CAN总线资料汇总

合集下载

can总线知识点梳理

can总线知识点梳理

can总线知识点梳理CAN总线是一种串行通信网络,用于实现分布式实时控制。

它是由德国的BOSCH公司开发的,具有传输速度快、通信距离远、无损位仲裁机制、多主结构等优点。

CAN总线标准只规定了物理层和数据链路层,需要用户自定义应用层。

CAN总线采用差分电压传送,使用两条信号线(CAN_H和CAN_L),静态时均为2.5V左右,显性时,通常电压值为:CAN_H=3.5V,CAN_L=1.5V。

在CAN总线中,多个节点连接,只要有一个为低电平,总线就为低电平,只有所有节点输出高电平时,才为高电平。

CAN总线有5个连续相同位后,就插入一个相反位,产生跳变沿,用于同步,从而消除累积误差。

CAN总线的数据帧结构包括帧起始、仲裁段、控制段、数据段、CRC校验段、应答段和帧结束。

其中,仲裁段决定了报文的优先级,ID值越低,优先级越高。

控制段中包含数据长度代码(DLC),表示数据段的长度。

数据段包含发送的数据,可以有0~8个字节。

此外,CAN总线还支持扩展帧和标准帧两种格式,IDE位表示帧类型(0为标准帧,1为扩展帧),RTR位表示帧类型(0为数据帧,1为远程帧)。

在实际应用中,MCU负责实现对功能电路和CAN控制器的控制,包括初始化CAN控制器参数、通过CAN控制器读取和发送CAN 帧、处理CAN控制器的中断异常、根据接收到的数据输出控制信号等。

同时,接口管理逻辑解释MCU指令,寻址CAN控制器中的各功能模块的寄存器单元,向主控制器提供中断信息和状态信息。

在具体的CAN应用场景中,如汽车行业,现在每一辆汽车上都装有CAN总线。

同时,为了实现不同的功能,不同的CAN标准仅物理层不同,而应用层协议也有多种选择,如CANOpen、DeviceNet、J1939、iCAN等。

CAN总线简介(2024版)

CAN总线简介(2024版)
目前汽车上的网络连接方式主要采用2条CAN, 一条用于驱动系统的高速CAN,速率达到500kb/s; 另一条用于车身系统的低速CAN,速率是100kb/s。
驱动系统的高速CAN
• 驱动系统CAN主要连接对象是发动机控制器 (ECU)、ABS控制器、安全气囊控制器、 组合仪表等等,它们的基本特征相同,都是 控制与汽车行驶直接相关的系统。
倍。这种传统布线方法不能适应汽车的发展。CAN总线可有效减少线束,节省空间。
例如某车门-后视镜、摇窗机、门锁控制等的传统布线需要20-30 根,应用总线 CAN 则
只需要 2 根。(3)关联控制在一定事故下,需要对各ECU进行关联控制,而这是传统
汽车控制方法难以完成的表1 汽车部分电控单元数据发送、接受情况
• (5)直接通信距离最远可达10km(速率5Kbps以下)。
• (6)通信速率最高可达1MB/s(此时距离最长40m)。
• (7)节点数实际可达110个。
• (8)采用短帧结构,每一帧的有效字节数为8个。
• (9)每帧信息都有CRC校验及其他检错措施,数据出错 率极低。
• (10)通信介质可采用双绞线,同轴电缆和光导纤维,一 般采用廉价的双绞线即可,无特殊要求。
可靠性高:传输故障(不论是由内部还是外部引起 的)应能准确识别出来 使用方便:如果某一控制单元出现故障,其余系统 应尽可能保持原有功能,以便进行信息交换 数据密度大:所有控制单元在任一瞬时的信息状态 均相同,这样就使得两控制单元之间不会有数据偏 差。如果系统的某一处有故障,那么总线上所有连 接的元件都会得到通知。 数据传输快:连成网络的各元件之间的数据交换速 率必须很快,这样才能满足实时要求。
• (2)网络上的节点(信息)可分成不同的优先级,可以满 足不同的实时要求。

Can总线资料

Can总线资料

分析讨论题1、工业通信的特点;(实时、周期与非周期、短帧、方向比较固定)实时性要求高,要有本质安全性能,开放性通信,总线供电,对宽带要求不高,周期与非周期信息同时存在,信息流向的单一性较强。

2、串行总线为什么大部分采用差分电压信号传输?在单端信号传输方式下,线路受到电磁辐射干扰而产生共模电流时,磁场被叠加变成较高的线路阻抗,这样虽然降低了干扰,但有效信号也被衰减了。

而在差动传输模式下,共模干扰被磁芯抵消,但不会产生额外的线路阻抗。

换句话说,差动传输方式下使用共模扼流线圈,既能达到抗干扰的目的,又不会影响信号传输。

差分信号传输体系中,传输线路无需屏蔽即可取得很好的抗干扰性能,降低了连接成本。

与传统的单端传输方式相比,这种技术具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆,最高传输速率可达1.923Gbps。

Intel 倡导的第三代I/O技术(3GIO),其物理层的核心技术就是差分信号技术。

3、比特率和波特率有什么不同?信号在信道中的传播速度是?比特率是信息传递速率的一个简称,又称传信率。

它定义为单位时间内传递的平均信息量或比特数,单位是比特、秒,简记为b/s,或者bps。

波特率也叫码元传输率Rb,又称传码率。

定义为在信息传输通道中,携带数据信息的信号单元叫码元,每秒在传输递道中传送码元的数目,单位为波特(Baud),简记为B。

波特率与比特率的关系为:比特率=波特率X单个调制状态对应的二进制位数。

两相调制(单个调制状态对应1个二进制位)的比特率等于波特率;四相调制(单个调制状态对应2个二进制位)的比特率为波特率的两倍;八相调制(单个调制状态对应3个二进制位)的比特率为波特率的三倍;依次类推。

