1分式及分式的基本性质练习题
15.1分式及分式的基本性质练习题(可编辑修改word版)
15.1 分式及分式的基本性质练习题型 1:分式概念的理解应用1. 下列各式 a , 1, 1 a 2 - b 2 x + y , , -3x 2 , 0 中, 是分式的有; 是整式的有π x + 1 5 .a - b题型 2:分式有无意义的条件的应用2.下列分式,当 x 取何值时有意义.2x + 13 + x 2 (1) ;(2) .3x + 22x - 33. 下列各式中,无论 x 取何值,分式都有意义的是() 1 x3x + 1 x 2A.B .C .D .4. 当 x2x + 1 2x + 1 x 2时,分式 2x + 1无意义. 3x - 42x 2 + 1题型 3:分式值为零的条件的应用x 2 - 15. 当 x 时,分式 x 2 + x - 2的值为零.6. 当 m =时,分式(m - 1)(m - 3) 的值为零.m 2 - 3m + 2 题型 4:分式值为±1 的条件的应用7. 当 x课后训练基础能力题时,分式 4x + 3的值为 1;当 x x - 5 时,分式 4x + 3 的值为-1 .x - 58. 分式 xx 2 - 4,当 x 时,分式有意义;当 x 时,分式的值为零.9.有理式① 2 ,② x + y,③ x 51 2 - a ,④ x - 1 中,是分式的有( )A .①②B .③④C .①③D .①②③④10. 分式 x + a中,当 x = -a 时,下列结论正确的是( )3x - 1A. 分式的值为零; B .分式无意义 C .若 a ≠ - 1 时,分式的值为零; D .若 a ≠ 1 3 3时,分式的值为零11. 当 x时,分式 1-x + 5的值为正;当 x时,分式 -4x 2 + 1的值为负.12. 下列各式中,可能取值为零的是()m 2 + 1m 2 - 1m + 1 m 2 + 1 A.B .C .D .m 2 - 1m + 1m 2 - 1m + 113. 使分式拓展创新题x| x | -1无意义,x 的取值是( ) A .0 B .1 C . -1 D . ±114. 已知 y =无意义.x - 12 - 3x, x 取哪些值时:(1) y 的值是正数;(2) y 的值是负数;(3) y 的值是零;(4)分式题型 1:分式基本性质的理解应用一、填空题:1. 写出等式中未知的分子或分母: y( )7xy 71a + b①=②=③=3x3x 2 y5x 2 y( )a -b ()2. 不改变分式的值,使分式的分子与分母都不含负号:- 5x ① - 2 ya = ;② -a (a -1) - a - 3b=.3. 等式 a +1 = a 2 -1成立的条件是 .二、选择1x - 1 y 4. 不改变分式的值,使分式5 10 的各项系数化为整数,分子、分母应乘以( )1 x + 1 y 3 9A .10B .9C .45D .905. 下列等式: ① -(a - b ) = - a - b ;② -x + y = x - y ;③ -a + b = - a + b ;④ -m - n = - m - n 中,成立的是c c -x x c c m m()A .①②B .③④C .①③D .②④2x6. 把分式中的 x 和 y 都扩大为原来的 5 倍,那么这个分式的值()2x - 3y1 5A. 扩大为原来的 5 倍 B .不变 C .缩小到原来的D .扩大为原来的 倍7. 使等式 7 =x + 27xx 2 + 2x52自左到右变形成立的条件是 ( ) A .x<0 B.x>0 C.x≠0 D.x≠0 且 x≠-22 - 3x 2 + x8. 不改变分式 的值,使分子、分母最高次项的系数为正数,正确的是( )-5x 3+ 2x - 3 3x 2+ x + 2 3x 2 - x + 2 3x 2 + x - 2 3x 2 - x - 2 A. B . C . D .5x 3 + 2x - 3 三、解答题:5x 3 + 2x - 3 5x 3 - 2x + 3 5x 3 - 2x + 39. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:1 x - 1y ① 35 2x + 1 y60.8x - 0.78 y② ③ 0.5x + 0.4 y a - 0.4b 2 0.6a + 3 b 410. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号:①2x - 1 - x + 1- x 2 + 2x - 1②x - 2③- x - 1 - x 2 - 3x + 1题型 2:分式的约分一、判断正误并改正:y 6 3(-a - b )2 a 2 - b 2 ① = y ( )② =-a -b ( )③ =a -b ( )y2(x + 2)(x - 3)a + bx + a xa - b(x + y ) + (x - y ) 1④ =-1( ) ⑤ =( )⑥ = ()(2 + x )(3 - x )二、选择题y + a y 2(x + y )(x - y ) 24 y + 3x x 2 - 1 x 2 - xy + y 2 a 2 + 2ab1. 分式 , , , 中是最简分式的有()4a x 4 - 1 x + y ab - 2b 2A .1 个B .2 个C .3 个D .4 个2.下列约分正确的是( )2(b + c ) 2(a - b )2a +b 2 x - y 1A. = a + 3(b + c ) a + 3B. = -1 (b - a )2C. = a 2 + b 2 a + bD. = 2xy - x 2 - y 2 y - x3. 下列变形不正确的是()A. 2 - a = a - 2B. 1 =x -1 (x≠1) C. x +1 = 1 D. 6x + 3 =2x +1 - a - 2 a + 2 x +1 x 2 -1x 2 + 2x +1 2 3y - 6 y - 24. 等式 a =a +1 a (b +1)(a +1)(b +1)成立的条件是( ) A.a≠0 且 b≠0 B.a≠1 且 b≠1 C.a≠-1 且 b≠-1 D.a 、b 为任意数5. 如果把分式 x + 2 y 中的x 和 y 都扩大 10 倍,那么分式的值( )x + y3 A.扩大 10 倍B.缩小 10 倍C.是原来的D.不变26. 不改变分式的值,使1- 2x- x 2 + 3x - 3的分子、分母中最高次项的系数都是正数,则此分式可化为()A. 2x -1 x 2 + 3x - 3B. 2x +1 x 2 + 3x + 3C. 2x +1 x 2 - 3x + 3D. 2x -1 x 2 - 3x + 37. 下面化简正确的是( )2a + 1(a - b )26 - 2xx 2 + y 2A .=0B. =-1C.=2D. =x+y2a + 1(b - a )2- x + 3x + yx1a + m a212 + xya 2 - 18.下列约分:①=②=③=④=1 ⑤=a -1- (x - y ) 3x 23x1b + m b2 + a 1 + a xy + 2 a + 1⑥=-其中正确的有()(x - y )2x - yA. 2 个B. 3 个C. 4 个D. 5 个三、解答题: 约分:1 - 36xy2 z3 m 2 -4 x 4 - 1 x 2 + 6x + 9①②③④6 yz 2a 2 - 4a + 42m + m 28 - 2m 1 - x 2m 2 - 3m + 2 x 2 - 93x 2 - 2 y 2⑤⑥⑦⑧ 23 a 2- 4m 2- 16m 2- m3 x 2 - 2 y 2 10 15题型 3:分式的通分1.通分:x y1-1 a - 1 6(1) , ;(2), ; (3) , .6ab 2 9a 2bcx 2 - x x 2 - 2x +1a 2 + 2a + 1 a 2 - 12. 先化简,再求值:a 2 - 8a + 16a 2 + ab① ,其中 a=5;②,其中 a=3b≠0.a 2- 16a 2+ 2ab + b 23.已 知 - 1 x y= 5 ,求分式- x + xy + y的值.4.已知 x= 2x + 7xy - 2 y2 y = z3 4xy + yz + zx,求x 2 + y 2 + z 2的值.y +1x +11 x 25.已知 x + y = -4, xy = -12 , 求 + 的值.6.已知 x + = 3 ,求 的值.x +1 y +1x x 4 + x 2+ 1。
