提公因式法(说课稿)
提公因式法》说课稿
![提公因式法》说课稿](https://img.taocdn.com/s3/m/b4f852d380c758f5f61fb7360b4c2e3f57272537.png)
提公因式法》说课稿本节课的教学方法主要包括讲授法、示范法、探究法和练法等。
在讲授法中,教师应该注重引导学生理解公因式的概念和提公因式法的思想,同时通过示范法来展示如何找出多项式中的公因式和如何用提公因式法分解因式。
在探究法中,教师可以设计一些问题情境和实例让学生自主探究,培养学生的观察、比较分析、综合等能力。
在练法中,教师可以提供大量的练题,让学生反复练,巩固所学知识和技能。
四、教学过程设计1、导入环节通过引入一个有趣的问题情境,引发学生的兴趣,激发学生的求知欲望。
例如:“___和___一起种植了一块长方形的花坛,他们想在花坛的四周种上一圈相同的花,但是他们不知道应该种多少株花才能够刚好种完整个花坛,请问你们能帮他们算一下吗?”2、讲授环节在讲授环节中,教师应该重点讲解公因式的概念和提公因式法的思想,并通过示范法来展示如何找出多项式中的公因式和如何用提公因式法分解因式。
同时,教师还可以通过一些例题来让学生掌握具体的操作方法和技巧。
3、探究环节在探究环节中,教师可以设计一些问题情境和实例让学生自主探究,培养学生的观察、比较分析、综合等能力。
例如,教师可以给学生提供一些多项式,让学生自己找出其中的公因式,并尝试用提公因式法分解因式。
4、练环节在练环节中,教师可以提供大量的练题,让学生反复练,巩固所学知识和技能。
同时,教师还可以设计一些综合性的练题,让学生能够将所学知识和技能应用到实际问题中去。
5、总结反思环节在总结反思环节中,教师可以让学生回顾所学内容,总结所学知识和技能,并对研究过程进行反思和总结。
同时,教师还可以提出一些问题,引导学生深入思考,拓展学生的思维视野。
根据本节课的内容,为了符合学生的认知规律和心理特点,我采用了多种方法交叉教学,包括演示、讨论、观察、比较和概括等方法,并利用多媒体辅助教学,呈现知识的形成过程。
这样能够调动多种感官,激发学生的研究兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。
因式分解—提取公因式说课稿
![因式分解—提取公因式说课稿](https://img.taocdn.com/s3/m/e6a7e30191c69ec3d5bbfd0a79563c1ec5dad74f.png)
因式分解—提取公因式说课稿一教材分析:1、教材的地位和作用本课教材所处位置,是人教版八年级上册第十四章第三节:因式分解—提取公因式,次节内容十分重要,为以后学习公式法—分解因式打下了根底。
2、教学目标:3、(1).知识与技能使学生了解分解因式的意义,因式分解的方法,能熟练地分解因式。
4、〔2〕.过程与方法通过本节教学,培养学生的想象能力、理论联系实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;5、〔3〕.情感、态度与价值观对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
6、3、教学重难点7、重点:因式分解的方法。
8、难点:因式分解的意义及方法二学法指导:1、学情分析:鉴于初二年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比拟活泼。
2、知识建构、心理调节方法的指导:在本节课的教学中要帮助学生学会应用观察、分析、比拟等方法,得出解决问题的方法。
使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且体验到探究的甘苦,让他们在学习的过程中获得愉快和进步。
三教学方法:采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。
并利用计算机和投影胶片辅助教学,增大教学密度。
四教学过程:本节课设计了以下几个教学环节:第一环节:创设情境,引入新知,第二环节:观察感知,理解概念,第三环节:例题示范,学会应用,第四环节:稳固概念,学以致用,第五环节:归纳小结,反思提高,第六环节:课后思考,布置作业。
根据教学设计进行教学内容。
借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,得到结论后进行总结,及时进行反应应用和反思式总结。
依据是?新课标?,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的根底上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的开展。
提公因式说课稿人教版
![提公因式说课稿人教版](https://img.taocdn.com/s3/m/36171157cd1755270722192e453610661fd95a6b.png)
提公因式说课稿人教版一、说课背景及目标本次说课的内容是人教版初中数学教材中的“提公因式”这一知识点。
该知识点位于代数部分,是学习多项式运算和因式分解的基础。
通过本节课的学习,学生应能够理解公因式的概念,掌握提公因式的方法,并能在实际问题中运用提公因式进行化简。
二、教学目标1. 知识与技能目标:学生能够准确识别多项式中的公因式,并运用提公因式法则进行因式分解。
2. 过程与方法目标:培养学生观察、分析和归纳的能力,通过实例引导学生发现提公因式的规律。
3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的逻辑思维能力和解决问题的能力。
三、教学重点与难点1. 教学重点:公因式的定义及其识别方法,提公因式的步骤和技巧。
2. 教学难点:如何引导学生正确理解和运用提公因式法则,特别是在多项式中存在多个公因数时的因式分解。
四、教学方法与手段1. 教学方法:采用启发式教学法和示范教学法,通过具体实例引导学生自主探索和总结规律。
2. 教学手段:运用多媒体课件展示多项式的因式分解过程,辅以板书进行重点内容的强调和总结。
五、教学过程1. 导入新课- 通过回顾之前学习的因式分解知识,引出公因式的概念。
- 举例说明公因式在多项式化简中的作用,激发学生的学习兴趣。
2. 讲解新知- 定义公因式:介绍公因式的概念,解释其在多项式中的作用。
- 识别公因式:通过具体的多项式例子,教授学生如何找出公因式。
- 提公因式法则:详细讲解提公因式的基本步骤和注意事项。
3. 课堂练习- 设计不同难度的多项式因式分解练习题,让学生尝试独立完成。
- 分析学生的答案,指出常见错误,强调提公因式的准确性。
4. 巩固提高- 通过变式练习,让学生在不同情境下应用提公因式法则。
- 引导学生总结提公因式的规律,加深对知识点的理解。
5. 课堂小结- 回顾本节课的重点内容,强调提公因式的重要性。
- 鼓励学生在课后继续探索和练习,提高解题能力。
六、作业布置1. 完成课后习题中与提公因式相关的题目。
14.3.1提公因式法说课稿2022-2023学年人教版八年级数学上册