信号在信道中传播速度是信号在单位时间内传送的距离。

传播速度接近于光速,因传播媒质不同有所不同。

5、信道与信号6、Canbus的冲突仲裁如何实现?CAN总线以报文为单位进行数据传送,报文的优先级结合在11位标识符中,具有最低二进制数的标识符有最高的优先级。

CAN总线知识点概述

CAN总线知识点概述

CAN总线知识点概述CAN全称为“ControllerAreaNetwork”,简称CAN,是国际上应用最广泛的现场之一。

在当前的汽车产业中,出于对平安性、舒服性、便利性、低公害、低成本的要求,各式各样的控制系统被开发出来。

出于这些系统之间通信所用的数据类型及对牢靠性要求不尽相同,且因多条总线构成的状况复杂、线束数量增强。

为了适应“削减线束的数量”、“通过多个LAN,举行大量数据的高速通信”的需求,1986年德国电气商博世公司开发出面对汽车的CAN通信协议。

此后,CAN通过IS011898及IS0 11519举行了标准化,在欧洲已是汽车网络的标准协议,CAN的高性能和牢靠性已被认同,并广泛应用于工业、船舶、医疗设备、工业设备等方面。

的特点1、CAN是一种多主总线,即每个节点机均可成为主机,他们之间都可举行通信。

2、硬件方面,通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1mb/s。

3、CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余校验、优先级判别等项工作。

4、CAN协议的一个最大特点是废除了传统的站地址编码,改为从通信数据块举行编码。

采纳这种办法的优点是可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种数据块编码方式,还可使不同的节点同时接收到相同的数据,这一点在分步式控制中十分重要。

5、数据段长度最多为8个字节,可满足通常工业领域中控制指令、工作状态及测试数据的普通要求。

同时,8个字节不会占用总线时光过长,从而保证了通信的实时性。

6、CAN协议采纳了crc检验并可提供相应的错误处理功能,保证了数据通信的牢靠性。

CAN总线所具有的极高的牢靠性和独特设计,特殊适合工业设各测控单元互连。

工业界的地位不行小觑,并已公认为最有前途的现场总线之一。

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结(建议收藏)

CAN总线基础知识总结一、CAN总线简介1、CAN总线(Controller Area Network,控制器局域网)是由德国BOSCH(博世)公司在1986年为汽车而设计的,它是一种串行通信总线,只需两根线CAN_H和CAN_L。

2、隐性(逻辑1)与显性(逻辑0)的概念:CAN总线在数据传输过程中,实际上传输的是CAN_H和CAN_L之间的电位差。

CAN_H只能是高电平(3.5V)或悬浮状态(2.5V),CAN_L只能是低电平(1.5V)或悬浮状态(2.5)V,当CAN_H和CAN_L都为2.5V 时,是隐性,表示逻辑1,当 CAN_H为3.5V、CAN_L都为2.5V时,是显性,表示逻辑0。

表示隐性和显性逻辑的能力是CAN总线仲裁方法的基本先决条件,即所有节点都为隐性时,总线才处于隐性状态;只要有一个节点发送了显性,总线就呈现为显性状态。

3、120Ω电阻:必须在总线的每一节点的CAN_H和CAN_L之间接一个120Ω左右的电阻,以避免出现信号反射。

4、CAN技术规范CAN2.0A和CAN2.0B:CAN2.0A只有标准帧(标识符(ID)有11位);CAN2.0B除了标准帧,还有扩展帧(标识符(ID)有29位)。

5、CAN的国际标准ISO11898和ISO11519:CAN 协议经ISO 标准化后有ISO11898和ISO11519两种标准,它们对于数据链路层的定义相同,但物理层不同。

ISO11898 是波特率为125kbps-1Mbps 的CAN高速通信标准。

ISO11519 是波特率为125kbps 以下的CAN低速通信标准。

高速通信标准和低速通信标准的硬件规格也不一样,所以需要选用不同的收发器。

在收发器的规格书上都会注明高速通信用还是低速通信用,或者是符合ISO11898标准还是ISO11519标准。

6、CAN总线协议只定义了物理层和数据链路层,要将CAN总线应用于工程项目中必须制定上层的应用协议。

can总线知识点

can总线知识点

can总线知识点
摘要:
1.can总线简介
2.can总线的特点
3.can总线的工作原理
4.can总线的应用领域
5.can总线的发展趋势
正文:
can总线是一种用于实时控制的串行通信总线,它最初由德国的Robert Bosch GmbH公司于1980年代开发。

can总线具有高速、高可靠性、强实时性、低成本等优点,因此在汽车、工业自动化、智能建筑、医疗设备等领域得到了广泛的应用。

can总线的特点是采用多主控制结构,所有节点都可以主动发送或接收消息,不存在固定的主从关系。

can总线采用位级别的仲裁机制,确保了在多个节点同时发送消息时,总线上不会出现数据冲突。

此外,can总线还具有错误检测和处理功能,能够自动检测并纠正错误,从而保证了通信的可靠性。

can总线的工作原理是,首先将数据按位编码,然后通过定时器进行分时发送。

接收节点在接收到数据后,会对其进行解码和处理。

can总线采用两线制传输,即数据线和信号线,通过电平变化来表示数据。

此外,can总线还具有扩展功能,可以通过中继器扩展总线长度。

can总线在汽车领域的应用最为广泛,主要用于汽车电子设备的通信和控
制。

例如,can总线可以用于传输发动机、制动、转向等系统的实时数据,实现汽车的智能控制。

此外,can总线在工业自动化领域也有广泛应用,如用于工厂生产线的自动化控制、智能楼宇的安防系统等。

随着物联网技术的发展,can总线的应用领域也在不断扩大。

在未来,can 总线将继续在智能交通、智能家居、智能医疗等领域发挥重要作用。

can的知识点总结

can的知识点总结

can的知识点总结一、CAN的起源和发展1993年首次应用于汽车网络通信,它是一种串行网络协议通信系统,广泛应用于汽车领域,其设计初衷是连接各部件以实现可靠的传输和通信能力。

