123456136.115.610.9判断函数的零点个数至少有( )A.1个B.2个C.3个D.4个6.已知函数,若则( )A.1 B.3 C.4 D.27.若函数是偶函数,且,则必有()A.B.C. D.8.函数是上是减函数,那么下述式子中正确的是( )()(){}1,2,0,0A =-0x ∀>20x x -...0x ∃>20x x -...0x ∃>20x x ->0x ∀>20x x ->0x ∀ (20)x x ->22,2,,2a a a a 01a <<a 22a 2a 2a 2x <2x <R ()f x x()f x 3.9-52.5-2321-.()20,11,125,2x f x x x x x <⎧⎪=+≤<⎨⎪-+≥⎩()1,f a =a =()()y f x x =∈R ()()23f f <()()32f f ->-()()32f f -<()()32f f -<-()()33f f -<()f x [)0,∞+A. B.C. D.以上关系均不确定9.如图所示,圆柱形水槽内放了一个圆柱形烧杯,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的函数关系,大致是( )A. B.C. D.10.对表示不超过的最大整数.十八世纪,被“数学王子”高斯采用,因此得名为高斯取整函数,则下列命题中的假命题是()A.B.函数的值域为C.D.若,使得同时成立,则正整数的最大值是5二、填空题(本大题共5小题,每题5分,共25分)11.已知函数的定义域为,且自变量与函数值的关系对应如表:12343212()()2122f f a a ≥++()()2122f f a a ≤++()()2122f f a a =++h t [],x x ∀∈R x []y x =[],1x x x ∃∈≤+R []()y x x x =-∈R []0,1[][][],,x y x y x y ∀∈+≤+R t ∃∈R 3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦ n ()f x {}1,2,3,4x x()f x(1)__________;(2)不等式的解集为__________.12.已知函数__________;__________.13.方程的两根为,则__________.14.函数在上不单调,则实数的取值范围为__________.15.表示不超过的最大整数,定义函数,则下列结论中:①函数的值域为;②方程有无数个解;③函数的图象是一条直线;④函数是上的增函数;正确的有__________.(只填序号)三、解答题(本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤)16.(15分)求下列不等式的解集.(1);(2).(3)17.(13分)已知集合.(1)求;(2)若,求的取值范围.18.(14分)已知是定义在上的偶函数,当时,(1)求的值;(2)求的解析式;()2f =()2f x ≥()()221,0,11,0x x f x f x x +≥⎧==⎨-+<⎩()()1f f -=2410x x -+=12,x x 1211x x +=()21f x x ax =+-[]2,3a []x x ()[]f x x x =-[)0,1()12f x =R 23262x x --+≤-3270x --≤52321x x -≤+{}2{37},12200,{}A xx B x x x C x x a =≤<=-+<=<∣∣∣();A B A B ⋃⋂R ðA C ⋂≠∅a ()y f x =R 0x ≥()22f x x x =-()()1,2f f -()f x(3)画出简图;写出的单调递增区间,并写出的解集.(只需写出结果,不要证明单调性).19.(14分)经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费.某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?20.(14分)已知函数.(1)当时,求关于的不等式的解集;(2)求关于x 的不等式的解集;(3)若在区间上恒成立,求实数a 的范围.21.(15分)已知集合A 为非空数集,定义:,(1)若集合,直接写出集合(无需写计算过程);(2)若集合,且,求证:(3)若集合,记为集合A 中的元素个数,求的最大值.22.附加题(10分)已知,函数在区间上有两个不同零点,求的最小值.()y f x =()y f x =()0f x >T x ()2Bx AC T x x=+A B C ()()21f x x a x a =-++2a =x ()0f x >()0f x <()20f x x +≥()1,∞+{}{},,,,,S xx a b a b A T x x a b a b A ==+∈==-∈∣∣{}1,3A =S T 、{}12341234,,,,A x x x x x x x x =<<<T A =1423x x x x +=+{}02023,,A xx x S T ⊆≤≤∈⋂=∅N ∣A A *,,a b c ∈N ()2f x ax bx c =++()1,0-()1f大峪中学2024—2025第一学期高一年级数学学科期中考试试卷答案1.B2.B3.C 4D 5.C6D 7.A 8.A 9.B 10.B 11.2, 12.3,1 13.4 14.15.①②16.(1) (2) (3)17.