《分式》典型练习题
分式知识点和典型习题(一)、分式定义及有关题型题型一:考查分式的定义1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .2、下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数1、不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0(3)b a ba 10141534.0-+题型二:分数的系数变号2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)ba a ---(3)ba ---题型三:考查分式的性质 1、若分式xyx +中x 、y 的值都增加到原来的3倍,则分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的31 D 、是原来的912、若分式xyy x 22+中x 、y 的值都增加到原来的3倍,则分式的值( )A 、不变B 、是原来的3倍C 、是原来的31D 、是原来的91题型三:化简求值题 1、已知:511=+y x ,求yxy x yxy x +++-2232的值. 2、已知:311=-b a ,求a ab b b ab a ---+232的值.3、已知:21=-xx ,求221xx +的值. 4、若0)32(|1|2=-++-x y x ,求yx 241-的值.5、已知与互为相反数,代数式的值。
分式知识点及例题
分式知识点及例题一、分式的概念形如$\dfrac{A}{B}$($A$、$B$是整式,且$B$中含有字母,$B\neq 0$)的式子叫做分式。
其中,$A$叫做分子,$B$叫做分母。
例如:$\dfrac{x}{y}$,$\dfrac{2}{x + 1}$,$\dfrac{3x 1}{x^2 1}$等都是分式。
需要注意的是:(1)分式的分母中必须含有字母。
(2)分母的值不能为零,如果分母的值为零,那么分式就没有意义。
例如,在分式$\dfrac{x}{x 1}$中,当$x 1 = 0$,即$x = 1$时,分式没有意义。
二、分式的基本性质分式的分子与分母同乘(或除以)一个不等于$0$的整式,分式的值不变。
即:$\dfrac{A}{B} =\dfrac{A \times M}{B \times M}$,$\dfrac{A}{B} =\dfrac{A \div M}{B \div M}$($M$为不等于$0$的整式)例如:$\dfrac{x}{y} =\dfrac{x \times 2}{y \times 2} =\dfrac{2x}{2y}$三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
确定公因式的方法:(1)系数:取分子、分母系数的最大公约数。
(2)字母:取分子、分母相同字母因式的最低次幂。
例如:\\begin{align}\dfrac{6xy}{9x^2y} &=\dfrac{2 \times 3 \times x \times y}{3 \times 3 \times x \times x \times y}\\&=\dfrac{2}{3x}\end{align}四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:(1)取各分母系数的最小公倍数。
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式。
分式(含答案)
分式【回顾与思考】1.形如 的式子,叫做分式,其中A 叫做 ,B 叫做 。
2.分式的基本性质:分式的分子、分母都 的整式,分式的值 。
3.分式的值为零的条件是 ,分式有意义的条件是 。
4.分式的混合运算:分式的加、减、乘、除、乘方混合运算是先算 ,再算 ,遇到括号,先算括号内的【例题经典】1.熟练掌握分式的概念:性质及运算例1 (12x=______. 【点评】分式值为0的条件是:有意义且分子为0.(2)同时使分式2568x x x -++有意义,又使分式223(1)9x x x ++-无意义的x 的取值范围是( )A .x ≠-4且x ≠-2B .x=-4或x=2C .x=-4D .x=2(3)如果把分式2x y x+中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .不变 D .扩大2倍2. 分式的加、减、乘、除混合运算(1)221211221++--÷++-x x x x x x (2)2232214()2442x x x x x x x x x+---÷--+- 【点评】注意分式混和运算的顺序。
【基础训练】1.某玩具厂要加工x 只“福娃”,原计划每天生产y 只,实际每天生产(y+z)只,(1)该厂原计划 天完成任务(2)该厂实际用 天完成任务2.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.23.计算22142a a a -=-- . 4.函数1x y x =-自变量x 的取值范围是5.将分式12 x-y x 5 +y 3 的分子和分母中的各项系数都化为整数,应为 ( ) A .x-2y 3x+5y B .15x-15y 3x+5y C . 15x-30y 6x+10y D .x-2y 5x+3y6.若分式xyy x +(x 、y 为正数)中, x 、y 的值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的 12C .不变D .缩小为原来的14 7.若代数式21x x -+的值是零,则x = . 8.已知113x y -=,则代数式21422x xy y x xy y----的值为 【能力提升】9.化简:2113()1244x x x x x x x -++-÷++++.10.课堂上,李老师出了这样一道题: 已知352017-=x ,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。
分式基本性质练习题
分式基本性质练习题分式是数学中重要的概念之一,它在实际生活中有着广泛的应用。
本文将为大家提供一些分式基本性质的练习题,帮助读者巩固和深入理解分式的概念和运算规则。
练习题一:分式的乘法和除法1. 计算:$\frac{2}{3} \times \frac{4}{5}$2. 简化:$\frac{16}{24}$3. 计算:$\frac{5}{6} \div \frac{2}{3}$4. 简化:$\frac{12}{36}$练习题二:分式的加法和减法1. 计算:$\frac{1}{4} + \frac{3}{8}$2. 计算:$\frac{5}{6} - \frac{2}{3}$3. 计算:$\frac{2}{5} + \frac{3}{10}$4. 计算:$\frac{3}{4} - \frac{1}{6}$练习题三:分式的化简和换算1. 化简:$\frac{4x^2}{8x}$2. 化简:$\frac{10ab^2}{5a^2b}$3. 将小数$\frac{0.6}{1.2}$化成分数的形式。
4. 将百分数$75\%$化成分数的形式。
练习题四:分式的比较和大小关系1. 比较大小:$\frac{3}{4}$和$\frac{5}{8}$2. 比较大小:$\frac{2}{3}$和$\frac{4}{5}$3. 将分数$\frac{2}{9}$改写成百分数。