CAN协议特点是高速、实时、可靠、抗干扰能力强,支持多主机,多任务,多帧结构等功能。

二、CAN的基本原理CAN总线是一种串行通信总线,其基本原理是利用两个线进行通讯——CAN_H和CAN_L,并通过差分信号进行通讯。

差分信号指的是CAN_H和CAN_L两根线上的电压相差约2.5V,传输数据时如果CAN_H线上电压高于CAN_L线,则代表逻辑“0”,反之则代表逻辑“1”。

三、CAN的逻辑帧结构CAN中的数据传输以帧的形式进行,帧包括了标识符、控制域、数据域和CRC校验等。

逻辑帧分为标准帧和扩展帧两种,标准帧数据域长度为0-8字节,扩展帧数据域长度可以达到64字节。

四、CAN的速度与通信距离CAN的通信速度可以达到1Mbps,而实际应用中一般选择500kbps为主。

CAN的通信距离可以达到40m左右,但是实际应用中一般不超过10m。

五、CAN的应用领域CAN总线广泛应用于汽车、工程机械、船舶、电力系统、工业控制等领域。

在汽车领域,CAN总线被广泛应用于车载电子控制单元(ECU)之间的数据传输和通信,使得车辆系统可以实现智能化和自动化。

六、CAN的主要特点1. 高可靠性:CAN总线采用了许多技术手段来提高系统的可靠性,如CRC校验、差分传输、冲突检测等。

2. 抗干扰能力强:CAN总线采用了差分传输的方式,使得其对电磁干扰的抗性能非常强。

3. 实时性好:CAN总线支持时间触发,且数据传输速率高,因此实时性较好。

4. 多帧结构的支持:CAN总线支持标准帧和扩展帧,数据域长度可以达到64字节,满足不同应用场景的需求。

5. 主机与多任务支持:CAN总线支持多主机通信和多任务的功能。

七、CAN的局限性1. 数据传输速率有限:CAN总线的最高数据传输速率为1Mbps,对于某些高数据吞吐量的应用场景可能无法满足需求。

CAN总线入门介绍资料

CAN总线入门介绍资料

CAN总线本章我们主要介绍的是红龙103开发板的外设CAN总线通信及原理,学习本章可以了解到CAN多机通信原理,及使用上位机进行调试。

1、CAN总线简介CAN是控制器局域网络(Controller Area Network)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准。

是国际上应用最广泛的现场总线之一。

通信速率最高可达1Mbps。

CAN总线特点:(1)数据通信没有主从之分,任意一个节点可以向任何其他(一个或多个)节点发起数据通信,靠各个节点信息优先级先后顺序来决定通信次序,高优先级节点信息在134μs通信;(2)多个节点同时发起通信时,优先级低的避让优先级高的,不会对通信线路造成拥塞;(3)通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);(4)CAN总线传输介质可以是双绞线,同轴电缆。

CAN总线适用于大数据量短距离通信或者长距离小数据量,实时性要求比较高,多主多从或者各个节点平等的现场中使用。

CAN总线是基于报文的协议,CAN总线上报文所包含的内容只有优先级标志区和欲传送的数据内容。

所有节点都会接收到在总线上传送的报文,并在正确接后发出应答确认。

至于该报文是否要做进一步的处理或被丢弃将完全取决于接收节点本身。

一旦有新的节点接入到总线中,它就开始接收信息,判别信息标识,然后决定是否作处理或直接丢弃。

报文中的位流是按非归零码的方法编码的,即一个完整的电平要么是显性(逻辑0),要么是隐性(逻辑1)。

在隐性状态下,CAN_H和CAN_L被固定于平均电压电平,Vdiff近似为零。

在总线空闲或隐性位期间发送隐性状态。

显性状态以大于最小阀值的差分电压表示,其电气特性如下:其报文有两种不同的帧格式,不同之处为识别符场的长度不同:具有11位识别符的帧称之为标准帧;而含有29位识别符的帧为扩展帧。

构成一帧的帧起始、仲裁场、控制场、数据场和CRC序列均借助于位填充规则进行编码,当发送器在发送的位流中检测到5位连续的相同数值,将自动的在实际发送的位流中插入一个补码位。

CAN总线培训资料

CAN总线培训资料

CAN-BUS BUS的功能
2、CAN-BUS的功能 CAN-BUS的功能 (1)、实现电器功能集成控制; 实现电器功能集成控制; )、实现电器功能集成控制 实现信号测试与故障诊断; (2)、实现信号测试与故障诊断; )、实现信号测试与故障诊断 实现在线编程; (3)、实现在线编程; )、实现在线编程 (4)、实现各车型配置与生产和销售 )、实现各车型配置与生产和销售 信息相结合; 信息相结合; 提高电器系统的抗干扰性、 (5)、提高电器系统的抗干扰性、可 )、提高电器系统的抗干扰性 靠性、灵活性、实时性。 靠性、灵活性、实时性。
CAN-BUS的特点 的特点
4、CAN-BUS的特点 CAN-BUS的特点 通讯介质:双绞线、 (1)、 通讯介质:双绞线、同轴电 光纤; 缆、光纤; (2)、通信速率: )、通信速率: 通信速率 1Mbps(40m)~5Kbps(10Km); 1Mbps(40m)~5Kbps(10Km); (3)、通讯方式:采用串行通讯; )、通讯方式:采用串行通讯; 通讯方式 数字信号编码方式: (4)、数字信号编码方式:采用曼彻 )、数字信号编码方式 斯特编码; 斯特编码; (5)支持节点数:110个。 支持节点数:110个
CAN-BUS的关键技术 的关键技术
5、CAN-BUS的关键技术 CAN-BUS的关键技术 结构模型:物理层PH CANPH( (1)、 结构模型:物理层PH(CAN-H、 CAN- )、数据联络层DL、网络层N 数据联络层DL CAN-L)、数据联络层DL、网络层N、传 输层T 会话层S 表示层P 应用层A 输层T、会话层S、表示层P、应用层A; (2)、ECU:ECU是CAN技术的核心,其 )、ECU:ECU是CAN技术的核心, ECU 技术的核心 功能包括:CAN控制器 CAN收发器 控制器、 收发器、 功能包括:CAN控制器、CAN收发器、应 用层的软件(CPU-SJA1000-CAN); 用层的软件(CPU-SJA1000-CAN); (3)、网络结构:多节点、多网关 )、网络结构:多节点、 网络结构 见下图)。 (见下图)。

