高考数学一轮总复习 第10章 算法初步、统计、统计案例 第2节 随机抽样课件 理 新人教版

合集下载

高考数学一轮复习第10章第1节随机抽样课件理

高考数学一轮复习第10章第1节随机抽样课件理

人参加比赛,则应该抽取男生人数为( )
A.27
B.30
C.33
D.36
解析:选 B 因为男生与女生的比例为 180∶120=3∶2,所以应该抽取男生人数为 50×3+3 2=30.
2
课 堂 ·考 点 突 破
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息一下眼 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对身体不好 哦~
重要性. 的相关概念,是 2021 年高考考查的热点,1.数学运算
2.会用简单随机抽样方法从 题型仍将是以选择题与填空题为主,分值 2.数据分析
总体中抽取样本,了解分层抽 为 5 分.
样和系统抽样.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.简单随机抽样 (1)抽取方式:逐个 1 _不__放__回____地抽取; (2)特点:每个个体被抽到的概率 2 ___相__等____; (3)常用方法: 3 __抽__签__法___和 4 _随__机__数__法__.
6.(2019 年全国卷Ⅰ)某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1,
2,…,1 000,从这些新生中用系统抽样方法等距抽取 100 名学生进行体质测验.若 46
号学生被抽到,则下面 4 名学生中被抽到的是( )
A.8 号学生
B.200 号学生
C.616 号学生
D.815 号学生
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

高考数学一轮复习第十章统计与统计案例第一节随机抽样课件理【新】

高考数学一轮复习第十章统计与统计案例第一节随机抽样课件理【新】

答案:068
4.某工厂平均每天生产某种机器零件大约 10 000 件,要 求产品检验员每天抽取 50 件零件,检查其质量状况,采用系 统抽样方法抽取,若抽取的第一组中的号码为 0010,则第三 组抽取的号码为________.
答案:0410
5.某校高中生有 900 名,其中高一有 400 名,高二有 300 名,高三有 200 名,打算抽取容量为 45 的一个样本, 则高三学生应抽取________人.
(6)某校即将召开学生代表大会,现从高一、高二、高 三共抽取 60 名代表,则可用分层抽样方法抽取.(
答案:(1)× (2)× (3)√ (4)× (5)× (6)√
)
2.在抽样过程中,每次抽取的个体不再放回总体的为不 放回抽样, 在分层抽样、 系统抽样、 简单随机抽样三种抽样中, 不放回抽样的有( A.0 个 ) C.2 个 D. 3 个
解析:在第八组中抽得的号码为(8-3)×20+44=144.
答案:144
[探究 2]
本例(2)中条件不变,若在编号为[481,720]中抽
取 8 人,则样本容量为________.
解析:因为在编号[481,720]中共有 720-480=240 人,又 在[481,720]中抽取 8 人,所以抽样比应为 240∶8=30∶1,又 因为单位职工共有 840 人,所以应抽取的样本容量为 840 =28. 30
1 000 [听前试做] (1)由 =25,可得分段间隔为 25. 40 (2)由系统抽样定义可知, 所分组距为 840 =20, 每组抽取一个, 42
因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720- 480)÷ 20=12.
答案:(1)C (2)B