![14.3.1提公因式法说课稿2022-2023学年人教版八年级数学上册](https://img.taocdn.com/s3/m/186cb3f5f021dd36a32d7375a417866fb84ac0c2.png)
14.3.1 提公因式法说课稿一、教学目标1.理解提公因式法的基本概念和运用方法;2.掌握利用提公因式法进行多项式的因式分解;3.培养学生的逻辑思维和解决问题的能力。
二、教学重难点1. 教学重点•提公因式法的基本概念和运用方法;•多项式的因式分解。
2. 教学难点•利用提公因式法进行复杂多项式的因式分解。
三、教学过程1. 导入(5分钟)引入提公因式法的概念和意义。
通过举例说明提公因式法的应用场景,如化简分式、求多项式的最大公因式等。
通过这些例子,激发学生对提公因式法的兴趣和学习的动力。
2. 知识讲解(20分钟)2.1 提公因式法的基本概念和运用方法提公因式法是一种将一个多项式表达式分解为两个因式的方法。
通过提取出多项式中的公因式,将多项式分解为乘法形式。
例如,对于多项式7x + 14y,我们可以提取出公因式7,得到7(x + 2y)。
通过提公因式法,我们成功将多项式分解为两个因式。
2.2 多项式的因式分解在提公因式法的基础上,我们可以进一步利用提公因式法进行多项式的因式分解。
例如,对于多项式x^2 - 4,我们可以将其因式分解为(x + 2)(x - 2)。
通过提公因式法,我们成功将多项式分解为两个因式。
3. 实例演练(25分钟)在讲解完提公因式法的基本概念和运用方法后,通过多个实例让学生进行实践操作。
从简单的例子开始,逐渐增加难度,让学生逐步掌握提公因式法的运用技巧。
示例1:将多项式3x + 9分解为公因式和提公因式。
解:3x + 9 = 3(x + 3)示例2:将多项式a^2 - 4a进行因式分解。
解:a^2 - 4a = a(a - 4)示例3:将多项式2x^3 + 4x^2 + 6x进行因式分解。
解:2x^3 + 4x^2 + 6x = 2x(x^2 + 2x + 3)4. 板书总结(5分钟)将提公因式法的基本概念和运用方法进行总结,并通过板书的形式呈现给学生。
重点标记提公因式法的关键步骤和注意事项,以便后续复习和巩固。
《因式分解——提公因式法》说课稿1可修改全文
![《因式分解——提公因式法》说课稿1可修改全文](https://img.taocdn.com/s3/m/a3df11959f3143323968011ca300a6c30d22f140.png)
可编辑修改精选全文完整版
说课:14.3.1因式分解---提公因式法
一、 教材分析
提公因式法是人教版教材八年级上册第14章第3节第一部分的内容,它是既整式乘法和整式除法后的又一重要的内容,这也是整式乘法的延续,与前面的知识联系十分紧密,也是学生以后学习化简,一元一次运算的重要基础,学习好此节内容会使学生以后运算更加简单。
二、 学情分析
初二年级两个班均为普通班,多数学生基础较差,他们自我学习能力很弱,上课只能以课本基础的知识为主,来激发更多的学生参与学习。
而在知识基础上,学生们已经学过整式的乘法,而且他们在小学已经接触了公因数的概念和乘法分配率,因此学习本节内容稍显容易,但在分解过程中的常规易错点问题,必需让学生反复训练,才能达预期目的。
三、 教学目标
1、理解因式分解的概念,能够准确的判断什么是因式分解。
2、明白公因式的概念,熟练运用提公因式法分解因式。
3、经历探索提公因式法分解因式的过程,学会逆向思考和整体看待的数学思想。
重点: 理解因式分解的定义及运用提取公因式法分解因式
难点: 理解因式分解与整式乘法的关系,熟练运用提取公因式法分解因式
四、 教学方法与教学手段
运用类比,演绎归纳的方法引导学生自主学习,自主归纳。
五、 教学流程图。
【最新文档】提公因式法说课稿-范文模板 (12页)
![【最新文档】提公因式法说课稿-范文模板 (12页)](https://img.taocdn.com/s3/m/78b1d8591ed9ad51f01df2c2.png)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==提公因式法说课稿篇一:因式分解说课稿数学与信息科学学院说课稿课题因式分解(提公因式法)专业指导教师吕晓亚班级201X级5班姓名李志春学号201X年5月8日一、课题介绍本节课选自华东师范大学出版社201X版初中数学八年级(上)第十三章整式的乘除第五节的内容的第一课时.二、教材分析1、本节在教材中的地位和作用因式分解是华东师大版八年级数学上册第十三章《整式的乘除》第五节课的内容.因式分解是代数式的一种重要恒等变形.又是分式通分、约分的基础知识, 就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系,它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理.这一思想实质贯穿后继学习的各种因式分解方法. 通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备,因此,它起到了承上启下的作用.2、目标分析根据新课程标准的要求以及结合本节教材内容的地位、作用、特点等,考虑初二年级学生的认知水平,我从以下三个方面确定本节课的教学目标:(1)知识目标(认知目标):(a)理解因式分解的概念,以及因式分解与整式乘法的关系;(b)理解公因式的概念和提公因式的方法;(c)会用提公因式法分解因式.(2)能力目标:通过对因式分解的学习,培养学生的创新意识和观察、抽象、概括类比、分析解决问题的能力.(3)情感目标:(a)感悟数学的简洁美;(b)培养学生学习数学的兴趣,增加学习的信心.3、教学重点与难点本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维.在前两节整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成.因此确定本节课的重点和难点如下:重点:用提公因式法分解因式;难点:确定公因式以及提出公因式后的另外一个因式.三、教法分析根据建构主义的学习理论,学习是学习者主动建构新知识的过程在教学中,老师不仅要传授知识给学生,还要成为他们学习活动的促进者、指导者.初二学生已经接触过一些因式分解的类型,因此本节课主要通过师生之间的探索,引导学生归纳出因式分解的定义,让学生参与思考,主动探究,通过讲练结合的方式让学生掌握内容.本节课所渗透的数学思想有类比思想、归纳思想等.四、学法分析根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳、分析,采用自主探究的方法进行学习,并使学生从中体会学习的兴趣.五、教学过程1、复习引入问题:运用前面所学的知识填空:?1?m?a?b?c??__________;?2?5?2x?y?3z??___________;?3?2xy?3?7x?11y?8z??__________.设计说明:从寻求简单算法入手的三个题目学生容易接受,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因数分解进行比较,从而对因式分解的概念和方法有一个整体的认识,也渗透着数学中的类比思想.