can总线报告资料

can总线报告资料

can总线报告资料一、概述CAN(Controller Area Network)总线是一种广泛应用于汽车和工业领域的串行通信协议。

它具有高可靠性、高实时性和高带宽的特点,被广泛应用于车辆电子控制系统、工业自动化控制系统等领域。

本报告旨在介绍CAN总线的基本原理、应用领域和技术特点。

二、CAN总线的基本原理1. 物理层CAN总线采用双绞线进行数据传输,通信速率可达到1Mbps。

它采用差分信号传输,具有抗干扰能力强的特点。

CAN总线的物理层标准有CAN 2.0A和CAN 2.0B两种,分别适用于不同的应用场景。

2. 数据链路层CAN总线采用CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的数据链路层协议。

它通过监听总线上的数据活动来实现多节点之间的数据传输。

当多个节点同时发送数据时,会发生冲突,此时通过冲突检测和重新发送机制来解决冲突问题。

3. 帧格式CAN总线的数据传输以帧为单位进行。

CAN帧由起始位、标识符、控制位、数据域和校验位组成。

其中,标识符用于区分不同的数据帧,数据域用于传输实际数据,校验位用于检测数据的正确性。

三、CAN总线的应用领域1. 汽车电子控制系统CAN总线被广泛应用于汽车电子控制系统,如发动机控制单元(ECU)、制动系统、空调系统等。

它可以实现多个控制单元之间的高速数据传输和实时协同工作,提高整车的性能和安全性。

2. 工业自动化控制系统CAN总线在工业自动化领域的应用也非常广泛。

它可以连接各种传感器、执行器和控制器,实现工业设备之间的数据交换和控制。

通过CAN总线,工业自动化系统可以实现高效、可靠的数据传输和实时控制。

3. 其他领域除了汽车和工业领域,CAN总线还被应用于其他领域,如航空航天、医疗设备、军事装备等。

它的高可靠性和实时性使得CAN总线成为这些领域中的首选通信协议。

四、CAN总线的技术特点1. 高可靠性CAN总线采用差分信号传输和冲突检测机制,具有抗干扰能力强的特点。

CAN总线基础知识

CAN总线基础知识

四、CAN 四、CAN 有哪些技术特点?
CAN控制器局部网主要特征 CAN控制器局部网主要特征 ---工业级总线式串行通信网络标准 ---多主站依据优先权进行总线访问 ---无破坏性的基于优先权的仲裁 ---借助接收滤波的多地址帧传送 ---远程数据请求 ---数据通信配置灵活性 ---数据通信高实时性 ---数据通信高可靠性 ---全系统数据相容性 ---错误检测和出错信令 ---发送期间若丢失仲裁或由于出错而遭破坏的帧可自动重发送 ---暂时错误和永久性故障接点的判别以及故障节点的自动脱离
一、什么是CAN 一、什么是CAN ?
CAN,全称为“Controller Area Network”,即控制器局域 网,是国际上应用最广泛的现场总线之一。最初,CAN被设 计作为汽车环境中的微控制器通讯,在车载各电子控制装置 ECU之间交换信息,形成汽车电子控制网络。比如:发动机 管理系统、变速箱控制器、仪表装备、电子主干系统中,均 嵌入CAN控制装置。 一个由CAN 总线构成的单一网络中,理论上可以挂接无 数个节点。实际应用中,节点数目受网络硬件的电气特性所 限制。例如,当使用Philips P82C250作为CAN收发器时,同 一网络中允许挂接110个节点。CAN 可提供高达1Mbit/s的数 据传输速率,这使实时控制变得非常容易。另外,硬件的错 误检定特性也增强了CAN的抗电磁干扰能力。
CAN是一种多主方式的串行通讯总线,基本设计规范 要求有高的位速率,高抗电磁干扰性,而且能够检测出产生 的任何错误。当信号传输距离达到10Km时,CAN 仍可提供 高达50Kbit/s的数据传输速率。 由于CAN总线具有很高的实时性能,因此,CAN已经 在汽车工业、航空工业、工业控制、安全防护等领域中得到 了广泛应用。