高考数学一轮总复习第十章统计与统计案例第1节随机抽样课件

高考数学一轮总复习第十章统计与统计案例第1节随机抽样课件

(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(
(4)要从 1 002 个学生中用系统抽样的方法选取一个容量为 20 的样本,需要剔除 2 个学生,这样对被剔除者不公平.(
答案 (1)× (2)√ (3)× (4)×
)
[例 1] (1)下列抽取样本的方式属于简单随机抽样的个数为( ①从无限多个个体中抽取 100 个个体作为样本.
考点一 简单随机抽样及其应用
[训练 1] (1)下面的抽样方法是简单随机抽样的是( ) A.在某年明信片销售活动中,规定每 100 万张为一个开奖组,通过随机抽取 的方式确定号码的后四位为 2709 的为三等奖 B.某车间包装一种产品,在自动包装的传送带上,每隔 30 分钟抽一包产品, 称其重量是否合格 C.某学校分别从行政人员、教师、后勤人员中抽取 2 人、14 人、4 人了解对 学校机构改革的意见 D.用抽签方法从 10 件产品中选取 3 件进行质量检验
考点一 简单随机抽样及其应用
[例 1](2)总体由编号为 01,02,…,19,20 的 20 个个体组成,利用下面的随机 数表选取 5 个个体,选取方法是从随机数表第 1 行的第 5 列和第 6 列数字开始 由左到右依次选取两个数字,则选出来的第 5 个个体的编号为( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A.08 B.07 C.02 D.01 A.从某厂生产的 5 000 件产品中抽取 600 件进行质量检验 B.从某厂生产的两箱(每箱 18 件)产品中抽取 6 件进行质量检验 C.从甲、乙两厂生产的两箱(每箱 18 件)产品中抽取 6 件进行质量检验 D.从某厂生产的 5 000 件产品中抽取 10 件进行质量检验

重磅!2020年高考数学专题知识总复习第十章第1课时 随机抽样课件.ppt

重磅!2020年高考数学专题知识总复习第十章第1课时 随机抽样课件.ppt

5.防疫站对学生进行身体健康调查, 采用分层抽样法抽取.红星中学共有 学生1600名,抽取一个容量为200的样 本,已知女生比男生少抽了10人,则 该校的女生有__________人. 答案:760
考点探究讲练互动
考点突破 简单随机抽样
简单随机抽样是不放回抽样,被抽取样 本的个体数有限,从总体中逐个地进行 抽取,使抽样便于在实践中操作.每次 抽样时,每个个体等可能地被抽到,保 证了抽样的公平性.实施方法主要有抽 签法和随机数法.
(4)按照一定的规则抽取样本,通常是 将l加上间隔k得到第2个个体编号 __(_l+__k_)___,再加k得到第3个个体编号 ___(_l+__2_k_)___,依次进行下去,直到获 取整个样本.
3.分层抽样 (1)定义:在抽样时,将总体分成 ___互__不__交__叉________的层,然后按照 ___一__定__的__比__例___,从各层独立地抽取 一定数量的个体,将各层取出的个体 合在一起作为样本,这种抽样方法是 一种分层抽样.
例1 某大学为了支持市运动会,从报 名的60名大三学生中选10人组成志愿 小组,请用抽签法和随机数法设计抽 样方案.
【思路分析】 (1)总体的个体数较少, 利用抽签法或随机数法可较容易地获取 样本; (2)抽签法的操作要点:编号、制签、搅 匀、抽取; (3)随机数法的操作要点:编号、选起始 数、读数、获取样本.
(2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成 时,往往选用分层抽样.
课前热身 1.2012年1月光明中学进行了该学年 度期末统一考试,该校 为了了解高一年级1000名学生的考试 成绩,从中随机抽取了100名学生的成 绩单.那么下面说法正确的是( )
A.1000名学生是总体 B.每个学生是个体 C.1000名学生的成绩是一个个体 D.样本的容量是100 答案:D