在讲解新知识之前,我先让学生先完成下面的几个填空题:?1?ma?mb?mc?_________;?2?10x?5y?15z?___________;?3?6xy?14x2y?22xy2?16x2y2?________.鼓励学生根据整式乘法与逆向思维原理对上面三个题进行计算,若有学生能正确给出答案,要及时予以表扬、鼓励;若没有的话,就再次解说复习时所做的填空题,引导学生观察所填的内容和此题的题干之间的联系,等学生都把答案说出来之后,我再归纳整理并板书:像这样,把一个多项式化为几个整式的积的形式,叫做多项式的因式分解(factorization),也叫做把这个多项式分解因式.2、展示新知辨一辨:下列变形是否是因式分解?为什么??1?3x2?xy?y?y?3x2?x?;?2?x2?2x?3??x?1?2?4;?3?x2y2?2xy?1??xy?1??xy?1?;?4?xn?x2?x?1??xn?2?xn?1?xn.有了因式分解的概念之后,为巩固概念,根据变式理论我特意设置了辨一辨环节共四个小题,它们都不是因式分解,从侧面巩固了概念.在辨一辨之后,我再让学生回头看做的第二个填空题,请学生归纳我板书:多项式ma?mb?mc中的每一项都含有相同的因式m,我们称之为公因式(common factor).把公因式提出来,把多项式分解成几个整式的乘积的方法叫做提公因式法.显然,由定义知,提公因式法的关键是如何正确的找到公因式.让学生观察上面的公因式的特点,找出确定公因式的方法:(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取次数最低的.有了找公因式的方法,接下来当然就是练习找公因式了.我设置了如下四个例题:例1:指出下列各多项式中各项的公因式:?1?ax?ay?az;?2?3mx?6mx2;?3?4a2?10ah;?4?x2y?xy2.设计说明:理解清楚因式分解的概念和公因式的概念时教学继续进行的关键,而所谓的因式分解就是把多项式化为积的形式,分清它与整式乘法的关系对因式分解的概念的建立很有必要,而在学生中间展开辨析,讨论是一种有效的方法.3、例题讲解,运用新知(通过实例演练,形成技能)学习了新的知识,就要会用它解决问题.结合本节课开始给出的第二个填空题,加深对概念的理解记忆,同时给他们“学以致用”的思想.例2:请同学们把下列多项式分解因式:?1?8a3b2?12ab3c;?2?2a?b?c???b?c?;?3??4a3?16a2?18a.和学生一起解答这三个问题之后,做出点评:(1)提出公因式后,要满足另一个因式不再有公因式才行.概括为:括号里分到“底”.这里“底”是指到不能再分解为止.(2)公因式可以是单项式也可以是多项式,是多项式时应整体考虑直接提出.当1作为项的系数时,通常可以省略.但如果单独成一项时,它在因式分解时不能漏掉,概括为:某项提出莫漏1.。
人教版提取公因式说课稿
![人教版提取公因式说课稿](https://img.taocdn.com/s3/m/3eb9d25cbb1aa8114431b90d6c85ec3a87c28bec.png)
人教版提取公因式说课稿一、说课背景与目标在人教版初中数学教材中,提取公因式是整式乘除章节的重要内容。
本节课旨在帮助学生掌握提取公因式的方法,理解其在解决实际问题中的应用,培养学生的数学思维能力和逻辑推理能力。
二、教学内容与分析1. 教学内容概述本节课的教学内容包括公因式的定义、提取公因式的基本方法以及在多项式中的运用。
通过具体的例子,让学生理解公因式的概念,并能够独立地在多项式中寻找并提取公因式。
2. 知识与技能学生将学习到如何识别一个多项式中的公因式,并掌握提取公因式的两种基本方法:直接提取法和分组分解法。
此外,学生还将学习到如何将提取公因式的方法应用于解决实际问题。
3. 过程与方法通过观察、比较、归纳等方法,引导学生发现公因式的规律,并通过实际操作加深对提取公因式方法的理解和掌握。
4. 情感态度与价值观培养学生对数学的兴趣和热爱,激发学生探索数学规律的热情,同时培养学生的团队合作精神和解决问题的能力。
三、教学重点与难点1. 教学重点重点在于让学生理解公因式的定义,掌握提取公因式的基本方法,并能够在多项式中正确应用。
2. 教学难点难点在于学生如何准确识别多项式中的公因式,以及如何灵活运用提取公因式的方法解决复杂问题。
四、教学方法与手段1. 启发式教学通过提问和引导,激发学生的思考,帮助学生自主发现问题和解决问题的方法。
2. 合作学习通过小组讨论和合作,促进学生之间的交流和合作,共同探讨和解决问题。
3. 实例演示通过具体的数学例题,向学生展示提取公因式的实际操作过程,使学生能够直观地理解和掌握方法。
五、教学过程与设计1. 导入新课通过回顾之前学习的因式分解知识,引出公因式的概念,并提出问题激发学生的兴趣。
2. 讲解公因式定义明确公因式的定义,并通过实例让学生理解公因式的含义。
3. 演示提取公因式方法通过具体的例子,演示直接提取法和分组分解法的操作步骤,让学生跟随操作,加深理解。
4. 学生自主练习设计相关练习题,让学生独立完成,通过实践巩固提取公因式的方法。
湘教版七下数学3.2提公因式法(第1课时)说课稿
![湘教版七下数学3.2提公因式法(第1课时)说课稿](https://img.taocdn.com/s3/m/b18ea33c26d3240c844769eae009581b6ad9bd04.png)
湘教版七下数学3.2提公因式法(第1课时)说课稿一. 教材分析湘教版七下数学3.2提公因式法是本册书中的重要内容,它主要介绍了提公因式法在因式分解中的应用。
这部分内容是学生学习因式分解的基础,也是进一步学习更复杂因式分解方法的前提。
教材通过具体的例子,引导学生发现提公因式法的规律,让学生通过自主探究、合作交流的方式,掌握提公因式法的基本步骤和应用。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法,对因式分解有一定的了解。
但他们在运用提公因式法进行因式分解时,往往会存在对公因式的确定不准确,以及对提公因式法的应用范围把握不清的问题。
因此,在教学过程中,我需要关注学生的这些认知困惑,并通过具体的例子,引导学生理解和掌握提公因式法。
三. 说教学目标1.知识与技能目标:让学生掌握提公因式法,并能运用提公因式法进行因式分解。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心。
四. 说教学重难点1.教学重点:让学生掌握提公因式法的基本步骤和应用。
2.教学难点:如何引导学生确定公因式,以及如何判断运用提公因式法的适用范围。
五. 说教学方法与手段在教学过程中,我将采用自主探究、合作交流、启发引导等教学方法。
同时,利用多媒体教学手段,为学生提供丰富的学习资源,帮助学生更好地理解和掌握提公因式法。
六. 说教学过程1.导入:通过一个具体的例子,让学生尝试进行因式分解,引发学生对提公因式法的思考。
2.自主探究:让学生通过小组合作,探讨如何运用提公因式法进行因式分解,引导学生发现提公因式法的规律。