CAN总线介绍

CAN总线介绍

CAN总线介绍CAN(Controller Area Network)总线是一种广泛应用于汽车、工业控制等领域的数据通信协议。

CAN总线具有高可靠性、高实时性和高带宽等特点,被广泛应用于车辆电子控制系统、航空航天、机械设备等领域。

CAN总线最早由德国Bosch公司在上世纪80年代开发,用于车辆的电子控制。

由于CAN总线在汽车电子领域的成功应用,其优势同样得到了其他领域的认可,逐渐被应用于其他工业领域。

CAN总线采用串行通信方式,可以连接多个节点,实现节点间的数据交换和通信。

1.高可靠性:CAN总线采用差分信号传输,具有较强的抗干扰能力。

在电磁干扰、噪声和抗电气干扰等环境下,CAN总线能够保持正常的数据传输,确保数据的可靠性。

2.高实时性:CAN总线具有优异的实时性能,数据传输的延迟时间很短,一般在毫秒级别。

这使得CAN总线能够满足实时应用的需求,例如车辆的实时控制系统、工业自动化过程控制等。

3. 高带宽:CAN总线的传输速率可达到1Mbps,远远超过了一般串行数据通信协议的速率。

这使得CAN总线能够传输大量的数据,满足复杂系统的通信需求。

4.易于扩展:CAN总线的节点数可以达到数百个,能够方便地扩展系统。

不同的节点可以通过CAN总线进行数据交换,实现节点之间的通信和协作。

这使得CAN总线非常适合于复杂的系统中使用,例如车辆电子控制系统中的各个控制单元。

CAN总线的应用非常广泛,特别是在汽车电子领域。

在汽车中,CAN 总线用于车辆的电子控制系统,如发动机管理系统、制动系统、安全系统等,实现不同控制单元之间的数据传输和通信。

CAN总线可以使得不同控制单元之间实时交换数据,协调各个功能模块的工作,提高整个车辆系统的性能和安全性。

除了汽车电子领域,CAN总线还应用于其他工业控制领域。

例如,CAN总线可以用于机械设备的控制系统,实现各个执行机构之间的协调与控制。

此外,CAN总线还可以用于工业自动化系统,实现各个传感器和执行器之间的数据交换和控制。

can总线知识点

can总线知识点

can总线知识点(原创版)目录1.CAN 总线的概述2.CAN 总线的基本原理3.CAN 总线的主要特点4.CAN 总线的应用领域5.CAN 总线的发展前景正文一、CAN 总线的概述CAN 总线,全称为控制器局域网(Controller Area Network),是一种用于实时控制的串行通信总线。

它最初由德国的 Robert Bosch GmbH 公司于 1980 年代研发,用于汽车电子设备的通信。

后来,CAN 总线逐渐被广泛应用于各种工业自动化领域。

二、CAN 总线的基本原理CAN 总线采用多主控制器结构,所有连接在总线上的节点(设备)都可以发送和接收信息。

总线上的节点通过消息帧进行通信,消息帧包含标识符、数据长度码、数据字段、CRC 字段和应答位等。

CAN 总线采用非同步传输方式,节点间的通信不依赖于固定的时间基准,而是通过消息帧中的定时器来同步。

三、CAN 总线的主要特点1.高速通信:CAN 总线的通信速率最高可达 1Mbps,适用于实时控制系统。

2.多主控制器:总线上的每个节点都可以主动发送信息,不存在固定的主从关系。

3.错误检测与纠正:CAN 总线具有 CRC 校验和应答位机制,可以检测到错误并进行纠正。

4.强抗干扰能力:CAN 总线采用差分信号传输,具有较强的抗干扰能力。

5.扩展性强:CAN 总线可以连接大量节点,最多可达 256 个。

四、CAN 总线的应用领域CAN 总线广泛应用于汽车电子、工业自动化、机器人控制、智能家居等领域。

例如,在汽车电子中,CAN 总线用于连接发动机控制单元、底盘控制单元、仪表盘等设备;在工业自动化中,CAN 总线可以用于传感器数据采集、机床控制等场景。

五、CAN 总线的发展前景随着物联网、工业 4.0 等技术的发展,CAN 总线在未来将发挥更大的作用。

同时,CAN 总线也在不断升级,如 CAN FD(CAN with Flexible Data rate)等新标准已经推出,以满足更高的通信速率和性能要求。

CAN总线 简单介绍 整理

CAN总线 简单介绍 整理

CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。

在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL 与物理总线相连。

CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。

CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息而不分主次,因此可在各节点之间实现自由通信。

CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。

CAN总线任意一个节点可以向任何其他(一个或多个)节点发起数据通信,靠各个节点信息优先级先后顺序来决定通信次序,高优先级节点信息在134μs 通信; 多个节点同时发起通信时,优先级低的避让优先级高的,不会对通信线路造成拥塞; 通信距离最远可达10KM(速率低于5Kbps)速率可达到1Mbps(通信距离小于40M);CAN总线传输介质可以是双绞线,同轴电缆,光缆。

CAN的报文格式在总线中传送的报文,每帧由7部分组成。

CAN协议支持两种报文格式,其唯一的不同是标识符(ID)长度不同,标准格式为11位,扩展格式为29位。

在标准格式中,报文的起始位称为帧起始(SOF),然后是由11位标识符和远程发送请求位(RTR)组成的仲裁场。

RTR位标明是数据帧还是请求帧,在请求帧中没有数据字节。

控制场包括标识符扩展位(IDE),指出是标准格式还是扩展格式。

它还包括一个保留位(ro),为将来扩展使用。

它的最后四个位用来指明数据场中数据的长度(DLC)。

CAN总线介绍最终版

CAN总线介绍最终版

CAN
D
1000~
多媒体系统
MOST FlexRay D2B IEEE1394
15 第十五页,编辑于星期四:十四点 十一分。
CAN基本原理
汽车总线
❖ 汽车总线的应用
16 第十六页,编辑于星期四:十四点 十一分。
CAN基本原理
CAN标准
❖ CAN与OSI参考模型
OSI参考模型
7 应用层 6 表示层 5 会话层 4 传输层 3 网络层 2 数据链路层 1 物理层
CAN基础
第一页,编辑于星期四:十四点 十一分。
主要内容
概述 CAN基本原理 CAN总线的国内外发展现状 CAN总线电磁兼容设计
2 第二页,编辑于星期四:十四点 十一分。
概述
CAN的起源
❖ CAN—Controller Area Network—是20世纪 80年代初德国Bosch公司为解决现代汽车中 众多控制单元、测试仪器之间的实时数据交 换而开发的一种串行通信协议
低速、容错 CAN
Seat Control
Door Control
AT Rt=120Ω
… …
22 第二十二页,编辑于星期四:十四点 十一分。
CAN基本原理
CAN标准
❖ 总线电平
差分电压
23 第二十三页,编辑于星期四:十四点 十一分。
CAN基本原理
CAN标准
❖ 总线电平
高速CAN电平 逻辑1
逻辑0
0 10 40 100
200
1000
10000
13 第十三页,编辑于星期四:十四点 十一分。
概述
CAN的特性
❖ 总线访问—非破坏性仲裁的载波侦听多路访 问/冲突检测CSMA/CD (Carrier Sense Multiple Access/Collision Detection)

can总线知识点介绍

can总线知识点介绍

can总线知识点介绍下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!标题:CAN总线知识详解一、CAN总线概述CAN(Controller Area Network)总线是由Bosch公司开发的一种多主控通信协议,最初应用于汽车电子设备的通信,现在已被广泛应用于工业自动化、医疗设备、航空航天、楼宇自动化等多个领域。