2017届高考数学大一轮总复习 第十章 统计、统计案例及算法初步 10.1 随机抽样课件 理

2017届高考数学大一轮总复习 第十章 统计、统计案例及算法初步 10.1 随机抽样课件 理

角度一:求总体或样本容量
1 .某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为 120 件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样
方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3
件,则n=( A .9 ) B.10
C.12
D.13
3 1 1 n 解析 由题意可知抽样比为 = ,所以 = ,解得 n=13,故 60 20 20 260 选D 答案 D
1 000 【解析】 由题意知分段间隔为 =25,故选 C。 40 【答案】 C
(2)(2015·湖南卷)在一次马拉松比赛中,35 名运动员的成绩 (单位:分
钟)的茎叶图如图所示。
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取 4 7人,则其中成绩在区间[139,151]上的运动员人数是________ 。 【解析】 依题意,应将35名运动员的成绩由好到差排序后分为7组, 每组5人。然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰 好是第2,3,4,5组,因此,成绩在该区间上的运动员人数是4。
的抽样方法叫作简单随机抽样。 抽签法 和随机数法。 (2)方法:___________
3.分层抽样
(1)定义:
将总体按其属性特征分成若干类型 (有时称作层),然后在每个类型中 按所占比例随机抽取一定的样本,这种抽样方法称为分层抽样,有时也称
为类型抽样。
(2)分层抽样的应用范围: 当总体是由 差异明显的几部分 组成时,往往选用分层抽样。
基 础 自 测
[判一判] (1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有 关,第一次被抽到的可能性最大。( × ) 解析 错误。在简单随机抽样中,某一个个体被抽到的可能性都相 等,与第几次抽取无关。

高考数学一轮复习 第10章 统计、统计案例及算法初步 第1讲 抽样方法课件 理 北师大版.pptx

高考数学一轮复习 第10章 统计、统计案例及算法初步 第1讲 抽样方法课件 理 北师大版.pptx

差.
用样本 3.能从样本数据中提取基本的数字特征(如平均数、标准
估计总 差),并作出合理的解释.
体 4.会用样本的频率分布估计总体分布,会用样本的基本
数字特征估计总体的基本数字特征,理解用样本估计总体
的思想.
5.会用随机抽样的基本方法和样本估计总体的思想解决
一些简单的实际问题.
2
第十章 统计、统计案例及算法初步
算 法 初 2.理解程序框图的三种基本逻辑结构:顺序、条件分

支、循环;了解几种基本算法语句——输入语句、输
出语句、赋值语句、条件语句、循环语句的含义.
3
第十章 统计、统计案例及算法初步
第1讲 抽样方法
4
1.简单随机抽样 (1) 定 义 : 一 般 地 , 设 一 个 总 体 含 有 N 个 个 体 , 从 中 __逐__个__不__放__回__地__抽__取_________n 个个体作为样本(n≤N),且每 次抽取时各个个体被抽到的_机__会__都__相__等___,就称这样的抽样 方法为简单随机抽样. (2)常用方法:_抽__签__法___和随__机___数__法____.
16
1. 下列抽 取样本 的方 式不属 于简 单随机 抽样的 有 ____①__②__③__④_______. ①从无限多个个体中抽取 100 个个体作为样本. ②盒子里共有 80 个零件,从中选出 5 个零件进行质量检 验.在抽样操作时,从 中任意拿出一个零件进行质量检验后 再把它放回盒子里 . ③从 20 件玩具中一次性抽取 3 件进行质量检验. ④某班有 56 名同学,指定个子最高的 5 名同学参加学校组 织的篮球赛.
14
[解析] A、B 是系统抽样,因为抽取的个体间的间隔是固定 的;C 是分层抽样,因为总体的个体有明显的层次;D 是简 单随机抽样.

2025年高考数学一轮复习-第十章-第一节-随机抽样【课件】

2025年高考数学一轮复习-第十章-第一节-随机抽样【课件】
(1)定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且
仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体
分层随机抽样
中抽取的样本合在一起作为总样本,这样的抽样方法称为__________________,

每一个子总体称为________.
成比例
(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小____________,
随机抽样以及分层随机抽样中的抽样数值、均值是高考热点,常
以选择题或填空题的形式出现.
预测2025年高考会在分层随机抽样、样本均值、方差中出题,其
中分层随机抽样的样本均值、方差命题比较灵活.
必备知识·逐点夯实
知识梳理·归纳
1.总体、个体、样本
总体
调查对象的全体(或调查对象的某些指标的全体)称为______,组成总体的每一个
D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛
【解析】选BC.A不是简单随机抽样,因为被抽取样本的总体的个体数是无限的,
而不是有限的;B是简单随机抽样;C是简单随机抽样,因为“一次性”抽取与“逐个”
抽取是等价的;D不是简单随机抽样,因为指定个子最高的5名同学是56名同学中
3.总体平均数与样本平均数
(1)总体平均数
1 +2 +…+
①总体中有N个个体,它们的变量值分别为Y1,Y2,…,YN,则称=
=