3.讲解与演示:对提公因式法的基本步骤进行讲解,并通过具体的例子,让学生观察和理解公因式的确定方法。
4.练习与反馈:设计一些练习题,让学生运用提公因式法进行因式分解,及时发现和纠正学生在运用过程中出现的问题。
5.总结与拓展:对本节课的内容进行总结,引导学生思考提公因式法在实际问题中的应用。
14.3.1 提公因式法 说课稿-河北省人教版数学八年级上册
![14.3.1 提公因式法 说课稿-河北省人教版数学八年级上册](https://img.taocdn.com/s3/m/a647b447854769eae009581b6bd97f192279bfb1.png)
14.3.1 提公因式法说课稿-河北省人教版数学八年级上册一、教材分析1. 教材内容概述本节课是河北省人教版数学八年级上册的第14章“因式分解与整式运算”中的第3节“提公因式法”。
这一章主要包括因式分解和整式运算两个部分,其中提公因式法是因式分解的基本方法之一。
通过本节课的学习,学生将学会如何利用提公因式法进行因式分解。
2. 教学目标•知识与能力:–掌握提公因式法的基本概念和方法;–能够运用提公因式法进行因式分解;–理解提公因式法的应用场景。
•过程与方法:–通过教师讲解、示例演示和练习等多种教学方法,激发学生的学习兴趣和积极性;–培养学生分析问题、解决问题的能力。
3. 教学重点与难点•教学重点:–掌握提公因式法的基本概念和方法;–能够运用提公因式法进行因式分解。
•教学难点:–培养学生运用提公因式法解决实际问题的能力。
二、教学过程1. 引入新知识通过提问的方式引入新知识:“大家还记得如何进行因式分解吗?有哪些方法可以用来进行因式分解?”学生回答后,教师引导学生回顾因式分解的基本概念,解释因式分解在数学中的应用。
2. 学习提公因式法教师通过讲解提公因式法的基本概念和方法,通过示例演示的方式引导学生掌握提公因式法的具体步骤。
教师在讲解中强调几个关键点: - 提公因式法是指将多个式子中的公因式提取出来,起到因式分解的作用; - 提公因式法的关键是要找出每个式子所有项的公因式; - 提取公因式时,需要注意系数的处理; - 最后将提取出来的公因式与剩下的部分组合,得到因式分解的结果。
3. 练习与巩固教师设计一些练习题,引导学生进行思考和解答。
练习的题目种类应包括基础题和拓展题,以巩固学生的基本概念和能力,并培养学生解决实际问题的能力。
4. 拓展与应用通过一些拓展题目和应用题,让学生了解提公因式法在实际问题中的应用。
教师可以引导学生分析问题,找出问题中的关键信息,然后运用提公因式法解决问题。
5. 小结与反思教师对本节课的内容进行小结,并引导学生进行反思。
湘教版数学七年级下册《3.2提取公因式法(1)》说课稿
![湘教版数学七年级下册《3.2提取公因式法(1)》说课稿](https://img.taocdn.com/s3/m/e88ebf1e32687e21af45b307e87101f69f31fb4b.png)
湘教版数学七年级下册《3.2提取公因式法(1)》说课稿一. 教材分析湘教版数学七年级下册《3.2提取公因式法(1)》这一节,主要介绍了提取公因式法的基本概念、方法和应用。
通过本节课的学习,使学生掌握提取公因式法的基本原理,能够正确运用提取公因式法进行因式分解,为后续学习更高级的数学知识打下坚实的基础。
本节课的内容主要包括:提取公因式法的概念、提取公因式法的基本步骤、提取公因式法的应用实例等。
教材通过丰富的例题和练习题,帮助学生理解和掌握提取公因式法,提高解题能力。
二. 学情分析学生在学习本节课之前,已经学习了整式的加减、乘法等基础知识,对整式的运算法有了初步的了解。
但学生对提取公因式法这一概念可能比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对因式分解这一概念有一定的了解,但提取公因式法是因式分解的一种特殊形式,学生需要通过对比和分析,理解提取公因式法的特点和应用。
三. 说教学目标1.知识与技能目标:学生能够理解提取公因式法的概念,掌握提取公因式法的基本步骤,能够正确运用提取公因式法进行因式分解。
2.过程与方法目标:通过实例分析和练习,学生能够培养逻辑思维能力,提高解决问题的能力。
3.情感态度与价值观目标:学生能够体验到数学的乐趣,增强对数学学科的兴趣,培养积极的学习态度。
四. 说教学重难点1.重点:提取公因式法的概念和基本步骤。
2.难点:如何正确运用提取公因式法进行因式分解,以及提取公因式法的应用。
五. 说教学方法与手段本节课采用讲授法、实例分析法、练习法等教学方法。
通过教师的讲解和引导,使学生理解提取公因式法的概念和步骤;通过实例分析和练习,让学生亲自动手操作,培养学生的实践能力。
同时,利用多媒体教学手段,如PPT、视频等,丰富教学形式,激发学生的学习兴趣。
六. 说教学过程1.导入:通过复习整式的加减、乘法等基础知识,引出提取公因式法这一概念。
2.讲解:讲解提取公因式法的概念、基本步骤和应用实例。
提公因式法说课稿
![提公因式法说课稿](https://img.taocdn.com/s3/m/6060197b0622192e453610661ed9ad51f01d5482.png)
提公因式法说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《提公因式法》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这七个方面来展开我的说课。
一、教材分析《提公因式法》是初中数学整式运算中的重要内容,它是因式分解的基本方法之一。
本节课是在学生学习了整式乘法的基础上进行的,为后续学习其他因式分解方法以及分式运算等知识奠定了基础。
通过本节课的学习,学生将掌握提公因式法的概念和方法,能够熟练地将多项式分解因式,提高学生的运算能力和逻辑思维能力。
同时,因式分解在数学中有着广泛的应用,如解方程、化简代数式等,因此本节课具有重要的地位和作用。
二、学情分析在学习本节课之前,学生已经掌握了整式的乘法运算,对乘法分配律有了一定的认识和理解。
但是,对于因式分解的概念和方法,学生还比较陌生,需要通过具体的例子和练习来引导学生逐步掌握。
此外,八年级的学生正处于思维活跃、好奇心强的阶段,他们具备一定的自主探究能力和合作交流能力。
在教学过程中,应充分发挥学生的主体作用,让学生通过观察、思考、讨论等活动,主动地获取知识。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解提公因式法的概念,掌握提公因式法分解因式的方法。
(2)能够准确地找出多项式各项的公因式,并熟练地运用提公因式法将多项式分解因式。
2、过程与方法目标(1)通过观察、分析、类比等活动,培养学生的观察能力、分析能力和归纳能力。
(2)通过小组合作交流,培养学生的合作意识和交流能力。
3、情感态度与价值观目标(1)让学生在探索提公因式法的过程中,体验数学活动的乐趣,增强学习数学的自信心。
(2)通过因式分解在实际问题中的应用,让学生感受数学与生活的密切联系,培养学生的应用意识。
四、教学重难点教学重点:掌握提公因式法分解因式的方法。