CAN基础知识3篇

CAN基础知识3篇

CAN基础知识第一篇:CAN总线介绍及基本特性CAN(Controller Area Network)总线,是一种串行通信总线,广泛应用于建筑自动化、工业自动化、汽车电子和其他控制领域。

CAN总线的优势在于其高速性、高可靠性和实时性能。

本文将介绍CAN总线的基本特性,包括CAN的基本架构、CAN的帧格式和通讯协议、CAN的通讯速率和传输距离,以及常用的CAN总线标准和应用场景。

1. CAN总线架构CAN总线的基本架构由控制器、节点、总线和转换器组成。

其中,控制器负责CAN通讯协议的实现,节点通过总线与控制器进行通讯,并根据通讯协议执行相应的功能。

总线是连接控制器和节点的传输介质,通常采用双绞线作为传输介质,以保证传输信号的可靠性。

转换器主要负责将CAN总线转换为其他串行通讯协议或者其他传输介质。

2. CAN帧格式和通讯协议CAN总线通讯采用基于帧的数据传输方式,每一帧包含一个控制帧和若干个数据帧。

控制帧用于驱动CAN总线工作,包含开始、结束、错误等信息,数据帧用于传输节点之间的数据。

CAN总线通讯协议采用事件驱动机制,控制帧在总线上产生中断事件,通知节点进行相应的操作。

节点产生数据帧时,需要先向控制器进行请求,控制器则决定该帧是否能够传输。

3. CAN总线通讯速率和传输距离CAN总线通讯速率通常在1Mbps到1Kbps之间,不同的CAN总线标准也有所不同。

例如,CAN2.0B标准规定了1Mbps和500Kbps两种通讯速率。

CAN总线的传输距离基于总线的负载和传输介质的质量而定,一般而言,CAN总线的传输距离约为40m至500m之间。

4. CAN总线标准和应用场景目前常用的CAN总线标准有CAN 2.0A、CAN 2.0B、CAN FD等。

CAN 2.0A和CAN 2.0B协议是基于11位标识符的,而CAN FD协议则支持29位标识符和更高的带宽传输。

CAN总线广泛应用于汽车电子、建筑自动化、工业自动化等领域。

CAN总线资料汇总

CAN总线资料汇总

CAN总线资料汇总工业设备通信通常涉及到很多硬件和软件产品以及用于连通标准计算机平台(个人计算机或工作站)和工业自动化应用设备的协议,而且所使用设备和协议的种类繁多。

因此,大部分自动化应用设备都希望执行简单的串行命令,并希望这些命令同个人计算机或者附加的串行端口板上的标准串行端口兼容。

RS-232是目前PC机与通信工业中应用最广泛的一种串行接口。

RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。

由于RS-232的发送端与接收端之间有公共信号地,所以它不能使用双端信号,否则,共模噪声会耦合到信号系统中。

RS-232标准规定,其最大距离仅为15m,信号传输速率最高为20kbit/s。

CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一,一个由CAN总线构成的单一网络受到网络硬件电气特性的限制。

CAN作为一种多主方式的串行通讯总线,其基本设计规范要求高位速率和较高的抗电磁干扰性能,而且要能够检测出通讯总线上产生的任何错误。

当信号传输距离达10km时,CAN仍可提供高达50kbit/s的数据传输速率。

表1为CAN总线上任意两个节点之间最大传输距离与其位速率之间的对应关系。

表1 CAN总线系统任意两节鼎足之势之间的最大距离由此可见,无论从实时性、适应性、灵活性,还是可靠性上来看,CAN总线都是一种比RS-232更为优秀的串行总线。

当两台串口设备的相距较远,不能直接用RS-232把它们连接起来时,就可以把RS-232转换为CAN,通过CAN总线来实现串口设备的网络互连。

但是,RS-232和CAN在电平和帧格式上都是很大的不同。

具体表现如下:RS-232标准电平采用负逻辑,规定+3V~+15V之间的任意电平为逻辑“0”电平,-3V~-15V之间的任意电平为逻辑“1”电平。

而CAN信号则使用差分电压传送,两条信号线称为“CAN_H”和“CAM_L”,静态时均为2.5V左右,此时的状态表示为逻辑“1”,也可以叫做“隐性”;用CAN_H比CAN_L高表示逻辑“0”,称为“显性”。

can总线知识点

can总线知识点

can总线知识点一、Can总线简介1.Can总线的发展历程Can总线(控制器局域网,Controller Area Network)最早由德国的Robert Bosch GmbH公司于1980年代研发,用于汽车电子设备的通信。