(1)因为集合,所以或,或(2)因为,且,所以,所以的取值范围是.18.解:(1)当时,,;(2)是定义在上的偶函数,当时,,当时,,.(2),当时,,抛物线开口向上,对称轴方程为,顶点坐标,当时,;当时,.当时,,抛物线开口向上,对称轴方程为,顶点坐标,当时,.由此能作出函数的图象如下:{}1,2,464a -<<-(]4,2,3∞∞⎡⎫--⋃+⎪⎢⎣⎭[]2,5-(]1,5,2∞∞⎡⎫--⋃-+⎪⎢⎣⎭{}2{37},12200{210}A x x B x x x x x =≤<=-+<=<<∣∣∣{210},{3A B x x A x x ⋃=<<=<R ∣∣ð7}x ≥(){23B x x ⋂=<<R∣ð710};x ≤<A C ⋂≠∅{}C xx a =<∣3a >a ()3,∞+0x …()()()22,f x x x f x f x =--=()()()11,220f f f ∴=--==()y f x = R 0x …()22f x x x =-0x <()()220,()22x f x x x x x ->-=---=+()()()2222,02,2,0x x x f x f x x x f x x x x ⎧-≥∴=-=+∴=⎨+<⎩()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩∴0x …22y x x =-1x =()1,1-0y =120,2x x ==0x =0y =0x <22y x x =+1x =-()1,1--0y =2x =-()f x结合图象,知的增区间是19.(1);(2)20.已知函数.【答案】(1);(2)答案见解析;(3).【分析】(1)把代入可构造不等式,解对应的方程,进而根据二次不等式“大于看两边”得到原不等式的解集.(2)根据函数,分类讨论可得不等式的解集.(3)若在区间上恒成立,即在区间上恒成立,利用换元法,结合基本不等式,求出函数的最值,可得实数的范围.【详解】(1)当时,则,由,得,原不等式的解集为;(2)由,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.(3)由即在上恒成立,得.()f x ()()()()1,0,1,,22,∞∞∞-+⋅--⋃+()()1500000060,30068000T x x T x=+=min 500,60000x T ==()()21f x x a x a =-++()(),12,∞∞-⋃+(,3∞⎤-+⎦2a =2320x x -+>()()()()21010f x x a x a x a x =-++<⇒--<()20f x x +≥()1,∞+21x x a x +≤-()1,∞+a 2a =()232f x x x =-+()0f x >()()2320210x x x x -+>⇒-->()(),12,∞∞-⋃+()()()010f x x a x <⇒--<1a >()1,a 1a =∅1a <(),1a ()20f x x +≥()210x x x a +--≥()1,∞+21x x a x +≤-令,则,当且仅当,即时取等号.则,.故实数的范围是21.【答案】(1)(2)见解析(3)1349【分析】(1)根据题目的定义,直接计算集合即可;(2)根据集合相等的概念,能证明;(3)通过假设集合,求出对应的集合,通过,建立不等式关系,求出对应的值即可.【详解】(1),集合,集合.(2),且,中也只包含4个元素,即,剩下的元素满足;(3)设集合满足题意,其中,则,由容斥原理,,的最小元素为0,最大元素为,解得实际上时满足题意,证明如下:设,则,()10t x t =->22(1)12331x x t t t x t t++++==++≥+-t =1x =+3a ≤a (,3∞⎤-+⎦{}{}2,4,6,0,2S T ==,S T 1423x x x x +=+{}(),1,2,3,,2023A m m m m m =+++⋯∈N ,S T S T ⋂=∅{}{}{}1,3,,,,|,,A S x x a b a b A T x x a b a b A ===+∈==-∈ ∣∴{}2,4,6S ={}0,2T ={}12341234,,,,A x x x x x x x x =<<< T A =T ∴{}2131410,,,T x x x x x x =---2132431423,x x x x x x x x x x -=-=-∴+=+{}12,,,k A a a a = 12k a a a <<< 1121312322k k k k k ka a a a a a a a a a a a a a <+<+<<+<+<+<<+< ”112131121,,k S k a a a a a a a a T k∴≥--<-<-<<-∴≥ S T φ⋂= 31S T S T k ⋃=+≥-S T ⋃2,21k k a S T a ∴⋃≤+()*31214047k k a k ∴-≤+≤∈N 1349k ≤{}675,676,,2023A =⋯{}(),1,2,3,,2023A m m m m m =+++⋯∈N {}{}2,21,22,,4046,0,1,2,,2023S m m m T m =++⋯=⋯-题意有,即,的最小值为当时,集合中元素最多,即时满足题意综上,的最大值为1349.20232m m -<16743m >m ∴675,∴675m =A {}675,676,,2023A =⋯A。