教学难点:准确地找出多项式各项的公因式。
五、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用以下教学方法:(1)启发式教学法:通过设置问题,引导学生思考,激发学生的学习兴趣和求知欲。
提公因式法说课稿
![提公因式法说课稿](https://img.taocdn.com/s3/m/f04151b267ec102de2bd89a1.png)
..提公因式法说课稿————————————————————————————————作者:————————————————————————————————日期:4.2.1《提公因式法》说课稿茂名市第二十中学黄玉婵各位评委、老师下午好!今天我说课的题目是《提公因式法》,选自北师大版八年级下册第四章《因式分解》中的第二节内容。
根据新课标理念,我将从教材分析、教学方法、教学过程、教学反思四个方面进行说明.【教材分析】一、教学内容1.多项式的公因式;2.用提公因式法分解因式.二、教材的地位和作用本节课多项式的因式分解是代数式的重要内容,它与前面所学的整式及后面的分式有着极密切的联系.本章的学习建立在整式四则运算的基础上,而因式分解的内容在分式通分、约分,解方程及三角函数式恒等变形等方面有直接的运用.本节课讲授的提公因式法是因式分解中的第一种方法,也是最基本的方法.三、教学目标根据教学大纲要求,又结合学生的认知规律,我制定了以下的教学目标:1.知识与技能:会用提公因式法进行因式分解.2.过程与方法: (1)经历探索多项式各项公因式的过程,会确定公因式;会用提取公因式法把多项式分解因式;(2)进一步了解分解因式的意义,并渗透化归的思想方法. 3.情感与价值观:培养学生独立思考的习惯,同时培养合作交流意识.四、教学重点、难点根据学生对知识的理解和掌握的差异,又结合大纲要求,我制定了以下重难点:教学重点:会运用提公因式法把多项式因式分解.教学难点:准确找出多项式各项的公因式,理解提公因式法的依据.【教法分析】启发式教学、探究式教学为了使学生在知识以及能力上都有所提高,本节课我采用启发式教学和探究式教学的方法.根据学生的认知规律,为学生创设合适的学习情景,引导学生自主探究,积极参与课堂活动,从而培养学生的探究的精神以及学习探究的方法.【教学过程】一、 复习回顾,引入新课计算提问: 你是用什么方法计算的? 这个式子各项有相同因式吗?设计意图: 让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔.二、 自主探究,合作交流活动一: 想一想(阅读课本95页)1、多项式 中,各项有相同因式吗?多项式呢? 多项式 呢? 2、公因式:把多项式各项都含有的___ ___ 叫做这个多项式的公因式.设计意图:在学生能顺利地寻找数的公因数之后,再引导学生采用类比的方法在多项式中寻找相同因式.从而,引导学生归纳出公因式的定义.活动二: 议一议(1)多项式 中各项公因式是什么?(2)多项式 中各项公因式是什么?提问:你认为怎样确定一个多项式的公因式?确定公因式的方法:定系数:公因式的系数是多项式各项系数的最大公约数;定字母:字母取多项式各项中都含有的相同的字母;定指数:相同字母的指数取各项中最小的一个,即最低次幂;设计意图:让学生互相讨论,寻找简单到复杂的公因式;教师引导学生归纳出确定多项式各项公因式的方法,培养学生初步归纳能力.285985-1585⨯+⨯⨯mb ma +x x +23bnb mb -+23262x x +23262y x y x +2 2 定系数 定字母 定指数所以,公因式是提公因式法:如果一个多项式的各项含有公因式,那么就可以把公因式提出来从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.三、 研究方法,形成思路例:把下列各式因式分解.提公因式法因式分解的步骤:(1)找出公因式(2)将多项式化成两个因式乘积的形式设计意图:对所学新知识进一步的巩固,使学生更系统、更清晰的认识用提公因式法分解因式的过程,进而转化成一种数学技能.四、 当堂测试,巩固新知1、下列多项式因式分解正确吗? 试说明理由.(1) 解: xx x ab c ab b a x x x x 281224)4(128)3(217)2(3123323233-+-+--+)(2218121xy y x +)(x x x 262223++)(xzxy x -+2-3)(221812xy y x +)6432y xy x +=(3262x x + x3262x x +解:)31(23212222x x x x x +=⋅+⋅=22x(2) 解: (3) 解:温馨提示:(1)公因式要提尽 (2)小心漏项 (3)多项式的首项取正号设计意图:练习一的设置体现了改正错误的过程,就是知识提升的过程,这种方式能加强学生的记忆,使学生能更准确的运用提公因式法分解因式.2、将下列各式因式分解:设计意图:练习二的设置从易到难,不断深入,巩固新知.五、 小结归纳,布置作业(一)、在小结归纳中我将从学生的知识,方法和体验入手,带领学生从以下四个方面进行小结:1.公因式的定义.2. 提公因式法分解因式步骤(分两步).3.确定公因式的方法.4.用提公因式法分解因式应注意的问题:(1)公因式要提尽 (2)小心漏项 (3)多项式的首项取正号(二)、布置作业:1. P96第1题.2.补充思考题:已知 , ,求代数式的值.设计意图:课本练习有利于提高学生对知识的理解,较好的把握本节课的主要内容,是为了更好的提高数学应用,思考题是让学生感受指数的用途,激发学生的兴趣.)322x x x +=(xx x 26223++xz xy x -+2-)(-z y x x -+=b ab b a xy x x m m mbma 95-)4(284)3(64)2(123223+--+--+)(22222ab b a b a ++3=+b a 2=ab六、板书设计公因式定义确定公因式的方法提公因式法分解因式的步骤4.2.1提公因式法当堂练习讲解例题讲解【教学反思】以上四个环节环环相扣,层层深入,并充分体现我与学生的交流互动。
《提公因式法》说课稿
![《提公因式法》说课稿](https://img.taocdn.com/s3/m/14e60a5fcf84b9d529ea7a16.png)
《提公因式法》说课稿曲石中学聂根能一、教材分析1、教材的地位和作用《提公因式法》是九年义务教育人教版数学教材八年级上册第十五章整式的乘除与因式分解第四节第一课时的内容。
《提公因式法》是因式分解中最基本的,也是最重要和常用的方法。
是学生在学习了整式运算和因式分解的意义之后,进一步学习因式分解三种基本方法之一的内容,是数学中一种重要恒等变形。
它不仅是整式运算的延伸和拓展,同时也是学习分式的运算、解分式方程等内容学习的基础,具有承上启下的作用。
因此,学习并掌握好本节课的内容,对培养和训练学生的双向思维,特别是逆向思维方式有着极其重要的意义。
2、学习目标根据学生现有的知识水平,依据新课程标准的要求,结合本课教材的地位和作用,确定本节课的教学目标为:(1)知识与技能目标:学生通过问题情境理解公因式的意义,并且掌握用提公式法把多项式分解因式。