随着技术的不断发展,Can总线逐渐成为了一种广泛应用于各个领域的通信协议。

2.Can总线的应用领域Can总线起初主要用于汽车电子设备之间的通信,如发动机控制、刹车系统、仪表盘等。

如今,Can总线已广泛应用于工业自动化、智能建筑、医疗设备、交通运输等多个领域。

二、Can总线的基本原理1.Can总线的通信模式Can总线采用多主通信模式,即网络中的每个节点(设备)都可以主动发送或接收数据,不存在固定的主从关系。

通过这种方式,保证了通信的实时性和高效性。

2.Can总线的数据传输速率Can总线的数据传输速率一般在1Mbps左右,适用于实时性要求较高的场景。

同时,Can总线支持高速、中速和低速三种传输速率,可以根据实际应用需求进行选择。

三、Can总线的硬件结构1.Can控制器Can控制器是Can总线的核心部分,负责处理报文发送、接收、错误检测等功能。

常见的Can控制器有82C200、82C500等。

2.Can总线驱动器Can总线驱动器负责将Can控制器发出的信号转换为实际的电信号,驱动Can总线传输。

常见的Can总线驱动器有TJA1020、MCP2003等。

3.Can总线传输介质Can总线的传输介质主要有两种:一种是双绞线,另一种是光纤。

双绞线传输速率较低,但成本较低;光纤传输速率较高,但成本较高。

四、Can总线的软件协议1.Can总线的报文格式Can总线的报文格式包括起始符、仲裁字段、控制字段、数据字段、CRC 字段、应答位和结束符。

其中,仲裁字段包含了发送优先级,保证了高优先级的消息优先发送。

2.Can总线的通信规则Can总线的通信规则主要包括报文发送、报文接收、错误检测与处理等方面。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CAN总线资料汇总工业设备通信通常涉及到很多硬件和软件产品以及用于连通标准计算机平台(个人计算机或工作站)和工业自动化应用设备的协议,而且所使用设备和协议的种类繁多。

因此,大部分自动化应用设备都希望执行简单的串行命令,并希望这些命令同个人计算机或者附加的串行端口板上的标准串行端口兼容。

RS-232是目前PC机与通信工业中应用最广泛的一种串行接口。

RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。

由于RS-232的发送端与接收端之间有公共信号地,所以它不能使用双端信号,否则,共模噪声会耦合到信号系统中。

RS-232标准规定,其最大距离仅为15m,信号传输速率最高为20kbit/s。

CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一,一个由CAN总线构成的单一网络受到网络硬件电气特性的限制。

CAN作为一种多主方式的串行通讯总线,其基本设计规范要求高位速率和较高的抗电磁干扰性能,而且要能够检测出通讯总线上产生的任何错误。

当信号传输距离达10km时,CAN仍可提供高达50kbit/s的数据传输速率。

表1为CAN总线上任意两个节点之间最大传输距离与其位速率之间的对应关系。

表1 CAN总线系统任意两节鼎足之势之间的最大距离由此可见,无论从实时性、适应性、灵活性,还是可靠性上来看,CAN总线都是一种比RS-232更为优秀的串行总线。

当两台串口设备的相距较远,不能直接用RS-232把它们连接起来时,就可以把RS-232转换为CAN,通过CAN总线来实现串口设备的网络互连。

但是,RS-232和CAN在电平和帧格式上都是很大的不同。

具体表现如下:RS-232标准电平采用负逻辑,规定+3V~+15V之间的任意电平为逻辑“0”电平,-3V~-15V之间的任意电平为逻辑“1”电平。

而CAN信号则使用差分电压传送,两条信号线称为“CAN_H”和“CAM_L”,静态时均为2.5V左右,此时的状态表示为逻辑“1”,也可以叫做“隐性”;用CAN_H比CAN_L高表示逻辑“0”,称为“显性”。

显性时,通常电压值为:CAN_H=3.5V,CAN_L=1.5V;RS-232串口的帧格式为:一位起始位,八位数据位,一位可编程的第九位(此位为发送和接收的地址/数据位),一位停止位。

而CAN的数据帧格式为:帧信息+ID+数据(可分为标准帧和扩展帧两种格式)。

因此,设计时就需要有一个微控制器来实现电平和帧格式等的转换。

其转换方式如图1所示。

2 RS-232到CAN转换的硬件设计在设计RS-232到CAN的转换装置时,用单片机AT89C52作为微处理器;用SJA1000作为CAN 微控制器,SJA1000中集成了CAN协议的物理层和数据链路层功能,可被动局面对通信数据的帧处理;AT82C250作为CAN控制器和物理总线之间的接口,用于提供总线的差动发送能力和CAN控制器的差动接收能力,通过AT82C250的引脚3可选择三种不同的工作方式(高速、斜率控制和待机)。

其中引脚3接地时为高速方式;高速光隔用6N137实现,其作用是防止串入信号干扰;MAX232用来完成232电平到微控制器接口芯片TTL电平的转换。

具体的硬件接口电路参见SJA1000的有关资源,这里不再多做说明。

但有以下几点需要注意。

(1)CAN总线两端接有一个120Ω的电阻,其作用是匹配总线阻抗,提高数据通信的抗干扰性及可靠行。

但实际上只需保证CAN网络中“CAN_H”和“CAN_L”之间的跨接电阻为60Ω即可。

(2)SJA1000的20引脚RX1在不使用时可接地(具体原因见软件设计),配合CDR.6的置位可使总线长度大大增加。

(3)引脚TX0、TX1的接法决定了串行输出的电平。

具体关系可参考输出控制寄存器OCR的设置。

(4)AT82C250的RS引脚与地间接有一个斜率电阻。

电阻大小可根据总线通信速度作适当调整,一般在16kΩ~140kΩ之间。

(5)MAX232外围需要四个电解电容C1、C2、C3、C4,这些电容也是内部电源转换所需电容,其取值均为1μF/25V,宜选用钽电容并且位置应用量靠近芯片,电源VCC和地之间要接一个0.1μF的去耦电容。