4. 将百分数$25\%$改写成分数。
练习题五:分式的应用1. 假设小明每小时工作5小时,小红每小时工作4小时,他们一起工作的效率是多少?2. 某项工程由甲、乙两人合作完成,甲单独完成需要10天,乙单独完成需要15天,他们一起工作多少天可以完成该项目?3. 假设一块土地上有甲、乙两家农场,甲家的土地面积是乙家的2倍,甲家每年产量为1000千克,乙家每年产量为800千克,问两家农场每年的平均产量是多少千克?以上是分式基本性质的练习题,希望读者朋友们通过这些练习能够提高对分式的理解和运用能力。
新人教版八年下《1分式-分式的基本性质》
(1) 1 c (c 0),分子分母都 ab abc
(2) a2 x a abx b
,分子分母都
(3)(xx2
y)2 y2
x x
y ,分子分母都 y
2.(补充)填空:
(1)a b ( ab
a2b
)
(2)2aab2b b (
a2
)
x2 xy x y
(3)
x2
(
)
x(
)
(4) x2 2x x 2
2a 3(a 1)
分子分母都
(3)(aab(1()a a1)1)
(a 1) ab
分子分母都
例2(课本P5)填空:
(1)
x2
x 2x
( ) x2
,
Байду номын сангаас3x
2 6x
3xy
2
x y ( )
(2)a b ( ab
) a2b ,
2a a2
b
(
) a2b
观察分子分母如何变化
(1) x
2
x
2x
(
x2
)
(分子分母都除以x)
(2)3x
2 6x
3xy
2
x y
(
)
(分子分母都除以 3x)
例3(补充)判断下列变形是否正确.
(1)
a b
a2 b2
(
)
(2)
b a
bc ac
(c≠0)
(
)
(3) b b 1 ( )
a a 1
(4)
2x 2x 1
x
x 1
(
)
(四)课堂练习
1.(补充)下列等式的右边是怎样从左边 得到的?
分式1 分式定义和分式的基本性质
分式定义和分式的基本性质一、基础知识:1. 分式定义:(1)、代数式:用运算符号(包括加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫做代数式;单独一个数或一个字母 代数式;(2)、单项式:只含 运算的代数式叫做单项式;单独一个数或一个字母 单项式; 单项式中的叫做单项式的系数,单项式中所有字母指数的叫做单项式的次数;(3)、多项式:几个 的和叫做多形式;多形式中的每个单项式叫做多形式的 ,多形式里含有几项,就把这个多形式叫做 ,其中次数最高的项的次数叫做这个多形式的 ,不含字母的项叫做 ; (4)、整式: 和 统称为整式;(5)、分式:一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么代数式 叫做分式,其中A 是分式的分子,B 是分式的分母。
2.分式的基本性质:(1)、分式的基本性质:分式的分子和分母都乘(或除以) 一个不等于 的整式,分式的值 ; 即A B =A×CB×C , A B =A÷CB÷C (其中C 是不等于0的整式); (2)、有关概念:①分式的约分:根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分;约分的目的是把分式 ;②最简分式:分子和分母没有 的分式叫做最简分式;③分式的通分:根据分式的基本性质,把几个 分母的分式变形成 分母的分式,叫做分式的通分,变形后的分母叫做这几个分式的公分母;④最简公分母:几个分式中各分母系数(都是整数)的最小 与所有字母的最高次幂的 叫做这几个分式的最简公分母。
二、经典例题: 题型一:考查分式的定义例1、下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,分式有: 个。
变式训练:下列各式中哪些是分式:9x+4, x 7 , 209y +, 54-m , 238y y -,91-x题型二:考查分式有意义的条件 例2、当x 有何值时,下列分式有意义(1)44+-x x (2)122-x (3)xx 11-变式训练:当x 有何值时,下列分式有意义 (1)232+x x(2)3||6--x x题型三:考查分式的值为0的条件 例3、当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x变式训练:当x 取何值时,下列分式的值为0. (1)x x 37+ (2)xx 3217- (3)x 2−1x 2−x题型四:考查分式的值为正、负的条件例4、(1)当x 时,分式x-84为正; (2)当x 时,分式2)1(35-+-x x 为负;变式训练:当x 时,分式32+-x x 为非负数. 题型五:化分数系数、小数系数为整数系数例5、不改变分式的值,把分子、分母的系数化为整数. (1)y x yx 41313221+- (2)ba ba +-04.003.02.0变式训练:不改变分式的值,把分子、分母的系数化为整数. yx yx 5.008.02.003.0+-题型六:分数的系数变号例6、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a---(3)b a ---变式训练:不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317ba ---题型七:约分例7、将下列各式 化为最简分式:(1)c ab bc a 2321525- (2)96922++-x x x (3)yx y xy x 33612622-+-变式训练:将下列各式 化为最简分式:(1)ac bc 2 (2)22)(y x xyx ++ (3)b a b ab a +++36922题型八:通分例8、通分:(1)xab ,yac ; (2)yx (y +1) ,xy (y +1); (3)aab−b ,bab +a.变式训练:通分:(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--;题型九:化简求值题例9、已知:511=+y x ,求yxy x yxy x +++-2232的值. 变式训练:已知:311=-b a ,求a ab b b ab a ---+232的 ;例10、已知:21=-x x ,求221xx +的值. 变式训练:已知:31=+x x ,求1242++x x x 的值.例11、若0)32(|1|2=-++-x y x ,求yx 241-的值.变式训练:若0106222=+-++b b a a ,求ba ba 532+-的值.三、巩固练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x4.不改变分式的值,把分式b a ba 10141534.0-+的分子、分母的系数化为整数. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.6.分式11−x ,11+x ,12x1+x 的最简公分母为四、课后作业:1.当x 取何值时,分式x111+有意义:2当x 为何值时,分式 的值为零x x x --213.约分: (1)2)(xy yy x + (2)222)(y x y x --(3)b a abc ab 22369+ (4)122362+-x x4.通分:(1)22,21,1222--+--x x x x xx x ; (2)aa -+21,25.已知:31=+x x ,求1242++x x x 的值.。
15.1.2分式基本性质考点与练习
15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
分式知识点及训练