(2)过程与方法:①学生经历探索多项式各项公因式的过程,培养学生的观察、比较分析、综合等能力,能应用学过的知识去解决新的问题。
②进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法。
(3)情感态度和价值观:鼓励学生积极参与“教”与“学”的整个过程,激发学生的求知欲,体验求知的成功,增强探究新知识的兴趣和信心。
3、教学重点、难点根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:(1)学生能确定多项式中各项的公因式;(2)学生能用提公因式法把多项式分解因式。
难点:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。
二、学情分析学情是教师确定教学重点,难点,选择教学方法和手段的依据,本节课学情主要有:1、学生已经学习了整式乘法及因式分解的意义,有了初步的逆变形思维具备一定的分析、判断和运用法则的意义,对乘法的分配律也得到了进一步的理解。
2、八年级学生好奇心强,对新内容感兴趣,但学习急于求成,同时主动性和目地性不够明确,学习方法还比较欠缺,特别是符号问题,这对学生学习本节课内容带来一定的难度,因此,在教学中教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。
提公因式法说课稿
![提公因式法说课稿](https://img.taocdn.com/s3/m/86700a192af90242a895e5b6.png)
提公因式法说课稿
初二《提公因式法》说课教案
一、说教材
1、教材的地位和作用
因式分解是进行代数恒等变形的重要手段之一,它是在学习有理数和整式四则运算的基础上进行的,因式分解不仅在多项式的除法、简便运算中有直接作用,也为以后学习分式运算、解方程、方程组及代数式的恒等变形提供了必要的基础。
进行因式分解的途径很多,技巧性强,逆向思维能力要求较高。
所以因式分解是发展学生智力、培养能力、深化学生的逆向思维能力的良好载体。
“提取公因式法”是初中《代数》第二册“因式分解”一章的重点内容之一,是学生学完因式分解的第一种分解因式的方法。
是最基本也是最重要的因式分解方法。
应该培养学生的观察、分析、判断能力和预见能力。
2、教学目标
课时教学目标对课堂教学起着导向作用、激励作用和标准作用,研究教材的一个重要内容是为了制定明确、具体、可行的教学目标。
本节教材主要讲解提公因式法,共分三个课时完成,这是第一课时,该课时主要学习公因式是单项式时,如何找出各项的公因式,和会用提公因式法分解因式。
根据大纲和教材的要求,结合目标分类理论和学生实际,制定目标如下:
(1)知识目标
学会如何找公因式并能掌握提取公因式法的分解方法与步骤。
(2)能力目标。
提取公因式法说课稿
![提取公因式法说课稿](https://img.taocdn.com/s3/m/faefc57002768e9951e738e0.png)
一、教材分析:(一)教材所处的地位这节课是义务教育课程标准实验教科书八年级下册第二章第二节《提公因式法》第一课时。
学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。
它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用⏹(二)根据课程标准,教材的编写意图确定以下几个目标:A:知识与技能目标:1、了解因式分解的意义,会用提公因式法进行因式分解.2、B:过程与方法目标:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法C:情感与价值观目标:培养学生独立思考的习惯,同时又要培养大家合作交流意识。
二、本课内容及重点、难点分析:⏹根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式 x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;设置了对比整式的乘法来探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.学习分解因式的作用主要是为后继学习方程与多项式的恒等变形作准备,虽然内容简单,课时也较少,但是,分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法(发现问题比解决一个问题更重要).本课的教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来。
提取公因式法说课稿
![提取公因式法说课稿](https://img.taocdn.com/s3/m/fa89c3cb08a1284ac850436f.png)
9.13(1)提取公因式法(1) 说课稿金沙中学方正一、教材分析1、地位与作用。
本次说课的内容是数学第九章第13小节《提取公因式法》的第一课时。
多项式的因式分解是代数式恒等变形的基本形式之一,它是学习下一章节《分式》的基础,是我们解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解决实际问题的技能,发展学生的思维能力,都有着十分独特的作用.就本节内容而言,着重阐述了两个方面:一是因式分解的概念,以及它与整式乘法的互逆关系;二是理解什么叫多项式的公因式,掌握用提取公因式法来分解因式。
因式分解的概念是建立在整式乘法的基础之上的。
通过类比整式乘法与因式分解这两种恒等变形,既能验证因式分解的结果的正确性,又能为其他因式分解的方法提供参考,为其后的公式法、十字相乘法、分组分解法作好了充分的准备,也为《分式》一章的学习打下基础。
因此,本节课起到了承上启下的作用。
2、教学目标。
通过将因式分解和整式乘法这两种代数恒等变形进行类比,体会整式乘法与因式分解的互逆关系,理解因式分解的意义;在讨论因式分解的方法的过程中,掌握提取公因式这种基本的因式分解的方法,会找公因式、提公因式,并能用整式乘法验证结果的正确性;让学生在分析、探究与讨论中,培养合作学习的能力,获得成功体验,克服对抽象的代数公式的畏惧感,同时培养了严谨的学习习惯,更渗透了类比思想、化归思想。
3、教学重点与难点。
重点是理解因式分解的概念,掌握运用提取公因式法把多项式因式分解.因为这一节是学习因式分解的开头,当然要把概念理解透彻,熟练掌握以乘法的分配律为依据,先找公因式,再提取公因式,最后用整式乘法来检验因式分解的正确性。
难点是理解因式分解与整式乘法的相互关系,以及如何确定多项式中各项的公因式。
因为学生由乘法到因式分解的变形是一个逆向思维。
在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。
人教版数学九年级上册《提公因式法解方程》说课稿
![人教版数学九年级上册《提公因式法解方程》说课稿](https://img.taocdn.com/s3/m/42ec9616842458fb770bf78a6529647d272834c1.png)