∑ Yi
=
_________为总体平均数.
②如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出

∑ fiYi
2x1+1,2x2+1,2x3+1,…,2xn+1的平均数为(

人教A版高考文科数学一轮总复习课后习题 第10章算法初步、 统计与统计案例 课时规范练49 算法初步

人教A版高考文科数学一轮总复习课后习题 第10章算法初步、 统计与统计案例 课时规范练49 算法初步

课时规范练49 算法初步基础巩固组1.(黑龙江齐齐哈尔二模)执行如图所示的程序框图,若输出的y值是2,则输入的x值是( )A.14B.-1 C.4 D.-122.已知[x]表示不超过x的最大整数.执行如图所示的程序框图,若输入x 的值为2.4,则输出z的值为( )(第2题图)A.1.2B.0.6C.0.4D.-0.43.如图是计算1+13+15+…+131的值的程序框图,则图中①②处可以填写的语句分别是( )(第3题图)A.n=n+2,i>16?B.n=n+2,i≥16?C.n=n+1,i>16?D.n=n+1,i≥16?4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的程序框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.2785.(安徽合肥二模)考拉兹猜想是由德国数学家洛塔尔·考拉兹在20世纪30年代提出,其内容是:任意正整数s,如果s是奇数就乘3加1,如果s是偶数就除以2,如此循环,最终都能够得到1.下边的程序框图演示了考拉兹猜想的变换过程.若输入s的值为5,则输出i的值为( )(第5题图)A.3B.4C.5D.66.(陕西宝鸡二模)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈3132,127128,则输入的n的值为( )(第6题图)A.7B.6C.5D.4综合提升组7.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( ),i=2iA.i<7,s=s-1i,i=2iB.i≤7,s=s-1i,i=i+1C.i<7,s=s2,i=i+1D.i≤7,s=s28.(陕西西安交大附中模拟)运行如图所示程序后,输出的结果为( )A.15B.17C.19D.219.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i210.执行如图所示的程序框图,若输入的m,n分别为385,105(图中“m MOD n”表示m除以n的余数),则输出的m= .(第10题图)创新应用组11.(河南开封二模)若[x]表示不超过x的最大整数,例如[0.3]=0,[1.5]=1,则如图中的程序框图运行之后输出的结果为( )(第11题图)A.102B.684C.696D.708参考答案课时规范练49 算法初步1.A 由题意得y={log 12x ,x ≤2,(12) x ,x >2,当x≤2时,lo g 12x=2,解得x=14;当x>2时,12x=2,解得x=-1(舍去).∴x=14.故选A.2.D 执行该程序框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z 的值为-0.4. 3.A 式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16?”.故选A.4.B 该程序框图是计算多项式f(x)=5x 5+4x 4+3x 3+2x 2+x 当x=2时的值,f(2)=258,故选B.5.C 第一次循环,12s=52∈Z 不成立,则s=3×5+1=16,i=0+1=1,s=1不成立;第二次循环,12s=8∈Z 成立,则s=12×16=8,i=1+1=2,s=1不成立;第三次循环,12s=4∈Z 成立,则s=12×8=4,i=2+1=3,s=1不成立;第四次循环,12s=2∈Z成立,则s=12×4=2,i=3+1=4,s=1不成立;第五次循环,12s=1∈Z 成立,则s=12×2=1,i=4+1=5,s=1成立.跳出循环体,输出i=5.故选C.6.C 第一次循环,S=12,k=0+1=1,1>n 不成立,第二次循环,S=12+12×12=34,k=1+1=2,2>n 不成立;第三次循环,S=12+12×34=78,k=2+1=3,3>n 不成立;第四次循环,S=12+12×78=1516,k=3+1=4,4>n 不成立;第五次循环,S=12+12×1516=3132,k=4+1=5,5>n 不成立;第六次循环,S=12+12×3132=6364∈3132,127128,k=6,6>n 成立,跳出循环体,所以5≤n<6,因此,输入n 的值为5.故选C. 7.D 由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.8.B 运行如图所示程序,如下:i=1,执行循环体,i=3,S=2×3+3=9,i=5,S=2×5+3=13,i=7,S=2×7+3=17, i=9>8,此时退出循环,输出S 的值为17.故选B. 9.B 由s 2=(x 1-x )2+(x 2-x )2+…+(x n -x )2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n=x 12+x 22+…+x n 2-2nx 2+nx 2n=x 12+x 22+…+x n 2n−x 2,循环退出时i=11,知x 2=(A i -1)2.所以B=A 12+A 22+…+A 102,故程序框图①中要补充的语句是B=B+A i 2.故选B.10.35 执行程序框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m值为35.11.C [x]表示不超过x的最大整数,所以该程序框图运行后输出的结果是S=010+110+210+…+12210,共123项相加.从010到910共10项,均为0,1010到1910共10项,均为1,2010到2910共10项,均为2,…,11010到11910共10项,均为11,12010到12210共3项,均为12,所以S=10×(1+2+3+…+11)+12×3=10×11×(1+11)2+36=696.故选C.第11页共11页。