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题

河南省南阳市六校2024-2025学年高一上学期10月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题【分析】分别求出f(x )值域为[]2,18时的定义域,从而可求解.【详解】由函数()()2223122f x x x x =-+=-+³,所以当x =1时,f(x )有最小值()12f =,当()18f x =时,即22318x x -+=,解得3x =-或5x =,又因为[)3,1x Î-时,f(x )单调递减,(]1,5x Î时,f(x )单调递增,所以n 的最大值为5,m 的最小值为3-,所以n m -的最大值为538+=.故选:D.8.B【分析】根据函数f(x )为偶函数且在(],0-¥上单调递减,则()()110f f =-=,且f(x )在()0,+¥上单调递增,然后对x 分情况讨论,从而可求解.【详解】由函数f(x )为偶函数且在(],0-¥上单调递减,且()10f =,所以()()110f f =-=,且f(x )在()0,+¥上单调递增,当1x £-时,12x -£-,则()10f x ->,所以()10xf x -<;当10x -<£时,211x -£-£-,则()10f x -³,所以()10xf x -£;当01x <<时,110x -<-<,则()10f x -<,所以()10xf x -<;当12x ££时,011x £-£,则()10f x -£,所以()10xf x -£;当x >2时,11x ->,则()10f x ->,所以()10xf x ->.。

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

塘沽一中2024—2025学年度第一学期高一年级期中考试数学学科试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间100分钟,试卷共4页。