人教版数学九年级上册《提公因式法解方程》说课稿一. 教材分析《提公因式法解方程》是人教版数学九年级上册的一节重要内容。
这节课的主要内容是利用提公因式法解一元二次方程。
在这之前,学生已经学习了因式分解和一元二次方程的解法,为本节课的学习打下了基础。
本节课的内容不仅巩固了学生对因式分解的理解,还提高了他们解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对因式分解和一元二次方程的解法有一定的了解。
但他们在解决实际问题时,还存在着一定的困难。
因此,在教学过程中,我将以学生为主体,引导学生主动探索,提高他们解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够掌握提公因式法解一元二次方程的方法,并能够灵活运用。
2.过程与方法目标:通过小组合作、讨论交流,培养学生解决问题的能力和团队协作精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:提公因式法解一元二次方程的步骤和应用。
2.教学难点:如何引导学生发现并运用提公因式法解方程,以及如何判断方程是否可以使用提公因式法解。
五. 说教学方法与手段在这节课中,我将采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生主动探索;通过案例分析,让学生深入了解提公因式法解方程的过程;通过小组合作,培养学生团队协作的能力。
六. 说教学过程1.导入新课:以一个实际问题引入,让学生尝试解决,发现无法直接解决,从而引出提公因式法解方程的方法。
2.讲解新课:通过一个具体的案例,讲解提公因式法解一元二次方程的步骤,让学生理解和掌握。
3.巩固新知:让学生通过小组合作,解决一些类似的方程,加深对提公因式法的理解。
4.拓展与应用:让学生尝试解决一些更复杂的方程,提高他们运用提公因式法解方程的能力。
5.总结与反思:让学生总结提公因式法解方程的步骤,反思自己在解题过程中的优点和不足。
提公因式法说课稿
![提公因式法说课稿](https://img.taocdn.com/s3/m/2e16ee38f4335a8102d276a20029bd64783e62c9.png)
提公因式法说课稿《提公因式法说课稿》嗨,同学们!今天我要和大家来说一说提公因式法,这可超级有趣呢!我呀,最开始接触这个提公因式法的时候,那真是一头雾水。
就像在一个大迷宫里,根本不知道往哪儿走。
你们有没有过这种感觉呀?比如说,看到那些长长的多项式,像什么3x² + 6x,哎呀,这可怎么化简呢?当时我就想,这数学是不是在故意为难我呀,哼!不过呢,后来我就慢慢发现了提公因式法的小秘密。
这提公因式法就像是一个神奇的魔法棒。
咱们先来看这个多项式3x² + 6x,这里面3x就是那个公因式呢。
怎么找到公因式呢?这就像我们在一群小伙伴里找相同特点的人一样。
对于3x²和6x,3是它们数字部分能被整除的最大数,x是它们都有的字母部分,而且x的最低次幂是1次,所以3x就是公因式啦。
我记得我和同桌讨论这个的时候,同桌还不信呢。
同桌说:“你怎么就确定3x是公因式呀?我看就随便乱凑的。
”我就着急地说:“才不是呢!你看啊,如果把3x²写成3x乘以x,6x写成3x乘以2,这样不就很明显了嘛。
”同桌听我这么一说,眼睛一下子就亮了,说:“哎呀,好像是这么回事呢!”这就像我们解开了一个小谜团一样,心里可高兴啦。
那找到了公因式3x之后呢,我们就可以用提公因式法来化简这个多项式啦。
3x² + 6x 就可以写成3x(x + 2)。
哇,一下子这个多项式就变得简单多啦。
这就好比我们把一堆乱七八糟的东西,按照相同的类别整理好了,放在不同的盒子里,看起来就清爽多了。
再举个例子吧,像5x³ - 10x²。
我们来找找公因式。
数字部分5是最大能被整除的数,字母部分x的最低次幂是2次,所以公因式就是5x²。
那这个多项式用提公因式法化简后就是5x²(x - 2)。
这多简单呀!咱们在课堂上,老师还让我们做了好多这样的练习题呢。
有个同学就老是做错,他做2x²y + 4xy²的时候,找公因式找成了2xy²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用提公因式法进行因式分解一、设计说明(一)教材分析:这节课是义务教育课程标准青岛版教科书八年级上册第二章第三节《用提公因式法进行因式分解》。
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且因式分解是通分、约分所必备的基础知识;在解一元二次或高次方程、方程组、不等式中,因式分解是一种重要的解法;在研究代数式、三角式的恒等变形中,分解因式是主要手段之一;在数的计算中,因式分解也是进行简便计算的一种常用技巧。
本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力等方面。
因此,分解因式这一章在整个教材中起到了承上启下的作用(二)学生分析:学情是教师确定教学重点,难点,选择教学方法和手段的依据,本节课学情主要有:1、学生已经学习了整式乘法及因式分解的意义,有了初步的逆变形思维具备一定的分析、判断和运用法则的意义,对乘法的分配律也得到了进一步的理解。
2、八年级学生好奇心强,对新内容感兴趣,但学习急于求成,同时主动性和目地性不够明确,学习方法还比较欠缺,特别是符号问题,这对学生学习本节课内容带来一定的难度,因此,在教学中教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。
(三)目标分析A:知识与技能目标:1、了解因式分解的意义,会用提公因式法进行因式分解.2、理解因式分解与整式乘法的联系与区别.B:过程与方法目标:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法C:情感与价值观目标:培养学生独立思考的习惯,同时又要培养大家合作交流意识。
(四)教法分析:针对初二年级学生的知识结构和心理特征,本节课选择独立思考——合作交流法.就是让学生共同讨论,并用类比推理的方法学习.的方法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
1、学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验与交流等数学活动,让学生看、说、讨论、总结,从而真正有效地理解和掌握知识。
2、辅助策略:借助多媒体,使学生直观形象地观察、讨论和交流。
3、演示法:把做好的幻灯片演示给学生看,使学生直观、具体、形象有对比地经历从整式乘法到因式分解的这种互逆变形的过程,理解提公因式法分解因式与单项式乘以多项式的互逆关系,从而使学生不仅能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.4、实验法:让学生自主探索寻找公因式的方法,通过找公因式逆用乘法分配律因式分解,从而找到提公因式法分解因式。
5、讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。