高考数学一轮复习第10章第1课时随机抽样、统计图表课件

高考数学一轮复习第10章第1课时随机抽样、统计图表课件

(×) (4)频率分布直方图中,小长方形的面积越大,表示样本数据落在该
区间的频率越大.
(√ )
二、教材习题衍生 1.(人教A版必修第二册P177 练习T1改编)从某市参加升学考试的学 生中随机抽查1 000名学生的数学成绩进行统计分析,在这个问题 中,下列说法正确的是( ) A.总体指的是该市参加升学考试的全体学生 B.样本是指1 000名学生的数学成绩 C.样本量指的是1 000名学生 D.个体指的是1 000名学生中的每一名学生
(3)( 多 选 )(2023· 湖 北 武 汉 模 拟 ) 为 了 解 我 国 在 芯 片 、 软 件 方 面 的 潜 力,某调查机构对我国若干大型科技公司进行调查统计,得到了这两 个行业从业者的年龄分布的饼形图和 “90后”从事这两个行业的岗位分布 雷达图,则下列说法中正确的是( )
A.芯片、软件行业从业者中,“90后”占总人数的比例超过50% B.芯片、软件行业中从事技术、设计岗位的“90后”人数超过总人 数的25% C.芯片、软件行业从事技术岗位的人中,“90后”比“80后”多 D.芯片、软件行业中,“90后”从事市场岗位的人数比“80前”的总 人数多
45 67 32 12 12 31 02 01 04 52 15 20 01 12 51 29
32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81 A.12 B.20 C.29 D.23 C 依次从数表中读出的有效编号为:12,02,01,04,15,20,29, 得到选出来的第7个个体的编号为29.故选C.
[典例2] (2023·福建三明模拟)已知某地区中小学生人数比例和近视
情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原