三.分式考点一:分式的概念1. 定义:如果A 、B 表示两个整式,且B 中含有字母,0B ≠,那么式子A B叫做分式.例1.下列代数式是分式的是 ( ).31x A x + 21.2x B +-C x.aD π2. 分式有意义的条件:分式中分母的值不能为零,即A B中,0B ≠使,分式有意义,否则分式没有意义. 例2.若分式15x -有意义,则实数x 的取值范围是 .3. 分式的值的讨论: (1) 若分式0A B =,则A=0,且0B ≠,即0{A B =≠时,0A B=.(2) 若分式0A B >,则A 、B 同号,即0{0A B >>或者0{0A B <<(3) 若分式0A B<,则A 、B 异号,即0{0A B ><或者0{0A B <>例2. 分式211x x -+的值为0,则 ( ).1A x =- .1B x = .1C x =± .0D x =针对训练: 1.若分式22221x x x x --++的值为0,则x 的值等于 .考点二.分式的基本性质1. 基本性质:分式的分子、分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用符号来表示为:A A M A MB B MB M÷==÷ (M 的值不为0)2. 分式的基本性质的应用(1) 分式的约分:把一个分式的分子与分母的公共因式约去,分式的值不变,叫做约分。
说明:约分时,分子与分母不是乘积的形式,不能约分.(2) 分式的通分:把n 个异分母的分式分别化为与原来的分式相等的同分母的分式. 说明:①通分的依据是分式的基本性质, ②通分后的各分式的分母相同.③通分后的各式分式分别与原来的分式相等. ④通分的关键是确定最简公分母 ⑤分式通分的步骤:ⅰ.确定最简公分母;ⅱ.将各分式化成相同分母的分式.(3)分式的符号规则:分式的分子、分母及分式本身的符号中,改变其中任意俩个,分式的值不变.用式子表示为:,A A A A A A A BBB BBBB---==--=-==---(0B ≠).例3.(1)先化简,再求值:()2111211x x x ⎛⎫-÷+- ⎪+-⎝⎭,其中x =.(2)先化简,再求值:221211,24x x x x ++⎛⎫-÷ ⎪+-⎝⎭其中 3.x =- 针对训练:1. 化简:221211.241x x x x x x --+÷++--2. 先化简,再求值:22211.221x x x x x x x ++--÷++-其中2x =-考点三:分式的加减 1. 分式的加减,.a b a b a c ad bc ad bcc c c bd bd bd bd±±±=±=±= 2. 分式的乘除,.a c ac a c a d adb d bd b d bc bc=÷== 说明:对于分式的乘除混合运算,应先将除法运算转化为乘法运算,如分子、分母是多项式,可先将分子、分母分解因式,再相乘. 3.分式的乘方nnna ab b ⎛⎫= ⎪⎝⎭(n 为正整数) 例4.(1)化简:22221369x y x yx yx xy y+--÷--+(3) 先化简,再求值:22211(1),11m m m m m m -+-÷---+其中m =针对训练:1. 计算:2.b a ba b a b a ⎛⎫+-+ ⎪+⎝⎭2.先化简,再求值:()2211,1a a a ⎛⎫-+÷+ ⎪+⎝⎭其中 1.a =-课堂针对训练一、选择题 1.化简2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) 1.A xB. 1x - 1.x C x- D.1x x -2.若分式31x x -有意义,则x 应满足 ( ).0A x = B. 0x ≠ C. 1x = D. 1x ≠3.设22220,4,m n m n m n mn mn->>+==则( )A B. C. D.3二、填空题4.当x= 时,25x -.5.若ab=1,11,,1111a b x y abab=+=+++++则xy= .三、解答题 6.先化简,再求值:()222,a b a b a b-+-+其中2, 1.a b ==7.先化简,再求值:2242,6926a a a a a --÷+++其中 5.a =-。
分式的基本性质—数学人教版八年级上册随堂小练
分式的基本性质—数学人教版八年级上册随堂小练1.若把分式3x y xy +中的x 和y 都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.缩小4倍2.下列分式中,属于最简分式的是()A.42x B.221xx + C.211x x -- D.11xx --A.11a a b b +=+B.()()2211a c abb c +=+C.0.220.122x x x y x y =++ D.x y x y x y x y ++-=---7.将分式2x ,23y ,4xy通分,依次为____________.8.回答下列问题:(1)约分:321218xy x y .(2)约分:22816m m --.(3)通分:223b a 与a bc.答案以及解析1.答案:C 解析:由题意,分式3x y xy +中的x 和y 都扩大2倍,∴3222(3)32242x y x y x y x y xy xy⨯+++==⋅;分式的值是原式的12,即缩小2倍;故选:C.2.答案:B 解析:422x x =,故A 项不符合题意;221x x +是最简分式,故B 项符合题意;21111x x x -=-+,故C 项不符合题意;111x x -=--,故D 项不符合题意.解析:A 、11a a b b +≠+,原变形错误,本选项不符合题意;B 、()()2211a c a b b c +=+,本选项符合题意;C 、0.2220.12202x x x x y x y x y=≠+++,原变形错误,本选项不符合题意;D 、()1x y x y x y x y x y x y+++-=-=≠---+-,原变形错误,本选项不符合题意;故选:B.7.答案:212xy ,212xy ,212xy 解析:分式2y x ,213y ,14xy的最简公分母为212xy ,所以各分式通分后为32612y xy ,2412x xy ,2312y xy.8.答案:(1)原式223x y=(2)原式24m =+(3)2222233b b c a a bc =,3233a a bc a bc=解析:(1)原式22622633xy xy x y x y ⋅==⋅.(2)原式2(4)2(4)(4)4m m m m -==+-+.(3)2222222333b b bc b c a a bc a bc ⋅==⋅,23223333a a a a bc a bc a bc⋅==.。
八年级数学人教版上册同步练习分式的基本性质(解析版)
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
分式的基本性质练习题汇编
分式和它的基本性质练习题1.有理式①2x,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 2.分式31x a x +-中,当x=-a 时,下列结论正确的是( )A .分式的值为零;B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零3.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 4.下列各式中,可能取值为零的是( ) A .2211m m +- B .211m m -+ C .211m m +- D .211m m ++5.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1 6.根据分式的基本性质,分式a a b--可变形为( ) A .a a b-- B .a a b+ C .-aa b - D .aa b+7.下列各式中,正确的是( )A .x y x y-+--=x y x y -+; B .x y x y -+-=x y x y---; C .x y x y-+--=x y x y+-; D .x y x y-+-=x y x y-+8.