6、练习法:精心设计随堂练习,使学生的知识水平得到恰当的发展二、具体的实施过程(一)创设情境:在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数.例如:15=3×5 42=2×3×7.那么,形如ma+mb+mc的多项式如何化成几个整式乘积的形式呢?这一节就是学习如何把一个多项式化成几个整式的积的方法.(二)研讨探究:1、观察思考:m(a+b)=ma+mb(a+b)(a-b)= 22a b2()a b ±=222a ab b ±+老师再给出三个等式,观察比较,这两组等式有什么特点? ma+mb = m(a+b)22a b -=(a+b)(a -b)222a ab b ±+=2()a b ±结论:(1)前三个等式是整式的乘法运算,而后三个等式的过程与前三个整式的乘法运算相反。
(2)前三个等式是整式的积化和差,而后三个等式是和差化积。
因此,我们把和差化积的形式称为因式分解。
即多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.2.探索新知(1)定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc =m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc .让学生说出因式分解与整式乘法的联系与区别.练一练:下列等式中,哪些从左到右的变形是乘法运算,哪些是因式分解? ①1+2x+23x =1+x(2+3x) ②3x(x+y)= 23x +3xy ③26a b +23ab -ab=ab(6a+3b -1) ④3xy -24x y +225x y =xy(3-4x+5xy)结论:因式分解和整式乘法的过程正好相反,它们是互逆的关系。
(2)公因式:∵m(a+b)=ma+mb可知m是ma+mb各项都含有的相同的因式∴m就是ma+mb的公因式。
定义:一个多项式中每一项都含有的因式是这个多项式的公因式。
3.应用举例例1.指出下列各多项式中各项的公因式:(1)ax+ay+a (a)(2)3mx-26mx (3mx)(3) 24a +10ah (2a)(4) 22(xy)x y xy(5)12xyz-229x y (3xy)学生在自己的学案上完成。
请同学们总结一下如何找公因式?小组讨论,合作交流(组内讨论解决,也可与其他组讨论解决)。
最后归纳得出结论:提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的方法:公因式应是各项系数的最大公因数与各项都含有的相同字母的最低次幂的积。
例2:分解因式解:322210a bc15a b c(分析:公因式25a bc)原式=25a bc•3b5a bc•2ac+2=25a bc (2ac+3b)如何检验分解因式的正确性呢?利用乘法运算一下。
例3:分解因式(1)215a b +3ab8a (2) 26a-3(3)-26xy-2xy (4)-3ax+6ab-12ay4x y +2解:(1)原式=2 2a•3-22a•4a=22a (3-4a)(2)原式=3ab•5a+3ab•1=3ab(5a+1)注:提取3ab后,括号里第二项1不能漏掉。
(3)原式=-(26xy+2xy)=-(2xy•2x-2xy•3y+2xy•1)4x y-2=-2xy(2x-3y+1)第一项带负号,应先提取负号。
(4)由学生口述完成。
(三)反思拓展对于多项式a(m+n)+b(m+n),如果设c=m+n,那么这个式子就变为ac+bc,我们就可以提取公式法因式分解了.例1 2a(b+c)-3(b+c)分解因式.分析:这个多项式中的b+c是二项式,如果设b+c=m,则原式可变为2a(b+c)-3(b+c)=2am-3m.这样,就把问题归结为公因式是单项式的因式,可以用提取公因式法进行因式分解了.解设b+c=m,则2a(b+c)-3(b+c)=2a•m-3•m=m(2a-3)=(b+c)(2a-3)指出:在把形如例1的多项式因式分解时,只需把(b+c)看作一个整体,作为公因式提出即可,可以不写出辅助元.(口答)说出下列各多项式中各项的公因式:(1)2m(a-b)-3n(a-b);(2)(3m-2)x+3(3m-2)y;(3)(y+5)(y-2)-(y+5);(4)4n(a+b)(a-b)-5()2+;a b答:(1)a-b;(2)3m-2;(3)y+5;(4)a+b.[设计意图]在此环节中,学生先独立完成学案,遇到问题组内讨论解决,解决不了的可到其他组讨论解决。
精讲点拨:对于找公因式学生在展示出现问题时,教师要及时地引导、点拨,进行拓展与变化,要在课堂中引起讨论,激发学生的思维,让学生从本质上解决问题。
精讲点拨可以由教师讲,也可以由学生讲,是一个归纳、发展与提升的过程。
例2 把6(x-2)+x(2-x)分解因式.分析:(x-2)与(2-x)只差一个符号,如果把2-x 变号,即2-x=-(x-2),原多项式就有公因式(x-2)了.解: 6(x-2)+x(2-x)=6•(x-2)-x •(x-2)=(x-2)(6-x).问:下列各题中的每两个多项式之间有什么关系?(1)a+b 与-a-b ; (2) ()2a b -与()2b a -;(3) ()3a b -与()3b a -; (4) ()()n n a b b a --与.学生讨论后总结:(1)因为-a-b=-(a+b),所以a+b 与-a-b 互为相反数;(2)因为()()()222b a a b a b -=--=-⎡⎤⎣⎦,所以()()22a b b a -=-;(3)因为()()33b a a b -=--⎡⎤⎣⎦,所以()()33b a a b -=--;(4)当n 为偶数时,两式相等;当n 为奇数时,两式互为相反数.(四)达标检测:1、(口答)指出下列各多项式中各项的公因式:(1)3m(x-y)- ()229m y x -;(2)10(x-y)2+()36y x -;(3) ()()2225m x y 10m y x ---;大部分同学都能通过分析找出公因式,但在具体的问题中,还是有些同学找不准,问题的关键在于没有抓住公因式的本质.在这个问题中,它们两个式子都有互为相反数的因式,那么应把某一个因式进行提取负号,准确找到公因式,学生对此比较难理解,应该多花一点时间进行练习.2、习题2.3A组2,3(五)课堂小结(学生总结)1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.(六)作业布置:互动同步P1—5题29三、效果分析教学活动是学生与教师的双边活动,在这个过程中,学生应是学习的主体,教师应启发、指导学生进行探索活动,而不应越俎代庖.在提公因式的教学中,很容易演变成以教师的灌输式教学为主,而学生主要是进行模仿练习,从知识的掌握上看,这种做法更有效,更快,但学生的探究能力和意识没有提高,数学思想方法渗透也不充分,最后导致的是学生数学素养的降低.而本节课根据学生的知识结构,采用:提出问题—实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,从而使学生的观察、归纳、类比、概括、逆向思考等能力都得以发展。