高中数学复习第十章 统计、统计案例及算法初步

高中数学复习第十章  统计、统计案例及算法初步

提 升 学 科 素 养
突 破 热 点 题 型
演 练 知 能 检 测
数学(6省专版)
第一节
随机抽样 系统抽样
回 扣 主 干 知 识
[例2]
(2012· 山东高考)采用系统抽样方法从960人中
抽取32人做问卷调查,为此将他们随机编号为1,2,…,
提 升 学 科 素 养
960,分组后在第一组采用简单随机抽样的方法抽到的号码
答案:D
数学(6省专版)
第一节
随机抽样
回 扣 主 干 知 识
2.(2013· 温州模拟)某工厂生产A、B、C三种不同型号的 产品,产品数量之比为3∶4∶7,现在用分层抽样的 方法抽出容量为n的样本,样本中A型号产品有15件,
提 升 学 科 素 养
那么样本容量n为
突 破 热 点 题 型
(
B.60 D.80
提 升 学 科 素 养
突 破 热 点 题 型
200 解析: 总人数为 0.2 =1 000, 该单位青年职员的人数为 1 10 000×25=400.
答案:400
演 练 知 能 检 测
数学(6省专版)
第一节
随机抽样
回 扣 主 干 知 识
5.(2012· 湖北高考)一支田径运动队有男运动员 56 人,女运 动员 42 人.现用分层抽样的方法抽取若干人,若抽取的 男运动员有 8 人,则抽取的女运动员有________人.
突 破 热 点 题 型
(2)在使用随机数表时,如遇到三位数或四位数时,
可从选择的随机数表中的某行某列的数字计起,每三个 或四个作为一个单位,自左向右选取,有超过总体号码 或出现重复号码的数字舍去.
—————————————————————————

高考数学一轮复习第十章算法初步统计统计案例专题提能概率统计中的数学建模与数据分析课件

高考数学一轮复习第十章算法初步统计统计案例专题提能概率统计中的数学建模与数据分析课件

(1)从游客中随机抽取3人,记这3人的总得分为随机变量X,求X的分布列 与数学期望; (2)(ⅰ)若从游客中随机抽取m(m∈N+)人,记这m人的总分恰为m分的概 率为Am,求数列{Am}的前10项和; (ⅱ)在对所有游客进行随机问卷调查的过程中,记已调查过的人的累计 得分恰为n分的概率为Bn,探讨Bn与Bn-1(n≥2)之间的关系,并求数列{Bn} 的通项公式.
破解此题的关键:一是认真审题,判断随机变量的所有可能取值,并 注意相互独立事件的概率与互斥事件的概率的区别,求出随机变量取 各个值时的概率,从而列出随机变量的分布列;二是将概率的参数表 达式与数列的递推式相结合,可得数列的通项公式,此种解法新颖独 特.
(二)函数与期望相交汇应用 [例2] (2021·重庆一中模拟)某蛋糕店制作并销售一款蛋糕,制作一个蛋 糕成本3元,且以8元的价格出售,若当天卖不完,剩下的无偿捐献给饲 料加工厂.根据以往100天的资料统计,得到如下需求量表.该蛋糕店一天 制作了这款蛋糕X(X∈N)个,以x(单位:个,100≤x≤150,x∈N)表示当 天的市场需求量,T(单位:元)表示当天出售这款蛋糕获得的利润.
(一)概率与数列交汇问题 [例 1] (2021·湖北武汉质量监测)武汉又称江城,是湖北省省会,它不仅 有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景 点,黄鹤楼与东湖便是其中的两个.为合理配置旅游资源,现对已参观黄 鹤楼景点的游客进行随机问卷调查,若不游玩东湖记 1 分,若继续游玩 东湖记 2 分,每位游客选择是否参观东湖的概率均为12,游客之间选择意 愿相互独立.
[解析] (1)X 的所有可能取值为 3,4,5,6.
P(X=3)=123=18,P(X=4)=C23123=38,P(X=5)=C23123=38,P(X=6)= 123=18. 所以 X 的分布列为