下列各式中,正确的是( )A .a m a b mb+=+ B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+9、下列各式aπ,11x +,15x+y ,22a b a b--,-3x 2,0•中,是分式的有______;是整式的有______;10.当x_______时,分式2212x x x -+-的值为零.11.当x______时,分式435x x +-的值为1;当x_______时,分式435x x +-的值为-1.12.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 13.当m=________时,分式2(1)(3)32m m m m ---+的值为零.14.若a=23,则2223712a a a a ---+的值等于_______.15.约分:(1)22699x x x ++-; (2)2232m m m m-+-.16.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.17.已知1x-1y=3,求5352x xy y x xy y+---的值18.已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.19、已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.一、填空题1.不改变分式的值,使分式的分子与分母的第一项的系数都是正的(1) 56x y -= ;(2) 2761x y --+= ;(3) 5938x x ---= ; (4) 22165x x x x -+---+= 。
分式测试题及答案
分式测试题及答案一、选择题1. 分式的基本性质是()A. 分子分母同时乘以一个不为0的数,分式的值不变B. 分子分母同时除以一个不为0的数,分式的值不变C. 分子分母同时乘以或除以一个不为0的数,分式的值不变D. 以上都不对答案:C2. 已知分式\(\frac{a}{b}\),如果\(b=0\),则分式()A. 无意义B. 有意义C. 等于0D. 等于1答案:A3. 将分式\(\frac{3x^2}{2x^2-4x+2}\)化为最简形式,正确的是()A. \(\frac{3x}{2-x}\)B. \(\frac{3x}{x-1}\)C. \(\frac{3x}{2x-1}\)D. \(\frac{3x}{x-2}\)答案:B二、填空题1. 计算分式\(\frac{2}{x-1}+\frac{3}{x+1}\)的和,结果为______。
答案:\(\frac{5x+1}{x^2-1}\)2. 若分式\(\frac{2x-3}{x^2-4}\)有意义,则x不能等于______。
答案:±2三、计算题1. 计算并简化\(\frac{2x^2-4x+2}{x^2-9}\)。
答案:\(\frac{2(x-1)^2}{(x-3)(x+3)} = \frac{2}{x+3}\)(当\(x \neq 3\))2. 计算并简化\(\frac{1}{x-1} - \frac{1}{x+1} + \frac{2}{x^2-1}\)。
答案:\(\frac{2}{x^2-1}\)四、解答题1. 已知\(\frac{a}{b} = \frac{c}{d}\),求\(\frac{ad}{bc} = \)。
答案:12. 若\(\frac{2}{3} \leq \frac{a}{b} < 1\),求\(\frac{a}{b} +\frac{1}{a}\)的取值范围。
答案:\(\frac{5}{3} \leq \frac{a}{b} + \frac{1}{a} < 2\)五、证明题1. 证明:若\(\frac{a}{b} = \frac{c}{d}\),则\(\frac{a+c}{b+d} = \frac{a}{b}\)。
备战中考数学基础必练分式的基本性质(含解析)
2019备战中考数学基础必练-分式的基本性质(含解析)一、单选题1.如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍2.把分式(x0,y0)中的分子、分母的x、y同时扩大2倍,那么分式的值()A.扩大为原来的2倍B.缩小为原来的C.缩小为原来的D.不改变3.将中的a、b都扩大4倍,则分式的值()A.不变B.扩大4倍C.扩大8倍D.扩大16倍4.下列计算正确的是()A. B. C. D.5.不改变分式的值,把它的分子和分母中的各项系数都化为整数,则所得的结果为()A. B. C. D.6.如果把中的x和y都扩大10倍,那么分式的值()A.不变B.扩大10倍C.缩小10倍D.扩大20倍7.已知,则的值等于A.6B.C.D.8.若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.分式的值不变C.缩小为原来的D.缩小为原来的9.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的10.若把分式的x、y同时缩小12倍,则分式的值()A.扩大12倍B.缩小12倍C.不变D.缩小6倍二、填空题11.约分:=________.12.在括号内填上适当地整式,使下列等式成立:(1);________(2)= .________13.把分式约分得________14.若a≠0,则=________15.不改变分式的值,把下列各式的分子、分母中各项系数都化为整数:(1)= ________;(2)= ________.16.不改变分式的值,把它的分式和分母中的各项的系数都化为整数,则所得结果为________17.已知,则的值是________三、计算题18.通分:2 x x + 3 +1= 7 2 x + 6 。
(1),(2),.19.约分:四、解答题20.在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.21.已知,求和的值.22.不改变分式的值,使分式的分子与分母的最高次项的系数是整数答案解析部分一、单选题1.【答案】C【考点】分式的基本性质【解析】【解答】解:把分式中的m和n都扩大3倍,得=×.故选:C.【分析】根据分式的性质,可得答案.2.【答案】D【考点】分式的基本性质【解析】【分析】根据题目中分子、分母的x、y同时扩大2倍,得到了分子和分母同时扩大2倍,根据分式的基本性质即可判断.【解答】分子、分母的x、y同时扩大2倍,即,根据分式的基本性质,则分式的值不变.故选D.【点评】此题考查了分式的基本性质.3.【答案】B【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘乘以同一个不为0的整式,分式的值不变,可得答案.【解答】根据题意,可得=4×,故选:B.【点评】本题考查了分式的性质,分式的分子分母都乘乘以同一个不为0的整式,分式的值不变.4.【答案】A【考点】分式的基本性质【解析】【解答】A、,A符合题意;B、,B不符合题意;C、不能化简,C不符合题意;D、没有意义,D不符合题意.故答案为:A.【分析】对于A,依据分式的基本性质,分式的分子和分母同时扩大2倍即可;对于B,依据负整数指数幂的性质进行计算即可;对于C,依据分式的基本性质进行判断即可;对于D,依据零指数幂的性质a0=1,(a≠0)进行判断即可.5.【答案】B【考点】分式的基本性质【解析】【分析】分式的基本性质:分式的分子和分母同乘以或除以一个不为0的数(或式),分式的值不变.题目中的分子分母应该同时扩大10倍.故选B.【点评】本题属于基础应用题,只需学生熟练掌握分式的基本性质,即可完成。
中考数学专题复习题:分式的基本性质