卷Ⅰ答案用2B 铅笔填涂在答题纸上对应区域,卷Ⅱ答案用黑色字迹的笔答在答题纸规定区域内。

第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知集合,,则( )A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.如果a ,b ,c ,,则正确的是( )A.若,则B.若,,则C.若,则D.若,,则4.设a ,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,且在上单调递减的是( )A. B. C. D.6.已知,,,则( )A. B. C. D.7.已知函数的部分图象如下图所示,则的解析式可能为( ){}|2A x x =<}2,1,0,1,{,23B =--()R A B = ð{}3{}2;3}0,1,2,3{}2,1,{0,1,2--0x ∃>2310x x -->0x ∀>2310x x --≤0x ∀≤2310x x --≤0x ∃>2310x x --≤0x ∃≤2310x x --≤R d ∈a b >11a b<a b >c d >a c b d ->-22ac bc >a b>a b >c d >ac bd>R b ∈22a b =1133ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()0,+∞2y x =1y x =+231y x =+21y x =32log 3a =0.23b =23log 2c =a b c>>b a c >>c b a>>b c a>>()f x ()f xA. B. C. D.8.函数的零点所在区间为( )A. B. C. D.9.已知国内某人工智能机器人制造厂在2023年机器人产量为300万台,根据市场调研和发展前景得知各行各业对人工智能机器人的需求日益增加,为满足市场需求,该工厂决定以后每一年的生产量都比上一年提高,那么该工厂到哪一年人工智能机器人的产量才能达到900万台(参考数据:,)( )A.2029年B.2030年C.2031年D.2032年10.设正实数x ,y 满足,则( )A.的最大值是B.的最小值为4C.最小值为2D.最小值为211.对任意的函数,都有,,且当时,,若关于x 的方程;在区间内恰有10个不等实根,则实数a 的取值范围是( )A. B. C. D.12.已知函数的定义域是,对,都有,且当时,,且,则下列说法中正确的个数为( )①②函数在上单调递增③④满足不等式的x 的取值范围为()e e 43x xf x x --=-()e e 34x xf x x--=-()e e 48x xf x x -+=-()1x f x x =-()1ln 3xf x x ⎛⎫=- ⎪⎝⎭()0,1()1,2()2,e ()e,320%lg 20.30≈lg 30.48≈22x y +=xy 14112x y+224x y +212x y x+R x ∈()f x ()()f x f x -=()()2f x f x =+[]1,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭()log 0a f x x -=[]10,10-()3,5()5,7[]5,7[]3,5()f x ()0,+∞x ∀()0,y ∈+∞()()()f x y f x f y ⋅=+1x >()0f x >113f ⎛⎫=- ⎪⎝⎭()10f =()f x ()0,+∞()()()()1111123202220230232022220222023f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()22f x f x --≥92,4⎛⎤ ⎥⎝⎦A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每小题5分,双空题答对一个给3分,共30分)13.已知函数,则函数的定义域为____________.14.____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期期中考高一年段数学学科考试
考试时间120分钟,满分150分,
一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设{}1,3,4A =,{}2,4B =,则B A 等于( )
A.{}1,2,3,4
B. {}2,4
C.{}1,2,3
D.{}4
2. 函数14
f x +(的定义域为 ( ) A. []1,1- B. (][)(),11,44,-∞-+∞
C.()(][)+∞---∞-,11,44,
D. (][)+∞-∞-,11,
3.
设0.4222,0.4,log 0.4a b c ===,则a,b,c 的大小关系是( ) A.c <b <a. B. c <a <b C. b <c <a D. b <a <c
4.下列各组函数表示同一函数的是( )
A.2(),()f x g x =
= B.0()1,()f x g x x ==
C .2(),()f x g x =
= D.21()1,()1x f x x g x x -=+=- 5. 函数11x y a +=+(0,1)a a >≠的图象一定经过点
A.(1,1)- B,(1,2)- C.(1,0) D.(1,1)
6. 已知函数()lg ,(1)3,(1)
x x f x x x ≤⎧=⎨-+>⎩则()=]2[f f
A.3 B,2 C.1 D.0
7.函数()f x 在R 上单调递减,关于x 的不等式2()(2)f x f >的解集是( )
A .{|x x >
B .{|x x <
C .}22|{<<-x x D. }22|{>-<x x x 或
8. 若函数f (x )=x 3+x 2-2x -2的一个零点(正数)附近的函数值用二分法逐次计算,参考数据如下表:
那么方程x 3+x 2-2x -2=0的一个近似解(精确度0.04)为( )
A .1.5
B .1.25
C .1.375
D .1.437 5
9.函数()log (1)x a f x a x =++在[]0,1上的最大值与最小值的和为a ,则a =
A.14
B.12
C.2
D. 4 10. 若函数a a ax x x f 22)(22-++=在区间]3,(-∞上单调递减,则实数a 的取值范围是
A 、]3,(--∞
B 、),3[+∞-
C 、]3,(-∞
D 、),3[+∞
11. 给定四个命题:
①当1n =-时,n
y x =是减函数;②幂函数的图象都过(0,0),(1,1)两点;③幂函数的图象不可能出现在第四象限;④幂函数n y x =在第一象限为减函数,则0n <,其中正确的命题为
A.①④
B.②③
C.②④
D.③④
12. 设函数f (x )=log a |x |(a >0且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系为( )
A .f (a +1)=f (2)
B .f (a +1)>f (2)
C .f (a +1)<f (2)
D .不确定 二、填空题(本大题共4小题,每小题5分,共20分)
13.已知幂函数y=f(x)的图象过点(2
,),则f(9)=_ .
14. 已知函数1()41
x f x a =-+是奇函数,则常数=a . 15.已知函数],3,0[,4)(2∈++-=x a x x x f 若)(x f 有最小值2-,则)(x f 的最大值为____
16.已知函数1,1()1(1)2,12
a x x f x a x x +⎧≥⎪⎪=⎨⎪-+<⎪⎩ 在R 上单调递减,则实数a 的取值范围为_______.
三、解答题(本大题共6小题,共70分。

解答应写出文字说明,证明过程或演算步骤。


17. (本小题满分10分) 设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A
B =,求实数a 的值
18. (本小题满分12分) 已知集合A ={x |1<x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R .
(1)求A B ⋂,A ∪B ,(∁R A )∩B ; (2)A C A ⋂=若,求a 的取值范围.
19. (本小题满分12分) (1) 计算2033log 27lg 25lg 4(8)(9.8)+++-+-的值;
(2)求解不等式
()2941,01x x a a a a -+>>≠且.
20. (本小题满分12分) 已知函数21(),1
x f x x -=+]5,3[∈x , ⑴ 判断函数()f x 的单调性,并证明;
⑵ 求函数()f x 的最大值和最小值.
21.(本小题满分12分) 已知二次函数()f x 满足2(1)(1)24f x f x x x +--=-对任意实数x 都成立。

(1)求函数()f x 的解析式;
(2)当1[,2]2x ∈时,求()(2)x
g x f =的值域。

22. (本小题满分12分) 设函数y =f (x )为R 上的函数,当x>0时,f(x)>0,并且满足f (x +y )=f (x )+f (y ),f ⎝⎛⎭⎫13=1,
(1)求f (0)的值并判断函数y =f (x )的奇偶性;
(2)判断函数y =f (x )的单调性;
(3)如果f (x )+f (2+x )<2,求x 的取值范围.。

相关文档
最新文档