高三数学一轮复习 第10章 第1课时 随机抽样课件 文 新人教版A

高三数学一轮复习 第10章 第1课时 随机抽样课件 文 新人教版A

精选ppt
11
教材梳理 基础自测
二、分层抽样
[自测 5] 一支田径运动队有男运动员 56 人,女运动员 42 人,现用分层抽 样的方法抽取若干人,若抽取的男运动员有 8 人,则抽取的女运动员有 ________人. 6
精选ppt
12
考点突破 题型透析
考点一 简单随机抽样
____________________{突破点}______________________ 根据总体容量选择合适方法:抽签法和数表法
(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取; ③是不放回抽取;④是等可能抽取. (2)简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数法(适 用于个体数较多的情况).
精选ppt
13
考点突破 题型透析
考点一 简单随机抽样
1.下列抽取样本的方式是否属于简单随机抽样? (1)从无限多个个体中抽取 100 个个体作为样本; (1)不是简单随机抽样.因为被抽取的样本总体的个体数是无限的,而不是 有限的.
中抽取 30 家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数
分别为( )
A.3,2
B.2,3
C.2,30
D.30,2
A
精选ppt
7
教材梳理 基础自测
一、简单随机抽样和系统抽样
[自测 3] 大、中、小三个盒子中分别装有同一种产品 120 个、60 个、20 个, 现在需从这三个盒子中抽取一个样本容量为 25 的样本,较为恰当的抽样方 法为________. 简单随机抽样
[自测 1] 老师在班级 50 名学生中,依次抽取学号为 5,10,15,20,25,30,35,
40,45,50 的学生进行作业检查,这种抽样方法是( )