中考数学专题复习题:分式的基本性质一、单项选择题(共7小题)1.下列各式是最简分式的是()A.13B.1x−2C.x2y2xD.2a82.下列各分式的化简正确的是()A.x6x3=x3B.a+xb+x=abC.x2x2=0D.a2−1a−1=a−13.若分式2aba+b 中a,b都扩大到原来的3倍,则分式2aba+b的值是()A.扩大3倍B.缩小3倍C.不变D.扩大6倍4.下列各式中,正确的是()A.a+12a+3=25B.ab=a2abC.−a+1a=−a+1aD.a2−4(a−2)2=a+2a−25.下列等式成立的是()A.1a +2b=3a+bB.abab−b2=aa−bC.22a+b=1a+bD.a−a+b=−aa+b6.若代数式a+1a−1在实数范围内有意义,则实数a的取值范围是()A.a≥1B.a≠1C.a<1D.a=−17.如果把分式x−2y+zxyz中的正数x,y,z都扩大2倍,则分式的值()A.不变B.扩大为原来的两倍C.缩小为原来的14D.缩小为原来的18二、填空题(共4小题)8.分式14x2yz 和16xy2的最简公分母是________.9.不改变分式的值,化简:−0.03x+0.1−0.04x−0.03=________.10.已知y>3,则y2−6y+93−y=________.11.把分式2xx+y中的x、y都扩大两倍,则分式的值________.三、解答题(共4小题)12.不改变分式的值,将下列各分式的分子与分母中各项系数都化为整数:(1)x−0.2y0.8x−5y;(2)m2+n32m 5−2n3.13.根据分式的基本性质填空:(1)x+32x =( )2x2;(2)−am−n=a( ).14.已知a,b实数满足ab=1,若M=11+a +11+b,N=a1+a+b1+b,请你猜想M与N的数量关系,并证明.15.写出下列等式中所缺的分子或分母:(1)1ab =( )ab2c(c≠0)括号内应填入__________;(2)ma−b =( )a2−b2(a≠−b)括号内应填入__________;(3)xx(x−y)=1( )括号内应填入__________.。
分式 知识归纳+真题解析
分式知识归纳+真题解析【知识归纳】1. 分式:整式A 除以整式B ,可以表示成 A B 的形式,如果除式B 中含有,那么称 A B为分式.若,则 A B 有意义;若,则 A B 无意义;若,则 A B=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为 .3. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为的分式,这一过程称为分式的通分.5.分式的运算⑴ 加减法法则:① 同分母的分式相加减: .② 异分母的分式相加减:.⑵ 乘法法则:.乘方法则:.⑶ 除法法则:.【知识归纳答案】1.字母, B ≠0, B=0, A=0且B ≠02.值不变.)0()0(≠÷÷=≠⋅⋅=C CB C A B A C C B C A B A . 3.公因式4.为同分母5.分式的运算⑴分母不变,分子相加减 .②先通分,变为同分母的分式,然后再加减 .⑵分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.:分式的乘方,把分子、分母分别乘方.⑶:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.真题解析1.若分式有意义,则x 的取值范围是( )A.x>3 B.x<3 C.x≠3 D.x=3【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.2.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【考点】62:分式有意义的条件.【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.3.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或24.下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B.﹣a﹣1=C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)【考点】6B:分式的加减法;4I:整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A、(a2+2b2)﹣2(﹣a2+b2)=3a2,故此选项错误;B、﹣a﹣1==,故此选项错误;C、(﹣a)3m÷a m=(﹣1)m a2m,正确;D、6x2﹣5x﹣1,无法在实数范围内分解因式,故此选项错误;故选:C.5.若=+,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【考点】6B:分式的加减法.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵=+,∴﹣====﹣2,故____中的数是﹣2.故选:B.6.化简+的结果是()A.x+1 B.x﹣1 C.x2﹣1 D.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A7.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.【考点】65:分式的基本性质.【分析】根据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==;B、=;C、;D、==.故A正确.故选A.8.若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.0【考点】63:分式的值为零的条件.【分析】根据分式的值为0的条件即可求出x的值.【解答】解:由题意可知:解得:x=1,故选(B)9.分式在实数范围内有意义,则x的取值范围是x≠1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.10.当x=5时,分式的值为零.【考点】63:分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣5=0且2x+3≠0,再解即可.【解答】解:由题意得:x﹣5=0且2x+3≠0,解得:x=5,故答案为:5.11.化简:÷=.【考点】6A:分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.12.计算:( +)•=1.【考点】6C:分式的混合运算.【分析】原式括号中两项变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•=•=1.故答案为:113.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).【考点】61:分式的定义.【分析】观察分母的变化为a的1次幂、2次幂、3次幂…n次幂;分子的变化为:2、5、10、17…n2+1;分式符号的变化为:+、﹣、+、﹣…(﹣1)n+1.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.三.解答题(共9小题)14.化简•.15.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【考点】6A:分式的乘除法;4B:多项式乘多项式.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.16.某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第一步开始出错的,其错误原因是分式的基本性质;(2)请写出此题正确的解答过程.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)一、分式的基本性质用错;(2)原式=+==故答案为:(1)一、分式的基本性质用错;17.设A=÷(a﹣).(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.