3 RS-232到CAN转换的软件设计在微处理控制下,RS-232和CAN进行数据交换时,采用串口接收和CAN中断方式可提高工作效率。

其主程序流程图如图2所示。

SJA1000的初始化在复位模式下才可以进行,主要包括工作方式的设置、时钟分频和验收滤波寄存器的设置、波特率参数的设置以及中断允许寄存器的设置等。

数据能否准确传递还取决于波特率和流量控制,这也是软件设计时不可忽略的地方。

因此接下来主要介绍CAN波特率的设置、串口波特率的自动检测、串口数据流量控制。

3.1 CAN滤波率的设置CAN协议中的要素之一是波特率。

用户可以设置位周期中的位采样点位置和采样次数,以使用户可以自由地优化应用网络性能,但在优化过程中,要注意位定时参数基准参考振荡器的容差和系统中不同信号传播延迟之间的关系。

系统的位速率fBil表示每单位时间传输数据位的量,即波特率fBit=1/tBit。

额定的位定时由3个互不重叠的段SYNC_SEG、TSEG1和TSEG2组成,这3个时间段分别是TSYNC_SEG、TSEG1和TSEG2组成,这3个时间段分别是tSYNC_SEG、tTSEG1和tTSEG2。

所以,额定位周期tBit是3个时间段的和。

tBit=tSYNC_SEG+tTSEG1+tTSEG2位周期中这些段都用整数个基本时间单位来表示。

该时间单位叫时间份额TQ,时间份额的持续时间是CAN系统时钟的一个周期tSCL,可从振荡器时钟周期tCLK取得。

通过编程预分频因数(波特率预设值BRP)可以调整CAN系统时钟。

具体如下:tSCL=BRP×2tCLK=2BPR/fCLK对CAN位定时计算的另一个很重要的时间段是同步跳转宽度(SJW),持续时间是tSJW。

SJW段并不是位周期的一段,只是定义了在重同步事件中被增长或缩短的位周期的最大TQ数量。

此外,CAN协议还允许用户指定位采样模式(SAM),分别是单次采样和三次采样模式(在3个采样结果中选出1个)。

在单次采样模式中,采样点在TESG1段的末端。

而三次采样模式比单次采样多取两个采样点,它们在TSEG1段末端的前面,之间相差一个TQ。

上面所提到的BPR、SJW、SAM、TESG1、TESG2都可由用户通过CAN控制器的内装中寄存器BTR0和BTR1来定义。

具体如图3所示。

设置好BTR0和BTR1后,实际传输的波特率范围为:最大=1/(tBit-tSJW),最小=1/(tBit+tSJW)3.2 串口波特率检测当串口设备是主机时,如需检测此时转换装置的串口波特率,首先可对主机的接收波特率(以9600波特为例)进行设定,并在终端发送一个特定的字符(以回车符为例),这样,主机根据接收到的字符信息就可以确定转换装置的通信波特率。

回车符的ASCII值是0DH,在不同波特率下接收到的值如表2所列。

表2 不同波特率下接收的字节3.3 串口流控制此处讲到的“流“指的是数据流。

数据在两个串口之间的传输时,常常会出现丢失数据的现象。

由于单片机缓冲区有限,如接收数据时缓冲区已满,那么此时继续发送来的数据就会丢失。

而流控制能有效地解决该问题,当接收端数据处理不过来时,流控制系统就会发出“不再接收”的信号,而使发送端停止发送,直到收到“可以继续发送”的信号再发送数据。

因此流控制可以控制数据传输的进程,防止数据丢失。

常用的两种流控制是硬件流控制(包括RTS/CTS、DTR/CTS等)和软件流控制XON/XOFF(继续/停止),下面仅就硬件流控制RTS/CTS加以说明。

采用硬件进行流控制时,串口终端RTS、CTS接到单片机的I/O口,通过置I/O口为1或0来接收和发出起停信号。

数据终端设备(如计算机)使用RTS来起始单片机发出的数据流,而单片机则用CTS 来起动和暂停来自计算机的数据流。

实现这种硬件握手方式时,在编程时根据接收端缓冲区的大小设置一个高位标志和一个低位标志,当缓冲区内数据量达到高位时,就在接收端将CTS线置低(送逻辑0),而当发送端的程序检测到CTS为低后,就停止发送数据,直到接收端缓冲区的数据量低于低位而将CTS置高为止。

RTS则用来标明接收设备有没有准确好接收数据。

3.4 CAN接收子程序PeliCAN格式既可以发送标准帧也可以送扩展帧,利用时钟分频寄存器中的CDR.7可以调协CAN 模式(0-BasicCAN,1-PeliCAN),接收CAN数据时,可根据帧信息中的FF位来判断是标准帧还是扩展帧,并且RTR位来判断是远程帧还是数据帧。

以下是CAN接收子程序:;//////////////////////////////////////////////////////////////////;//CAN数据接收/统一成2个字节ID的帧格式//;///////////////////////////////////////////////////////////////////////RECAN:MOV R0,#C_RE ;单片机内缓冲区起始地址MOV DPTR,#RXBUF ;读取并保存接收缓冲区的内容MOVX A,@DPTR ;读取CAN缓冲区的2号字节MOV @R0,A ;保存JB ACC.7,EFF_RE ;FF位,0-SFF,1-EFFMOV R2,#0SJMP SFF_RE ;ID数目不同,截取“数据字节”的位置不同EFF_RE:MOV R2,#2SFF_RE:MOV R2,#2SFF_RE:JB ACC.6,EXIT_RECAN ;RTR位判断,1-远程帧,则跳出ANL A,#0FHMOV R3,A ;这时截取中间4位是数据长度MOV C_NUM,A ;R3,R5中存放接收帧的长度RDATA0:INC DPTR ;2个字节IDINC R0MOVX A,@DPTRMOV @R0,AINC DPTRMOVX A,@R0,AINC DPTRMOVX A,@DPTRMOV @R0,AMOV A,R2 ;如果是EFF则跳过两个字节IDJZ DRATA1INC DPTRINC DPTRDATA1:;数据字节INC DPTRINC R0MOVX A,@DPTRMOV @R0,ADJNZ R3,RDATA1EXIT_RECAN:RET4 结束语。

相关文档
最新文档