超实用高考数学专题复习教学课件:10.2 随机抽样

超实用高考数学专题复习教学课件:10.2  随机抽样
研究人员在A学校进行抽样调查,则比较合适的抽样方法为(
A.简单随机抽样
B.系统抽样
C.分层抽样
D.不能确定
)
答案 C
解析 因为调查教师的工资情况需要分年龄,所以使用分层抽样的方法能够
正确反映不同年龄的教师的工资情况,按照年龄分层抽样.
3.为客观了解上海市民家庭存书量,上海市统计局社情民意调查中心通过
D.总体是上海市民家庭总数量,样本是2 007位市民,样本容量是2 007
答案 B
解析 根据题目可知,总体是上海市民家庭的存书量,样本是2 007位市民家
庭的存书量,样本容量是2 007,故选B.
4.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人
随机编号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编
工编号为0001,0002,0003,…,3000,从这些员工中使用系统抽样的方法抽取
200人进行“学习强国”的问卷调查,若0084号被抽到,则下面被抽到的是
(
)
A.0044号
B.0294号
C.1196号
D.2984号
(2)将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的
≤300,得
103
k≤ ,因此第Ⅰ营区被抽中的人数是
4
103
得 4 <k≤42,因此第Ⅱ营区被抽中的人数是
数为 50-25-17=8.
25;令 300<3+12(k-1)≤495,
42-25=17;第Ⅲ营区被抽中的人
解题心得1.系统抽样适用的条件是总体容量较大,样本容量也较大.
2.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.随机抽样
B.分层抽样
C.系统抽样
D.以上都不是
解析:因为抽取学号是以 5 为公差的等差数列,故采用的 抽样方法应是系统抽样. 答案:C
2.(教材习题改编)某校高中生有 900 名,其中高一有 400 名, 高二有 300 名,高三有 200 名,打算抽取容量为 45 的一 个样本,则高三学生应抽取________人.
第二节
随机抽样
1.简单随机抽样 (1)抽取方式:逐个_不__放__回__抽__取__; (2)每个个体被抽到的概率_相__等__; (3)常用方法:_抽__签__法__和_随__机__数__法__.
2.分层抽样 (1)在抽样时,将总体分成互不交叉的层,然后按照一定
的比例,从各层独立地抽取一定数量的个体,将各层取 出的个体合在一起作为样本,这种抽样方法是一种分层 抽样. (2)分层抽样的应用范围: 当总体是由_差__异__明__显__的__几__个__部__分__组成时,往往选用分 层抽样.
3.(2016·海口一模)假设要考察某企业生产的袋装牛奶质量是否
达标,现从 500 袋牛奶中抽取 60 袋进行检验,利用随机数
表抽取样本时,先将 500 袋牛奶按 000,001,…,499 进行编
号,如果从随机数表(下面摘取了随机数表第 7 行至第 9 行)
第 8 行第 4 列的数开始按三位数连续向右读取,则依次写出
2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当 Nn 不是整数时,注意剔除,剔除的个体是随机的,各段入 样的个体编号成等差数列.
3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即 样本容量n 总体个数N.
[小题纠偏]
1.从 300 名学生(其中男生 180 人,女生 120 人)中按性别用
答案:10
3.某学校高一、高二、高三年级的学生人数之比为 3∶3∶4, 现用分层抽样的方法从该校高中三个年级的学生中抽取 容量为 50 的样本,则应从高二年级抽取________名学生.
解析:设应从高二年级抽取 x 名学生,则5x0=130. 解得 x=15. 答案:15
1.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放 回抽样,且每个个体被抽到的概率相等.
33 21 12 34 29 78 64 56 07 82 52 42 07 44 3854
A.163,198,175,128,395 B.163,199,175,128,395
C.163,199,175,128,396 D.163,199,175,129,395 解析
解析:每组袋数:d=3105000=20, 由题意知这些号码是以 11 为首项,20 为公差的等差数列. a61=11+60×20=1 211. 答案:1 211
考点一 简单随机抽样 基础送分型考点——自主练透
[题组练透] 1.(2016·陕西西工大附中模拟训练)某班级有男生 20 人,
女生 30 人,从中抽取 10 人作为样本,其中一次抽样结
分层抽样的方法抽取 50 人参加比赛,则应该抽取男生人
数为
()
A.27
B.30
C.33
D.36
解析:因为男生与女生的比例为 180∶120=3∶2,
所以应该抽取男生人数为 50×3+3 2=30.
答案:B
2.已知某商场新进 3 000 袋奶粉,为检查其三聚氰胺是否 超标,现采用系统抽样的方法从中抽取 150 袋检查, 若第一组抽出的号码是 11,则第六十一组抽出的号码 为________.
[谨记通法]
一个抽样试验用抽签法的 2 个注意事项
一是抽签是否方便;二是号签是否易搅匀.一般地,当 总体容量和样本容量都较小时可用抽签法.
考点二 系统抽样 (重点保分型考点——师生共研) [典例引领]
3.系统抽样的步骤 假设要从容量为 N 的总体中抽取容量为 n 的样本. (1)先将总体的 N 个个体_编__号__; (2)确定_分__段__间__隔__k_,对编号进行_分__段__.当Nn(n 是样本容量)
是整数时,取 k=Nn; (3)在第 1 段用_简__单__随__机__抽__样__确定第一个个体编号 l(l≤k); (4)按照一定的规则抽取样本.通常是将 l 加上间隔 k 得到
2.(易错题)(2015·唐山二模)用简单随机抽样的方法从含有
100 个个体的总体中抽取一个容量为 5 的样本,则个体
M 被抽到的概率为
()
1 A.100
1
1
1
B.99
C.20
D.50
解析:一个总体含有 100 个个体,某个个体被抽到的概 率为1010,用简单随机抽样方法从该总体中抽取容量为 5 的样本,则某个个体被抽到的概率为1100×5=210. 答案:C
最先检测的 5 袋牛奶的编号分别为
()
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
果是:抽到了 4 名男生、6 名女生, 则下列命题正确
的是
()
A.这次抽样可能采用的是简单随机抽样 B.这次抽样一定没有采用系统抽样 C.这次抽样中每个女生被抽到的概率大于每个男生被抽
到的概率
D.这次抽样中每个女生被抽到的概率小于每个男生被抽 到的概率
解析:利用排除法求解.这次抽样可能采用的是简单随机抽 样,A 正确;这次抽样可能采用系统抽样,男生编号为 1~ 20,女生编号为 21~50,间隔为 5,依次抽取 1 号,6 号,…, 46 号便可,B 错误;这次抽样中每个女生被抽到的概率等 于每个男生被抽到的概率,C 和 D 均错误,故选 A. 答案:A
第 2 个个体编号_l+ ___k,再加 k 得到第 3 个个体编号 _(_l+__2_k_)_,依次进行下去,直到获取整个样本.
[小题体验]
1.(教材习题改编)老师在班级 50 名学生中,依次抽取学号为
5,10,15,20,25,30,35,40,45,50 的学生进行作业检查,这种抽
样方法是
()
相关文档
最新文档