【考点】6C:分式的混合运算;C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.【解答】解:(1)A=÷(a﹣)=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴﹣≤f(3)+f(4)+…+f(11),即﹣≤++…+∴﹣≤+…+,∴﹣≤,∴﹣≤,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示,.18.化简:(﹣)÷.【考点】6C:分式的混合运算.【分析】根据分式的减法和除法可以解答本题.【解答】解:(﹣)÷=====.学科网19.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【考点】6D:分式的化简求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=320.先化简,再求值:(﹣1)÷,其中x=﹣4sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】先化简原式与x的值,然后将x的值代入原式即可求出答案.【解答】解:原式=()÷=•=﹣x=2﹣4×+2=2把x=2代入得,原式==﹣221.先化简,再求值:(x﹣)÷,其中x=,y=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷===x﹣y,当x=,y=﹣1时,原式==1.22.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:÷(﹣x+1)====,∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣.。
分式的基本性质专项练习30题(有答案)ok
分式的基本性质专项练习30题(有答案)ok1.如果将分式中的x、y都扩大到原来的10倍,分式的值会扩大10倍。
2.如果将分式中的x和y都扩大3倍,分式的值不变。
3.将分子、分母中各项系数化为整数不改变分式的值。
4.正确的是A。
5.正确的是B。
6.与分式的值相等的是B。
7.与分式的值相等的是D。
8.化简为9.化简为10.若x在(0,2)之间,化简后的结果为B。
11.正确的是C。
12.不改变分式13.正确的个数为B。
14.分子和分母的系数化为整数后,正确的变形有A、C、D。
15.不改变分式的值,使分子和分母的最高次项的系数为正数。
16.略17.不改变分式的值,将分式化简为18.若,则x的取值范围是19.分子与分母的各项系数化为整数为20.(1) 分式的乘法法则,(a≠)。
(2) 分式的除法法则,(1)除以一个数等于乘以它的倒数,(2)21.设22.略23.依次填入。
24.若x:y:z=1:2:1,则25.若 $a=b$,则 $a^2=ab$。
解析:对 $a^2=ab$ 两边同时减去 $b^2$,得到 $a^2-b^2=ab-b^2$,即 $(a-b)(a+b)=b(a-b)$,由于 $a=b$,所以 $a-b=0$,分母不能为 $0$,因此原等式不成立。
26.不改变分式的值,使分子、分母都不含负号:$\frac{-3x}{2y}$。
解析:将分子、分母同时乘以 $-1$,即可得到$\frac{3x}{-2y}$,化简后为 $\frac{-3x}{2y}$。
27.已知 $\frac{a}{b}=\frac{c}{d}$,则$\frac{a+b}{b}=\frac{c+d}{d}$。
解析:将 $\frac{a+b}{b}$ 和 $\frac{c+d}{d}$ 分别化简,可得到 $\frac{a}{b}+1=\frac{c}{d}+1$,即$\frac{a}{b}=\frac{c}{d}$,由已知条件可知其成立。
分式重点知识及经典例题
分式重点知识及经典例题一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
二、 分式有意义的条件是分母不为零;【B ≠0】分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3.下列各式中,无论x 取何值,分式都有意义的是( )。
A .121x +B .21x x +C .231x x+ D .2221x x +例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
例5.已知1x -1y=3,求5352x xy y x xy y +---的值。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )四、分式的通分和约分:关键先是分解因式。
例6.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )。
例7.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。
C B C A B A ⋅⋅=C B C A B A ÷÷=例8.分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )。
例9.约分:(1)22699x x x ++-; (2)2232m m m m-+-例10.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -例11.已知x 2+3x+1=0,求x 2+21x的值.例12.已知x+1x =3,求2421x x x ++的值.五、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式的基本性质练习题
分式的基本性质练习题分式的基本性质练习题分式是数学中常见的一种表示形式,它可以帮助我们更好地理解和解决问题。
在学习分式的过程中,我们需要掌握一些基本的性质和运算规则。
下面,我将通过一些练习题来帮助大家巩固对分式的理解。
练习题一:简化分式1. 将分式$\frac{12}{18}$化简为最简形式。
解答:首先,我们可以将分子和分母同时除以它们的最大公约数,即12和18的最大公约数为6。
所以,$\frac{12}{18}$可以化简为$\frac{2}{3}$。
2. 将分式$\frac{24}{48}$化简为最简形式。
解答:同样地,我们可以将分子和分母同时除以它们的最大公约数,即24和48的最大公约数为24。
所以,$\frac{24}{48}$可以化简为$\frac{1}{2}$。
练习题二:分式的乘法和除法1. 计算$\frac{2}{3} \times \frac{4}{5}$。
解答:分式的乘法可以通过将分子相乘,分母相乘来完成。
所以,$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$。
2. 计算$\frac{3}{4} \div \frac{2}{5}$。
解答:分式的除法可以通过将除数取倒数,然后与被除数进行乘法来完成。
所以,$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。
练习题三:分式的加法和减法1. 计算$\frac{1}{3} + \frac{2}{5}$。
解答:分式的加法需要找到它们的公共分母,然后将分子相加。
所以,$\frac{1}{3} + \frac{2}{5} = \frac{5}{15} + \frac{6}{15} = \frac{11}{15}$。
2. 计算$\frac{3}{4} - \frac{1}{2}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式及分式的基本性质练习
题型1:分式概念的理解应用
1.下列各式πa ,11x +,1
5x y +,22a b a b --,23x -,0•中,是分式的有___ __;是整式的有_____ .
题型2:分式有无意义的条件的应用
2.下列分式,当x 取何值时有意义.
(1)21
32
x x ++; (2)2323x x +-.
3.下列各式中,无论x 取何值,分式都有意义的是( )
A .121x +
B .21x x +
C .231
x x
+ D .2221x x +
4.当x ______时,分式21
34x x +-无意义.
题型3:分式值为零的条件的应用
5.当x _______时,分式221
2
x x x -+-的值为零.
6.当m =________时,分式2(1)(3)
32
m m m m ---+的值为零.
题型4:分式值为1±的条件的应用
7.当x ______时,分式435x x +-的值为1;当x _______时,分式43
5x x +-的值为1-.
课后训练
基础能力题
8.分式24x
x -,当x _______时,分式有意义;当x _______时,分式的值为零.
9.有理式①
2x ,②5x y +,③12a -,④1
x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 10.分式31
x a
x +-中,当x a =-时,下列结论正确的是( )
A .分式的值为零;
B .分式无意义
C .若13a -≠时,分式的值为零;
D .若1
3a ≠时,分式的值为零
11.当x _______时,分式
15x -+的值为正;当x ______时,分式24
1
x -+的值为负. 12.下列各式中,可能取值为零的是( )
A .2211m m +-
B .211m m -+
C .21
1
m m +- D .211m m ++
13.使分式||1x
x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±
拓展创新题 14.已知1
23x y x
-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.
题型1:分式基本性质的理解应用
一、填空题:
1. 写出等式中未知的分子或分母: ①
x y 3= ()23x y
② y x xy 257=
()
7 ③
)
(1b
a b a +=- 2. 不改变分式的值,使分式的分子与分母都不含负号: ①=--
y x 25 ; ②=---b
a
3 . 3. 等式
1
)
1(12
--=+a a a a a 成立的条件是________. 二、选择
4.不改变分式的值,使分式115101139
x y
x y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .90
5.下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n
m m ---=-
中,成立的是( ) A .①② B .③④ C .①③ D .②④ 6. 把分式
y
x x
322-中的x 和y 都扩大为原来的5倍,那么这个分式的值 ( )
A .扩大为原来的5倍
B .不变
C .缩小到原来的51
D .扩大为原来的2
5倍 7. 使等式
27
+x =x
x x 272+自左到右变形成立的条件是 ( ) A .x<0 >0 C.x≠0 ≠0且x≠-2
8.不改变分式23
23523x x
x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是( • ) A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332
523
x x x x ---+
三、解答题:
9. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数:
① y
x y x 61
251
31+- ②y x y
x 4.05.078.08.0+- ③ b a b a 4
36.04.02+-
10. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号:
①112+--x x ②2122--+-x x x ③1
31
2+----x x x
题型2:分式的约分 一、判断正误并改正:
① 3
26y y
y =( ) ② b a b a +--2)(=-a -b ( ) ③ b a b a --22=a -b ( )
④
)3)(2()3)(2(x x x x -+-+=-1( ) ⑤ a y a x ++ =y x ( ) ⑥ ))((2)()(y x y x y x y x -+-++=2
1( )
二、选择题
1.分式434y x
a +,2411x x --,22x xy y x y -++,2222a a
b ab b +-中是最简分式的有( )
A .1个
B .2个
C .3个
D .4个
2.下列约分正确的是( )
A.32)(3)(2+=+++a c b a c b
B.1)()(22
-=--a b b a C.b a b a b a +=++222 D.x
y y x xy y x -=---1222 3.下列变形不正确的是( )
A.22
22+-=
---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =21 D.2126336-+=-+y x y x 4.等式)1)(1()
1(1+++=
+b a b a a a 成立的条件是( ) ≠0且b ≠0 ≠1且b ≠1 C.a ≠-1且b ≠-1 、b 为任意数
5.如果把分式y
x y
x ++2中的x 和y 都扩大10倍,那么分式的值( )
A.扩大10倍
B.缩小10倍
C.是原来的
2
3
D.不变 6.不改变分式的值,使
3
3212-+--x x x
的分子、分母中最高次项的系数都是正数,则此分式可化为( )
A.33122-+-x x x
B.33122+++x x x
C.33122+-+x x x
D.3
3122+--x x x
7.下面化简正确的是( )
A .1212++a a =0 B. 2
2)()(a b b a --=-1 C. 326+--x x =2 D.y x y x ++22=x+y
8.下列约分:①23x x =x
31 ②m b m a ++=b a ③a +22=a +11
④22++xy xy =1 ⑤112+-a a =a -1
⑥
2
)()(y x y x --- =-y x -1
其中正确的有( )
A. 2个
B. 3个
C. 4个
D. 5个
三、解答题: 约分:
① 2
32636yz
z xy - ② 2224m m m +- ③ 2411x x -- ④ 2269
9x x x ++- ⑤ 4442
2
-+-a a a ⑥ 16282--m m ⑦ 2
232m m m m -+- ⑧ 2
22215
21033223y x y x --
题型3:分式的通分 1.通分:
(1)26x ab ,29y a bc ; (2)21x x -,2
121x x --+; (3)2121a a a -++,26
1a -.
2. 先化简,再求值:
① 1616822-+-a a a ,其中a=5; ② 2
222b
ab a ab a +++,其中a=3b ≠0.
3.已知511=-y x ,求分式y xy x y xy x 272-+++-的值.
4.已知4
32z y x ==,求222z y x zx yz xy ++++的值.
5.已知12,4-=-=+xy y x , 求1
111+++++y x x y 的值. 6.已知1
3x x +=,求2421x x x ++的值.。